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Preface

After writing Global Optimization Algorithms – Theory and Applications [205] during my time as PhD student a long time ago, I now want to write a more direct guide to optimization and metaheuristics. Currently, this book is in an early stage of development and work-in-progress, so expect many changes. It is available as pdf, html, epub, and azw3.

The text tries to introduce optimization in an accessible way for an audience of undergraduate and graduate students without background in the field. It tries to provide an intuition about how optimization algorithms work in practice, what things to look for when solving a problem, or how to get from a simple, working, proof-of-concept approach to an efficient solution for a given problem. We follow a learning-by-doing approach by trying to solve one practical optimization problem as example theme throughout the book. All algorithms are directly implemented and applied to that problem after we introduce them. This allows us to discuss their strengths and weaknesses based on actual results. We try to improve the algorithms step-by-step, moving from very simple approaches, which do not work well, to efficient metaheuristics.
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  url       = {http://thomasweise.github.io/aitoa/},
  edition   = {2020-12-26}
}

We use concrete examples and algorithm implementations written in Java. While originally designed for educational purposes, the code is general and may applicable to real research experiments, too. All of it is freely available in the repository thomasWeise/aitoa-code on GitHub under the MIT License. Often, we will just look at certain portions of the code, maybe parts of a class where we omit methods or member variables, or even just snippets from functions. Each source code listing is accompanied by a (src) link in the caption linking to the current full version of the file in the GitHub repository. If you discover an error in any of the examples, please file an issue.

This book is written using our automated book writing environment, which integrates GitHub, Travis CI, and docker-hub. Many of the charts and tables in the book have been generated with R scripts, whose source code is available in the aitoaEvaluate on GitHub under the MIT License, too. The experimental results are available in the repository aitoa-data. The text of the book itself is actively written and available in the repository thomasWeise/aitoa on GitHub. There, you can also submit issues, such as change requests, suggestions, errors, typos, or you can inform me that something is unclear, so that I can improve the book.
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1 Introduction

Today, algorithms influence a bigger and bigger part in our daily life and the economy. They support us by suggesting good decisions in a variety of fields, ranging from engineering, timetabling and scheduling, product design, over travel and logistic planning to even product or movie recommendations. They will be the most important element of the transition of our industry to smarter manufacturing and intelligent production, where they can automate a variety of tasks, as illustrated in Figure 1.1.


[image: Figure 1.1: Examples for applications of optimization, computational intelligence, machine learning techniques in five fields of smart manufacturing: the production itself, the delivery of the products, the management of the production, the products and services, and the sales level.]Figure 1.1: Examples for applications of optimization, computational intelligence, machine learning techniques in five fields of smart manufacturing: the production itself, the delivery of the products, the management of the production, the products and services, and the sales level.

Optimization and Operations Research provide us with algorithms that propose good solutions to such a wide range of questions. Usually, it is applied in scenarios where we can choose from many possible options. The goal is that the algorithms propose solutions which minimize (at least) one resource requirement, be it costs, energy, space, etc. If they can do this well, they also offer another important advantage: Solutions that minimize resource consumption are often not only cheaper from an immediate economic perspective, but also better for the environment, i.e., with respect to ecological considerations.

Thus, we already know three reasons why optimization will be a key technology for the next century, which silently does its job behind the scenes:


	Any form of intelligent production or smart manufacturing needs automated decisions. Since these decisions should be intelligent, they can only come from a process which involves optimization in one way or another.

	In global and local competition in all branches of industry and all service sectors those institutions who can reduce their resource consumption and costs while improving product quality and production efficiency will have the edge. One key technology for achieving this is better planning via optimization.

	Our world suffers from both depleting resources and too much pollution. Optimization can give us more while needing less. It often inherently leads to more environmentally friendly processes.



But how can algorithms help us to find solutions for hard problems in a variety of different fields? What does variety even mean? How general are these algorithms? And how can they help us to make good decisions? And how can they help us to save resources?

In this book, we will try to answer all of these questions. We will explore quite a lot of different optimization algorithms. We will look at their actual implementations and we will apply them to example problems to see what their strengths and weaknesses are.


1.1 Examples

Let us first get a feeling about typical use cases of optimization.


1.1.1 Example: Layout of Factories

When we think about intelligent production, then there both dynamic and static aspects, as well as all sorts of nuances in between. The question how a factory should look like is a rather static, but quite important aspect. Let us assume we own a company and buy a plot of land to construct a new factory. Of course we know which products we will produce in this factory. We therefore also know the set of facilities that we need to construct, i.e., the workshops, storage depots, and maybe an administrative building. What we need to decide is where to place them on our land, as illustrated in Figure 1.2.


[image: Figure 1.2: Illustrative sketch of a quadratic assignment scenario, where different buildings of a factory need to be laid out on a plot of land.]Figure 1.2: Illustrative sketch of a quadratic assignment scenario, where different buildings of a factory need to be laid out on a plot of land.

Let us assume we have nn locations on our plot of land that we can use for our nn facilities. In some locations, there might be already buildings, in others, we may need to construct them anew. For each facility and location pair, a different construction cost may arise. A location with an existing shed might be a good solution to put a warehouse in but may need to be demolished if we want to put the administration department there.

But there also are costs arising from the relative distances between the facilities that we wish to place. Maybe there is a lot of material flow between two workshops. Some finished products and raw material may need to be transported between a workshop and the storage depot. Between the administration building and the workshops, on the other hand, there will usually be no material flow. Of course, the distance between two facilities will depend on the locations we pick for them.

For each pair of facilities that we place on the map, flow costs will arise as a function (e.g., the product) of the amount of material to be transported between them and the distance of their locations.

The total cost of an assignment of facilities to locations is therefore the sum of the resulting base costs and flow costs. Our goal would be to find the assignment with the smallest possible total cost.

This scenario is called quadratic assignment problem (QAP) [31]. It has been subject to research since the 1950s [20]. QAPs appear in wide variety of scenarios such as the location of facilities on a plot of land or the placement of work stations on the factory floor. But even if we need to place components on a circuit board in a way that minimizes the total wire length, we basically have a QAP, too [190]! Despite being relatively simple to understand, the QAP is hard to solve [176].



1.1.2 Example: Route Planning for a Logistics Company

Another, more dynamic application area for optimization is logistics. Let us look at a typical real-world scenario from this field [211,212]: the situation of a logistics company that fulfills delivery tasks for its clients. A client can order one or multiple containers to be delivered to her location within a certain time window. She will fill the containers with goods, which are then to be transported to a destination location, again within a certain time window. The logistics company may receive many such customer orders per day, maybe several hundreds or even thousands. The company may have multiple depots, where containers and trucks are stored. For each order, it needs to decide which container(s) to use and how to get them to the customer, as sketched in Figure 1.3. The trucks it owns may have different capacities and could, e.g., carry either one or two containers. Besides using trucks, which can travel freely on the map, it may also be possible to utilize trains. Trains have higher capacities and can carry many containers. Different from trucks, they must follow specific schedules. They arrive and depart at fixed times to/from fixed locations. For each possible vehicle, different costs could occur. Containers can be exchanged between different vehicles at locations such as parking lots, depots, or train stations.


[image: Figure 1.3: Illustrative sketch of logistics problems: Orders require us to pick up some items at source locations within certain time windows and deliver them to their destination locations, again within certain time windows. We need to decide which containers and vehicles to use and over which routes we should channel the vehicles.]Figure 1.3: Illustrative sketch of logistics problems: Orders require us to pick up some items at source locations within certain time windows and deliver them to their destination locations, again within certain time windows. We need to decide which containers and vehicles to use and over which routes we should channel the vehicles.

The company could have the goals to fulfill all transportation requests at the lowest cost. Actually, it might seek to maximize its profit, which could even mean to outsource some tasks to other companies. The goal of optimization then would be to find the assignment of containers to delivery orders and vehicles and of vehicles to routes, which maximizes the profit. And it should do so within a limited, feasible time.


[image: Figure 1.4: A Traveling Salesman Problem (TSP) through eleven cities in China.]Figure 1.4: A Traveling Salesman Problem (TSP) through eleven cities in China.

Of course, there is a wide variety of possible logistics planning tasks. Besides our real-world example above, a classical task is the Traveling Salesman Problem (TSP) [8,94,133], where the goal is to find the shortest round-trip tour throughnn cities, as sketched in Figure 1.4. Many other scenarios can be modeled as such logistics questions, too: If a robot arm needs to several drill holes into a circuit board, finding the shortest tour means solving a TSP and will speed up the production process, for instance [91].



1.1.3 Example: Packing, Cutting Stock, and Knapsack

Let’s say that your family is moving to a new home in another city. This means that you need to transport all of your belongings from your old to your new place, your PC, your clothes, maybe some furniture, a washing machine, and a fridge, as sketched in Figure 1.5. You cannot pack everything into your car at once, so you will have to drive back and forth a couple of times. But how often will you have to drive? Packing problems [68,180] aim to package sets of objects into containers as efficient as possible, i.e., in such a way that we need as few containers as possible. Your car can be thought of as a container and whenever it is filled, you drive to the new flat. If you need to fill the container four times, then you have to drive back and forth four times.


[image: Figure 1.5: A sketch illustrating a packing problem.]Figure 1.5: A sketch illustrating a packing problem.

Such bin packing problems exist in many variants and are very related to cutting stock problems [68]. They can be one-dimensional [56], for example if we want to transport dense/heavy objects with a truck where the maximum load weight is limiting factor while there is enough space capacity. This is similar to having a company which puts network cables into people’s homes and therefore bulk purchases reels with 100m of cables each. Of course, each home needs a different required total length of cables and we want to cut our cables such that we need as few reels as possible.

A two-dimensional variant [136] could correspond to printing a set of (rectangular) images of different sizes on (rectangular) paper. Assume that more than one image fits on a sheet of paper but we have too many images for one piece of paper. We can cut the paper after printing to separate the single images. We then would like to arrange the images such that we need as few sheets of paper as possible.

The three-dimensional variant then corresponds to our moving homes scenario. Of course, there are many more different variants – the objects we want to pack could be circular, rectangular, or have an arbitrary shape. We may also have a limited number of containers and thus may not be able to pack all objects, in which case we would like to only package those that give us the most profit (arriving at a task called knapsack problem [141]).



1.1.4 Example: Job Shop Scheduling Problem

Another typical optimization task arises in manufacturing, namely the assignment (scheduling) of tasks (jobs) to machines in order to optimize a given performance criterion (objective). Scheduling [165,166] is one of the most active areas of operational research for more than six decades.

In the Job Shop Scheduling Problem (JSSP) [33,43,66,88,132,134], we have a factory (shop) with several machines. We receive a set of customer orders for products which we have to produce. We know the exact sequence in which each product/order needs to pass through the machines and how long it will need at each machine. Each production job has one sub-job (operation) for each machine on which it needs to be processed. These operations must be performed in the right sequence. Of course, no machine can process more than one operation at the same time. While we must obey these constraints, we can decide about the time at which each of the operations should begin. Often, we are looking for the starting times that lead to the earliest completion of all jobs, i.e., the shortest makespan.

Such a scenario is sketched in Figure 1.6, where four orders for different types of shoe should be produced. The resulting jobs pass through different workshops (or machines, if you want) in different order. Some, like the green sneakers, only need to be processed by a subset of the workshops.


[image: Figure 1.6: Illustrative sketch of a JSSP scenario with four jobs where four different types of shoe should be produced, which require different workshops (“machines”) to perform different production steps.]Figure 1.6: Illustrative sketch of a JSSP scenario with four jobs where four different types of shoe should be produced, which require different workshops (machines) to perform different production steps.

This general scenario encompasses many simpler problems. For example, if we only produce one single product, then all jobs would pass through the same machines in the same order. Customers may be able to order different quantities of the product, so the operations of the different jobs for the same machine may need different amounts of time. This is the so-called Flow Shop Scheduling Problem (FSSP) – and it has been defined back in 1954 [121]!

Clearly, since the JSSP allows for an arbitrary machine order per job, being able to solve the JSSP would also enable us to solve the FSSP, where the machine order is fixed. We will introduce the JSSP in detail in Section 2.2.2 and use it as the main example in this book on which we will step-by-step exercise different optimization methods.



1.1.5 Summary

The four examples we have discussed so far are, actually, quite related. They all fit into the broad areas of operational research, which and smart manufacturing [52,106]. The goal of smart manufacturing is to optimize development, production, and logistics in the industry. Therefore, computer control is applied to achieve high levels of adaptability in the multi-phase process of creating a product from raw material. The manufacturing processes and maybe even whole supply chains are networked. The need for flexibility and a large degree of automation require automatic intelligent decisions. The key technology necessary to propose such decisions are optimization algorithms. In a perfect world, the whole production process as well as the warehousing, packaging, and logistics of final and intermediate products would take place in an optimized manner. No time or resources would be wasted as production gets cleaner, faster, and cheaper while the quality increases.




1.2 Metaheuristics: Why do we need them?

The main topic of this book will be metaheuristic optimization (although I will eventually also discuss some other methods (remember: work in progress). So why do we need metaheuristic algorithms? Why should you read this book?


1.2.1 Good Solutions within Acceptable Time

The first and foremost reason is that they can provide us good solutions within reasonable time. It is easy to understand that there are some problems which are harder to solve than others. Everyone of us already knows this from the mathematics classes in school. Of course, the example problems discussed before cannot be attacked as easily as solving a single linear equation. They require algorithms, they require computer science.


[image: Figure 1.7: The growth of different functions in a log-log scaled plot. Exponential functions grow very fast, so that an algorithm which needs \sim 2^s steps to solve an optimization problem of size s quickly becomes infeasible. (compare with Table 2.1 and Table 2.3)]Figure 1.7: The growth of different functions in a log-log scaled plot. Exponential functions grow very fast, so that an algorithm which needs ∼2s\sim 2^s steps to solve an optimization problem of size ss quickly becomes infeasible. (compare with Table 2.1 and Table 2.3)

Ever since primary school, we have learned many problems and types of equations that we can solve. Unfortunately, theoretical computer science shows that for many problems, the time we need to find the best-possible solution can grow exponentially with the number of involved variables in the worst case. The number of involved variables here could be the number of cities in a TSP, the number of jobs or machines in a JSSP, or the number of objects to pack in a, well, packing problem. A big group of such complicated problems are called 𝒩𝒫\mathcal{NP}‑hard [37,134]. Unless some unlikely breakthrough happens [44,124], there will be many problems that we cannot always solve exactly within reasonable time. Each and every one of the example problems discussed belongs to this type!

As sketched in Figure 1.7, the exponential function rises very quickly. One idea would be to buy more computers for bigger problems and to simply parallelize the computation. Well, parallelization can provide a linear speed-up at best, but we are dealing with problems where the runtime requirements may double every time we add a new decision variable. And no: Quantum computers are not the answer. Most likely, they cannot even solve these problems qualitatively faster either [1].

So what can we do to solve such problems? The exponential time requirement occurs if we make guarantees about the solution quality, especially about its optimality, over all possible scenarios. What we can do, therefore, is that we can trade-in the guarantee of finding the best possible solution for lower runtime requirements. We can use algorithms from which we hope that they find a good approximation of the optimum, i.e., a solution which is very good with respect to the objective function, but which do not guarantee that their result will be the best possible solution. We may sometimes be lucky and even find the optimum, while in other cases, we may get a solution which is close enough. And we will get this within acceptable time limits.


[image: Figure 1.8: The trade-off between solution quality and runtime.]Figure 1.8: The trade-off between solution quality and runtime.

In Figure 1.8 we illustrate this idea on the example of the Traveling Salesman Problem [8,94,133] briefly mentioned in Section 1.1.2. The goal of solving the TSP is to find the shortest round trip tour through nn cities. The TSP is 𝒩𝒫\mathcal{NP}‑hard [79,94]. Today, it is possible to solve many large instances of this problem to optimality by using sophisticated exact algorithms [45,46]. Yet, finding the shortest possible tour for a particular TSP might still take many years if you are unlucky. Finding just one tour is, however, very easy: I can write down the cities in any particular order. Of course, I can visit the cities in an arbitrary order. That is an entirely valid solution, and I can obtain it basically in 0 time. This tour would probably be very bad, very long, and generally not a good idea.

In the real world, we need something in between. We need a solution which is as good as possible as fast as possible. Heuristic and metaheuristic algorithms offer different trade-offs of solution quality and runtime. Different from exact algorithms, they do not guarantee to find the optimal solution and often make no guarantee about the solution quality at all. Still, they often allow us to get very good solutions for computationally hard problems in short time. They may often still discover them (just not always, not guaranteed).



1.2.2 Good Solutions within Acceptable Time

Saying that we need a good algorithm to solve a given problem is very easy. Developing a good algorithm to solve a given problem is not, as any graduate student in the field can probably confirm. Before, I stated that great exact algorithms for the TSP exist [45,46], that can solve many TSPs quickly (although not all). There are years and years of research in these algorithms. Even the top heuristic and metaheuristic algorithm for the TSP today result from many years of targeted research [105,153,219] and their implementation from the algorithm specification alone can take months [215]. Unfortunately, if you do not have plain TSP, but one with some additional constraints – say, time windows to visit certain cities – the optimized, state-of-the-art TSP solvers are no longer applicable. And in a real-world application scenario, you do not have years to develop an algorithm. What you need are simple, versatile, general algorithm concepts that you can easily adapt to your problem at hand. Something that can be turned into a working prototype within a few weeks.

Metaheuristics are the answer. They are general algorithm concepts into which we can plug problem-specific modules. General metaheuristics are usually fairly easy to implement and deliver acceptable results. Once a sufficiently well-performing prototype has been obtained, we could go and integrate it into the software ecosystem of the customer. We also can try to improve its performance using different ideas … and years and years of blissful research, if we are lucky enough to find someone paying for it.






2 The Structure of Optimization


2.1 Introduction

From the examples that we have seen, we know that optimization problems come in different shapes and forms. Without training, it is not directly clear how to identify, define, understand, or solve them. The goal of this chapter is to bring some order into this mess. We will approach an optimization task step-by-step by formalizing its components, which will then allow us to apply efficient algorithms to it. This structure of optimization is a blueprint that can be applied in many different scenarios as basis to apply different optimization algorithms.

First, let us clarify what optimization problems actually are.

Definition 1. An optimization problem is a situation which requires deciding for one choice from a set of possible alternatives in order to reach a predefined/required benefit at minimal costs.

Definition 1 presents an economical point of view on optimization in a rather informal manner. We can refine it to the more mathematical formulation given in Definition 2.

Definition 2. The goal of solving an optimization problem is finding an input value y⋆∈𝕐y^{\star}\in\mathbb{Y} from a set 𝕐\mathbb{Y} of allowed values for which a function f:𝕐↦ℝf:\mathbb{Y}\mapsto\mathbb{R} takes on the smallest value.

From these definitions, we can already deduce a set of necessary components that make up such an optimization problem. We will look at them from the perspective of a programmer:


	First, there is the problem instance data ℐ\mathcal{I}, i.e., the concrete situation which defines the framework conditions for the solutions we try to find. This input data of the optimization algorithm is discussed in Section 2.2.

	The second component is the data structure 𝕐\mathbb{Y} representing possible solutions to the problem. This is the output of the optimization software and is discussed in Section 2.3.

	Finally, the objective function f:𝕐↦ℝf:\mathbb{Y}\mapsto\mathbb{R} rates the quality of the candidate solutions y∈𝕐y\in\mathbb{Y}. This function embodies the goal that we try to achieve, e.g., (minimize) costs. It is discussed in Section 2.4.



If we want to solve a Traveling Salesmen Problem (see Section 1.1.2), then the instance data includes the names of the cities that we want to visit and a map with the information of all the roads between them (or simply a distance matrix). The candidate solution data structure could simply be a city list containing each city exactly once and prescribing the visiting order. The objective function would take such a city list as input and compute the overall tour length. It would be subject to minimization.

Usually, in order to actually practically implement an optimization approach, there often will also be


	a search space 𝕏\mathbb{X}, i.e., a simpler data structure for internal use, which can more efficiently be processed by an optimization algorithm than 𝕐\mathbb{Y} (Section 2.6),

	a representation mapping γ:𝕏↦𝕐\gamma:\mathbb{X}\mapsto\mathbb{Y}, which translates points x∈𝕏x\in\mathbb{X} from the search space 𝕏\mathbb{X} to candidate solutions y∈𝕐y\in\mathbb{Y} in the solution space 𝕐\mathbb{Y} (Section 2.6),

	search operators searchOp:𝕏n↦𝕏\textrm{searchOp}:\mathbb{X}^n\mapsto\mathbb{X}, which allow for the iterative exploration of the search space 𝕏\mathbb{X} (Section 2.7), and

	a termination criterion, which tells the optimization process when to stop (Section 2.8).



At first glance, this looks a bit complicated – but rest assured, it won’t be. We will explore all of these structural elements that make up an optimization problem in this chapter, based on a concrete example of the Job Shop Scheduling Problem (JSSP) from Section 1.1.4 [33,66,88,132,134]. This example should give a reasonable idea about how the structural elements and formal definitions involved in optimization can be realized in practice. While any actual optimization problem can require very different data structures and operations from what we will discuss here, the general approach and ideas that we will discuss on specific examples should carry over to many scenarios.

At this point, I would like to make explicitly clear that the goal of this book is NOT to solve the JSSP particularly well. Our goal is to have an easy-to-understand yet practical introduction to optimization. This means that sometimes I will intentionally and knowingly choose an easy-to-understand approach, algorithm, or data structure over a better but more complicated one. Also, our aim is to nurture the general ability to come up with a solution approach to a new optimization problem within a reasonably short time, i.e., without being able to conduct research over several years. That being said, the algorithms and approaches discussed here are not necessarily inefficient. While having much room for improvement, we eventually reach approaches that find decent solutions (see, e.g., Section 3.5.5).



2.2 Problem Instance Data


2.2.1 Definitions

We implicitly distinguish optimization problems (see Definition 2) from problem instances. While an optimization problem is the general blueprint of the tasks, e.g., the goal of scheduling production jobs to machines, the problem instance is a concrete scenario of the task, e.g., a concrete lists of tasks, requirements, and machines.

Definition 3. A concrete instantiation of all information that are relevant from the perspective of solving an optimization problems is called a problem instance ℐ\mathcal{I}.

The problem instance is the input of the optimization algorithms. A problem instance is related to an optimization problem in the same way an object/instance is related to its class in an object-oriented programming language like Java or a struct in C. The class defines which member variables exists and what their valid ranges are. An instance of the class is a piece of memory which holds concrete values for each member variable.



2.2.2 Example: Job Shop Scheduling


2.2.2.1 JSSP Instance Structure

So how can we characterize a JSSP instance ℐ\mathcal{I}? In the a basic and yet general scenario [66,88,132,134], our factory has m∈ℕ1m\in\mathbb{N}_1 machines.1 At each point in time, a machine can either work on exactly one job or do nothing (be idle). There are n∈ℕ1n\in\mathbb{N}_1 jobs that we need to schedule to these machines. For the sake of simplicity and for agreement between our notation here, the Java source code, and the example instances that we will use, we reference jobs and machines with zero-based indices from 0…(n−1)0\ldots(n-1) and 0…(m−1)0\ldots(m-1), respectively.

Each of the nn jobs is composed of mm sub-jobs – the operations – one for each machine. Each job may need to pass through these machines in a different order. The operation jj of job ii must be executed on machine Mi,j∈0…(m−1)M_{i,j}\in 0\ldots(m-1) and doing so needs Ti,j∈ℕ0T_{i,j}\in\mathbb{N}_0 time units for completion.

This definition at first seems strange, but upon closer inspection is quite versatile. Assume that we have a factory that produces exactly one product, but different customers may order different quantities. Here, we would have JSSP instances where all jobs need to be processed by exactly the same machines in exactly the same sequence. In this case Mi1,j=Mi2,jM_{i_1,j}=M_{i_2,j} would hold for all jobs i1i_1 and i2i_2 and all operation indices jj. The jobs would pass through all machines in the same order but may have different processing times (due to the different quantities).

We may also have scenarios where customers can order different types of products, say the same liquid soap, but either in bottles or big cannisters. Then, different machines may be needed for different orders. This is similar to the situation illustrated in Figure 1.6, where a certain job ii does not need to be executed on a machine j′j'. We then can simply set the required time Ti,jT_{i,j} to 0 for the operation jj with Mi,j=j′M_{i,j}=j'.

In other words, the JSSP instance structure described here already encompasses a wide variety of real-world production situations. This means that if we can build an algorithm which can solve this general type of JSSP well, it can also automatically solve the above-mentioned special cases.



2.2.2.2 Sources for JSSP Instances

In order to practically play around with optimization algorithms, we need some concrete instances of the JSSP. Luckily, the optimization community provides benchmark instances for many different optimization problems. Such common, well-known instances are important, because they allow researchers to compare their algorithms. The eight classical and most commonly used sets of benchmark instances are published in [3,9,57,66,74,135,191,224]. Their data can be found (sometimes partially) in several repositories in the internet, such as


	the OR‑Library managed by Beasley [18],

	the comprehensive set of JSSP instances provided by van Hoorn [199,201], where also state-of-the-art results are listed,

	Oleg Shylo’s Page [185], which, too, contains up-to-date experimental results,

	Éric Taillard’s Page, or, finally,

	my own repository jsspInstancesAndResults [207], where I collect all the above problem instances and many results from existing works.



We will try to solve JSSP instances obtained from these collections. They will serve as illustrative example of how to approach optimization problems. In order to keep the example and analysis simple, we will focus on only four instances, namely


	instance abz7 by Adams et al. [3] with 20 jobs and 15 machines

	instance la24 by Lawrence [135] with 15 jobs and 10 machines,

	instance swv15 by Storer et al. [191] with 50 jobs and 10 machines, and

	instance yn4 by Yamada and Nakano [224] with 20 jobs and 20 machines.



These instances are contained in text files available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt, http://raw.githubusercontent.com/thomasWeise/jsspInstancesAndResults/master/data-raw/instance-data/instance_data.txt, and in http://jobshop.jjvh.nl/. Of course, if we really want to solve a new type of problem, we will usually use many benchmark problem instances to get a good understand about the performance of our algorithm(s). Only for the sake of clarity of presentation, we will here limit ourselves to these above four problems.



2.2.2.3 File Format and demo Instance

For the sake of simplicity, we created one additional, smaller instance to describe the format of these files, as illustrated in Figure 2.1.


[image: Figure 2.1: The meaning of the text representing our demo instance of the JSSP, as an example of the format used in the OR‑Library.]Figure 2.1: The meaning of the text representing our demo instance of the JSSP, as an example of the format used in the OR‑Library.

In the simple text format used in OR‑Library, several problem instances can be contained in one file. Each problem instance ℐ\mathcal{I} is starts and ends with a line of several + characters. The next line is a short description or title of the instance. In the third line, the number nn of jobs is specified, followed by the number mm of machines. The actual IDs or indexes of machines and jobs are 0-based, similar to array indexes in Java. The JSSP instance definition is completed by nn lines of text, each of which specifying the operations of one job i∈0…(n−1)i\in0\ldots(n-1). Each operation jj is specified as a pair of two numbers, the ID Mi,jM_{i,j} of the machine that is to be used (violet), from the interval 0…(m−1)0\ldots(m-1), followed by the number of time units Ti,jT_{i,j} the job will take on that machine. The order of the operations defines exactly the order in which the job needs to be passed through the machines. Of course, each machine can only process at most one job at a time.

In our demo instance illustrated in Figure 2.1, this means that we have n=4n=4 jobs and m=5m=5 machines. Job 0 first needs to be processed by machine 0 for 10 time units, it then goes to machine 1 for 20 time units, then to machine 2 for 20 time units, then to machine 3 for 40 time units, and finally to machine 4 for 10 time units. This job will thus take at least 100 time units to be completed, if it can be scheduled without any delay or waiting period, i.e., if all of its operations can directly be processed by their corresponding machines. Job 3 first needs to be processed by machine 4 for 50 time units, then by machine 3 for 30 time units, then by machine 2 for 15 time units, then by machine 0 for 20 time units, and finally by machine 1 for 15 time units. It would not be allowed to first send Job 3 to any machine different from machine 4 and after being processed by machine 4, it must be processed by machine 3 – althoug it may be possible that it has to wait for some time, if machine 3 would already be busy processing another job. In the ideal case, job 3 could be completed after 130 time units.



2.2.2.4 A Java Class for JSSP Instances

This structure of a JSSP instance can be represented by the simple Java class given in Listing 2.1.


Listing 2.1: Excerpt from a Java class for representing the data of a JSSP instance. (src)

public class JSSPInstance {
  public int m;
  public int n;
  public int[][] jobs;
}




Here, the two-dimensional array jobs directly receives the data from operation lines in the text files, i.e., each row stands for a job and contains machine IDs and processing times in an alternating sequence. The actual source file of the class JSSPInstance accompanying our book also contains additional code, e.g., for reading such data from the text file, which we have omitted here as it is unimportant for the understanding of the scenario.





2.3 The Solution Space


2.3.1 Definitions

As stated in Definition 1, an optimization problem asks us to make a choice between different possible solutions. We call them candidate solutions.

Definition 4. A candidate solution yy is one potential solution of an optimization problem.

Definition 5. The solution space 𝕐\mathbb{Y} of an optimization problem is the set of all of its candidate solutions y∈𝕐y\in\mathbb{Y}.

Basically, the input of an optimization algorithm is the problem instance ℐ\mathcal{I} and the output would be (at least) one candidate solution y∈𝕐y\in\mathbb{Y}. This candidate solution is the choice that the optimization process proposes to the human operator. It therefore holds all the data that the human operator needs to take action, in a for that the human operator can understand, interpret, and execute. During the optimization process, many such candidate solutions may be created and compared to find and return the best of them.

From the programmer’s perspective, the solution space is again a data structure, e.g., a class in Java. An instance of this data structure is the candidate solution.



2.3.2 Example: Job Shop Scheduling

What would be a candidate solution to a JSSP instance as defined in Section 2.2.2? Recall from Section 1.1.4 that our goal is to complete the jobs, i.e., the production tasks, as soon as possible. Hence, a candidate solution should tell us what to do, i.e., how to process the jobs on the machines.


2.3.2.1 Idea: Gantt Chart

This is basically what Gantt chart [126,223] are for, as illustrated in Figure 2.2. A Gantt chart defines what each of our mm machines has to do at each point in time. The operations of each job are assigned to time windows on their corresponding machines.


[image: Figure 2.2: One example candidate solution for the demo instance given in Figure 2.1: A Gantt chart assigning a time window to each job on each machine.]Figure 2.2: One example candidate solution for the demo instance given in Figure 2.1: A Gantt chart assigning a time window to each job on each machine.

The Gantt chart contains one row for each machine. It is to be read from left to right, where the x-axis represents the time units that have passed since the beginning of the job processing. Each colored bar in the row of a given machine stands for a job and denotes the time window during which the job is processed. The bar representing operation jj of job ii is painted in the row of machine Mi,jM_{i,j} and its length equals the time requirement Ti,jT_{i,j}.

The chart given in Figure 2.2, for instance, defines that job 0 starts at time unit 0 on machine 0 and is processed there for ten time units. Then the machine idles until the 70th time unit, at which point it begins to process job 1 for another ten time units. After 15 more time units of idling, job 3 will arrive and be processed for 20 time units. Finally, machine 0 works on job 2 (coming from machine 3) for ten time units starting at time unit 150.

Machine 1 starts its day with an idle period until job 2 arrives from machine 2 at time unit 30 and is processed for 20 time units. It then processes jobs 1 and 0 consecutively and finishes with job 3 after another idle period. And so on.

If we wanted to create a Java class to represent the complete information from a Gantt diagram, it could look like Listing 2.2. Here, for each of the mm machines, we create one integer array of length 3n3n. Such an array stores three numbers for each of the nn operations to be executed on the machine: the job ID, the start time, and the end time.


Listing 2.2: Excerpt from a Java class for representing the data of a candidate solution to a JSSP. (src)

public class JSSPCandidateSolution {
  public int[][] schedule;
}





[image: Figure 2.3: An example how the internal int[][] data of the JSSPCandidateSolution class maps to a Gantt chart.]Figure 2.3: An example how the internal int[][] data of the JSSPCandidateSolution class maps to a Gantt chart.

Of course, we would not strictly need a class for that, as we could as well use the integer array int[][] directly.

Also the third number, i.e., the end time, is not strictly necessary, as it can be computed based on the instance data as start+Ti,j′start+T_{i,j'} for job ii on machine jj after searching j′j' such that Mi,j′=jM_{i,j'}=j. Another form of representing a solution would be to just map each operation to a starting time, leading to m*nm*n integer values per candidate solution [200]. But the presented structure – illustrated on an example in Figure 2.3 – is handy and easier to understand. It allows the human operator to directly see what is going on, to directly tell each machine or worker what to do and when to do it, without needing to look up any additional information from the problem instance data.



2.3.2.2 Size of the Solution Space

We choose the set of all Gantt charts for mm machines and nn jobs as our solution space 𝕐\mathbb{Y}. Now it is not directly clear how many such Gantt charts exist, i.e., how big 𝕐\mathbb{Y} is. If we allow arbitrary useless waiting times between jobs, then we could create arbitrarily many different valid Gantt charts for any problem instance. Let us therefore assume that no time is wasted by waiting unnecessarily.

There are n!=∏i=1nin!=\prod_{i=1}^{n} i possible ways to arrange nn jobs on one machine. n!n!, called the factorial of nn, is the number of different permutations (or orderings) of nn objects. If we have three jobs aa, bb, and cc, then there are 3!=1*2*3=63!=1*2*3=6 possible permutations, namely (a,b,c)(a,b,c), (a,c,b)(a,c,b), (b,a,c)(b,a,c), (b,c,a)(b, c, a), (c,a,b)(c, a, b), and (c,b,a)(c, b, a). Each permutation would equal one possible sequence in which we can process the jobs on one machine. If we have three jobs and one machine, then six is the number of possible different Gantt charts that do not waste time.

If we would have n=3n=3 jobs and m=2m=2 machines, we then would have (3!)2=36(3!)^2=36 possible Gantt charts, as for each of the 6 possible sequence of jobs on the first machines, there would be 6 possible arrangements on the second machine. For m=2m=2 machines, it is then (n!)3(n!)^3, and so on. In the general case, we obtain Equation 2.1 for the size |𝕐|\left|\mathbb{Y}\right| of the solution space 𝕐\mathbb{Y}.

|𝕐|=(n!)m(2.1) \left|\mathbb{Y}\right| = (n!)^{m} \qquad(2.1)

However, the fact that we can generate (n!)m(n!)^{m} possible Gantt charts without useless delay for a JSSP with nn jobs and mm machines does not mean that all of them are actual feasible solutions.



2.3.2.3 The Feasibility of the Solutions

Definition 6. A constraint is a rule imposed on the solution space 𝕐\mathbb{Y} which can either be fulfilled or violated by a candidate solution y∈𝕐y\in\mathbb{Y}.

Definition 7. A candidate solution y∈𝕐y\in\mathbb{Y} is feasible if and only if it fulfills all constraints.

Definition 8. A candidate solution y∈𝕐y\in\mathbb{Y} is infeasible if it is not feasible, i.e., if it violates at least one constraint.

In order to be a feasible solution for a JSSP instance, a Gantt chart must indeed fulfill a couple of constraints:


	all operations of all jobs must be assigned to their respective machines and properly be completed,

	only the jobs and machines specified by the problem instance must occur in the chart,

	a operation will must be assigned a time window on its corresponding machine which is exactly as long as the operation needs on that machine,

	the operations cannot intersect or overlap, each machine can only carry out one job at a time, and

	the precedence constraints of the operations must be honored.



While the first four constraints are rather trivial, the latter one proofs problematic. Imagine a JSSP with n=2n=2 jobs and m=2m=2 machines. There are (2!)2=(1*2)2=4(2!)^2=(1*2)^2=4 possible Gantt charts. Assume that the first job needs to first be processed by machine 0 and then by machine 1, while the second job first needs to go to machine 1 and then to machine 0. A Gantt chart which assigns the first job first to machine 1 and the second job first to machine 00 cannot be executed in practice, i.e., is infeasible, as such an assignment does not honor the precedence constraints of the jobs. Instead, it contains a deadlock.


[image: Figure 2.4: Two different JSSP instances with m=2 machines and n=2 jobs, one of which has only three feasible candidate solutions while the other has four.]Figure 2.4: Two different JSSP instances with m=2m=2 machines and n=2n=2 jobs, one of which has only three feasible candidate solutions while the other has four.

The third schedule in the first column of Figure 2.4 illustrates exactly this case. Machine 0 should begin by doing job 1. Job 1 can only start on machine 0 after it has been finished on machine 1. At machine 1, we should begin with job 0. Before job 0 can be put on machine 1, it must go through machine 0. So job 1 cannot go to machine 0 until it has passed through machine 1, but in order to be executed on machine 1, job 0 needs to be finished there first. Job 0 cannot begin on machine 1 until it has been passed through machine 0, but it cannot be executed there, because job 1 needs to be finished there first. A cyclic blockage has appeared: no job can be executed on any machine if we follow this schedule. This is called a deadlock. No jobs overlap in the schedule. All operations are assigned to proper machines and receive the right processing times. Still, the schedule is infeasible, because it cannot be executed or written down without breaking the precedence constraint.

Hence, there are only three out of four possible Gantt charts that work for this problem instance. For a problem instance where the jobs need to pass through all machines in the same sequence, however, all possible Gantt charts will work, as also illustrated in Figure 2.4. The number of actually feasible Gantt charts in 𝕐\mathbb{Y} thus is different for different problem instances.

This is very annoying. The potential existence of infeasible solutions means that we cannot just pick a good element from 𝕐\mathbb{Y} (according to whatever good means), we also must be sure that it is actually feasible. An optimization algorithm which might sometimes return infeasible solutions will not be acceptable.



2.3.2.4 Summary



Table 2.1: The size |𝕐|\left|\mathbb{Y}\right| of the solution space 𝕐\mathbb{Y} (without schedules that stall uselessly) for selected values of the number nn of jobs and the number mm of machines of an JSSP instance ℐ\mathcal{I} (later compare also with Figure 1.7).


	name
	nn
	mm
	min(#feasible)\min(\#\text{feasible})
	|𝕐|\left|\mathbb{Y}\right|





	
	2
	2
	3
	4



	
	2
	3
	4
	8



	
	2
	4
	5
	16



	
	2
	5
	6
	32



	
	3
	2
	22
	36



	
	3
	3
	63
	216



	
	3
	4
	147
	1’296



	
	3
	5
	317
	7’776



	
	4
	2
	244
	576



	
	4
	3
	1’630
	13’824



	
	4
	4
	7’451
	331’776



	
	5
	2
	4’548
	14’400



	
	5
	3
	91’461
	1’728’000



	
	5
	4
	
	207’360’000



	
	5
	5
	
	24’883’200’000



	demo
	4
	5
	
	7’962’624



	la24
	15
	10
	
	≈\approx 1.462*10121



	abz7
	20
	15
	
	≈\approx 6.193*10275



	yn4
	20
	20
	
	≈\approx 5.278*10367



	swv15
	50
	10
	
	≈\approx 6.772*10644







We illustrate some examples for the number |𝕐|\left|\mathbb{Y}\right| of schedules which do not waste time uselessly for different values of nn and mm in Table 2.1. Since we use instances for testing our JSSP algorithms, we have added their settings as well and listed them in column name. Of course, there are infinitely many JSSP instances for a given setting of nn and mm and our instances always only mark single examples for them.

We find that even small problems with m=5m=5 machines and n=5n=5 jobs already have billions of possible solutions. The four more realistic problem instances which we will try to solve here already have more solutions that what we could ever enumerate, list, or store with any conceivable hardware or computer. As we cannot simply test all possible solutions and pick the best one, we will need some more sophisticated algorithms to solve these problems. This is what we will discuss in the following.

The number #feasible\#\text{feasible} of possible feasible Gantt charts can be different, depending on the problem instance. For one setting of mm and nn, we are interested in the minimum min(#feasible)\min(\#\text{feasible}) of this number, i.e., the smallest value that #feasible\#\text{feasible} can take on over all possible instances with nn jobs and mm machines. It is not so easy to find a formula for this minimum, so we won’t do this here. Instead, in Table 2.1, we provided the corresponding numbers for a few selected instances. We find that, if we are unlucky, most of the possible Gantt charts for a problem instance might be infeasible, as min(#feasible)\min(\#\text{feasible}) can be much smaller than |𝕐|\left|\mathbb{Y}\right|.





2.4 Objective Function

We now know the most important input and output data for an optimization algorithm: the problem instances ℐ\mathcal{I} and candidate solutions y∈𝕐y\in\mathbb{Y}, respectively. But we do not just want to produce some output, not just want to find any candidate solution – we want to find the good ones. For this, we need a measure rating the solution quality.


2.4.1 Definitions

Definition 9. An objective function f:𝕐↦ℝf:\mathbb{Y}\mapsto\mathbb{R} rates the quality of a candidate solution y∈𝕐y\in\mathbb{Y} from the solution space 𝕐\mathbb{Y} as real number.

Definition 10. An objective value f(y)f(y) of the candidate solution y∈𝕐y\in\mathbb{Y} is the value that the objective function ff takes on for yy.

Without loss of generality, we assume that all objective functions are subject to minimization, meaning that smaller objective values are better. In this case, a candidate solution y1∈𝕐y_1\in\mathbb{Y} is better than another candidate solution y2∈𝕐y_2\in\mathbb{Y} if and only if f(y1)<f(y2)f(y_1)<f(y_2). If f(y1)>f(y2)f(y_1)>f(y_2), then y2y_2 would be better and for f(y1)=f(y2)f(y_1)=f(y_2), there would be no benefit of either solution over the other, at least from the perspective of the optimization criterion ff. The minimization scenario fits to situations where ff represents a cost, a time requirement, or, in general, any number of required resources.

Maximization problems, i.e., where the candidate solution with the higher objective value is better, are problems where the objective function represents profits, gains, or any other form of positive output or result of a scenario. Maximization and minimization problems can be converted to each other by simply negating the objective function. In other words, if ff is the objective function of a minimization problem, we can solve the maximization problem with −f-f and get the same result, and vice versa.

From the perspective of a Java programmer, the general concept of objective functions can be represented by the interface given in Listing 2.3. The evaluate function of this interface accepts one instance of the solution space class Y and returns a double value. doubles are floating point numbers in Java, i.e., represent a subset of the real numbers. We keep the interface generic, so that we can implement it for arbitrary solution spaces. Any actual objective function would then be an implementation of that interface.


Listing 2.3: A generic interface for objective functions. (src)

public interface IObjectiveFunction<Y> {
  double evaluate(Y y);
}






2.4.2 Example: Job Shop Scheduling

As stated in Section 1.1.4, our goal is to complete the production jobs as soon as possible. This means that we want to minimize the makespan, the time when the last job finishes. Obviously, the smaller this value, the earlier we are done with all jobs, the better is the plan. As illustrated in Figure 2.5, the makespan is the time index of the right-most edge of any of the machine rows/schedules in the Gantt chart. In the figure, this happens to be the end time 230 of the last operation of job 0, executed on machine 4.


[image: Figure 2.5: The makespan (purple), i.e., the time when the last job is completed, for the example candidate solution illustrated in Figure 2.2 for the demo instance from Figure 2.1.]Figure 2.5: The makespan (purple), i.e., the time when the last job is completed, for the example candidate solution illustrated in Figure 2.2 for the demo instance from Figure 2.1.

Our objective function ff is thus equivalent to the makespan and subject to minimization. Based on our candidate solution data structure from Listing 2.2, we can easily compute ff. We simply have to look at the last number in each of the integer arrays stored in the member schedule, as it represents the end time of the last job processed by a machine. We then return the largest of these numbers. We implement the interface IObjectiveFunction in class JSSPMakespanObjectiveFunction accordingly in Listing 2.4.


Listing 2.4: Excerpt from a Java class computing the makespan resulting from a candidate solution to the JSSP. (src)

public class JSSPMakespanObjectiveFunction
    implements IObjectiveFunction<JSSPCandidateSolution> {
  public double evaluate(JSSPCandidateSolution y) {
    int makespan = 0;
// look at the schedule for each machine
    for (int[] machine : y.schedule) {
// the end time of the last job on the machine is the last number
// in the array, as array machine consists of "flattened" tuples
// of the form ((job, start, end), (job, start, end), ...)
      int end = machine[machine.length - 1];
      if (end > makespan) {
        makespan = end; // remember biggest end time
      }
    }
    return makespan;
  }
}




With this objective function ff, subject to minimization, we have defined that a Gantt chart y1y_1 is better than another Gantt chart y2y_2 if and only if f(y1)<f(y2)f(y_1)<f(y_2).2




2.5 Global Optima and the Lower Bound of the Objective Function

We now know the three key-components of an optimization problem. We are looking for a candidate solution y⋆∈𝕐y^{\star}\in\mathbb{Y} that has the best objective value f(y⋆)f(y^{\star}) for a given problem instance ℐ\mathcal{I}. But what is the meaning best?


2.5.1 Definitions

Assume that we have a single objective function f:𝕐↦ℝf:\mathbb{Y}\mapsto\mathbb{R} defined over a solution space 𝕐\mathbb{Y}. This objective function is our primary guide during the search and we are looking for its global optima.

Definition 11. If a candidate solution y⋆∈𝕐y^{\star}\in\mathbb{Y} is a global optimum for an optimization problem defined over the solution space 𝕐\mathbb{Y}, then there is no other candidate solution in 𝕐\mathbb{Y} which is better.

Definition 12. For every global optimum y⋆∈𝕐y^{\star}\in\mathbb{Y} of single-objective optimization problem with solution space 𝕐\mathbb{Y} and objective function f:𝕐↦ℝf:\mathbb{Y}\mapsto\mathbb{R} subject to minimization, it holds that f(y)≥f(y⋆)∀y∈𝕐f(y) \geq f(y^{\star}) \forall y\in \mathbb{Y}.

Notice that Definition 12 does not state that the objective value of y⋆y^{\star} needs to be better than the objective value of all other possible solutions. The reason is that there may be more than one global optimum, in which case all of them have the same objective value. Thus, a global optimum is not defined as a candidate solutions better than all other solutions, but as a solution for which no better alternative exists.

The real-world meaning of a globally optimal is nothing else than superlative [30]. If we solve a JSSP for a factory, our goal is to find the shortest makespan. If we try to pack the factory’s products into containers, we look for the packing that needs the least amount of containers. Thus, optimization means searching for such superlatives, as illustrated in Figure 2.6. Vice versa, whenever we are looking for the cheapest, fastest, strongest, best, biggest or smallest thing, then we have an optimization problem at hand.


[image: Figure 2.6: Optimization is the search for superlatives [30].]Figure 2.6: Optimization is the search for superlatives [30].

For example, for the JSSP there exists a simple and fast algorithm that can find the optimal schedules for problem instances with exactly m=2m=2 machines and if all nn jobs need to be processed by the two machines in exactly the same order [121]. If our application always falls into a special case of the problem, we may be lucky to find an efficient way to always solve it to optimality. The general version of the JSSP, however, is 𝒩𝒫\mathcal{NP}‑hard [37,134], meaning that we cannot expect to solve it to global optimality in reasonable time. Developing a good (meta-)heuristic algorithm, which cannot provide guaranteed optimality but will give close-to-optimal solutions in practice, is a good choice.



2.5.2 Bounds of the Objective Function

If we apply an approximation algorithm, then we do not have the guarantee that the solution we get is optimal. We often do not even know if the best solution we currently have is optimal or not. In some cases, we be able to compute a lower bound lb(f)\textrm{lb}(f) for the objective value of an optimal solution, i.e., we know It is not possible that any solution can have a quality better than lb(f)\textrm{lb}(f), but we may not know whether a solution actually exists that has quality lb(f)\textrm{lb}(f). This is not directly useful for solving the problem, but it can tell us whether our method for solving the problem is good. For instance, if we have developed an algorithm for approximately solving a given problem and we know that the qualities of the solutions we get are close to a the lower bound, then we know that our algorithm is good. We then know that improving the result quality of the algorithm may be hard, maybe even impossible, and probably not worthwhile. However, if we cannot produce solutions as good as or close to the lower quality bound, this does not necessarily mean that our algorithm is bad.

It should be noted that it is not necessary to know the bounds of objective values. Lower bounds are a nice to have feature allowing us to better understand the performance of our algorithms.



2.5.3 Example: Job Shop Scheduling

We have already defined our solution space 𝕐\mathbb{Y} for the JSSP in Listing 2.2 and the objective function ff in Listing 2.3. A Gantt chart with the shortest possible makespan is then a global optimum. There may be multiple globally optimal solutions, which then would all have the same makespan.

When facing a JSSP instance ℐ\mathcal{I}, we do not know whether a given Gantt chart is the globally optimal solution or not, because we do not know the shortest possible makespan. There is no direct way in which we can compute it. But we can, at least, compute some lower bound lb(f)\textrm{lb}(f) for the best possible makespan.

For instance, we know that a job ii needs at least as long to complete as the sum ∑j=0m−1Ti,j\sum_{j=0}^{m-1} T_{i,j} over the processing times of all of its operations. It is clear that no schedule can complete faster then the longest job. Furthermore, we know that the makespan of the optimal schedule also cannot be shorter than the latest finishing time of any machine jj. This finishing time is at least as big as the sum bjb_{j} of the runtimes of all the operations assigned to this machine. But it may also include a least initial idle time aja_{j}: If the operations for machine jj never come first in their job, then for each job, we need to sum up the runtimes of the operations coming before the one on machine jj. The least initial idle time aja_{j} is then the smallest of these sums. Similarly, there is a least idle time cjc_{j} at the end if these operations never come last in their job. As lower bound for the fastest schedule that could theoretically exist, we therefore get:

lb(f)=max{maxi{∑j=0m−1Ti,j},maxj{aj+bj+cj}}(2.2) \textrm{lb}(f) = \max\left\{\max_{i}\left\{ \sum_{j=0}^{m-1} T_{i,j}\right\} \;,\; \max_{j} \left\{ a_{j}+b_{j} +c_{j}\right\}\right\} \qquad(2.2)

More details are given in Section 6.1.1 and [66]. Often, we may not have such lower bounds, but it does never hurt to think about them, because it will provide us with some more understanding about the nature of the problem we are trying to solve.

Even if we have a lower bound for the objective function, we can usually not know whether any solution of that quality actually exists. In other words, we do not know whether it is actually possible to find a schedule whose makespan equals the lower bound. There simply may not be any way to arrange the jobs such that no operation stalls any other operation. This is why the value lb(f)\textrm{lb}(f) is called lower bound: We know no solution can be better than this, but we do not know whether a solution with such minimal makespan exists.

However, if our algorithms produce solutions with a quality close to lb(f)\textrm{lb}(f), we know that we are doing well. Also, if we would actually find a solution with that makespan, then we would know that we have perfectly solved the problem. The lower bounds for the makespans of our example problems are illustrated in Table 2.2.



Table 2.2: The lower bounds lbf\textrm{lb}{f} for the makespan of the optimal solutions for our example problems. For the instances abz7, la24, and yn4, research literature (last column) provides better (i.e., higher) lower bounds lb(f)⋆\textrm{lb}(f)^{\star}.










	name
	nn
	mm
	lb(f)\textrm{lb}(f)
	lb(f)⋆\textrm{lb}(f)^{\star}
	source for lb(f)⋆\textrm{lb}(f)^{\star}





	demo
	4
	5
	180
	180
	Equation 2.2



	abz7
	20
	15
	638
	656
	[143,199,203,204]



	la24
	15
	10
	872
	935
	[9,199]



	swv15
	50
	10
	2885
	2885
	Equation 2.2



	yn4
	20
	20
	818
	929
	[199,203,204]








[image: Figure 2.7: The globally optimal solution of the demo instance Figure 2.1, whose makespan happens to be the same as the lower bound.]Figure 2.7: The globally optimal solution of the demo instance Figure 2.1, whose makespan happens to be the same as the lower bound.

Figure 2.7 illustrates the globally optimal solution for our small demo JSSP instance defined in Figure 2.1 (we will get to how to find such a solution later). Here we were lucky: The objective value of this solution happens to be the same as the lower bound for the makespan. Upon closer inspection, the limiting machine is the one at index 3.

We will find this by again looking at Figure 2.1. Regardless with which job we would start here, it would need to initially wait at least a3=30a_{3}=30 time units. The reason is that no first operation of any job starts at machine 3. Job 0 would get to machine 3 the earliest after 50 time units, job 1 after 30, job 2 after 62, and job 3 after again 50 time units. Also, no job in the demo instance finishes at machine 3. Job 0, for instance, needs to be processed by machine 4 for 10 time units after it has passed through machine 3. Job 1 requires 80 more time units after finishing at machine 3, job 2 also 10 time units, and job 3 again 50 time units. In other words, machine 3 needs to wait at least 30 time units before it can commence its work and will remain idle for at least 10 time units after processing the last sub job. In between, it will need to work for exactly 140 time units, the total sum of the running time of all operations assigned to it. This means that no schedule can complete faster than 30+140+10=18030+140+10=180 time units. Thus, Figure 2.7 illustrates the optimal solution for the demo instance.

Then, all the jobs together on the machine will consume b3=150b_{3}=150 time units if we can execute them without further delay. Finally, it regardless with which job we finish on this machine, it will lead to a further waiting time of c3=10c_{3}=10 time units. This leads to a lower bound lb(f)\textrm{lb}(f) of 180 and since we found the illustrated candidate solution with exactly this makespan, we have solved this (very easy) JSSP instance.


Listing 2.5: A generic interface for objective functions, now including a function for the lower bound. (src)

public interface IObjectiveFunction<Y> {
  double evaluate(Y y);
  default double lowerBound() {
    return Double.NEGATIVE_INFINITY;
  }
}




We can extend our interface for objective functions in Listing 2.5 to now also allow us to implement a function lowerBound which returns, well, the lower bound. If we have no idea how to compute that for a given problem instance, this function can simply return −∞-\infty.




2.6 The Search Space and Representation Mapping

The solution space 𝕐\mathbb{Y} is the data structure that makes sense from the perspective of the user, the decision maker, who will be supplied with one instance of this structure (a candidate solution) at the end of the optimization procedure. But 𝕐\mathbb{Y} it not necessarily is the space that is most suitable for searching inside.

We have already seen that there are several constraints that apply to the Gantt charts. For every problem instance, different solutions may be feasible. Besides the constraints, the space of Gantt charts also looks kind of unordered, unstructured, and messy. It would be nice to have a compact, clear, and easy-to-understand representation of the candidate solutions.


2.6.1 Definitions

Definition 13. The search space 𝕏\mathbb{X} is a representation of the solution space 𝕐\mathbb{Y} suitable for exploration by an algorithm.

Definition 14. The elements x∈𝕏x\in\mathbb{X} of the search space 𝕏\mathbb{X} are called points in the search space.

Definition 15. The representation mapping γ:𝕏↦𝕐\gamma:\mathbb{X}\mapsto\mathbb{Y} is a left-total relation which maps the points x∈𝕏x\in\mathbb{X} of the search space 𝕏\mathbb{X} to the candidate solutions y∈𝕐y\in\mathbb{Y} in the solution space 𝕐\mathbb{Y}.

For applying an optimization algorithm, we usually choose a data structure 𝕏\mathbb{X} which we can understand intuitively. Ideally, it should be possible to define concepts such as distances, similarity, or neighborhoods on this data structure. Spaces that are especially suitable for searching in include, for instances:


	subsets of ss-dimensional real vectors, i.e., ℝs\mathbb{R}^s,

	the set ℙ(s)\mathbb{P}(s) of sequences/permutations of ss objects, and

	a number of ss yes-no decisions, which can be represented as bit strings of length ss and spans the space {0,1}s\{0,1\}^s.



For such spaces, we can relatively easily define good search methods and can rely on a large amount of existing research work and literature. If we are lucky, then our solution space 𝕐\mathbb{Y} is already similar to one of these well-known and well-researched data structures. Then, we can set 𝕏=𝕐\mathbb{X}=\mathbb{Y} and use the identity mapping γ(x)=x∀x∈𝕏\gamma(x)=x\forall x\in\mathbb{X} as representation mapping. In other cases, we will often prefer to map 𝕐\mathbb{Y} to something similar to these spaces and define γ\gamma accordingly.

The mapping γ\gamma does not need to be injective, as it may map two points x1x_1 and x2x_2 to the same candidate solution even though they are different (x1≠x2x_1\neq x_2). Then, there exists some redundancy in the search space. We would normally like to avoid redundancy, as it tends to slow down the optimization process [128]. Being injective is therefore a good feature for γ\gamma.

The mapping γ\gamma also does not necessarily need to be surjective, i.e., there can be candidate solutions y∈𝕐y\in\mathbb{Y} for which no x∈𝕏x\in\mathbb{X} with γ(x)=y\gamma(x)=y exists. However, such solutions then can never be discovered. If the optimal solution would reside in the set of such solutions to which no point in the search space can be mapped, then, well, it could not be found by the optimization process. Being surjective is therefore a good feature for γ\gamma.


Listing 2.6: A general interface for representation mappings. (src)

public interface IRepresentationMapping<X, Y> {
  void map(Random random, X x, Y y);
}




The interface given in Listing 2.6 provides a function map which maps one point x in the search space class X to a candidate solution instance y of the solution space class Y. We define the interface as generic, because we here do not make any assumption about the nature of X and Y. This interface therefore truly corresponds to the general definition γ:𝕏↦𝕐\gamma:\mathbb{X}\mapsto\mathbb{Y} of the representation mapping. Side note: An implementation of map will overwrite whatever contents were stored in object y in the process, i.e., we assume that Y is a class whose instances can be modified.



2.6.2 Example: Job Shop Scheduling

In our JSSP example, we have developed the class JSSPCandidateSolution given in Listing 2.2 to represent the data of a Gantt chart (candidate solution). It can easily be interpreted by the user and we have defined a suitable objective function for it in Listing 2.4. Yet, it is not that clear how we can efficiently create such solutions, especially feasible ones, let alone how to search in the space of Gantt charts.3 What we would like to have is a search space 𝕏\mathbb{X}, which can represent the possible candidate solutions of the problem in a more machine-tangible, algorithm-friendly way. While comprehensive overviews about different such search spaces for the JSSP can be found in [2,40,217,225], we here develop only one single idea which I find particularly appealing.


2.6.2.1 Idea: 1-dimensional Encoding

Imagine you would like to construct a Gantt chart as candidate solution for a given JSSP instance. How would you do that? Well, we know that each of the nn jobs has mm operations, one for each machine. We could simply begin by choosing one job and placing its first operation on the machine to which it belongs, i.e., write it into the Gantt chart. Then we again pick a job, take the first not-yet-scheduled operation of this job, and add it to the end of the row of its corresponding machine in the Gantt chart. Of course, we cannot pick a job whose operations all have already be assigned. We can continue doing this until all jobs are assigned – and we will get a valid solution.

This solution is defined by the order in which we chose the jobs. Such an order can be described as a simple, linear string of job IDs, i.e., of integer numbers. If we process such a string from the beginning to the end and step-by-step assign the jobs, we get a feasible Gantt chart as result.

The encoding and corresponding representation mapping can best be described by an example. In the demo instance, we have m=5m=5 machines and n=4n=4 jobs. Each job has m=5m=5 operations that must be distributed to the machines. We use a string of length m*n=20m*n=20 denoting the priority of the operations. We know the order of the operations per job as part of the problem instance data ℐ\mathcal{I}. We therefore do not need to encode it. This means that we just include each job’s id m=5m=5 times in the string. This was the original idea: The encoding represents the order in which we assign the nn jobs, and each job must be picked mm times. Our search space is thus somehow similar to the set ℙ(n*m)\mathbb{P}(n*m) of permutations of n*mn*m objects mentioned earlier, but instead of permutations, we have permutations with repetitions.


[image: Figure 2.8: Illustration of the first four steps of the representation mapping of an example point in the search space to a candidate solution.]Figure 2.8: Illustration of the first four steps of the representation mapping of an example point in the search space to a candidate solution.

A point x∈𝕏x\in\mathbb{X} in the search space 𝕏\mathbb{X} for the demo JSSP instance would thus be an integer string of length 20. As example, we chose x=(0,2,1,0,3,1,0,1,2,3,2,1,1,2,3,0,2,0,3,3)x=(0, 2, 1, 0, 3, 1, 0, 1, 2, 3, 2, 1, 1, 2, 3, 0, 2, 0, 3, 3) in Figure 2.8. The representation mapping starts with an empty Gantt chart. This string is interpreted from left to right, as illustrated in the figure. The first value is 0, which means that job 0 is assigned to a machine first. From the instance data, we know that job 0 first must be executed for 10 time units on machine 0. The job is thus inserted on machine 0 in the chart. Since machine 0 is initially idle, it can be placed at time index 0. We also know that this operation can definitely be executed, i.e., won’t cause a deadlock, because it is the first operation of the job.

The next number in the string is 2, so job 2 is next. This job needs to go for 30 time units to machine 2, which also is initially idle. So it can be inserted into the candidate solution directly as well (and cannot cause any deadlock either).

Then job 1 is next in xx, and from the instance data we can see that it will go to machine 1 for 20 time units. This machine is idle as well, so the job can start immediately.

We now encounter job 0 again in the integer string. Since we have already performed the first operation of job 0, we now would like to schedule its second operation. According to the instance data, the second operation takes place on machine 1 and will take 20 time units. We know that completing the first operation took 10 time units. We also know that machine 1 first has to process job 1 for 20 time units. The earliest possible time at which we can begin with the second operation of job 0 is thus at time unit 20, namely the bigger one of the above two values. This means that job 0 has to wait for 10 time units after completing its first operation and then can be processed by machine 1. No deadlock can occur, as we made sure that the first operation of job 0 has been scheduled before the second one.

We now encounter job 3 in the integer string, and we know that job 3 first goes to machine 4, which currently is idle. It can thus directly be placed on machine 4, which it will occupy for 50 time units.

Then we again encounter job 1 in the integer string. Job 1 should, in its second operation, go to machine 0. Its first operation to 20 time units on machine 1, while machine 0 was occupied for 10 time units by job 0. We can thus start the second operation of job 1 directly at time index 20.

Further processing of yy leads us to job 0 again, which means we will need to schedule its third operation, which will need 20 time units on machine 2. Machine 2 is occupied by job 2 from time unit 0 to 30 and becomes idle thereafter. The second operation of job 0 finishes on time index 40 at machine 1. Hence, we can begin with the third operation at time index 40 at machine 2, which had to idle for 10 time units.

We continue this iterative processing until reaching the end of the string xx. We now have constructed the complete Gantt chart yy illustrated in Figure 2.8. Whenever we assign a operation i>0i>0 of any given job to a machine, then we already had assigned all operations at smaller indices first. No deadlock can occur and yy must therefore be feasible.


Listing 2.7: Excerpt from a Java class for implementing the representation mapping. (src)

public class JSSPRepresentationMapping implements
    IRepresentationMapping<int[], JSSPCandidateSolution> {
  public void map(Random random, int[] x,
      JSSPCandidateSolution y) {
// create variables machineState, machineTime of length m and
// jobState, jobTime of length n, filled with 0 [omitted brevity]
// iterate over the jobs in the solution
    for (int nextJob : x) {
// get the definition of the steps that we need to take for
// nextJob from the instance data stored in this.m_jobs
      int[] jobSteps = this.mJobs[nextJob];
// jobState tells us the index in this list for the next step to
// do, but since the list contains machine/time pairs, we
// multiply by 2 (by left-shifting by 1)
      int jobStep = (jobState[nextJob]++) << 1;

// so we know the machine where the job needs to go next
      int machine = jobSteps[jobStep]; // get machine

// start time is maximum of the next time when the machine
// becomes idle and the time we have already spent on the job
      int start =
          Math.max(machineTime[machine], jobTime[nextJob]);
// the end time is simply the start time plus the time the job
// needs to spend on the machine
      int end = start + jobSteps[jobStep + 1]; // end time
// it holds for both the machine (it will become idle after end)
// and the job (it can go to the next station after end)
      jobTime[nextJob] = machineTime[machine] = end;

// update the schedule with the data we have just computed
      int[] schedule = y.schedule[machine];
      schedule[machineState[machine]++] = nextJob;
      schedule[machineState[machine]++] = start;
      schedule[machineState[machine]++] = end;
    }
  }
}




In Listing 2.7, we illustrate how such a mapping can be implemented. It basically is a function translating an instance of int[] to JSSPCandidateSolution. This is done by keeping track of time that has passed for each machine and each job, as well as by remembering the next operation for each job and the position in the schedule of each machine.



2.6.2.2 Advantages of a very simple Encoding

This is a very nice and natural way to represent Gantt charts with a much simpler data structure. As a result, it has been discovered by several researchers independently, the earliest being Gen et al. [81], Bierwirth [24,25], and Shi et al. [182], all in the 1990s.

But what do we gain by using this search space and representation mapping? First, well, we now have a very simple data structure 𝕏\mathbb{X} to represent our candidate solutions. Second, we also have very simple rules for validating a point xx in the search space: If it contains the numbers 0…(n−1)0\ldots(n-1) each exactly mm times, it represents a feasible candidate solution.

Third, the candidate solution corresponding to a valid point from the search space will always be feasible [24]. The mapping γ\gamma will ensure that the order of the operations per job is always observed. We do not need to worry about the issue of deadlocks mentioned in Section 2.3.2.3. We know from Table 2.1, that the vast majority of the possible Gantt charts for a given problem may be infeasible – and now we do no longer need to worry about that. Our mapping also makes sure of the more trivial constraints, such as that each machine will process at most one job at a time and that all operations are eventually processed.

Finally, we also could modify our representation mapping γ\gamma to adapt to more complicated and constraint versions of the JSSP if need be: For example, imagine that it would take a job- and machine-dependent time requirement for carrying a job from one machine to another, then we could facilitate this by changing γ\gamma so that it adds this time to the starting time of the job. If there was a job-dependent setup time for each machine [5], which could be different if job 1 follows job 0 instead of job 2, then this could be facilitated easily as well. If our operations would be assigned to machine types instead of machines and there could be more than one machine per machine type, then the representation mapping could assign the operations to the next machine of their type which becomes idle. Our representation also trivially covers the situation where each job may have more than mm operations, i.e., where a job may need to cycle back and pass one machine twice. It is also suitable to simple scenarios, such as the Flow Shop Problem, where all jobs pass through the machines in the same, pre-determined order [66,80,217].

Many such different problem flavors can now be reduced to investigating the same space 𝕏\mathbb{X} using the same optimization algorithms, just with different representation mappings γ\gamma and/or objective functions ff. Additionally, it became very easy to indirectly create and modify candidate solutions by sampling points from the search space and moving to similar points, as we will see in the following chapters.



2.6.2.3 Size of the Search Space

It is relatively easy to compute the size |𝕏|\left|\mathbb{X}\right| of our proposed search space 𝕏\mathbb{X} [182]. We do not need to make any assumptions regarding no useless waiting time, as in Section 2.3.2.2, since this is not possible by default. Each element x∈𝕏x\in\mathbb{X} is a permutation of a multiset where each of the nn elements occurs exactly mm times. This means that the size of the search space can be computed as given in Equation 2.3.

|𝕏|=(m*n)!(m!)n(2.3) \left|\mathbb{X}\right| = \frac{\left(m*n\right)!}{ \left(m!\right)^{n} } \qquad(2.3)



Table 2.3: The sizes |𝕏|\left|\mathbb{X}\right| and |𝕐|\left|\mathbb{Y}\right| of the search and solution spaces for selected values of the number nn of jobs and the number mm of machines of an JSSP instance ℐ\mathcal{I}. (compare with Figure 1.7 and with the size |𝕐|\left|\mathbb{Y}\right| of the solution space); compare with Figure 5.8


	name
	nn
	mm
	|𝕐|\left|\mathbb{Y}\right|
	|𝕏|\left|\mathbb{X}\right|





	
	3
	2
	36
	90



	
	3
	3
	216
	1’680



	
	3
	4
	1’296
	34’650



	
	3
	5
	7’776
	756’756



	
	4
	2
	576
	2’520



	
	4
	3
	13’824
	369’600



	
	4
	4
	331’776
	63’063’000



	
	5
	2
	14’400
	113’400



	
	5
	3
	1’728’000
	168’168’000



	
	5
	4
	207’360’000
	305’540’235’000



	
	5
	5
	24’883’200’000
	623’360’743’125’120



	demo
	4
	5
	7’962’624
	11’732’745’024



	la24
	15
	10
	≈\approx 1.462*10121
	≈\approx 2.293*10164



	abz7
	20
	15
	≈\approx 6.193*10275
	≈\approx 1.432*10372



	yn4
	20
	20
	≈\approx 5.278*10367
	≈\approx 1.213*10501



	swv15
	50
	10
	≈\approx 6.772*10644
	≈\approx 1.254*10806







We give some example values for this search space size |𝕏|\left|\mathbb{X}\right| in Table 2.3. From the table, we can immediately see that the number of points in the search space, too, grows very quickly with both the number of jobs nn and the number of machines mm of an JSSP instance ℐ\mathcal{I}.

For our demo JSSP instance with n=4n=4 jobs and m=5m=5 machines, we already have about 12 billion different points in the search space and 7 million possible, non-wasteful candidate solutions.

We now find the drawback of our encoding: There is some redundancy in our mapping, γ\gamma here is not injective. If we would exchange the first three numbers in the example string in Figure 2.8, we would obtain the same Gantt chart, as jobs 0, 1, and 2 start at different machines.

As said before, we should avoid redundancy in the search space. However, here we will stick with our proposed mapping because it is very simple, it solves the problem of feasibility of candidate solutions, and it allows us to relatively easily introduce and discuss many different approaches, algorithms, and sub-algorithms.





2.7 Search Operations

One of the most important design choices of a metaheuristic optimization algorithm are the search operators employed.


2.7.1 Definitions

Definition 16. An kk‑ary search operator searchOp:𝕏k↦𝕏\textrm{searchOp}:\mathbb{X}^k\mapsto\mathbb{X} is a left-total relation which accepts kk points in the search space 𝕏\mathbb{X} as input and returns one point in the search space as output.

Special cases of search operators are


	nullary operators (k=0k=0, see Listing 2.8), which sample a new point from the search space without using any information from an existing points,

	unary operators (k=1k=1, see Listing 2.9), which sample a new point from the search space based on the information of one existing point,

	binary operators (k=2k=2, see Listing 2.10), which sample a new point from the search space by combining information from two existing points, and

	ternary operators (k=3k=3), which sample a new point from the search space by combining information from three existing points.




Listing 2.8: A generic interface for nullary search operators. (src)

public interface INullarySearchOperator<X>
    extends ISetupPrintable {
  void apply(X dest, Random random);
}





Listing 2.9: A generic interface for unary search operators. (src)

public interface IUnarySearchOperator<X>
    extends ISetupPrintable {
  void apply(X x, X dest, Random random);
}





Listing 2.10: A generic interface for binary search operators. (src)

public interface IBinarySearchOperator<X>
    extends ISetupPrintable {
  void apply(X x0, X x1, X dest, Random random);
}




Whether, which, and how such such operators are used depends on the nature of the optimization algorithms and will be discussed later on.

Search operators are often randomized, which means invoking the same operator with the same input multiple times may yield different results. This is why Listings 2.8-2.10 all accept an instance of java.util.Random, a pseudorandom number generator.

Operators that take existing points in the search space as input tend to sample new points which, in some sort, are similar to their inputs. They allow us to define proximity-based relationships over the search space, such as the common concept of neighborhoods.

Definition 17. A unary operator searchOp:𝕏↦𝕏\textrm{searchOp}:\mathbb{X}\mapsto\mathbb{X} defines a neighborhood relationship over a search space where a point x1∈𝕏x_1\in\mathbb{X} is called a neighbor of a point x2∈𝕏x_2\in\mathbb{X} are called neighbors if and only if x1x_1 could be the result of an application of searchOp\textrm{searchOp} to x2x_2.



2.7.2 Example: Job Shop Scheduling

We will step-by-step introduce the concepts of nullary, unary, and binary search operators in the subsections of Section 3 on metaheuristics as they come. This makes more sense from a didactic perspective.




2.8 The Termination Criterion and the Problem of Measuring Time

We have seen that the search space for even small instances of the JSSP can already be quite large. We simply cannot enumerate all of them, as it would take too long. This raises the question: If we cannot look at all possible solutions, how can we find the global optimum? We may also ask: If we cannot look at all possible solutions, how can we know whether a given candidate solution is the global optimum or not? In many optimization scenarios, we can use theoretical bounds to solve that issue, but a priori, these questions are valid and their answer is simply: No. No, without any further theoretical investigation of the optimization problem, we don’t know if the best solution we know so far is the global optimum or not. This leads us to another problem: If we do not know whether we found the best-possible solution or not, how do we know if we can stop the optimization process or should continue trying to solve the problem? There are two basic answers: Either when the time is up or when we found a reasonably-good solution.


2.8.1 Definitions

Definition 18. The termination criterion is a function of the state of the optimization process which becomes true if the optimization process should stop (and then remains true) and remains false as long as it can continue.


Listing 2.11: A general interface for termination criteria. (src)

public interface ITerminationCriterion {
  boolean shouldTerminate();
}




With a termination criterion defined as implementation of the interface given in Listing 2.11, we can embed any combination of time or solution quality limits. We could, for instance, define a goal objective value gg good enough so that we can stop the optimization procedure as soon as a candidate solution y∈𝕐y\in\mathbb{Y} has been discovered with f(y)≤gf(y)\leq g, i.e., which is at least as good as the goal. Alternatively – or in addition – we may define a maximum amount of time the user is willing to wait for an answer, i.e., a computational budget after which we simply need to stop. Discussions of both approaches from the perspective of measuring algorithm performance are given in Sections 4.2, 4.3.



2.8.2 Example: Job Shop Scheduling

In our example domain, the JSSP, we can assume that the human operator will input the instance data ℐ\mathcal{I} into the computer. Then she may go drink a coffee and expect the results to be ready upon her return. While she does so, can we solve the problem? Unfortunately, probably not. As said, for finding the best possible solution, if we are unlucky, we would need in invest a runtime growing exponentially with the problem size, i.e., mm and nn [37,134]. So can we guarantee to find a solution which is, say, 1% worse, until she finishes her drink? Well, it was shown that there is no algorithm which can guarantee us to find a solution only 25% worse than the optimum within a runtime polynomial in the problem size [117,222] in 1997. Since 2011, we know that any algorithm guaranteeing to provide schedules that are only be a constant factor (be it 25% or 1’000’000) worse than the optimum may need the dreaded exponential runtime [142]. So whatever algorithm we will develop for the JSSP, defining a some limit solution quality based on the lower bound of the objective value at which we can stop makes little sense.

Hence, we should rely on the simple practical concern: The operator drinks a coffee. A termination criterion granting three minutes of runtime seems to be reasonable to me here. We should look for the algorithm implementation that can give us the best solution quality within that time window.

Of course, there may also be other constraints based on the application scenario, e.g., whether a proposed schedule can be implemented/completed within the working hours of a single day. We might let the algorithm run longer than three minutes until such a solution was discovered. But, as said before, if a very odd scenario occurs, it might take a long time to discover such a solution, if ever. The operator may also need to be given the ability to manually stop the process and extract the best-so-far solution if needed. For our benchmark instances, however, this is not relevant and we can limit ourselves to the runtime-based termination criterion.




2.9 Solving Optimization Problems

Thank you for sticking with me during this long and a bit dry introduction chapter. Why did we go through all of this long discussion? We did not even solve the JSSP yet…

Well, in the following you will see that we now are actually only a few steps away from getting good solutions for the JSSP. Or any optimization problem. Because we now have actually exercise a the basic process that we need to go through whenever we want to solve a new optimization task.


	The first thing to do is to understand the scenario information, i.e., the input data ℐ\mathcal{I} that our program will receive.

	The second step is to understand what our users will consider as a solution – a Gantt chart, for instance. Then we need to define a data structure 𝕐\mathbb{Y} which can hold all the information of such a candidate solution.

	Once we have the data structure 𝕐\mathbb{Y} representing a complete candidate solution, we need to know when a solution is good. We will define the objective function ff, which returns one number (say the makespan) for a given candidate solution.

	If we want to apply any of the optimization algorithms introduced in the following chapters, then we also to know when to stop. As already discussed, we usually cannot solve instances of a new problem to optimality within feasible time and often don’t know whether the current-best solution is optimal or not. Hence, a termination criterion usually arises from practical constraints, such as the acceptable runtime.



All the above points need to be tackled in close collaboration with the user. The user may be the person who will eventually, well, use the software we build or at least a domain expert. The following steps then are our own responsibility:


	In the future, we will need to generate many candidate solutions quickly, and these better be feasible. Can this be done easily using the data structure 𝕐\mathbb{Y}? If yes, then we are good. If not, then we should think about whether we can define an alternative search space 𝕏\mathbb{X}, a simpler data structure. Creating and modifying instances of such a simple data structure 𝕏\mathbb{X} is much easier than 𝕐\mathbb{Y}. Of course, defining such a data structure 𝕏\mathbb{X} makes only sense if we can also define a mapping γ\gamma from 𝕏\mathbb{X} to 𝕐\mathbb{Y}.

	We select optimization algorithms and plug in the representation and objective function. We may need to implement some other algorithmic modules, such as search operations. In the following chapters, we discuss a variety of methods for this.

	We test, benchmark, and compare several algorithms to pick those with the best and most reliable performance (see Section 4).









	where ℕ1\mathbb{N}_1 stands for the natural numbers greater than 0, i.e., 1, 2, 3, …↩︎


	under the assumption that both are feasible, of course↩︎


	Of course, there are many algorithms that can do that and we could discover one if we would seriously think about it, but here we take the educational route where we investigate the full scenario with 𝕏≠𝕐\mathbb{X}\neq\mathbb{Y}.↩︎







3 Metaheuristic Optimization Algorithms

Optimization problems are solved by optimization algorithms. We can roughly divide these into exact and heuristic methods.

An exact algorithm guarantees to find the optimal solution if sufficient runtime is granted. This required runtime might, in the worst case, exceed what we can afford, in particular for 𝒩𝒫\mathcal{NP}‑hard problems, such as the JSSP. Alternatively, many exact methods can be halted before completing their run and they can then still provide an approximate solution (without the guarantee that it is optimal).

For heuristic algorithms, this directly is the basic premise; They give us some approximate solution relatively quickly. They either do not make any guarantees at all how good it will be or, sometimes, provide some bound guarantee (like: This solution will not cost more than two times of the optimal cost.) Simple heuristics are usually tailor-made for specific problems, like the TSP or JSSP.

Definition 19. A metaheuristic is a general algorithm that can produce approximate solutions for a class of different optimization problems.

Metaheuristics [42,82,83,205] are the most important class of algorithms that we explore in this book. These algorithms have the advantage that we can easily adapt them to new optimization problems. As long as we can construct the elements discussed in Section 2 for a problem, we can attack it with a metaheuristic. We will introduce several such general algorithms in this book. We explore them by again using the Job Shop Scheduling Problem (JSSP) from Section 1.1.4 as example.


3.1 Common Characteristics

Before we delve into our first algorithms, let us first take a look on some things that all metaheuristics have in common.


3.1.1 Anytime Algorithms

Definition 20. An anytime algorithm is an algorithm which can provide an approximate result during almost any time of its execution.

All metaheuristics – and many other optimization and machine learning methods – are anytime algorithms [27]. The idea behind anytime algorithms is that they start with (potentially bad) guess about what a good solution would be. During their course, they try to improve their approximation quality, by trying to produce better and better candidate solutions. At any point in time, we can extract the current best guess about the optimum (and stop the optimization process if we want to). This fits to the optimization situation that we have discussed in Section 2.8: We often cannot find out whether the best solution we currently have is the globally optimal solution for the given problem instance or not, so we simply continue trying to improve upon it until a termination criterion tells us to quit, e.g., until the time is up.



3.1.2 Return the Best-So-Far Candidate Solution

This one is actually quite simple, yet often ignored and misunderstood by novices to the subject: Regardless what the optimization algorithm does, it will never NEVER forget the best-so-far candidate solution. Often, this is not explicitly written in the formal definition of the algorithms, but there always exists a special variable somewhere storing that solution. This variable is updated each time a better solution is found. Its value is returned when the algorithm stops.



3.1.3 Randomization

Often, metaheuristics make randomized choices. In cases where it is not clear whether doing A or doing B is better, it makes sense to simply flip a coin and do A if it is heads and B if it is tails. That our search operator interfaces in Listings 2.8-2.10 all accept a pseudorandom number generator as parameter is one manifestation of this issue. Random number generators are objects which provide functions that can return numbers from certain ranges, say from [0,1)[0,1) or an integer interval. Whenever we call such a function, it may return any value from the allowed range, but we do not know which one it will be. Also, the returned value should be independent from those returned before, i.e., from known the past random numbers, we should not be able to guess the next one. By using such random number generators, we can let an algorithm make random choices, randomly pick elements from a set, or change a variable’s value in some unpredictable way.



3.1.4 Black-Box Optimization


[image: Figure 3.1: The black-box character of many metaheuristics, which can often accept arbitrary search operators, representations, and objective functions.]Figure 3.1: The black-box character of many metaheuristics, which can often accept arbitrary search operators, representations, and objective functions.

The concept of general metaheuristics, the idea to attack a very wide class of optimization problems with one basic algorithm design, can be realized when following a black-box approach. If we want to have one algorithm that can be applied to all the examples given in in the introduction, then this can best be done if we hide all details of the problems under the hood of the structural elements introduced in Section 2. For a black-box metaheuristic, it does not matter how the objective function ff works. The only thing that matters is that gives a rating of a candidate solution y∈𝕐y\in\mathbb{Y} and that smaller ratings are better.

There are different degrees of how general black-box metaheuristics can be. For the most general algorithms, it does not matter what exactly the search operators do or even what data structure is used as search space 𝕏\mathbb{X}. For them, it only matters that these operators can be used to get to new points in the search space (which can be mapped to candidate solutions yy via a representation mapping γ\gamma whose nature is also unimportant for the metaheuristic). Then, even the nature of the candidate solutions y∈𝕐y\in\mathbb{Y} and the solution space 𝕐\mathbb{Y} play no big role for black-box optimization methods, as they only work on and explore the search space 𝕏\mathbb{X}.

Then there are also black-box metaheuristics that demand a special type of search space, e.g., a specific subset of the nn-dimensional real numbers (𝕏⊂ℝn\mathbb{X}\subset\mathbb{R}^n), bit strings of a given length, or permutations of the first nn natural numbers. These algorithms can still be general, as they may make very few assumptions about the nature of the objective function ff defined over the solution space 𝕐\mathbb{Y}.

The solution space is relevant for the human operator using the algorithm only, the search space is what the algorithm works on. Of course, in many cases, 𝕏=𝕐\mathbb{X}=\mathbb{Y}.

Thus, a black-box metaheuristic is a general algorithm into which we can plug representations, objective functions, and often also search operations as needed by a specific application. This is illustrated in Figure 3.1. Black-box optimization is the highest level of abstraction on which we can work when trying to solve complex problems.



3.1.5 Putting it Together: A simple API

Before, I promised that we will implement all the algorithms discussed in this book.

If we would be dealing with classical algorithms, things would be somewhat easier: A classical algorithm has clearly defined input and output data structures. Dijkstra’s shortest path algorithm [60], for instance, gets fed with a graph of weighted edges and a start node and will return the paths of minimum weight to all other nodes (or a specified target node). In Machine Learning, the situation is quite similar: We would have a lot of specialized algorithms for clearly defined situations. The input and output data would usually adhere to some basic, fixed structures. If you implement kk‑means clustering [77,104], for instance, you have real vectors coming in and kk real vectors going out of your algorithm and that’s that. Deep Learning [87] basically takes, as input, a set of labeled real vectors (plus a network structure) and, as output, produces the vector of weights for the network. However, we have to deal with the black-box concept, meaning that our algorithms will be very variable in terms of the data structures we can feed to them. Matter in fact: Any of the three scenarios above can be modeled as optimization problem. Any of them can be tackled with (most of) the metaheuristics in this book as well!

This is challenging from a programming perspective, especially when we try to tackle this in an educational setting, where stuff should not be overly complicated. What we want is to not just implement general algorithms, but also be able to execute them and obtain their results in a convenient fashion. Ideally, we do not want to be bothered with too much book keeping or the creation of log files and such and such. It should be possible to implement the most general type of black-box methods as well as problem-specific optimization methods and to run them in a uniform environment.

I therefore try to define a simple API for black-box optimization that combines all of our considerations far. The goal is to make the implementation of metaheuristics as simple as possible. We do this by clearly dividing between the optimization algorithms for solving a problem on one side and the structural components of the problem on the other side. The algorithms that we will implement will be general black-box methods. At the same time, we will develop the components that we need to plug into them to solve JSSPs as educational example.

We therefore first need to consider what an optimization process needs as input. Obviously, in the most common case, these are all the items we have discussed in the previous section, ranging from the termination criterion over the search operators (which we will discuss later) and the representation mapping to the objective function. Let us therefore define an interface that can provide all these components with corresponding getter methods. We call this interface IBlackBoxProcess<X,Y> from which an excerpt is given in Listing 3.1. The interface is generic, meaning it allows us to provide a search space 𝕏\mathbb{X} as type parameter X and a solution space 𝕐\mathbb{Y} via the type parameter Y.


Listing 3.1: A generic interface for representing black-box processes to an optimization algorithm. (src)

public interface IBlackBoxProcess<X, Y> extends
    IObjectiveFunction<X>, ITerminationCriterion, Closeable {
  Random getRandom();
  ISpace<X> getSearchSpace();
  double getBestF();
  double getGoalF();
  void getBestX(X dest);
  void getBestY(Y dest);
  long getConsumedFEs();
  long getLastImprovementFE();
  long getMaxFEs();
  long getConsumedTime();
  long getLastImprovementTime();
  long getMaxTime();
}




Actually, such an interface does not need to expose the representation mapping γ\gamma and objective function ff as separate components to an optimization algorithm. It is sufficient if the interface directly implements an evaluate that takes, as input, an element x∈𝕏x\in\mathbb{X}, internally performs the representation mapping y=γ(x)y=\gamma(x), then invokes the objective function f(y)f(y), and returns its result. This evaluate method could then even be implemented such that it remembers the best-so-far-solution. We then no longer need to keep track of it in the optimization itself.

Of course, we can also implement logging of the search progress inside of evaluate, which would make this functionality available to all of our experiments in a transparent fashion. Furthermore, we could also keep track of the total number of calls to the objective function as well as of the consumed runtime. This, in turn, can be used to implement the termination criterion.

All in all, this interface allows us to create transparent implementations that


	provide a random number generator to the algorithm,

	wrap an objective function ff together with a representation mapping γ\gamma to allow us to evaluate a point in the search space x∈𝕏x\in\mathbb{X} in a single step, effectively performing f(γ(x))f(\gamma(x)),

	keep track of the elapsed runtime and FEs as well as when the last improvement was made by updating said information when necessary during the invocations of the wrapped objective function,

	keep track of the best points in the search space and solution space so far as well as their associated objective value in special variables by updating them whenever the wrapped objective function discovers an improvement (taking care of the issue from Section 3.1.2 automatically),

	represent a termination criterion based on the above information (e.g., maximum FEs, maximum runtime, reaching a goal objective value), and

	log the improvements that the algorithm makes to a text file, so that we can use them to make tables and draw diagrams.



Along with the interface class IBlackBoxProcess, we also provide a builder for instantiating it. The actual implementation behind this interface does not matter here. It is clear what it does, and the actual code is simple and not contributing to the understand of the algorithms or processes. Thus, you do not need to bother with it, just the assumption that an object implementing IBlackBoxProcess has the abilities listed above shall suffice here.

When instantiating this interface via the builder, we can provide the termination criterion, representation mapping, and objective function. Additionally, we also need to provide the functionality to instantiate and copy the data structures making up the spaces 𝕏\mathbb{X} and 𝕐\mathbb{Y}. On one hand, these are needed for the internal book-keeping so that evaluate can internally make a copy of the best-so-far elements in 𝕏\mathbb{X} and 𝕐\mathbb{Y}). On the other hand, the black-box optimization algorithms that we will implement also must be able to make such copies. Since we do not make any assumption about the Java classes corresponding to the spaces 𝕏\mathbb{X} and 𝕐\mathbb{Y}, we add another easy-to-implement and very simple interface, namely ISpace, see Listing 3.2. It can be implemented for each problem type and then provides the required functionality.


Listing 3.2: A excerpt of the generic interface ISpace for representing basic functionality of search and solution spaces needed by Listing 3.1. (src)

public interface ISpace<Z> {
  Z create();
  void copy(Z from, Z to);
}




Equipped with this, defining an interface for black-box metaheuristics becomes easy: The optimization algorithms themselves then are implementations of the generic interface IMetaheuristic<X,Y> given in Listing 3.3. As you can see, this interface only really needs a single method, solve. This method will use the functionality provided by the IBlackBoxProcess handed to it as parameter process. The implemented algorithm can generate new points in the search space X and send them to the evaluate method of process. This is the core behavior of every basic metaheuristic and in the rest of this chapter, we will learn how different algorithms realize it.


Listing 3.3: A generic interface of a metaheuristic optimization algorithm. (src)

public interface IMetaheuristic<X, Y> extends ISetupPrintable {
  void solve(IBlackBoxProcess<X, Y> process);
}




Notice that the interface IMetaheuristic is, again, generic, allowing us to specify a search space 𝕏\mathbb{X} as type parameter X and a solution space 𝕐\mathbb{Y} via the type parameter Y. Whether an implementation of this interface is generic too or whether it ties down X or Y to concrete types will then depend on the algorithms we try to realize. The most general black-box metaheuristics may be able to deal with any search- and solution space, as long they are provided with the right operators. Still, we could also implement an algorithm specified to numerical problems where 𝕏⊂ℝn\mathbb{X}\subset\mathbb{R}^n, by tying down X to double[] in the algorithm class specification.



3.1.6 Example: Job Shop Scheduling

What we need to provide for our JSSP example are implementations of our ISpace interface for both the search and the solution space, which are given in Listing 3.4 and Listing 3.5, respectively. These classes implement the methods that an IBlackBoxProcess implementation needs under the hood to, e.g., copy and store candidate solutions and points in the search space.


Listing 3.4: An excerpt of the implementation of our ISpace interface for the search space for the JSSP problem. (src)

public class JSSPSearchSpace implements ISpace<int[]> {
  public int[] create() {
    return new int[this.mLength];
  }
  public void copy(int[] from, int[] to) {
    System.arraycopy(from, 0, to, 0, this.mLength);
  }
}





Listing 3.5: An excerpt of the implementation of the ISpace interface for the solution space for the JSSP problem. (src)

public class JSSPSolutionSpace
    implements ISpace<JSSPCandidateSolution> {
  public JSSPCandidateSolution create() {
    return new JSSPCandidateSolution(this.instance.m,
        this.instance.n);
  }
  public void copy(JSSPCandidateSolution from,
      JSSPCandidateSolution to) {
    int n = this.instance.n * 3;
    int i = 0;
    for (int[] s : from.schedule) {
      System.arraycopy(s, 0, to.schedule[i++], 0, n);
    }
  }
}




With the exception of the search operators, which we will introduce when they are needed, we have already discussed how the other components needed to solve a JSSP can be realized in Section 2.3.2.1, Section 2.6.2, Section 2.4.2, and Section 2.8.2.




3.2 Random Sampling

If we have our optimization problem and its components properly defined according to Section 2, then we already have the proper tools to solve the problem. We know


	how a solution can internally be represented as point xx in the search space 𝕏\mathbb{X} (Section 2.6),

	how we can map such a point x∈𝕏x\in\mathbb{X} to a candidate solution yy in the solution space 𝕐\mathbb{Y} (Section 2.3) via the representation mapping γ:𝕏↦𝕐\gamma:\mathbb{X}\mapsto\mathbb{Y} (Section 2.6), and

	how to rate a candidate solution y∈𝕐y\in\mathbb{Y} with the objective function ff (Section 2.4).



The only question left for us to answer is how to create a point xx in the search space. We can then apply γ(x)\gamma(x) and get a candidate solution yy whose quality we can assess via f(y)f(y). Let us look at the problem as a black box (Section 3.1.4). In other words, we do not really know structures and features make a candidate solution good. Hence, we do not know how to create a good solution either. Then the best we can do is just create the solutions randomly.


3.2.1 Ingredient: Nullary Search Operation for the JSSP

For this purpose, we need to implement the nullary search operation from Listing 2.8. We create a new search operator which needs no input and returns a point in the search space. Recall that our representation (Section 2.6.2) requires that each index i∈0…(n−1)i\in 0\ldots(n-1) of the nn must occur exactly mm times in the integer array of length m*nm*n, where mm is the number of machines in the JSSP instance. In Listing 3.6, we achieve this by first creating the sequence (n−1,n−2,…,0)(n-1,n-2,\ldots,0) and then copying it mm times in the destination array dest. We then randomly shuffle dest by applying the Fisher-Yates shuffle algorithm [76,129], which simply brings the array into an entirely random order.


Listing 3.6: An excerpt of the implementation of the nullary search operation interface Listing 2.8 for the JSSP, which will create one random point in the search space. (src)

public class JSSPNullaryOperator
    implements INullarySearchOperator<int[]> {
  public void apply(int[] dest, Random random) {
// create first sequence of jobs: n-1, n-2, ..., 0
    for (int i = this.n; (--i) >= 0;) {
      dest[i] = i;
    }
// copy this m-1 times: n-1, n-2, ..., 0, n-1, ... 0, n-1, ...
    for (int i = dest.length; (i -= this.n) > 0;) {
      System.arraycopy(dest, 0, dest, i, this.n);
    }
// now randomly shuffle the array: create a random sequence
    RandomUtils.shuffle(random, dest, 0, dest.length);
  }
}




The apply method of our implemented operator creates one random point in the JSSP search space. We can then pass this point through the representation mapping that we already implemented in Listing 2.7 and get a Gantt diagram. Easily we then obtain the quality, i.e., makespan, of this candidate solution as the right-most edge of any an job assignment in the diagram, as defined in Section 2.4.2.



3.2.2 Single Random Sample


3.2.2.1 The Algorithm

Now that we have all ingredients ready, we can test the idea. In Listing 3.7, we implement this algorithm (here called 1rs) which creates exactly one random point xx in the search space. It then takes this point and passes it to the evaluation function of our black-box process, which will perform the representation mapping  y=γ(x)y=\gamma(x) and compute the objective value f(y)f(y). Internally, we implemented this function in such a way that it automatically remembers the best candidate solution it ever has evaluated. Thus, we do not need to take care of this in our algorithm, which makes the implementation so short.


Listing 3.7: An excerpt of the implementation of an algorithm which creates a single random candidate solution. (src)

public class SingleRandomSample<X, Y>
    extends Metaheuristic0<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// Allocate data structure for holding 1 point from search space.
    X x = process.getSearchSpace().create();

// Apply the nullary operator: Fill data structure with a random
// but valid point from the search space.
    this.nullary.apply(x, process.getRandom());

// Evaluate the point: process.evaluate automatically applies the
// representation mapping and calls objective function. The
// objective value is ignored here (not stored anywhere), but
// "process" will remember the best solution. Thus, whoever
// called this "solve" function can obtain the result.
    process.evaluate(x);
  }
}






3.2.2.2 Results on the JSSP

Of course, since the algorithm is randomized, it may give us a different result every time we run it. In order to understand what kind of solution qualities we can expect, we hence have to run it a couple of times and compute result statistics. We therefore execute our program 101 times and the results are summarized in Table 3.1, which describes them using simple statistics whose meanings are discussed in-depth in Section 4.4.

What we can find in Table 3.1 is that the makespan of the best solution that any of the 101 runs has delivered for each of the four JSSP instances is roughly between 60% and 100% longer than the lower bound. The arithmetic mean and median of the solution qualities are even between 10% and 20% worse. In the Gantt charts of the median solutions depicted in Figure 3.2, we can find big gaps between the operations.



Table 3.1: The results of the single random sample algorithm 1rs for each instance ℐ\mathcal{I} in comparison to the lower bound lb(f)\textrm{lb}(f) of the makespan ff over 101 runs: the best, mean, and median (med) result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until a run was finished.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	1131
	1334
	1326
	106
	0s
	1



	la24
	935
	1487
	1842
	1814
	165
	0s
	1



	swv15
	2885
	5935
	6600
	6563
	346
	0s
	1



	yn4
	929
	1754
	2036
	2039
	125
	0s
	1








[image: Figure 3.2: The Gantt charts of the median solutions obtained by the 1rs algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.2: The Gantt charts of the median solutions obtained by the 1rs algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.

This is completely reasonable. After all, we just create a single random solution. We can hardly assume that doing all jobs of a JSSP in a random order would be good idea.

But we also notice more. The median time t(med) until the runs stop improving is approximately 0s. The reason is that we only perform one single objective function evaluation per run, i.e., 1 FE. Creating, mapping, and evaluating a solution can be very fast, it can happen within milliseconds. However, we had originally planned to use up to three minutes for optimization. Hence, almost all of our time budget remains unused. At the same time, we already know that that there is a 10-20% difference between the best and the median solution quality among the 101 random solutions we created. The standard deviation sdsd of the solution quality also is always above 100 time units of makespan. So why don’t we try to make use of this variance and the high speed of solution creation?




3.2.3 Random Sampling Algorithm


3.2.3.1 The Algorithm

Random sampling algorithm, also called random search, repeats creating random solutions until the computational budget is exhausted [188]. In our corresponding Java implementation given in Listing 3.8, we therefore only needed to add a loop around the code from the single random sampling algorithm from Listing 3.7.


Listing 3.8: An excerpt of the implementation of the random sampling algorithm which keeps createing random candidate solutions and remembering the best encountered on until the computational budget is exhausted. (src)

public class RandomSampling<X, Y>
    extends Metaheuristic0<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// Allocate data structure for holding 1 point from search space.
    X x = process.getSearchSpace().create();
    Random random = process.getRandom();// get random gen

    do { // Repeat until budget is exhausted.
      this.nullary.apply(x, random); // Create random point in X.
// Evaluate the point: process.evaluate applies the
// representation mapping and calls objective function. It
// remembers the best solution, so the caller can obtain it.
      process.evaluate(x);
    } while (!process.shouldTerminate()); // do until time is up
  }
}




The algorithm can be described as follows:


	Set the best-so-far objective value zz to +∞+\infty and the best-so-far candidate solution yy to NULL.

	Create random point x′x' in search space 𝕏\mathbb{X} by using the nullary search operator.

	Map the point x′x' to a candidate solution y′y' by applying the representation mapping y′=γ(x′)y'=\gamma(x').

	Compute the objective value z′z' of y′y' by invoking the objective function z′=f(y′)z'=f(y').

	If z′z' is better than best-so-far-objective value zz, i.e., z′<zz'<z, then

	store z′z' in zz and

	store y′y' in yy.




	If the termination criterion is not met, return to step 2.

	Return the best-so-far objective value zz and the best solution yy to the user.



In actual program code, steps 3 to 5 can again be encapsulate by a wrapper around the objective function. This reduces a lot of potential programming mistakes and makes the code much shorter. This is what we did with the implementations of the black-box process interface IBlackBoxProcess given in Listing 3.1.



3.2.3.2 Results on the JSSP

Let us now compare the performance of this iterated random sampling with our initial method. Table 3.2 shows us that the iterated random sampling algorithm is better in virtually all relevant aspects than the single random sampling method. Its best, mean, and median result quality are significantly better. Since creating random points in the search space is so fast that we can sample many more than 101 candidate solutions, even the median and mean result quality of the rs algorithm are better than the best quality obtainable with 1rs. Matter of fact, each run of our rs algorithm can create and test several million candidate solutions within the three minute time window, i.e., perform several million FEs. By remembering the best of millions of created solutions, what we effectively do is we exploit the variance of the quality of the random solutions. As a result, the standard deviation of the results becomes lower. This means that this algorithm has a more reliable performance, we are more likely to get results close to the mean or median performance when we use rs compared to 1rs.

Actually, if we would have infinite time for each run (instead of three minutes), then each run would eventually guess the optimal solutions. The variance would become zero and the mean, median, and best solution would all converge to this global optimum. Alas, we only have three minutes, so we are still far from this goal.



Table 3.2: The results of the single random sample algorithm 1rs and the random sampling algorithm rs. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	1rs
	1131
	1334
	1326
	106
	0s
	1



	
	
	rs
	895
	947
	949
	12
	85s
	6’512’505



	la24
	935
	1rs
	1487
	1842
	1814
	165
	0s
	1



	
	
	rs
	1153
	1206
	1208
	15
	82s
	15’902’911



	swv15
	2885
	1rs
	5935
	6600
	6563
	346
	0s
	1



	
	
	rs
	4988
	5166
	5172
	50
	87s
	5’559’124



	yn4
	929
	1rs
	1754
	2036
	2039
	125
	0s
	1



	
	
	rs
	1460
	1498
	1499
	15
	76s
	4’814’914







In Figure 3.3, we now again plot the solutions of median quality, i.e., those which are in the middle of the results, quality-wise. The improved performance becomes visible when comparing Figure 3.3 with Figure 3.2. The spacing between the jobs on the machines has significantly reduced. Still, the schedules clearly have a lot of unused time, visible as white space between the operations on the machines. We are also still relatively far away from the lower bounds of the objective function, so there is lots of room for improvement.


[image: Figure 3.3: The Gantt charts of the median solutions obtained by the rs algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.3: The Gantt charts of the median solutions obtained by the rs algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.


[image: Figure 3.4: The progress of the rs algorithm over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis).]Figure 3.4: The progress of the rs algorithm over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis).



3.2.3.3 Progress over Time and the Law of Diminishing Returns

Another new feature of our rs algorithm is that it truly is an Anytime Algorithm (Section 3.1.1). It begins with an entirely random solution and tries to find better solutions as time goes by. Let us take a look at Figure 3.4, which illustrates how the solution quality of the runs improves over time. At first glance, this figure looks quite nice. For each of the four problem instances we investigate, our algorithm steadily and nicely improves the solution quality. Each single line (one per run) keeps slowly going down, which means that the makespan (objective value) of its best-so-far solution decreases steadily.

However, upon closer inspection, we notice that the time axes in the plots are logarithmically scaled. The first of the equally-spaces axis tick marks is at 1s, the second one at 10s, the third one at 100s, and so on. The progress curves plotted over these logarithmically scaled axes seem to progress more or less like straight linear lines, maybe even slower. A linear progress over a logarithmic time scale could mean, for instance, that we may make the same improvements in the time intervals 1s…9s1s\ldots 9s, 10s…99s10s\ldots 99s, 100s…999s100s\ldots 999s, and so on. In other words, the algorithm improves the solution quality slower and slower.

This is the first time we witness a manifestation of a very basic law in optimization. When trying to solve a problem, we need to invest resources, be it software development effort, research effort, computational budget, or expenditure for hardware, etc. If you invest a certain amount aa of one of these resources, you may be lucky to improve the solution quality that you can get by, say, bb units. Investing 2a2a of the resources, however, will rarely lead to an improvement by 2b2b units. Instead, the improvements will become smaller and smaller the more you invest. This is exactly the Law of Diminishing Returns [177] known from the field of economics.

And this makes a lot of sense here. On one hand, the maximal possible improvement of the solution quality is bounded by the global optimum – once we have obtained it, we cannot improve the quality further, even if we invest infinitely much of an resource. On the other hand, in most practical problems, the amount of solutions that have a certain quality gets the smaller the closer said quality is to the optimal one. This is actually what we see in Figure 3.4: The chance of randomly guessing a solution of quality FF becomes the smaller the better (smaller) FF is.

From the diagrams we can also see that random sampling is not a good method to solve the JSSP. It will not matter very much if we have three minutes, six minutes, or one hour. In the end, the improvements we would get by investing more time would probably become smaller and the amount of time we need to invest to get any improvement would keep to increase. The fact that random sampling can be parallelized perfectly does not help much here, as we would need to provide an exponentially increasing number of processors to keep improving the solution quality.




3.2.4 Summary

With random sampling, we now have a very primitive way to tackle optimization problems. In each step, the algorithm generates a new, entirely random candidate solution. It remembers the best solution that it encounters and, after its computational budget is exhausted, returns it to the user.

Obviously, this algorithm cannot be very efficient. But we already also learned one method to improve the result quality and reliability of optimization methods: restarts. Restarting an optimization can be beneficial if the following conditions are met:


	If we have a budget limitation, then most of the improvements made by the algorithm must happen early during the run. If the algorithm already uses its budget well can keep improving even close to its end, then it makes no sense to stop and restart. The budget must be large enough so that multiple runs of the algorithm can complete or at least deliver reasonable results.

	Different runs of the algorithm must generate results of different quality. A restarted algorithm is still the same algorithm. It just exploits this variance, i.e., we will get something close to the best result of multiple runs. If the different runs deliver bad results anyway, doing multiple runs will not solve the problem.



Above we said that random sampling is not a very efficient algorithm. This is true in most reasonable scenarios. In problems where information about existing good solutions does not help us in any way to find new good solutions, we cannot really do better than random sampling. In most reasonable problems that one may try to solve, however, such information is helpful. Random sampling then is also a basic yardstick: An optimization algorithm that does not significantly outperform random sampling is useless.




3.3 Hill Climbing

Our first algorithm, random sampling, is not very efficient. It does not make any use of the information it sees during the optimization process. Each search step consists of creating an entirely new, entirely random candidate solution. Each search step is thus independent of all prior steps. If the problem that we try to solve is entirely without structure, then this is already the best we can do. But our JSSP problem is not without structure. For example, we can assume that if we swap the last two jobs in a schedule, the makespan of the resulting new schedule should still be somewhat similar to the one of the original plan. Actually, most reasonable optimization problems have a lot of structure. We therefore should try to somehow make use of the information gained from sampling candidate solutions.

Local search algorithms [112,205] offer one idea for how to do that. They remember one point xmx^m in the search space 𝕏\mathbb{X}. In every step, a local search algorithm investigates g≥1g\geq1 points xix_i which are derived from and are similar to xmx^m. From the joined set of these gg points and xmx^m, only one point is chosen as the (new or old) xmx^m. All the other points are discarded.

Definition 21. Causality means that small changes in the features of an object (or candidate solution) also lead to small changes in its behavior (or objective value).

Local search exploits a property of many optimization problems which is called causality [168,169,208,216]. If we have two points in the search space that only differ a little bit, then they likely map to similar schedules, which, in turn, likely have similar makespans. This means that if we have a good candidate solution, then there may exist similar solutions which are better. We hope to find one of them and then continue trying to do the same from there.


3.3.1 Ingredient: Unary Search Operation for the JSSP

For now, let us limit ourselves to local searches creating g=1g=1 new point in each iteration. The question arises how we can create a candidate solution which is similar to, but also slightly different from, one that we already have? Our search algorithms are working in the search space 𝕏\mathbb{X}. So we need one operation which accepts an existing point x∈𝕏x\in\mathbb{X} and produces a slightly modified copy of it as result. In other words, we need to implement a unary search operator!

On a JSSP with mm machines and nn jobs, our representation 𝕏\mathbb{X} encodes a schedule as an integer array of length m*nm*n containing each of the job IDs (from 0…(n−1)0\ldots(n-1)) exactly mm times. The sequence in which these job IDs occur then defines the order in which the jobs are assigned to the machines, which is realized by the representation mapping γ\gamma (see Listing 2.7).

One idea to create a slightly modified copy of such a point xx in the search space would be to simply swap two of the jobs in it. Such a 1swap operator can be implemented as follows:


	Make a copy x′x' of the input point xx from the search space.

	Pick a random index ii from 0…(m*n−1)0\ldots(m*n-1).

	Pick a random index jj from 0…(m*n−1)0\ldots(m*n-1).

	If the values at indexes ii and jj in x′x' are the same, then go back to point 3.

	Swap the values at indexes ii and jj in x′x'.

	Return the now modified copy x′x' of xx.



Point 4 is important since swapping the same values makes no sense, as we would then get x′=xx'=x. Then, also the mappings γ(x)\gamma(x) and γ(x′)\gamma(x') would be the same, i.e., we would actually not make a move and just waste time.


Listing 3.9: An excerpt of the 1swap operator for the JSSP, an implementation of the unary search operation interface Listing 2.9. 1swap swaps two jobs in our encoding of Gantt diagrams. (src)

public class JSSPUnaryOperator1Swap
    implements IUnarySearchOperator<int[]> {
  public void apply(int[] x, int[] dest,
      Random random) {
// copy the source point in search space to the dest
    System.arraycopy(x, 0, dest, 0, x.length);

// choose the index of the first operation to swap
    int i = random.nextInt(dest.length);
    int jobI = dest[i]; // remember job id

    for (;;) { // try to find a location j with a different job
      int j = random.nextInt(dest.length);
      int jobJ = dest[j];
      if (jobI != jobJ) { // we found two locations with two
        dest[i] = jobJ; // different values
        dest[j] = jobI; // then we swap the values
        return; // and are done
      }
    }
  }
}




We implemented this operator in Listing 3.9. Notice that the operator is randomized, i.e., applying it twice to the same point in the search space will likely yield different results.


[image: Figure 3.5: An example for the application of 1swap to an existing point in the search space (top-left) for the demo JSSP instance. It yields a slightly modified copy (top-right) with two jobs swapped. If we map these to the solution space (bottom) using the representation mapping \gamma, the changes marked with violet frames occur (bottom-right).]Figure 3.5: An example for the application of 1swap to an existing point in the search space (top-left) for the demo JSSP instance. It yields a slightly modified copy (top-right) with two jobs swapped. If we map these to the solution space (bottom) using the representation mapping γ\gamma, the changes marked with violet frames occur (bottom-right).

In Figure 3.5, we illustrate the application of this operator to one point xx in the search space for our demo JSSP instance. It swaps the two jobs at index i=10i=10 and j=15j=15 of xx. In the new, modified copy x′x', the jobs 33 and 00 at these indices have thus traded places. The impact of this modification becomes visible when we map both xx and x′x' to the solution space using the representation mapping γ\gamma. The 33 which has been moved forward now means that job 33 will be scheduled before job 11 on machine 22. As a result, the last two operations of job 33 can now finish earlier on machines 00 and 11, respectively. However, time is wasted on machine 22, as we first need to wait for the first two operations of job 33 to finish before we can execute it there. Also, job 11 finishes now later on that machine, which also delays its last operation to be executed on machine 44. This pushes back the last operation of job 00 (on machine 44) as well. The new candidate solution γ(x′)\gamma(x') thus has a longer makespan of f(γ(x′))=195f(\gamma(x'))=195 compared to the original solution with f(γ(x))=180f(\gamma(x))=180.

In other words, our application of 1swap in Figure 3.5 has led us to a worse solution. This will happen most of the time. As soon as we have a good solution, the solutions similar to it tend to be worse in average and the number of even better solutions in the neighborhood tends to get smaller. However, if we would have been at x′x' instead, an application of 1swap could well have resulted in xx. In summary, we can hope that the chance to find a really good solution by iteratively sampling the neighborhoods of good solutions is higher compared to trying to randomly guessing them (as rs does)   even if most of our samples are worse.



3.3.2 Stochastic Hill Climbing Algorithm


3.3.2.1 The Algorithm

Stochastic Hill Climbing [173,187,205] is the simplest implementation of local search. It is also sometimes called localized random search [188]. It proceeds as follows:


	Create one random point xx in the search space 𝕏\mathbb{X} using the nullary search operator.

	Map the point xx to a candidate solution yy by applying the representation mapping y=γ(x)y=\gamma(x).

	Compute the objective value by invoking the objective function z=f(y)z=f(y).

	Repeat until the termination criterion is met:

	Apply the unary search operator to xx to get a slightly modified copy x′x' of it.

	Map the point x′x' to a candidate solution y′y' by applying the representation mapping y′=γ(x′)y'=\gamma(x').

	Compute the objective value z′z' by invoking the objective function z′=f(y′)z'=f(y').

	If z′<zz'<z, then store x′x' in xx, store y′y' in yy, and store z′z' in zz.




	Return the best encountered objective value zz and the best encountered solution yy to the user.



This algorithm is implemented in Listing 3.10 and we will refer to it as hc.


Listing 3.10: An excerpt of the implementation of the Hill Climbing algorithm, which remembers the best-so-far solution and tries to find better solutions in its neighborhood. (src)

public class HillClimber<X, Y>
    extends Metaheuristic1<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// initialize local variables xCur, xBest, random
// Create starting point: a random point in the search space.
    this.nullary.apply(xBest, random); // xBest = random point
    double fBest = process.evaluate(xBest); // map & evaluate

    while (!process.shouldTerminate()) {
// Create a slightly modified copy of xBest and store in xCur.
      this.unary.apply(xBest, xCur, random);
// Map xCur from X to Y and evaluate candidate solution.
      double fCur = process.evaluate(xCur);
      if (fCur < fBest) { // we found a better solution
// Remember best objective value and copy xCur to xBest.
        fBest = fCur;
        process.getSearchSpace().copy(xCur, xBest);
      } // Otherwise, i.e., fCur >= fBest: Just forget xCur.
    } // Repeat until computational budget is exhausted.
  } // `process` has remembered the best candidate solution.
}




If you are wondering what would happen if we would accept the new solution x′x' also if z′=zz'=z, i.e., replace the z′<zz'<z with an z′≤zz'\leq z in point 4.d of the algorithm definition: This algorithm is called (1+1)(1+1) EA and discussed later in Section 3.4.6.1.



3.3.2.2 Results on the JSSP

We now plug our unary operator 1swap into our hc algorithm and apply it to the JSSP. We will refer to this setup as hc_1swap and present its results with those of rs in Table 3.3.



Table 3.3: The results of the hill climber hc_1swap in comparison with those of random sampling algorithm rs. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	1rs
	1131
	1334
	1326
	106
	0s
	1



	
	
	rs
	895
	947
	949
	12
	85s
	6’512’505



	
	
	hc_1swap
	717
	800
	798
	28
	0s
	16’978



	la24
	935
	1rs
	1487
	1842
	1814
	165
	0s
	1



	
	
	rs
	1153
	1206
	1208
	15
	82s
	15’902’911



	
	
	hc_1swap
	999
	1095
	1086
	56
	0s
	6’612



	swv15
	2885
	1rs
	5935
	6600
	6563
	346
	0s
	1



	
	
	rs
	4988
	5166
	5172
	50
	87s
	5’559’124



	
	
	hc_1swap
	3837
	4108
	4108
	137
	1s
	104’598



	yn4
	929
	1rs
	1754
	2036
	2039
	125
	0s
	1



	
	
	rs
	1460
	1498
	1499
	15
	76s
	4’814’914



	
	
	hc_1swap
	1109
	1222
	1220
	48
	0s
	31’789







The hill climber outperforms random sampling in almost all aspects. It produces better mean, median, and best solutions. Actually, its median and mean solutions are better than the best solutions discovered by rs. Furthermore, it finds its solutions much much faster. The median time med(t) consumed until the algorithm converges is not more than one seconds. The median number of consumed FEs med(FEs) to find the best solutions per run is between 7000 and 105’000, i.e., between one 50th and one 2500th of the number of FEs needed by rs.

It may be interesting to know that this simple hc_1swap algorithm can already achieve some remotely acceptable performance, even though it is very far from being useful. For instance, on instance abz7, it delivers better best and mean results than all four Genetic Algorithms (GAs) presented in [122]. On la24, only one of the four (GA‑PR) has a better best result and all lose in terms of mean result. On this instance, hc_1swap finds a better best solution than all six GAs in [2] and better mean results than five of them. In Section 3.4, we will later introduce (better-performing!) Evolutionary Algorithms, to which GAs belong.

The Gantt charts of the median solutions of hc_1swap are illustrated in Figure 3.6. They are more compact than those discovered by rs and illustrated in Figure 3.3.


[image: Figure 3.6: The Gantt charts of the median solutions obtained by the hc_1swap algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.6: The Gantt charts of the median solutions obtained by the hc_1swap algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.


[image: Figure 3.7: The median of the progress of the hc_1swap and rs algorithm over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). Different from Figure 3.4, we do not plot the single runs but only shade areas between quantiles.]Figure 3.7: The median of the progress of the hc_1swap and rs algorithm over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). Different from Figure 3.4, we do not plot the single runs but only shade areas between quantiles.

Figure 3.7 shows how both hc_1swap and rs progress over time. In Figure 3.4, we plotted every individual run. This time, we plot the median (see Section 4.4.2) of achieved quality at each time step as thick line. In the background, we plot the whole range of the values as semi-transparent region. The more runs fall into one region, the stronger we plot the color: In the outer borders of the lightest color shade mark the range between the best and worst results of any run at a given time. The next stronger-shaded region contains about 95% of the runs. Then follow by 68% of the runs while the strongest-shaded region holds half of the runs.

It should be noted that I designed the experiments in such a way that there were 101 different random seeds per instance. For each instance, all algorithms use the same random seeds, i.e., the hill climber and random sampling start with the same initial solutions. Still, the shaded regions of the two algorithms separate almost immediately.

We already knew from Table 3.3 that hc_1swap converges very quickly. After initial phases with quick progress, it stops making any further progress, usually before 1000 milliseconds have been consumed. This fits well to the values med(t) given in Table 3.3. With the exception of instance la24, where two runs of the hill climber performed exceptionally bad, there is much space between the runs of rs and hc_1swap. We can also see again that there is more variance in the end results of hc_1swap compared to those of rs, as they are spread wider in the vertical direction.




3.3.3 Stochastic Hill Climbing with Restarts

Upon close inspection of the results, we notice that we are again in the same situation as with the 1rs algorithm: There is some variance between the results and most of the action takes place in a short time compared to our total computational budget (1 second vs. 3 minutes). Back in Section 3.2.3 we made use of this situation by simply repeating 1rs until the computational budget was exhausted, which we called the rs algorithm. Now the situation is a bit different, however. 1rs creates exactly one solution and is finished, whereas our hill climber does not actually finish. It keeps creating modified copies of the current solution, only that these eventually do not mark improvements anymore. Then, the algorithm has converged into a local optimum.

Definition 22. A local optimum is a point x×x^{\times} in the search space which maps to a better candidate solution than any other points in its neighborhood (see Definition 17).

Definition 23. An optimization process has prematurely converged if it has not yet discovered the global optimum but can no longer improve its approximation quality. [208,216]

Due to the black-box nature of our basic hill climber algorithm, it is not really possible to know when the complete neighborhood of the current solution has already been tested. We thus cannot know whether or not the algorithm is trapped in a local optimum and has prematurely converged. However, we can try to guess it: If there has not been any improvement for a high number LL of steps, then the current point xx in the search space is probably a local optimum. If that happens, we just restart at a new random point in the search space. Of course, we will remember the best-so-far candidate solution in a special variable yby_{b} over all restarts and return it to the user in the end.


3.3.3.1 The Algorithm


	Set counter CC of unsuccessful search steps to 00.

	Set the best-so-far objective value zbz_{b} to +∞+\infty and the best-so-far candidate solution yby_{b} to NULL.

	Create a random point xx in the search space 𝕏\mathbb{X} using the nullary search operator.

	Map the point xx to a candidate solution yy by applying the representation mapping y=γ(x)y=\gamma(x).

	Compute the objective value by invoking the objective function z=f(y)z=f(y).

	If z<zbz<z_{b}, then store zz in zbz_{b} and store yy in yby_{b}.

	Repeat until the termination criterion is met:

	Apply the unary search operator to xx to get the slightly modified copy x′x' of it.


	Map the point x′x' to a candidate solution y′y' by applying the representation mapping y′=γ(x′)y'=\gamma(x').


	Compute the objective value z′z' by invoking the objective function z′=f(y′)z'=f(y').


	If z′<zz'<z, then


	store z′z' in zz and store x′x' in xx and

	set CC to 00.

	If z′<zbz'<z_{b}, then store z′z' in zbz_{b} and store y′y' in yby_{b}.



otherwise to step 7d, i.e., if z′≥zz'\geq z, then


	increment CC by 11.

	If C≥LC\geq L, then perform a restart by going back to step 3.







	Return best encountered objective value zbz_{b} and the best encountered solution yby_{b} to the user.




Listing 3.11: An excerpt of the implementation of the Hill Climbing algorithm with restarts, which remembers the best-so-far solution and tries to find better solutions in its neighborhood but restarts if it seems to be trapped in a local optimum. (src)

public class HillClimberWithRestarts<X, Y>
    extends Metaheuristic1<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// omitted for brevity initialize local variables xCur, xBest,
// random, failsBeforeRestart, and failCounter=0
    while (!(process.shouldTerminate())) { // outer loop: restart
      this.nullary.apply(xBest, random); // start=random solution
      double fBest = process.evaluate(xBest); // evaluate it
      long failCounter = 0L; // initialize counters

      while (!(process.shouldTerminate())) { // inner loop
        this.unary.apply(xBest, xCur, random); // try to improve
        double fCur = process.evaluate(xCur); // evaluate

        if (fCur < fBest) { // we found a better solution
          fBest = fCur; // remember best quality
          process.getSearchSpace().copy(xCur, xBest); // copy
          failCounter = 0L; // reset number of unsuccessful steps
        } else { // ok, we did not find an improvement
          if ((++failCounter) >= this.failsBeforeRestart) {
            break; // jump back to outer loop for restart
          } // increase fail counter
        } // failure
      } // inner loop
    } // outer loop
  } // process has stored best-so-far result
}




Now this algorithm – implemented in Listing 3.11 – is a bit more elaborate. Basically, we embed the original hill climber into a loop. This inner hill climber will stop after a certain number LL of unsuccessful search steps, which then leads to a new round in the outer loop. In combination with the 1swap operator, we refer to this algorithm as hcr_L_1swap, where L is to be replaced with the actual value of the parameter LL.



3.3.3.2 The Right Setup

We now realize that we do not know which value of LL is good. If we pick it too low, then the algorithm will restart before it actually converges to a local optimum, i.e., stop while it could still improve. If we pick it too high, we waste runtime and do fewer restarts than what we could do.

If we do not know which value for a parameter is reasonable, we can always do an experiment to investigate. Since the order of magnitude of the proper value for LL is not yet clear, it makes sense to test exponentially increasing numbers. Here, we test the powers of two from 27=1282^7=128 to 218=262′1442^{18}=262'144. For each value, we plot the scaled median result quality over the 101 runs in Figure 3.8. In this diagram, the horizontal axis is logarithmically scaled.

From the plot, we can confirm our expectations: Small numbers of LL perform bad and high numbers of LL cannot really improve above the basic hill climber. Actually, if we would set LL to a number larger than the overall budget, then we would obtain exactly the original hill climber, as it would never perform any restart. For different problem instances, different values of LL perform good, but L≈214=16′384L\approx2^{14}=16'384 seems to be a reasonable choice for three of the four instances.


[image: Figure 3.8: The median result quality of the hcr_1swap algorithm, divided by the lower bound \textrm{lb}(f)^{\star} from Table 2.2 over different values of the restart limit parameter L. The best values of L on each instance are marked with bold symbols.]Figure 3.8: The median result quality of the hcr_1swap algorithm, divided by the lower bound lb(f)⋆\textrm{lb}(f)^{\star} from Table 2.2 over different values of the restart limit parameter LL. The best values of LL on each instance are marked with bold symbols.



3.3.3.3 Results on the JSSP

The performance indicators of three settings of our hill climber with restarts in comparison with the plain hill climber are listed in Table 3.4. We know that L=214L=2^{14} seems a reasonable setting. Additionally, we also list the adjacent setups, i.e., give the results for L∈{213,214,215}L\in\{2^{13},2^{14},2^{15}\}.



Table 3.4: The results of the hill climber hcr_L_1swap with restarts for values of LL from 2132 {13}, 2142^{14}, and 2152^{15}. hcr_L_1swap restarts after LL unsuccessful search moves. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	hc_1swap
	717
	800
	798
	28
	0s
	16’978



	
	
	hcr_8192_1swap
	719
	734
	734
	5
	83s
	17’711’879



	
	
	hcr_16384_1swap
	714
	732
	733
	6
	91s
	18’423’530



	
	
	hcr_32768_1swap
	716
	732
	733
	6
	73s
	15’707’437



	la24
	935
	hc_1swap
	999
	1095
	1086
	56
	0s
	6’612



	
	
	hcr_8192_1swap
	956
	975
	976
	6
	84s
	35’242’182



	
	
	hcr_16384_1swap
	953
	976
	976
	7
	80s
	34’437’999



	
	
	hcr_32768_1swap
	951
	979
	980
	8
	90s
	36’493’494



	swv15
	2885
	hc_1swap
	3837
	4108
	4108
	137
	1s
	104’598



	
	
	hcr_8192_1swap
	3745
	3881
	3886
	37
	91s
	12’892’041



	
	
	hcr_16384_1swap
	3752
	3859
	3861
	42
	92s
	11’756’497



	
	
	hcr_32768_1swap
	3677
	3853
	3858
	37
	89s
	11’562’962



	yn4
	929
	hc_1swap
	1109
	1222
	1220
	48
	0s
	31’789



	
	
	hcr_8192_1swap
	1084
	1117
	1118
	11
	89s
	13’258’408



	
	
	hcr_16384_1swap
	1081
	1115
	1115
	11
	91s
	14’804’358



	
	
	hcr_32768_1swap
	1075
	1114
	1116
	13
	85s
	13’126’688







Table 3.4 shows us that the restarted algorithms hcr_L_1swap almost always provide better best, mean, and median solutions than hc_1swap. Only the overall best result of hcr_8192_1swap on abz7 is worse than for hc_1swap – on all other instances and for all other quality metrics, hc_1swap loses.

The standard deviations of the end results of the variants with restarts are also always smaller, meaning that these algorithms perform more reliably. Their median time until they converge is now higher, which means that we make better use of our computational budget.

As a side note, the median and mean result of the three listed setups of our very basic hcr_L_1swap algorithms for instance la24 are already better than the best result (982) delivered by the Grey Wolf Optimization algorithm proposed in [118]. In other words, even with such a simple algorithm we can already achieve results not very far from recent publications…


[image: Figure 3.9: The Gantt charts of the median solutions obtained by the hcr_16384_1swap algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.9: The Gantt charts of the median solutions obtained by the hcr_16384_1swap algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.


[image: Figure 3.10: The median of the progress of the algorithms rs, hc_1swap, and hcr_16384_1swap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.10: The median of the progress of the algorithms rs, hc_1swap, and hcr_16384_1swap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.

The median solutions discovered by hcr_16384_1swap, illustrated in Figure 3.9, again show less wasted time. The scheduled jobs again move a bit closer together.

From the progress diagrams plotted in Figure 3.10, we can see that the algorithm version with restart initially behave very similar to the original hill climber. Its median quality is almost exactly the same during the first 100 ms. This makes sense, because until its first restart, hcr_16384_1swap is identical to hc_1swap. However, when hc_1swap has converged and stops making improvements, hcr_16384_1swap still continues to make progress.

Of course, our way of finding the right value for the restart parameter LL was rather crude. Most likely, the right choice could be determined per instance based on the number mm of machines and the number nn of jobs. But even with such a coarse way of algorithm configuration, we managed to get rather good results.



3.3.3.4 Drawbacks of the Idea of Restarts

With our restart method, we could significantly improve the results of the hill climber. It directly addressed the problem of premature convergence, but it tried to find a remedy for its symptoms, not for its cause.

Basically, a restarted algorithm is still the same algorithm – we just restart it again and again. If there are many more local optima than global optima, every restart will probably end again in a local optimum. If there are many more bad'' local optima thangood’’ local optima, every restart will probably end in a ``bad’’ local optimum. While restarts improve the chance to find better solutions, they cannot solve the intrinsic shortcomings of an algorithm.

Another problem is: With every restart we throw away all accumulated knowledge and information of the current run. Restarts are therefore also somewhat wasteful.




3.3.4 Hill Climbing with a Different Unary Operator


3.3.4.1 Small vs. Large Neighborhoods – and Uniform vs. Non-Uniform Sampling

One of issues limiting the performance of our restarted hill climber is the design of the unary operator. 1swap will swap two jobs in an encoded solution. Since the solutions are encoded as integer arrays of length m*nm*n, there are m*nm*n possible choices when picking the index of the first job to be swapped. We swap only with different jobs and each job appears mm times in the encoding. This leaves m*(n−1)m*(n-1) choices for the second swap index, because we will only use a second index that points to a different job ID. If we think about the size of the neighborhood spanned by 1swap, we can also ignore equivalent swaps: Exchanging the jobs at indexes (10,5)(10,5) and (5,10)(5,10), for example, would result in the same outcome. In total, from any given point in the search space, 1swap may reach 0.5*(m*n)*[m*(n−1)]=0.5*m2(n2−n)0.5*(m*n)*[m*(n-1)]=0.5*m^2(n^2-n) different other points. Some of these points might still actually encode the same candidate solutions, i.e., identical schedules. In other words, the neighborhood spanned by our 1swap operator equals only a tiny fraction of the big search space (remember Table 2.3).

This has two implications:


	The chance of premature convergence for a hill climber applying this operator is relatively high, since the neighborhoods are relatively small. If the neighborhood spanned by the operator was larger, it would contain more, potentially better solutions. Hence, it would take longer for the optimization process to reach a point where no improving move can be discovered anymore.

	Assume that there is no better solution in the 1swap neighborhood of the current best point in the search space. There might still be a much better, similar solution. Finding it could, for instance, require swapping three or four jobs – but the hc_1swap algorithm will never find it, because it can only swap two jobs. If the search operator would permit such moves, then even the plain hill climber may discover this better solution.



So let us try to think about how we could define a new unary operator which can access a larger neighborhood. As we should always do, we first consider the extreme cases.

On the one hand, we have 1swap which samples from a relatively small neighborhood. Because the neighborhood is small, the stochastic hill climber will eventually have visited all of the solutions it contains. If none of them is better than the current best solution, it will not be able to depart from it.

The other extreme could be to use our nullary operator as unary operator: It would return an entirely random point from the search space 𝕏\mathbb{X} and ignore its input. Then, each point x∈𝕏x\in\mathbb{X} would have the whole 𝕏\mathbb{X} as the neighborhood. Using such a unary operator would turn the hill climber into random sampling (and we do not want that).

From this thought experiment we know that unary operators which indiscriminately sample from very large neighborhoods are probably not very good ideas, as they are too random. They also make less use of the causality of the search space, as they make large steps and their produced outputs are very different from their inputs.

Using an operator that creates larger neighborhoods than 1swap, which are still smaller than 𝕏\mathbb{X} would be one idea. For example, we could always swap three jobs instead of two. The more jobs we swap in each application, the larger the neighborhood gets. Then we will be less likely to get trapped in local optima (as there will be fewer local optima). But we will also make less and less use of the causality property, i.e., the solutions we derive from the current best one will be more and more different from it. Where should we draw the line? How many jobs should we swap?

Well, there is one more aspect of the operators that we did not think about yet. An operator does not just span a neighborhood, but it also defines a probability distribution over it. So far, our 1swap unary operator samples uniformly from the neighborhood of its input. In other words, all of the 0.5*m2(n2−n)0.5*m^2(n^2-n) new points that it could create in one step have exactly the same probability, the same chance to be chosen.

But we do not need to do it like that. We could construct an operator that often creates outputs very similar to its input (like 1swap), but also, from time to time, samples points a bit farther away in the search space. This operator could have a huge neighborhood – but sample it non-uniformly.



3.3.4.2 Second Unary Search Operator for the JSSP

We define the nswap operator for the JSSP as follows and implement it in Listing 3.12:


Listing 3.12: An excerpt of the nswap operator for the JSSP, an implementation of the unary search operation interface Listing 2.9. nswap can swap an arbitrary number of jobs in our encoding, while favoring small search steps. (src)

public class JSSPUnaryOperatorNSwap
    implements IUnarySearchOperator<int[]> {
  public void apply(int[] x, int[] dest,
      Random random) {
// copy the source point in search space to the dest
    System.arraycopy(x, 0, dest, 0, x.length);

// choose the index of the first operation to swap
    int i = random.nextInt(dest.length);
    int first = dest[i];
    int last = first; // last stores the job id to "swap in"

    boolean hasNext;
    do { // we repeat a geometrically distributed number of times
      hasNext = random.nextBoolean();
      inner: for (;;) { // find a location with a different job
        int j = random.nextInt(dest.length);
        int jobJ = dest[j];
        if ((last != jobJ) && // don't swap job with itself
            (hasNext || (first != jobJ))) { // also not at end
          dest[i] = jobJ; // overwrite job at index i with jobJ
          i = j; // remember index j: we will overwrite it next
          last = jobJ; // but not with the same value jobJ...
          break inner;
        }
      }
    } while (hasNext); // Bernoulli process

    dest[i] = first; // write back first id to last copied index
  }
}





	Make a copy x′x' of the input point xx from the search space.

	Pick a random index ii from 0…(m*n−1)0\ldots(m*n-1).

	Store the job-id at index ii in the variable ff for holding the very first job, i.e., set f=x′if=x'_{i}.

	Set the job-id variable ll for holding the last-swapped-job to x′ix'_{i} as well.

	Repeat

	Decide whether we should continue the loop after the current iteration (TRUE) or not (FALSE) with equal probability and remember this decision in variable nn.

	Pick a random index jj from 0…(m*n−1)0\ldots(m*n-1).

	If l=x′jl=x'_{j}, go back to point b.

	If f=xjf=x_{j} and we will not do another iteration (n=FALSEn=FALSE), go back to point b.

	Store the job-id at index jj in the variable ll.

	Copy the job-id at index jj to index ii, i.e., set x′i=x′jx'_{i}=x'_{j}.

	Set i=ji=j.




	If we should do another iteration (n=TRUEn=TRUE), go back to point 5.

	Store the first-swapped job-id ff in x′ix'_{i}.

	Return the now modified copy x′x' of xx.



Here, the idea is that we will perform at least one iteration of the loop (point 5). If we would do exactly one iteration, then we would pick two indices ii and jj where different job-ids are stored, as ll must be different from ff (point c and d). We would then swap the jobs at these indices (points f, g, and 7). In the case of exactly one iteration of the main loop, this operator behaves the same as 1swap. This takes place with a probability of 0.5 (point a).

If we do two iterations, i.e., pick true the first time we arrive at point a and false the second time, then we swap three job-ids instead. Let us say we picked indices α\alpha at point 2, β\beta at point b, and γ\gamma when arriving the second time at b. We will store the job-id originally stored at index β\beta at index α\alpha, the job originally stored at index γ\gamma at index β\beta, and the job-id from index γ\gamma to index α\alpha. Condition c prevents index β\beta from referencing the same job-id as index α\alpha and index γ\gamma from referencing the same job-id as what was originally stored at index β\beta. Condition d only applies in the last iteration and prevents γ\gamma from referencing the original job-id at α\alpha.

This three-job swap will take place with probability 0.5*0.5=0.250.5*0.5=0.25. Similarly, a four-job-swap will happen with half of that probability, and so on. In other words, we have something like a Bernoulli process, where we decide whether or not to do another iteration by flipping a fair coin, where each choice has probability 0.5. The number of iterations will therefore be geometrically distributed with an expectation of two job swaps. Of course, we only have mm different job-ids in a finite-length array x′x', so this is only an approximation. Generally, this operator will most often apply small changes and sometimes bigger steps. The bigger the search step, the less likely will it be produced. The operator therefore can make use of the causality while – at least theoretically – being able to escape from any local optimum.



3.3.4.3 Results on the JSSP

Let us now compare the end results that our hill climbers can achieve using either the 1swap or the new nswap operator after three minutes of runtime on my laptop computer in Table 3.5.



Table 3.5: The results of the hill climbers hc_1swap and hc_nswap. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	hc_1swap
	717
	800
	798
	28
	0s
	16’978



	
	
	hcr_16384_1swap
	714
	732
	733
	6
	91s
	18’423’530



	
	
	hc_nswap
	724
	758
	758
	17
	35s
	7’781’762



	la24
	935
	hc_1swap
	999
	1095
	1086
	56
	0s
	6’612



	
	
	hcr_16384_1swap
	953
	976
	976
	7
	80s
	34’437’999



	
	
	hc_nswap
	945
	1018
	1016
	29
	25s
	9’072’935



	swv15
	2885
	hc_1swap
	3837
	4108
	4108
	137
	1s
	104’598



	
	
	hcr_16384_1swap
	3752
	3859
	3861
	42
	92s
	11’756’497



	
	
	hc_nswap
	3602
	3880
	3872
	112
	70s
	8’351’112



	yn4
	929
	hc_1swap
	1109
	1222
	1220
	48
	0s
	31’789



	
	
	hcr_16384_1swap
	1081
	1115
	1115
	11
	91s
	14’804’358



	
	
	hc_nswap
	1095
	1162
	1160
	34
	71s
	11’016’757







From Table 3.5, we find that hc_nswap performs almost always better than hc_1swap. Only on instance abz7, hc_1swap finds the better best solution. For all other instances, hc_nswap has better best, mean, and median results. It also converges much later and often performs 7 to 15 million function evaluations and consumes 14% to 25% of the three minute budget before it cannot improve anymore. Still, the hill climber hcr_16384_1swap using the 1swap operator with restarts tends to outperform hc_nswap.


[image: Figure 3.11: Median of the progress of the hill climbers with the 1swap and nswap operators over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.11: Median of the progress of the hill climbers with the 1swap and nswap operators over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.

Figure 3.11 illustrates the progress of the hill climbers with the 1swap and nswap operators. Initially, both algorithms behave very similar in median. This may be because half of the time, hc_nswap also performs single-swap moves. However, while hc_1swap stops improving even before one second has elapsed, hc_nswap can still improve after ten seconds. Still, these late improvements tend to be small and occur infrequently. It may be that the algorithm arrives in local optima from which it can only escape with complicated multi-swap moves, which are harder to discover by chance.




3.3.5 Combining Bigger Neighborhood with Restarts

Both restarts and the idea of allowing bigger search steps with small probability are intended to decrease the chance of premature convergence, while the latter one also can investigate more solutions similar to the current best one. We have seen that both measures work separately. The fact that hc_nswap improves more and more slowly towards the end of the computational budget means that it could be interesting to try to combine both ideas, restarts and larger neighborhoods.

We plug the nswap operator into the hill climber with restarts and obtain algorithm hcr_L_nswap. We perform the same experiment to find the right setting for the restart limit LL as for the hcr_L_1swap algorithm and illustrate the results in Figure 3.12.


[image: Figure 3.12: The median result quality of the hcr_nswap algorithm, divided by the lower bound \textrm{lb}(f)^{\star} from Table 2.2 over different values of the restart limit parameter L. The best values of L on each instance are marked with bold symbols.]Figure 3.12: The median result quality of the hcr_nswap algorithm, divided by the lower bound lb(f)⋆\textrm{lb}(f)^{\star} from Table 2.2 over different values of the restart limit parameter LL. The best values of LL on each instance are marked with bold symbols.

The sweet spot for the number of unsuccessful FEs before a restart has increased compared to before. This makes sense, because we already know that nswap can keep improving longer.


3.3.5.1 Results on the JSSP



Table 3.6: The results of the hill climber hcr_L_nswap with restarts. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	hcr_16384_1swap
	714
	732
	733
	6
	91s
	18’423’530



	
	
	hc_nswap
	724
	758
	758
	17
	35s
	7’781’762



	
	
	hcr_32768_nswap
	711
	730
	731
	6
	79s
	16’172’407



	
	
	hcr_65536_nswap
	712
	731
	732
	6
	96s
	21’189’358



	la24
	935
	hcr_16384_1swap
	953
	976
	976
	7
	80s
	34’437’999



	
	
	hc_nswap
	945
	1018
	1016
	29
	25s
	9’072’935



	
	
	hcr_32768_nswap
	959
	974
	975
	6
	92s
	38’202’616



	
	
	hcr_65536_nswap
	942
	973
	974
	8
	71s
	31’466’420



	swv15
	2885
	hcr_16384_1swap
	3752
	3859
	3861
	42
	92s
	11’756’497



	
	
	hc_nswap
	3602
	3880
	3872
	112
	70s
	8’351’112



	
	
	hcr_32768_nswap
	3703
	3830
	3832
	37
	87s
	11’288’261



	
	
	hcr_65536_nswap
	3740
	3818
	3826
	35
	89s
	10’783’296



	yn4
	929
	hcr_16384_1swap
	1081
	1115
	1115
	11
	91s
	14’804’358



	
	
	hc_nswap
	1095
	1162
	1160
	34
	71s
	11’016’757



	
	
	hcr_32768_nswap
	1081
	1114
	1113
	11
	84s
	12’742’795



	
	
	hcr_65536_nswap
	1068
	1109
	1110
	12
	78s
	18’756’636







From Table 3.6, where we print the results of hcr_32768_nswap and hcr_65536_nswap, we can find that the algorithm version with restarts performs better in average than the one without. However, it does not always find the best solution, as can be seen on instance swv15, where hc_nswap finds a schedule of length 3602. The differences between hcr_16384_1swap and hcr_L_nswap, however, are quite small. If we compare the progress over time of hcr_16384_1swap and hcr_65536_nswap, then the latter seems to have a slight edge over the former – but only by about half of a percent. This small difference is almost indistinguishable in the progress diagram Figure 3.13.


[image: Figure 3.13: Median of the progress of the hill climbers with restarts with the 1swap and nswap operators over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.13: Median of the progress of the hill climbers with restarts with the 1swap and nswap operators over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.



3.3.5.2 Testing for Significance

Still, even small improvements can have a big economical impact. Saving 0.5% of 10’000’000 RMB is still 50’000 RMB. The problem is knowing whether such small improvements are true improvements or artifacts of the randomness in the algorithm.

In order to understand the latter situation, consider the following thought experiment. Assume you have a completely unbiased, uniform source of true random real numbers from the interval [0,1)[0,1). You draw 500 such numbers, i.e., have a list AA containing 500 numbers, each from [0,1)[0,1). Now you repeat the experiment and get another such list BB. Since the numbers stem from a random source, we can expect that A≠BA\neq B. If we compute the medians AA and BB, they are likely to be different as well. Actually, I just did exactly this in the R programming language and got median(A)=0.5101432 and median(B)=0.5329007. Does this mean that the generator producing the numbers in AA creates somehow smaller numbers than the generator from which the numbers in BB stem? Obviously not, because we sampled the numbers from the same source. Also, every time I would repeat this experiment, I would get different results.

So how do we know whether or not the sources of AA and BB are truly different? Well, we cannot really know for sure. But we can we can make a statement which is wrong with at most a given probability. This is called statistical testing, and we discuss it in detail in Section 4.5. Thus, in order to see whether the observed small performance difference of the hcr setups is indeed real or just random jitter, we compare their sets of 101 end results on each of the problem instances. For this purpose, we use the Mann-Whitney U test, as prescribed in Section 4.5.4.



Table 3.7: The end results of hcr_16384_1swap and hcr_65536_nswap compared with a Mann-Whitney U test with Bonferroni correction and significance level α=0.02\alpha=0.02 on the four JSSP instances. The columns indicate the pp-values and the verdict (? for insignificant).









	Mann-Whitney U α′=7.14⋅10−4\alpha'=7.14\!\cdot\!10^{-4}
	abz7
	la24
	swv15
	yn4





	hcr_16384_1swap vs. hcr_65536_nswap
	3.04⋅10−13.04\!\cdot\!10^{-1} ?
	3.57⋅10−33.57\!\cdot\!10^{-3} ?
	9.35⋅10−119.35\!\cdot\!10^{-11} >
	5.19⋅10−45.19\!\cdot\!10^{-4} >







From Table 3.7 we know that if we would claim hcr_16384_1swap tends to produce results with large makspan than hcr_65536_nswap on abz7, then, from our experimental data, we can estimate our chance to be wrong to be about 30%. In other words, making that claim would be quite a gamble and we can conclude that here, the differences we observed in the experiment are not statistically significant (marked with ? in the table). However, if we would claim the same for swv15, our chance to be wrong is about 1⋅10−101\!\cdot\!10^{-10}, i.e., very small. So on swv15, we find that hcr_65536_nswap very likely performs better.

In summary, Table 3.7 tells us that it seems that the hill climber with restarts using the nswap operator can outperform the one using the 1swap operator on swv15 and yn4. For abz7, there certainly is no significant difference. The pp-value of 3.57⋅10−33.57\!\cdot\!10^{-3} on la24 is fairly small but still above the Bonferroni-corrected α′=7.14⋅10−4\alpha'=7.14\!\cdot\!10^{-4}, so we cannot make any statement here.

We found that the nswap operator tends to be better then the 1swap operator when plugged into the hill climber. We found that restarts are also beneficial to improve the performance of our hill climber. While we did not find that combining these two methods will yield a convincing improvement, we can at least conclude that preferring hcr_65536_nswap over hcr_16384_1swap seems reasonable. It might sometimes give better performance while it is unlikely to perform worse.




3.3.6 Summary

In this section, we have learned about our first reasonable optimization method. The stochastic hill climbing algorithm always remembers the best-so-far point in the search space. In each step, it applies the unary operator to obtain a similar but slightly different point. If it is better, then it becomes the new best-so-far point. Otherwise, it is forgotten.

The performance of hill climbing depends very much on the unary search operator. If the operator samples from a very small neighborhood only, like our 1swap operator does, then the hill climber might quickly get trapped in a local optimum. A local optimum here is a point in the search space which is surrounded by a neighborhood that does not contain any better solution. If this is the case, the two conditions for doing efficient restarts may be fulfilled: quick convergence and variance of result quality.

The question when to restart then arises, as we usually cannot find out if we are actually trapped in a local optimum or whether the improving move (application of the unary operator) just has not been discovered yet. The most primitive solution is to simply set a limit LL for the maximum number of moves without improvement that are permitted.

Our hcr_L_1swap was born. We configured LL in a small experiment and found that L=16384L=16384 seemed to be reasonable. The setup hcr_16384_1swap performed much better than hc_1swap. It should be noted that our experiment used for configuration was not very thorough, but it should suffice at this stage. We can also note that it showed that different settings of LL are better for different instances. This is probably related to the corresponding search space size – but we will not investigate this any further here.

A second idea to improve the hill climber was to use a unary operator spanning a larger neighborhood, but which still most often sampled solutions similar to current one. The nswap operator gave better results than than the 1swap operator in the basic hill climber. The take-away message is that different search operators may (well, obviously) deliver different performance and thus, testing some different operators can always be a good idea.

Finally, we tried to combine our two improvements, restarts and better operator, into the hcr_L_nswap algorithm. Here we learned the lesson that performance improvements do not necessarily add up. If we have a method that can deliver an improvement of 10% of solution quality and combine it with another one delivering 15%, we may not get an overall 25% improvement. Indeed, our hcr_65536_nswap algorithm only performed a little bit better than hcr_16384_1swap.

From this chapter, we also learned one more lesson: Many optimization algorithms have parameters. Our hill climber had two: the unary operator and the restart limit LL. Configuring these parameters well can lead to significant improvements.




3.4 Evolutionary Algorithms

We now already have one functional, basic optimization method – the hill climber. Different from the random sampling approach, it makes use of some knowledge gathered during the optimization process, namely the best-so-far point in the search space. However, only using this single point led to the danger of premature convergence, which we tried to battle with two approaches, namely restarts and the search operator nswap, spanning a larger neighborhood from which we sampled in a non-uniform way. These concepts can be transfered rather easily to many different kinds of optimization problems. Now we will look at a third concept to prevent premature convergence: Instead of just remembering and utilizing only one single point from the search space in each iteration of our algorithm, we will now work on an array of points!


3.4.1 Evolutionary Algorithm without Recombination

Today, there exists a wide variety of different Evolutionary Algorithms (EAs) [17,41,54,84,145,146,188,205]. We will here discuss a simple yet efficient variant: the (μ+λ)(\mu+\lambda) EA without recombination.1 This algorithm always remembers the best μ∈ℕ1\mu\in\mathbb{N}_1 points in the search space found so far. In each step, it derives λ∈ℕ1\lambda\in\mathbb{N}_1 new points from them by applying the unary search operator.


3.4.1.1 The Algorithm (without Recombination)

The basic (μ+λ)(\mu+\lambda) Evolutionary Algorithm works as follows:


	I∈𝕏×ℝI\in\mathbb{X}\times\mathbb{R} be a data structure that can store one point xx in the search space and one objective value zz.

	Allocate an array PP of length μ+λ\mu+\lambda of instances of II.

	For index ii ranging from 00 to μ+λ−1\mu+\lambda-1 do

	Create a random point from the search space using the nullary search operator and store it in Pi.xP_{i}.x.

	Apply the representation mapping y=γ(Pi.x)y=\gamma(P_{i}.x) to get the corresponding candidate solution yy.

	Compute the objective objective value of yy and store it at index ii as well, i.e., Pi.z=f(y)P_{i}.z=f(y).




	Repeat until the termination criterion is met:

	Sort the array PP in ascending order according to the objective values, i.e., such that the records rr with better associated objective value r.zr.z are located at smaller indices.

	Shuffle the first μ\mu elements of PP randomly.

	Set the source index p=−1p=-1.

	For index ii ranging from μ\mu to μ+λ−1\mu+\lambda-1 do

	Set the source index pp to p=(p+1) mod μp=(p+1)\textrm{~mod~}\mu.

	Apply unary search operator to the point stored at index pp and store result at index ii, i.e., set Pi.x=searchOp1(Pp.x)P_{i}.x=\textrm{searchOp}_1(P_{p}.x).

	Apply the representation mapping y=γ(Pi.x)y=\gamma(P_{i}.x) to get the corresponding candidate solution yy.

	Compute the objective objective value of yy and store it at index ii as well, i.e., Pi.z=f(y)P_{i}.z=f(y).







	Return the candidate solution corresponding to the best record in PP (i.e., the best-ever encountered solution) to the user.




Listing 3.13: An excerpt of the implementation of the Evolutionary Algorithm without recombination. (src)

public class EA<X, Y> extends Metaheuristic2<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// omitted: initialize local variables random, searchSpace, and
// the array P of length mu+lambda
// first generation: fill population with random solutions
    for (int i = P.length; (--i) >= 0;) {
      X x = searchSpace.create(); // allocate point
      this.nullary.apply(x, random); // fill with random data
      P[i] = new Record<>(x, process.evaluate(x)); // evaluate
    }

    for (;;) { // main loop: one iteration = one generation
// sort the population: mu best records at front are selected
      Arrays.sort(P, Record.BY_QUALITY);
// shuffle the first mu solutions to ensure fairness
      RandomUtils.shuffle(random, P, 0, this.mu);
      int p1 = -1; // index to iterate over first parent

// overwrite the worse lambda solutions with new offsprings
      for (int index = P.length; (--index) >= this.mu;) {
        if (process.shouldTerminate()) { // we return
          return; // best solution is stored in process
        }

        Record<X> dest = P[index];
        p1 = (p1 + 1) % this.mu; // step the parent 1 index
        Record<X> sel = P[p1];
// create modified copy of parent using unary operator
          this.unary.apply(sel.x, dest.x, random);
// map to solution/schedule and evaluate quality
        dest.quality = process.evaluate(dest.x);
      } // the end of the offspring generation
    } // the end of the main loop
  }
}




This algorithm is implemented in Listing 3.13. There, we make use of instances of the utility class Record<X>, which holds one point x in the search space along with their corresponding objective values stored in the field quality.

Basically, the algorithm starts out by creating and evaluating μ+λ\mu+\lambda random candidate solutions (point 3).

Definition 24. Each iteration of the main loop of an Evolutionary Algorithm is called a generation.

Definition 25. The array of solutions under investigation in an EA is called population.

In each generation, the μ\mu best points in the population PP are retained and the other λ\lambda solutions are overwritten with newly sampled points.

Definition 26. The selection step in an Evolutionary Algorithm picks the set of points in the search space from which new points should be derived. This usually involves choosing a smaller number μ∈ℕ1\mu\in\mathbb{N}_1 of points from a larger array PP. [17,26,36,146,205]

Selection can be done by sorting the array PP (point 4d). This way, the best μ\mu solutions end up at the front of the array on the indices from 00 to μ−1\mu-1. The worse λ\lambda solutions are at index μ\mu to μ+λ−1\mu+\lambda-1. These are overwritten by sampling points from the neighborhood of the μ\mu selected solutions by applying the unary search operator (which, in the context of EAs, is often called mutation operator).

Definition 27. The selected points in an Evolutionary Algorithm are called parents.

Definition 28. The points in an Evolutionary Algorithm that are sampled from the neighborhood of the parents by applying search operators are called offspring.

Definition 29. The reproduction step in an Evolutionary Algorithm uses the selected μ∈ℕ1\mu\in\mathbb{N}_1 points from the search space to derive λ∈ℕ1\lambda\in\mathbb{N}_1 new points.

For each new point to be created during the reproduction step, we apply a search operator to one of the selected μ\mu points. The index pp in steps 4f to 4g identifies the point to be used as source for sampling the next new solution. By incrementing pp before each application of the search operator, we try to make sure that each of the selected points is used approximately equally often to create new solutions. Of course, μ\mu and λ\lambda can be different (often λ>μ\lambda>\mu), so if we would just keep increasing pp for λ\lambda times, it could exceed μ\mu. We thus perform a modulo division with μ\mu in step 4g.i, i.e., set pp to the remainder of the division with μ\mu, which makes sure that pp will be in 0…(μ−1)0\ldots(\mu-1).

If μ≠λ\mu\neq\lambda, then the best solutions in PP tend to be used more often, since they may survive selection several times and often be at the front of PP. This means that, in our algorithm, they would be used more often as input to the search operator. To make our algorithm more fair, we randomly shuffle the selected μ\mu points (point 4e). This does not change the fact that they have been selected.

Since our algorithm will never prefer a worse solution over a better one, it will also never lose the best-so-far solution. We therefore can simply pick the best element from the population once the algorithm has converged. It should be mentioned that there are selection methods in EAs which might reject the best-so-far solution. In this case, we would need to remember it in a special variable like we did in case of the hill climber with restarts. Here, we do not consider such methods, as we want to investigate a plain EA.



3.4.1.2 The Right Setup

After implementing the (μ+λ)(\mu+\lambda) EA as discussed above, we already have all the ingredients ready to apply to the JSSP. We need to decide which values for μ\mu and λ\lambda we want to use. The configuration of EAs is a whole research area itself. The question arises which values for μ\mu and λ\lambda are reasonable. Without investigating whether this is the best idea, let us set μ=λ\mu=\lambda here, so we only have two parameters to worry about: μ\mu and the unary search operator. We already have two unary search operators. Let us call our algorithms of this type ea_mu_unary, where mu will stand for the value of μ\mu and λ\lambda and unary can be either 1swap or nswap. We no therefore do a similar experiment as in Section 3.3.3.2 in order to find the right parameters.


[image: Figure 3.14: The median result quality of the ea_mu_unary algorithm, divided by the lower bound \textrm{lb}(f)^{\star} from Table 2.2 over different values of the population size parameter \mu=\lambda and the two unary search operators 1swap and nswap. The best values of \mu for each operator and instance are marked with bold symbols.]Figure 3.14: The median result quality of the ea_mu_unary algorithm, divided by the lower bound lb(f)⋆\textrm{lb}(f)^{\star} from Table 2.2 over different values of the population size parameter μ=λ\mu=\lambda and the two unary search operators 1swap and nswap. The best values of μ\mu for each operator and instance are marked with bold symbols.

In Figure 3.14, we illustrate this experiment. Regarding μ\mu and λ\lambda, we observe the same situation as with the restarts parameters hill climber. There is a sweet spot somewhere between small and large population sizes. For small values of μ\mu, the algorithm may end up in a local optimum, whereas for large values, it may not be able to perform sufficiently many generations to arrive at a good solution. Nevertheless, compared to the hill climber with restart and with the exception for instance swv15, the EA performs quite stable: There are only relatively little differences in result quality for both unary operators and over many scales of μ\mu. This generally a nice feature, as we would like to have algorithms that are not too sensitive to parameter settings.

The setting μ=λ=16′384\mu=\lambda=16'384 seems to work well for instances abz7, la25, and yn4. Interestingly, instance swv15 behaves different: here, the setting μ=λ=1024\mu=\lambda=1024 works best. It is quite common in optimization that different problem instances may require different setups to achieve the best performance. Here we see this quite pronounced. This is generally a feature that we do not like. We would ideally like to have algorithms where a good parameter setting performs well on many instances as opposed to such where each instance requires a totally different setup. Luckily, this here only concerns one of our example problem instances.

Regarding the choice of the unary search operator: With the exception of problem swv15, both operators provide the same median result quality. In the other setups, if one of the two is better, it is most of the time nswap.

Therefore, we will consider the two setups ea_16384_nswap and ea_1024_nswap when evaluating the performance of our Evolutionary Algorithms.



3.4.1.3 Results on the JSSP

Let us now compare the results of the best two EA setups with those that we obtained with the hill climber.



Table 3.8: The results of the Evolutionary Algorithm ea_mu_nswap without recombination in comparison with the best hill climber hc_nswap and the best hill climber with restarts hcr_65536_nswap. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	hc_nswap
	724
	758
	758
	17
	35s
	7’781’762



	
	
	hcr_65536_nswap
	712
	731
	732
	6
	96s
	21’189’358



	
	
	ea_16384_nswap
	691
	707
	707
	8
	151s
	25’293’859



	
	
	ea_1024_nswap
	696
	719
	719
	9
	14s
	4’703’601



	la24
	935
	hc_nswap
	945
	1018
	1016
	29
	25s
	9’072’935



	
	
	hcr_65536_nswap
	942
	973
	974
	8
	71s
	31’466’420



	
	
	ea_16384_nswap
	945
	968
	967
	12
	39s
	10’161’119



	
	
	ea_1024_nswap
	941
	983
	984
	19
	2s
	971’842



	swv15
	2885
	hc_nswap
	3602
	3880
	3872
	112
	70s
	8’351’112



	
	
	hcr_65536_nswap
	3740
	3818
	3826
	35
	89s
	10’783’296



	
	
	ea_16384_nswap
	3577
	3723
	3728
	50
	178s
	18’897’833



	
	
	ea_1024_nswap
	3375
	3525
	3509
	85
	87s
	16’979’178



	yn4
	929
	hc_nswap
	1095
	1162
	1160
	34
	71s
	11’016’757



	
	
	hcr_65536_nswap
	1068
	1109
	1110
	12
	78s
	18’756’636



	
	
	ea_16384_nswap
	1022
	1063
	1061
	16
	168s
	26’699’633



	
	
	ea_1024_nswap
	1035
	1083
	1085
	20
	31s
	4’656’472







Table 3.8 shows us that we can improve the best, mean, and median solution quality that we can get within three minutes of runtime when using our either of the two EA setups instead of the hill climber. The exception is case la24, where the hill climber already came close to the lower bound of the makespan and has a better best solution than ea_16384_nswap. Here, the best solution encountered now has a makespan which is only 0.7% longer than what is theoretically possible. Nevertheless, we find quite a tangible improvement in case swv15 on ea_1024_nswap.

Our ea_16384_nswap outperforms the four Evolutionary Algorithms from [122] both in terms of mean and best result quality on abz7 and la24. It does the same for HIMGA-Mutation, the worst of the four HIMGA variants introduced in [130], for abz7, la24, and yn4. It obtains better results than the PABC from [175] on swv15. On la24, both in terms of mean and best result, it outperforms also all six EAs from [2], both variants of the EA in [157], and the LSGA from [158]. The best solution quality for abz7 delivered by ea_16384_nswap is better than the best result found by the old Fast Simulated Annealing algorithm which was improved in [4].

The Gantt charts of the median solutions of ea_16384_nswap are illustrated in Figure 3.15. They appear only a bit denser than those in Figure 3.9.

More interesting are the progress diagrams of the ea_16384_nswap, ea_1024_nswap, hcr_65536_nswap, and hc_nswap algorithms given in Figure 3.16. Here we find big visual differences between the way the EAs and hill climbers proceed. The EAs spend the first 10 to 1000 ms to discover some basins of attraction of local optima before speeding up. The larger the population, the longer it takes them until this happens: The difference between ea_16384_nswap, is very obvious ea_1024_nswap in this respect. It is interesting to notice that the two problems where the EAs visually outperform the hill climber the most, swv15 and yn4, are also those with the largest search spaces (see Table 2.3). la24, however, which already can almost be solved by the hill climber and where there are the smallest differences in performance, is the smallest instance. The population used by the EA seemingly guards against premature convergence and allows it to keep progressing for a longer time.

We also notice that – for the first time in our endeavor to solve the JSSP – runtime is the limiting factor. If we would have 20 minutes instead of three, then we could not expect much improvement from the hill climbers. Even with restarts, they already improve very slowly towards the end of the computational budget. Tuning their parameter, e.g., increasing the time until a restart is performance, would probably not help then either. However, we can clearly see that ea_16384_nswap has not fully converged on neither abz7, swv15, nor on yn4 after the three minutes. Its median curve is still clearly pointing downwards. And even if it had converged: If we had a larger computational budget, we could increase the population size. The reason why the performance for larger populations in Figure 3.14 gets worse is very likely the limited time budget.


[image: Figure 3.15: The Gantt charts of the median solutions obtained by the ea_16384_nswap setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.15: The Gantt charts of the median solutions obtained by the ea_16384_nswap setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.


[image: Figure 3.16: The median of the progress of the ea_16384_nswap, ea_1024_nswap, hcr_65536_nswap, and hc_nswap algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.16: The median of the progress of the ea_16384_nswap, ea_1024_nswap, hcr_65536_nswap, and hc_nswap algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.



3.4.1.4 Exploration versus Exploitation

Naturally, when discussing EAs, we may ask why the population is helpful in the search. While we now have some anecdotal evidence that this is the case, we may also think about this more philosophically. Let us therefore do a thought experiment. If we would set μ=1\mu=1 and λ=1\lambda=1, then the EA would always remember the best solution we had so far and, in each generation, derive one new solution from it. If it is better, it will replace the remembered solution. Such an EA is actually a hill climber.

Now imagine what would happen if we would set μ\mu to infinity instead. We would not even complete one single generation. Instead, if μ→∞\mu\rightarrow\infty, it would also take infinitely long to finish creating the first population of random solutions. This does not even require infinity μ\mu – μ\mu just needs to be large enough so that the complete computational budget (in our case, three minutes) is consumed before creating the initial, random candidate solutions is completed. In other words, the EA would then equal random sampling.

The parameter μ\mu basically allows us to tune between these two behaviors [214]! If we pick it small, our algorithm becomes more greedy. It will spend more time investigating (exploiting) the neighborhood of the current best solutions. It will trace down local optima faster but be trapped more easily in local optima as well.

If we set μ\mu to a larger value, we will keep more not-that-great solutions in its population. The algorithm spends more time exploring the neighborhoods of solutions which do not look that good, but from which we might eventually reach better results. The convergence is slower, but we are less likely to get trapped in a local optimum.

The question on which of the two to focus is known as the dilemma of Exploration versus Exploitation [48,70,205,208,216]. To make matters worse, theorists have proofed that there are scenarios where only a small population can perform well, while there are other scenarios where only a large population works well [45]. In other words, if we apply an EA, we always need to do at least some rudimentary tuning of μ\mu and λ\lambda.




3.4.2 Ingredient: Binary Search Operator

On one hand, keeping a population of the μ>1\mu>1 best solutions as starting points for further exploration helps us to avoid premature convergence. On the other hand, it also represents more information. The hill climber only used the information in current-best solution as guide for the search (and the hill climber with restarts used, additionally, the number of steps performed since the last improvement). Now we have a set of μ\mu selected points from the search space. These points have, well, been selected. At least after some time has passed in our optimization process, being selected means being good. If you compare the Gantt charts of the median solutions of ea_16384_nswap (Figure 3.15) and hcr_16384_1swap (Figure 3.9), you can see some good solutions for the same problem instances. These solutions differ in some details. Wouldn’t it be nice if we could take two good solutions and derive a solution in between, a new solution which is similar to both of its parents?

This is the idea of the binary search operator (also often referred to as recombination or crossover operator). By defining such an operator, we hope that we can merge the good characteristics of two selected solutions to obtain one new (ideally better) solution [53,109]. If we are lucky and that works, then ideally such good characteristics could aggregate over time [84,147].

How can we define a binary search operator for our JSSP representation? One possible idea would be to create a new encoded solution x′x' by processing both input points x1{x}1 and x2{x}2 from front to back and schedule their not-yet scheduled job IDs into x′x' similar to what we do in our representation mapping.


	Allocate a data structure x′x' to hold the new point in the search space that we want to sample.

	Set the index ii where the next operation should be stored in x′x' to i=0i=0.

	Repeat

	Randomly choose one of the input points x1{x}1 or x2{x}2 with equal probability as source xx.

	Select the first (at the lowest index) operation in xx that is not marked yet and store it in variable JJ.

	Set x′i=Jx'_{i}=J.

	Increase ii by one (i=i+1i=i+1).

	If i=n*mi=n*m, then all operations have been assigned. We exit and returning x′x'.

	Mark the first unmarked occurrence of JJ as already assigned in x1{x}1.

	Mark the first unmarked occurrence of JJ as already assigned in x2{x}2.






This can be implemented efficiently by keeping indices of the first unmarked element for both x1{x}1 and x2{x}2, which we do in Listing 3.14.


Listing 3.14: An excerpt of the sequence recombination operator for the JSSP, an implementation of the binary search operation interface Listing 2.10. (src)

public class JSSPBinaryOperatorSequence
    implements IBinarySearchOperator<int[]> {
  public void apply(int[] x0, int[] x1,
      int[] dest, Random random) {
// omitted: initialization of arrays doneX0 and doneX1 (that
// remember the already-assigned operations from x0 and x1) of
// length=m*n to all false; and indices desti, x0i, x10 to 0
    for (;;) { // repeat until dest is filled, i.e., desti=length
// randomly chose a source point and pick next operation from it
      int add = random.nextBoolean() ? x0[x0i] : x1[x1i];
      dest[desti++] = add; // we picked a operation and added it
      if (desti >= length) { // if desti==length, we are finished
        return; // in this case, desti is filled and we can exit
      }

      for (int i = x0i;; i++) { // mark operation as done in x0
        if ((x0[i] == add) && (!doneX0[i])) { // find added job
          doneX0[i] = true;// found it and marked it
          break; // quit operation finding loop
        }
      }
      while (doneX0[x0i]) { // now we move the index x0i to the
        x0i++; // next, not-yet completed operation in x0
      }

      for (int i = x1i;; i++) { // mark operation as done in x1
        if ((x1[i] == add) && (!doneX1[i])) { // find added job
          doneX1[i] = true; // found it and marked it
          break; // quit operation finding loop
        }
      }
      while (doneX1[x1i]) { // now we move the index x1i to the
        x1i++; // next, not-yet completed operation in x0
      }
    } // loop back to main loop and to add next operation
  } // end of function
}




As we discussed in Section 2.6.2, our representation mapping processes the elements x∈𝕏x\in\mathbb{X} from the front to the back and assigns the jobs to machines according to the order in which their IDs appear. It is a natural idea to design a binary operator that works in a similar way. Our sequence recombination processes two points from the search space x1{x}1 and x2{x}2 from their beginning to the end. At each step randomly picks one of them to extract the next operation, which is is then stored in the output x′x' and marked as done in both x1{x}1 and x2{x}2.

If it would, by chance, always choose x1{x}1 as source, then it would produce exactly x1{x}1 as output. If it would always pick x2{x}2 as source, then it would also return x2{x}2. If it would pick x1{x}1 for the first half of the times and then always pick x2{x}2, it would basically copy the first half of x1{x}1 and then assign the rest of the operations in exactly the order in which they appear in x2{x}2.


[image: Figure 3.17: An example application of our sequence recombination operator to two points {x}1 and {x}2 in the search space of the demo instance, resulting in a new point x'. We mark the selected job IDs with pink and cyan color, while crossing out those IDs which were not chosen because of their received marks in the source points. The corresponding candidate solutions {y}1, {y}2, and y' are illustrated as well.]Figure 3.17: An example application of our sequence recombination operator to two points x1{x}1 and x2{x}2 in the search space of the demo instance, resulting in a new point x′x'. We mark the selected job IDs with pink and cyan color, while crossing out those IDs which were not chosen because of their received marks in the source points. The corresponding candidate solutions y1{y}1, y2{y}2, and y′y' are illustrated as well.

For illustration purposes, one example application of this operator is sketched in Figure 3.17. As input, we chose to points x1{x}1 and x2{x}2 from the search space for our demo instance. They encode two different corresponding Gantt charts, y1{y}1 and y2{y}2, with makespans of 202 and 182 time units, respectively.

Our operator begins by randomly choosing x1{x}1 as the source of the first operation for the new point x′x'. The first job ID in x1{x}1 is 2, which is placed as first operation into x′x'. We also mark the first occurrence of 2 in x2{x}2, which happens to be at position 4, as already scheduled. Then, the operator again randomly picks x1{x}1 as source for the next operation. The first not-yet marked element in x1{x}1 is now at the second 0, so it is placed into x′x' and marked as scheduled in x2{x}2, where the fifth element is thus crossed out. As next source, the operator, again, chooses&bsnp;x1{x}1. The first unmarked operation in x1{x}1 is 3 at position 3, which is added to x′x' and leads to the first element of x2{x}2 being marked. Finally, for picking the next operation, x2{x}2 is chosen. The first unmarked operation there has ID 1 and is located at index 2. It is inserted at index 4 into x′x'. It also occurs at index 4 in x1{x}1, which is thus marked. This process is repeated again and again, until x′x' is constructed completely, at which point all the elements of x1{x}1 and x2{x}2 are marked.

The application of our binary operator yields a new point x′x' which corresponds to the Gantt chart y′y' with makespan 192. This new candidate solution clearly inherits some characteristics from either of its parents.



3.4.3 Evolutionary Algorithm with Recombination

We now want to utilize this new operator in our EA. The algorithm now has two ways to create new offspring solutions: either via the unary operator (mutation, in EA-speak) or via the binary operator (recombination in EA-speak). We modify the original EA as follows.


3.4.3.1 The Algorithm (with Recombination)

We introduce a new parameter cr∈[0,1]cr\in[0,1], the so-called crossover rate. It is used whenever we want to derive a new points in the search space from existing ones. It denotes the probability that we apply the binary operator (while we will otherwise apply the unary operator, i.e., with probability 1−cr1-cr). The basic (μ+λ)(\mu+\lambda) Evolutionary Algorithm with recombination works as follows:


	I∈𝕏×ℝI\in\mathbb{X}\times\mathbb{R} be a data structure that can store one point xx in the search space and one objective value zz.

	Allocate an array PP of length μ+λ\mu+\lambda of instances of II.

	For index ii ranging from 00 to μ+λ−1\mu+\lambda-1 do

	Create a random point from the search space using the nullary search operator and store it in Pi.xP_{i}.x.

	Apply the representation mapping y=γ(Pi.x)y=\gamma(P_{i}.x) to get the corresponding candidate solution yy.

	Compute the objective objective value of yy and store it at index ii as well, i.e., Pi.z=f(y)P_{i}.z=f(y).




	Repeat until the termination criterion is met:

	Sort the array PP in ascending order according to the objective values, i.e., such that the records rr with better associated objective value r.zr.z are located at smaller indices.

	Shuffle the first μ\mu elements of PP randomly.

	Set the first source index p1=−1p1=-1.

	For index ii ranging from μ\mu to μ+λ−1\mu+\lambda-1 do

	Set the first source index p1p1 to p1=(p1+1) mod μp1=(p1+1)\textrm{~mod~}\mu.

	Draw a random number cc uniformly distributed in [0,1)[0,1).

	If cc is less than the crossover rate crcr, then we apply the binary operator: A. Randomly choose a second index p2p2 from 0…(μ−1)0\ldots(\mu-1) such that p2≠p1p2\neq p1. B. Apply binary search operator to the points stored at index p1p1 and p2p2 and store result at index ii, i.e., set Pi.x=searchOp2(Pp1.x,Pp2.x)P_{i}.x=\textrm{searchOp}_2(P_{p1}.x, P_{p2}.x).

	otherwise to step 4g.iii, i.e., if c≥crc\geq cr, then we apply the unary operator: C. Apply unary search operator to the point stored at index p1p1 and store result at index ii, i.e., set Pi.x=searchOp1(Pp1.x)P_{i}.x=\textrm{searchOp}_1(P_{p1}.x).

	Apply the representation mapping y=γ(Pi.x)y=\gamma(P_{i}.x) to get the corresponding candidate solution yy.

	Compute the objective objective value of yy and store it at index ii as well, i.e., Pi.z=f(y)P_{i}.z=f(y).







	Return the candidate solution corresponding to the best record in PP to the user.




Listing 3.15: An excerpt of the implementation of the Evolutionary Algorithm with crossover. (src)

public class EA<X, Y> extends Metaheuristic2<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// omitted: initialize local variables random, searchSpace, and
// array P of length mu+lambda
// first generation: fill population with random solutions
    for (int i = P.length; (--i) >= 0;) {
      X x = searchSpace.create(); // allocate point
      this.nullary.apply(x, random); // fill with random data
      P[i] = new Record<>(x, process.evaluate(x)); // evaluate
    }

    for (;;) { // main loop: one iteration = one generation
// sort the population: mu best records at front are selected
      Arrays.sort(P, Record.BY_QUALITY);
// shuffle the first mu solutions to ensure fairness
      RandomUtils.shuffle(random, P, 0, this.mu);
      int p1 = -1; // index to iterate over first parent

// overwrite the worse lambda solutions with new offsprings
      for (int index = P.length; (--index) >= this.mu;) {
        if (process.shouldTerminate()) { // we return
          return; // best solution is stored in process
        }

        Record<X> dest = P[index];
        p1 = (p1 + 1) % this.mu; // step the parent 1 index
        Record<X> sel = P[p1];
        if (random.nextDouble() <= this.cr) { // crossover!
          do { // find a second, different record
            p2 = random.nextInt(this.mu);
          } while (p2 == p1); // repeat until p1 != p2
// perform recombination of the two selected records
          this.binary.apply(sel.x, P[p2].x, dest.x, random);
        } else {
// create modified copy of parent using unary operator
          this.unary.apply(sel.x, dest.x, random);
        }
// map to solution/schedule and evaluate quality
        dest.quality = process.evaluate(dest.x);
      } // the end of the offspring generation
    } // the end of the main loop
  }
}




This algorithm, implemented in Listing 3.15 only differs from the variant in Section 3.4.1.1 by choosing whether to use the unary or binary operator to sample new points from the search space (steps 4g.iii.A, B, and C). If crcr is the probability to apply the binary operator and we draw a random number cc which is uniformly distributed in [0,1)[0,1), then the probability that c<crc<cr is exactly crcr (see point iii).



3.4.3.2 The Right Setup

Unfortunately, with cr∈[0,1]cr\in[0,1], a new algorithm parameter has emerged. It is not really clear whether a large or a small crossover rate is good. We already tested cr=0cr=0: The EA without recombination. Similar to our other small tuning experiments, let us compare the performance of different settings of crcr. We investigate the crossover rates cr∈{0,0.05,0.3,0.98}cr\in\{0, 0.05, 0.3, 0.98\}. We will stick with nswap as unary operator and keep μ=λ\mu=\lambda.


[image: Figure 3.18: The median result quality of the ea_mu_cr_nswap algorithm, divided by the lower bound \textrm{lb}(f)^{\star} from Table 2.2 over different values of the population size parameter \mu=\lambda and the crossover rates in \{0, 0.05, 0.3, 0.98\}. The best values of \mu for each crossover rate and instance are marked with bold symbols.]Figure 3.18: The median result quality of the ea_mu_cr_nswap algorithm, divided by the lower bound lb(f)⋆\textrm{lb}(f)^{\star} from Table 2.2 over different values of the population size parameter μ=λ\mu=\lambda and the crossover rates in {0,0.05,0.3,0.98}\{0, 0.05, 0.3, 0.98\}. The best values of μ\mu for each crossover rate and instance are marked with bold symbols.

From Figure 3.18, we immediately find that the large crossover rate cr=0.98cr=0.98 is performing much worse than using no crossover at all (cr=0cr=0) on all instances. Smaller rates cr∈{0.05,0.3}cr\in\{0.05,0.3\} tend to be sometimes better and sometimes worse than cr=0cr=0, but there is no big improvement. On instance swv15, the binary operator does not really help. On instance la24, cr=0.05cr=0.05 performs best on mid-sized populations, while there is no distinguishable difference between cr=0.05cr=0.05 and cr=0cr=0 for large populations. On abz7 and yn4, cr=0.05cr=0.05 always seems to be a good choice. On these three instances, the population size μ=λ=8192\mu=\lambda=8192 in combination with cr=0.05cr=0.05 looks promising. We will call this setup ea_8192_5%_nswap in the following, where 5% stands for the crossover rate of 0.05 using the binary sequence operator.



3.4.3.3 Results on the JSSP

We can now investigate whether our results have somewhat improved.



Table 3.9: The results of the Evolutionary Algorithm ea_8192_5%_nswap in comparison two the same population size without recombination (ea_8192_nswap) and the two EAs from Table 3.8. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	ea_16384_nswap
	691
	707
	707
	8
	151s
	25’293’859



	
	
	ea_1024_nswap
	696
	719
	719
	9
	14s
	4’703’601



	
	
	ea_8192_nswap
	687
	709
	709
	9
	75s
	13’347’232



	
	
	ea_8192_5%_nswap
	684
	703
	702
	8
	54s
	10’688’314



	la24
	935
	ea_16384_nswap
	945
	968
	967
	12
	39s
	10’161’119



	
	
	ea_1024_nswap
	941
	983
	984
	19
	2s
	971’842



	
	
	ea_8192_nswap
	941
	973
	973
	15
	16s
	4’923’721



	
	
	ea_8192_5%_nswap
	943
	967
	967
	11
	18s
	4’990’002



	swv15
	2885
	ea_16384_nswap
	3577
	3723
	3728
	50
	178s
	18’897’833



	
	
	ea_1024_nswap
	3375
	3525
	3509
	85
	87s
	16’979’178



	
	
	ea_8192_nswap
	3497
	3630
	3631
	54
	178s
	18’863’017



	
	
	ea_8192_5%_nswap
	3498
	3631
	3632
	65
	178s
	17’747’983



	yn4
	929
	ea_16384_nswap
	1022
	1063
	1061
	16
	168s
	26’699’633



	
	
	ea_1024_nswap
	1035
	1083
	1085
	20
	31s
	4’656’472



	
	
	ea_8192_nswap
	1027
	1061
	1061
	17
	138s
	17’882’160



	
	
	ea_8192_5%_nswap
	1026
	1056
	1053
	17
	114s
	13’206’552







The results in Table 3.9 show that a moderate crossover rate of 0.05 can indeed improve our algorithm’s performance – a little bit. For swv15, we already know that recombination was not helpful and this is confirmed in the table. On the three other instances, ea_8192_5%_nswap has better mean and median results than ea_1024_nswap, ea_8192_nswap, and ea_16384_nswap. On abz7, it can also slightly improve on the best result we got so far.

Interestingly, on swv15, the ea_1024_nswap stops improving in median after about 87 seconds, whereas all other EAs keep finding improvements even very close to the end of the 180 seconds budget. This probably means that they would also perform better than ea_1024_nswap if only we had more time. There might just not be enough time for any potential benefits of the binary operator to kick in. This could also be a valuable lesson: it does not help if the algorithm gives better results if it needs too much time. Any statement about an achieved result quality is only valid if it also contains a statement about the required computational budget. If we would have let the algorithms longer, maybe the setups using the binary operator would have given more saliently better results … but these would then be useless in our real-world scenario, since we only have 3 minutes of runtime.

By the way: It is very important to always test the cr=0cr=0 rate! Only by doing this, we can find whether our binary operator is designed properly. It is a common fallacy to assume that an operator which we have designed to combine good characteristics from different solutions will actually do that. If the algorithm setups with cr=0cr=0 would be better than those that use the binary operator, it would be a clear indication that we are doing something wrong. So we need to carefully analyze whether the small improvements that our binary operator can provide are actually significant. We therefore apply the same statistical approach as already used in Section 3.3.5.2 and later discussed in detail in Section 4.5.



Table 3.10: The end results of ea_8192_nswap and ea_8192_5%_nswap compared with a Mann-Whitney U test with Bonferroni correction and significance level α=0.02\alpha=0.02 on the four JSSP instances. The columns indicate the pp-values and the verdict (? for insignificant).









	Mann-Whitney U α′=7.14⋅10−4\alpha'=7.14\!\cdot\!10^{-4}
	abz7
	la24
	swv15
	yn4





	ea_8192_nswap vs. ea_8192_5%_nswap
	2.32⋅10−62.32\!\cdot\!10^{-6} >
	2.73⋅10−32.73\!\cdot\!10^{-3} ?
	9.78⋅10−19.78\!\cdot\!10^{-1} ?
	4.32⋅10−24.32\!\cdot\!10^{-2} ?







In Table 3.10, we find that that EA using the binary sequence operator to generate 5% of the offspring solutions leads to significantly better results on abz7. It never performs significantly worse, not even on swv15, and the pp-values are below α\alpha but above α′\alpha' on the other two instances. Overall, this is not a very convincing result. Not enough for us to claim that our particular recombination operator is a very good invention – but enough to convince us that using it may sometimes be good and won’t hurt too much otherwise.


[image: Figure 3.19: The median of the progress of the ea_8192_5%_nswap, ea_8192_nswap, and ea_16384_nswap algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.19: The median of the progress of the ea_8192_5%_nswap, ea_8192_nswap, and ea_16384_nswap algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.

If we look at Figure 3.19, we can confirm that using the binary sequence operator at the low 5% rate does make some difference in how the median solution quality over time changes, although only a small one. On abz7, ea_8192_5%_nswap improves faster than the setup without recombination. On la24 and yn4, there may be a small advantage during the phase when the algorithm improves the fastest, but this could also be caused by the randomness of the search. On swv15, there is a similarly small disadvantage of ea_8192_5%_nswap.

In summary, it seems that using our binary operator is reasonable. Different from what we may have hoped for (and which would have been very nice for this book…), it does not improve the results by much. We now could try to design a different recombination operator in the hope to get better results, similar to what we did with the unary operator by moving from 1swap to nswap. We will not do this here – the interested reader is invited to do that by herself as an exercise.

As the end of this section, let me point out that binary search operators are a hot and important research topic right now. On one of the most well-known classical optimization problems, the Traveling Salesman Problem mentioned already back in the introduction in Section 1.1.2, they are part of the most efficient algorithms [153,178,197,219]. It also has theoretically been proven that a binary operator can speed-up optimization on some problems [61].




3.4.4 Ingredient: Diversity Preservation

In Section 3.4.1.4, we asked why a population is helpful for optimization. Our answer was that there are two opposing goals in metaheuristic optimization: On the one hand, we want to get results quickly and, hence, want that the algorithms quickly trace down to the bottom of the basins around optima. On the other hand, we want to get good results, i.e., better local optima, preferably global optima. A smaller population is good for the former and forsters exploitation. A larger population is good for the latter, as it invests more time on exploration.

Well. Not necessarily. Imagine we discover a good local optimum, a solution better than everything else we have in the population. Great. It will survive selection and we will derive offspring solutions from it. Since it is a local optimum, these will probably be worse. They might also encode the same solution as the parent, which is entirely possible in our JSSP scenario. But even if they are worse, they maybe just good enough to survive the next round of selection. Then, their (better) parent will also survive. We will thus get more offspring from this parent. But also offsprings from its surviving offsprings. And some of these may again be the same as the parent. If this process keeps continuing, the population may slowly be filling with copies of that very good local optimum. The larger our population, the longer it will take, of course. But unless we somehow encounter a different, similarly good or even better solution, it will probably happen eventually.

What does this mean? Recombination of two identical points in the search space should yield the very same point as output, i.e., the binary operator will become useless. This would leave only the unary operator as possible source of randomness. We then practical have one point in the search space to which only the unary operator is applied. Our EA has become a weird hill climber.

If we would want that, then we would have implemented a hill climber, i.e., a local search, instead. In order to enable global exploration and to allow for the binary search operators to work, it makes sense to try to preserve the diversity in the population [193].

Now there exist quite a few ideas how to do that [48,184,189] and we also discuss some concepts later in Section 5.1.2.4. Many of them are focused on penalizing candidate solutions which are too similar to others in the selection step. Similarity could be measured via computing the distance in the search space, the distance in the solution space, the difference of the objective values. The penalty could be achieved by using a so-called fitness as basis for selection instead of the objective value. In our original EA, the fitness would be the same as the objective value. In a diversity-preserving EA, we could add a penalty value to this base fitness for each solution based on the distance to the other solutions.



3.4.5 Evolutionary Algorithm with Clearing in the Objective Space

Let us now test whether a diversity preserving strategy can be helpful in an EA. We will only investigate one very simple approach: Avoiding objective value duplicates [78,184]. In the rest of this section, we will call this method clearing, as it can be viewed as the strictest possible variant of the clearing [161,162] applied in the objective space.

Put simply, we will ensure that all records that survive selection have different objective values. If two good solutions have the same objective value, we will discard one of them. This way, we will ensure that our population remains diverse. No single candidate solution can take over the population.


3.4.5.1 The Algorithm (with Recombination and Clearing)

We can easily extend our (μ+λ)(\mu+\lambda) EA with recombination from Section 3.4.3.1 to remove duplicates of the objective value. We need to consider that a full population of μ+λ\mu+\lambda records may contain less than μ\mu different objective values. Thus, in the selection step, we may obtain 1≤u≤μ1\leq u \leq \mu elements, where uu can be different in each generation. If u=1u=1, we cannot apply the binary operator regardless of the crossover rate crcr.


	I∈𝕏×ℝI\in\mathbb{X}\times\mathbb{R} be a data structure that can store one point xx in the search space and one objective value zz.

	Allocate an array PP of length μ+λ\mu+\lambda of instances of II.

	For index ii ranging from 00 to μ+λ−1\mu+\lambda-1 do

	Create a random point from the search space using the nullary search operator and store it in Pi.xP_{i}.x.

	Apply the representation mapping y=γ(Pi.x)y=\gamma(P_{i}.x) to get the corresponding candidate solution yy.

	Compute the objective objective value of yy and store it at index ii as well, i.e., Pi.z=f(y)P_{i}.z=f(y).




	Repeat until the termination criterion is met:

	Sort the array PP in ascending order according to the objective values, i.e., such that the records rr with better associated objective value r.zr.z are located at smaller indices.

	Iterate over PP from front to end and delete all records with an objective value already seen in this iteration. The number of remaining records be ww. Set the number uu of selected records to u=min{w,μ}u=\min\{w,\mu\}.



	Shuffle the first uu elements of PP randomly.

	Set the first source index p1=−1p1=-1.

	For index ii ranging from uu to  μ+λ−1\mu+\lambda-1 do

	Set the first source index p1p1 to p=(p1+1) mod up=(p1+1)\textrm{~mod~}u.

	Draw a random number cc uniformly distributed in [0,1)[0,1).

	If u>1u>1 and c<crc<cr, then we apply the binary operator: A. Randomly choose another index p2p2 from 0…(u−1)0\ldots(u-1) such that p2≠p1p2\neq p1. B. Apply binary search operator to the points stored at index p1p1 and p2p2 and store result at index ii, i.e., set Pi.x=searchOp2(Pp1.x,Pp2.x)P_{i}.x=\textrm{searchOp}_2(P_{p1}.x, P_{p2}.x).

	otherwise to *step 4h.iii, i.e., if c≥crc\geq cr or u=1u=1, we apply the unary search operator to the point stored at index p1p1 and store result at index ii, i.e., set Pi.x=searchOp1(Pp1.x)P_{i}.x=\textrm{searchOp}_1(P_{p1}.x).

	Apply the representation mapping y=γ(Pi.x)y=\gamma(P_{i}.x) to get the corresponding candidate solution yy.

	Compute the objective objective value of yy and store it at index ii as well, i.e., Pi.z=f(y)P_{i}.z=f(y).







	Return the candidate solution corresponding to the best record in PP to the user.




Listing 3.16: An excerpt of the implementation of the Evolutionary Algorithm algorithm with and clearing. (src)

public class EAWithClearing<X, Y>
    extends Metaheuristic2<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// Omitted: Initialize local variables random, searchSpace, set
// arrays P of length mu+lambda, and array T to null. Fill P with
// random solutions + evaluate.
    for (int i = P.length; (--i) >= 0;) {
      X x = searchSpace.create();
      this.nullary.apply(x, random);
      P[i] = new Record<>(x, process.evaluate(x));
      if (process.shouldTerminate()) { // we return
        return; // best solution is stored in process
      }
    }

    while (!process.shouldTerminate()) { // main loop
      RandomUtils.shuffle(random, P, 0, P.length); // make fair
      int u = Utils.qualityBasedClearing(P, this.mu);
// Now we have 1 <= u <= mu unique solutions.
      RandomUtils.shuffle(random, P, 0, u); // for fairness
      int p1 = -1; // index to iterate over first parent
// Overwrite the worse (mu + lambda - u) solutions.
      for (int index = P.length; (--index) >= u;) {
// Omitted: Quit loop if process.shouldTerminate()
        Record<X> dest = P[index]; // offspring
        p1 = (p1 + 1) % u; // parent 1 index
        Record<X> sel = P[p1]; // parent 1
        if ((u >= 2) && (random.nextDouble() <= this.cr)) {
          do { // find a second, different record
            p2 = random.nextInt(u);
          } while (p2 == p1); // Of course, can't be p1.
          this.binary.apply(sel.x, P[p2].x, dest.x, random);
        } else { // Otherwise: Mutation.
          this.unary.apply(sel.x, dest.x, random);
        }
        dest.quality = process.evaluate(dest.x);
      } // the end of the offspring generation
    } // the end of the main loop
  }
}





Listing 3.17: The implementation of the objective-value based clearing routine. (src)

public static int qualityBasedClearing(Record<?>[] array,
    int max) {

  Arrays.sort(array, Record.BY_QUALITY);// best -> first

  int unique = 0;
  double lastQuality = Double.NEGATIVE_INFINITY; // impossible

  for (int index = 0; index < array.length; index++) {
    Record<?> current = array[index];
    double currentQuality = current.quality;
    if (currentQuality > lastQuality) { // unique so-far
      if (index > unique) { // need to move forward?
        Record<?> other = array[unique];
        array[unique] = current; // swap with first non-unique
        array[index] = other;
      }
      lastQuality = currentQuality; // update new quality
      if ((++unique) >= max) { // are we finished?
        return unique; // then quit: unique == max
      }
    }
  }

  return unique; // return number of unique: 1<=unique<=max
}




This algorithm, implemented in Listing 3.16 and using the routine given in Listing 3.17 differs from the variant in Section 3.4.3.1 mainly in step 4e. There, the sorted population PP is processed from beginning to end. Whenever an objective value is found in a record which has already been encountered during this processing step, the record is removed. Since PP is sorted, this means that the record at (zero-based) index kk is deleted if and only if k>0k>0 and Pk.z=Pk−1.zP_{k}.z=P_{k-1}.z. As a result, the number uu of selected records with unique objective value may be less than μ\mu (while always being greater or equal to 1). Therefore, we need to adjust the parts of the algorithm where parent solutions are selected for generating offsprings. Also, we generate μ+λ−u\mu+\lambda-u offspring, to again obtain a total of μ+λ\mu+\lambda elements.

In the actual implementation in Listing 3.16, we do not delete the records but move them to the end of the list, so we can re-use them later. We also stop processing PP as soon as we have μ\mu unique records, as it does not really matter whether un-selected records are unique. This is slightly more efficient, but would be harder to write in pseudo-code.

We will name setups of this algorithm in the same manner as those of the original EA, except that we start the names with the prefix eac_ instead of ea_.



3.4.5.2 The Right Setup

With the simple diversity-preservation mechanism in place, we may wonder which population sizes are good. It is easy to see that findings from Section 3.4.1.2, where we found that μ=λ=16′384\mu=\lambda=16'384 is reasonable, may longer hold: We know from Section 2.5.3 of the makespan for any solution on the JSSP instance abz7 is 656. It can be doubted whether it is even possible to generate 16′38416'384 schedules with different makespans. If not, then the number uu of selected records would always be less than μ\mu, which would make choosing a large μ\mu useless.


[image: Figure 3.20: The median result quality of the ea[c]_mu_5%_nswap algorithm, divided by the lower bound \textrm{lb}(f)^{\star} from Table 2.2 over different values of the population size parameter \mu=\lambda, with and without clearing. The best values of \mu for each operator and instance are marked with bold symbols.]Figure 3.20: The median result quality of the ea[c]_mu_5%_nswap algorithm, divided by the lower bound lb(f)⋆\textrm{lb}(f)^{\star} from Table 2.2 over different values of the population size parameter μ=λ\mu=\lambda, with and without clearing. The best values of μ\mu for each operator and instance are marked with bold symbols.

Since this time smaller population sizes may be interesting, we investigate all powers of 2 for μ=λ\mu=\lambda from 4 to 65’536. In Figure 3.20, we find that the eac_mu_5%_nswap behave entirely different from those of ea_mu_5%_nswap. If clearing is applied, the smallest investigated setting, μ=λ=4\mu=\lambda=4, seems to be the right choice. This setup has the best performance on abz7 and swv15, while being only a tiny bit worse than the best choices on la24 and yn4. Larger populations lead to worse results at the end of the computational budget of three minutes.

Why could this be? One possible reason could be that maybe not very many different candidate solutions are required. If only few are needed and we can maintain sufficiently many in a small population, then the advantage of the small population is that we can do many more iterations within the same computational budget.

This very small population size means that an EA with clearing in the objective space should be configured quite similar to a hill climber!



3.4.5.3 Results on the JSSP

We can now investigate whether our results have somewhat improved.



Table 3.11: The results of the Evolutionary Algorithm eac_4_5%_nswap in comparison to ea_8192_5%_nswap. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	ea_8192_5%_nswap
	684
	703
	702
	8
	54s
	10’688’314



	
	
	eac_4_5%_nswap
	672
	690
	690
	9
	68s
	12’474’571



	la24
	935
	ea_8192_5%_nswap
	943
	967
	967
	11
	18s
	4’990’002



	
	
	eac_4_5%_nswap
	935
	963
	961
	16
	30s
	9’175’579



	swv15
	2885
	ea_8192_5%_nswap
	3498
	3631
	3632
	65
	178s
	17’747’983



	
	
	eac_4_5%_nswap
	3102
	3220
	3224
	65
	168s
	18’245’534



	yn4
	929
	ea_8192_5%_nswap
	1026
	1056
	1053
	17
	114s
	13’206’552



	
	
	eac_4_5%_nswap
	1000
	1038
	1037
	18
	118s
	15’382’072







Table 3.11 shows that our EA with recombination and clearing in the objective space outperforms the EA without clearing on every single instance in terms of best, mean, and median result quality. Especially on instance swv15, the new algorithm performs much better than ea_8192_5%_nswap. Most remarkable is that we can even solve instance la24 to optimality once. The median solutions of our new algorithm variant are illustrated in Figure 3.21. Compared to Figure 3.15, the result on swv15 has improved: especially the upper-left and lower-right corners of the Gantt chart, where only few jobs are scheduled, have visibly become smaller.


[image: Figure 3.21: The Gantt charts of the median solutions obtained by the eac_4_5%_nswap setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.21: The Gantt charts of the median solutions obtained by the eac_4_5%_nswap setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.


[image: Figure 3.22: The median of the progress of the eac_4_5%_nswap in comparison to the ea_8192_5%_nswap and hcr_65536_nswap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.22: The median of the progress of the eac_4_5%_nswap in comparison to the ea_8192_5%_nswap and hcr_65536_nswap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.

We plot the discovered optimal solution for la24 in Figure 3.23. Comparing it with the median solution for la24 in Figure 3.21, time was saved, e.g., by arranging the jobs in the top-left corner in a tighter pattern.


[image: Figure 3.23: One optimal Gantt charts for instance la24, discovered by the eac_4_5%_nswap setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.23: One optimal Gantt charts for instance la24, discovered by the eac_4_5%_nswap setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.

From the progress charts plotted in Figure 3.22, we can confirm that eac_4_5%_nswap indeed behaves more similar to the hill climber hcr_65536_nswap than to the other EA ea_8192_5%_nswap. This is due to its small population size. However, unlike the hill climber, its progress curve keeps going down for a longer time. After only 0.1 seconds, it keeps producing better results in median.

We can confirm that even the simple and rather crude pruning in the objective space can significantly improve the performance of our EA. We did not test any sophisticated diversity preservation method. We also did not re-evaluate which crossover rate crcr and which unary operator (1swap or nswap) works best in this scenario. This means that we might be able to squeeze out more performance, but we will leave it at this. The small populations working so well make us curious, however.




3.4.6 (1+1)(1+1) EA

The (1+1)(1+1) EA is a special case of the (μ+λ)(\mu+\lambda) EA with μ=1\mu=1 and λ=1\lambda=1. Since the number of parents is μ=1\mu=1, it does not apply the binary recombination operator. We explicitly discuss it here because it is usually defined slightly differently from what we did in Section 3.4.1.1 and implemented as Listing 3.13.


3.4.6.1 The Algorithm

The (1+1)(1+1) EA works like a hill climber (see Section 3.3), with the difference that the new solution replaces the current one if it is better or equally good, instead of just replacing it if it is better.


	Create one random point xx in the search space 𝕏\mathbb{X} using the nullary search operator.

	Map the point xx to a candidate solution yy by applying the representation mapping y=γ(x)y=\gamma(x).

	Compute the objective value by invoking the objective function z=f(y)z=f(y).

	Repeat until the termination criterion is met:

	Apply the unary search operator to xx to get a slightly modified copy x′x' of it.

	Map the point x′x' to a candidate solution y′y' by applying the representation mapping y′=γ(x′)y'=\gamma(x').

	Compute the objective value z′z' by invoking the objective function z′=f(y′)z'=f(y').

	If z′≤zz'\leq z, then store x′x' in xx, store y′y' in yy, and store z′z' in zz.




	Return the best encountered objective value zz and the best encountered solution yy to the user.



This algorithm is implemented in Listing 3.18. The only difference to the hill climber in Section 3.3.2.1 and Listing 3.10 is the z′≤zz'\leq z in point 4.d instead of z′<zz'<z: the new solution does not need to be strictly better to win over the old one, it is sufficient if it is not worse. In the (μ+λ)(\mu+\lambda) EA implementation that we had before, we could also set μ=1\mu=1 and λ=1\lambda=1. The algorithm would be slightly different from the (1+1)(1+1) EA: In the (1+1)(1+1) EA as defined here, the new solution y′y' will always win against the current solution yy if z′=zz'=z, whereas in our shuffle-and-sort method of the population as implemented in Listing 3.13, either one could win with probability 0.50.5.


Listing 3.18: An excerpt of the implementation of the (1+1)(1+1) EA. (src)

public class EA1p1<X, Y> extends Metaheuristic1<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// initialize local variables xCur, xBest, random
    X xCur = process.getSearchSpace().create();
    X xBest = process.getSearchSpace().create();
    Random random = process.getRandom();// get random gen

// create starting point: a random point in the search space
    this.nullary.apply(xBest, random); // xBest=random point
    double fBest = process.evaluate(xBest); // map & evaluate

    while (!process.shouldTerminate()) {
// create a slightly modified copy of xBest and store in xCur
      this.unary.apply(xBest, xCur, random);
// map xCur from X to Y and evaluate candidate solution
      double fCur = process.evaluate(xCur);
      if (fCur <= fBest) { // we found a not-worse solution
// remember best objective value and copy xCur to xBest
        fBest = fCur;
        process.getSearchSpace().copy(xCur, xBest);
      } // otherwise, i.e., fCur > fBest: just forget xCur
    } // until time is up
  } // process will have remembered the best candidate solution
}






3.4.6.2 Results on the JSSP

We can now apply our (1+1)(1+1) EA to the four JSSP instances either using the 1swap operator (ea_1+1_1swap) or the nswap operator (ea_1+1_nswap). Astonishingly, Table 3.12 reveals that it performs better than our best EA so far, namely eac_4_5%_nswap. Both (1+1)(1+1) EA setups also perform much better than our hill climber. The log-scaled Figure 3.25 shows that the two EAs without population have better median solution almost always during the runs. And the Gantt charts of the median solutions of ea_1+1_1swap, illustrated in Figure 3.24, again appear denser.



Table 3.12: The results of the (1+1)(1+1) EA with the nswap and the 1swap operator, in comparison to eac_4_5%_nswap. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	ea_1+1_1swap
	664
	678
	677
	7
	35s
	7’727’896



	
	
	ea_1+1_nswap
	664
	677
	677
	7
	40s
	15’323’407



	
	
	eac_4_5%_nswap
	672
	690
	690
	9
	68s
	12’474’571



	la24
	935
	ea_1+1_1swap
	941
	957
	955
	14
	4s
	1’701’938



	
	
	ea_1+1_nswap
	938
	956
	951
	14
	4s
	1’650’810



	
	
	eac_4_5%_nswap
	935
	963
	961
	16
	30s
	9’175’579



	swv15
	2885
	ea_1+1_1swap
	2958
	3041
	3039
	35
	130s
	16’644’658



	
	
	ea_1+1_nswap
	2954
	3045
	3047
	39
	132s
	29’179’630



	
	
	eac_4_5%_nswap
	3102
	3220
	3224
	65
	168s
	18’245’534



	yn4
	929
	ea_1+1_1swap
	981
	1005
	1003
	12
	48s
	15’040’152



	
	
	ea_1+1_nswap
	973
	1006
	1005
	11
	61s
	24’500’204



	
	
	eac_4_5%_nswap
	1000
	1038
	1037
	18
	118s
	15’382’072








[image: Figure 3.24: The Gantt charts of the median solutions obtained by the ea_1+1_1swap setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.24: The Gantt charts of the median solutions obtained by the ea_1+1_1swap setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.


[image: Figure 3.25: The median of the progress of the ea_1+1_1swap and ea_1+1_nswap compared to eac_4_5%_nswap and the two hill climbers hcr_16384_nswap and hcr_65536_nswap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.25: The median of the progress of the ea_1+1_1swap and ea_1+1_nswap compared to eac_4_5%_nswap and the two hill climbers hcr_16384_nswap and hcr_65536_nswap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.



3.4.6.3 Discussion

The big advantage of EAs is that their population guards against premature convergence. This can bring better end results, but comes at a trade-off of slower convergence [214]. The fact that the EA without population performs best in our experimental setup is annoying for the author. It does not mean that this is always the case, though. But why is it the case here:

The answer consists, most likely, of two parts: First, as we know, our search space 𝕏\mathbb{X} is much larger than the solution space 𝕐\mathbb{Y}, i.e., |𝕏|≫|𝕐|\mathbb{X}|\gg|\mathbb{Y}. If we have an integer string x1∈𝕏x_1\in\mathbb{X} representing a Gantt chart y1=γ(x1)y_1=\gamma(x_1), then we can swap two jobs and get a new string x2∈𝕏x_2\in\mathbb{X} with x2≠x2x_2\neq x_2, but this does not necessarily mean that this new string maps to a different solution. It could well be that γ(x1)=γ(x2)\gamma(x_1)=\gamma(x_2). Then, we have made a neutral move. Of course, our move could also be neutral if γ(x1)≠γ(x2)\gamma(x_1)\neq\gamma(x_2) but f(γ(x1))=f(γ(x2))f(\gamma(x_1))=f(\gamma(x_2)) Our (1+1)(1+1) EA can drift along a network of points in the search space which all map to solutions with the same makespan. This means that the (1+1)(1+1) EA can explore far beyond the neighborhood visible to the hill climber. By drifting over the network, it may eventually reach a point which maps to a better solution. This reasoning is supported by the fact that our (1+1)(1+1) EA perform much better than the hill climbers. You can find a more detailed discussion on neutrality in Section 5.4.1.

The second reason is probably that the three minutes of runtime are simply not enough for the EAs with the really big populations to reap the benefit of being resilient against premature convergence.




3.4.7 Summary

In this chapter, we have introduced Evolutionary Algorithms as methods for global optimization. We have learned the two key concepts that distinguish them from local search: the use of a population of solutions and of a binary search operator. We found that even the former alone can already outperform the simple hill climber with restarts. While we were a bit unlucky with our choice of the binary operator, our idea did work at least a bit.

We then noticed that populations are only useful if they are diverse. If all the elements in the population are very similar, then the binary operator stops working and the EA has converged. From our experiments with the hill climber, we already know premature convergence to a local optimum as something that should be avoided.

It therefore makes sense to try adding a method for enforcing diversity as another ingredient into the algorithm. Our experiments with a very crude diversity enhancing method – only allowing one solution per unique objective value in the population – confirmed that this can lead to better results.

We also found that the strict criterion to only accept solutions which are strictly better than the current one, as practiced in our hill climbers Section 3.3 may not be a good idea. Accepting solutions which are not worse than the current one allows for drift in the search space, which can yield better results.




3.5 Simulated Annealing

So far, we have only discussed two variants of local search: the hill climbing algorithm and the (1+1)(1+1) EA. A hill climbing algorithm is likely to get stuck at local optima, which may vary in quality. We found that we can utilize this variance of the result quality by restarting the optimization process when it could not improve any more in Section 3.3.3. Such a restart is costly, as it forces the local search to start completely from scratch (while we, of course, remember the best-ever solution in a variable hidden from the algorithm). The (1+1)(1+1) EA may additionally utilize drift over solutions of the same quality, but there is no reason to assume that it cannot get stuck in local optima as well.

Another way to look at this is the following: A schedule which is a local optimum probably is somewhat similar to what the globally optimal schedule would look like. It must, obviously, also be somewhat different. This difference is shaped such that it cannot be conquered by the unary search operator that we use, because otherwise, the basic hill climber could already move from the local to the global optimum. If we do a restart, we also dispose of the similarities to the global optimum that we have already discovered. We will subsequently spend time to re-discover them in the hope that this will happen in a way that allows us to eventually reach the global optimum itself. But maybe there is a less-costly way? Maybe we can escape from a local optimum without discarding the entirety good solution characteristics we already have discovered?


3.5.1 Idea: Accepting Worse Solutions with Decreasing Probability

Simulated Annealing (SA) [47,116,125,164] is a local search which provides another approach to escape local optima [188,205]. The algorithm is inspired by the idea of simulating the thermodynamic process of annealing using statistical mechanics, hence the naming [144]. Instead of restarting the algorithm when reaching a local optimum, it tries to preserve the parts of the current solution by permitting search steps towards worsening objective values. This algorithm therefore introduces three principles:


	Worse candidate solutions are sometimes accepted, too.

	The probability PP of accepting them is decreases with increasing differences ΔE\Delta E of their objective values to the current solution.

	The probability also decreases with the number of performed search steps.



These three principles are injected into the main loop of the hill climber. This is realized as follows.

Let us assume that x∈𝕏x\in\mathbb{X} is the current point that our local search maintains. x′∈𝕏x'\in\mathbb{X} is the newly sampled point, i.e., the result of the application of the unary search operator to xx. Then, ΔE\Delta E be the difference between the objective value corresponding to x′x' and xx. In other words, if γ\gamma is the representation mapping and ff the objective function, then:

ΔE=f(γ(x′))−f(γ(x))(3.1) \Delta E = f(\gamma(x')) - f(\gamma(x)) \qquad(3.1)

Clearly, if we try to minimize the objective function ff, then ΔE<0\Delta E < 0 means that x′x' is better than xx since f(γ(x′))<f(γ(x))f(\gamma(x')) < f(\gamma(x)). If ΔE>0\Delta E>0, on the other hand, the new solution is worse. The probability PP to overwrite xx with x′x' then be

P={1if ΔE≤0e−ΔETif ΔE>0∧T>00otherwise (ΔE>0∧T=0)(3.2) P = \left\{\begin{array}{rl}
1 & \text{if~}\Delta E \leq 0\\
e^{-\frac{\Delta E}{T}} & \text{if~}\Delta E >0 \land T > 0\\
0 & \text{otherwise~}(\Delta E > 0 \land T=0)
\end{array} \right. \qquad(3.2)

In other words, if the new point x′x' is actually better (or, at least, not worse) than the current point xx, i.e., ΔE≤0\Delta E \leq 0, then we will definitely accept it. (This is exactly the acceptance criterion used in the (1+1)(1+1) EA.) However, the new solution is not necessarily rejected otherwise: If the new point x′x' is worse (ΔE>0\Delta E > 0), then the acceptance probability


	gets smaller the larger ΔE\Delta E is and

	gets smaller the smaller the so-called temperature T≥0T\geq 0 is.



Both the temperature T>0T>0 and the objective value difference ΔE>0\Delta E>0 enter Equation 3.2 in the exponential term and the two above points follow from e−a<e−b∀a>be^{-a}<e^{-b}\forall a>b. We also have e−a∈(0,1)∀a>0e^{-a}\in(0,1)\forall a>0, so it can be used as probability value.

The temperature will be changed automatically such that it decreases and approaches zero with a rising number τ\tau of algorithm iterations, i.e., the performed objective function evaluations. The optimization process is initially hot and TT is high. Then, even significantly worse solutions may be accepted Over time, the process cools down and TT decreases. The search slowly accepts fewer and fewer worse solutions and more likely such which are only a bit worse. Eventually, at temperature T=0T=0, the algorithm only accepts better solutions. In other words, TT is actually a monotonously decreasing function T(τ)T(\tau) called the temperature schedule. It holds that limτ→+∞T(τ)=0\lim_{\tau\rightarrow+\infty} T(\tau) = 0.



3.5.2 Ingredient: Temperature Schedule

The temperature schedule T(τ)T(\tau) determines how the temperature changes over time (where time is measured in algorithm steps τ\tau). It begins with an start temperature TsT_s at τ=1\tau=1. This temperature is the highest, which means that the algorithm is more likely to accept worse solutions. It will then behave a bit similar to a random walk and put more emphasis on exploring the search space than on improving the objective value. As time goes by and τ\tau increases, T(τ)T(\tau) decreases and may even reach 0 eventually. Once TT gets small enough, then Simulated Annealing will behave exactly like a hill climber and only accepts a new solution if it is better than the current solution. This means the algorithm tunes itself from an initial exploration phase to strict exploitation.

Consider the following perspective: An Evolutionary Algorithm allows us to pick a behavior in between a hill climber and a random sampling algorithm by choosing a small or large population size. The Simulated Annealing algorithm allows for a smooth transition of a random search behavior towards a hill climbing behavior over time.


Listing 3.19: An excerpt of the abstract base class for temperature schedules. (src)

public abstract class TemperatureSchedule
    implements ISetupPrintable {
  public double startTemperature;

  public abstract double temperature(long tau);
}




The ingredient needed for this tuning, the temperature schedule, can be expressed as a class implementing exactly one simple function that translates an iteration index τ\tau to a temperature T(τ)T(\tau), as defined in Listing 3.19.

The two most common temperature schedule implementations may be the exponential and the logarithmic schedule.


3.5.2.1 Exponential Temperature Schedule

In an exponential temperature schedule, the temperature decreases exponentially with time (as the name implies). It follows Equation 3.3 and is implemented in Listing 3.20. Besides the start temperature TsT_s, it has a parameter ϵ∈(0,1)\epsilon\in(0,1) which tunes the speed of the temperature decrease. Higher values of ϵ\epsilon lead to a faster temperature decline.

T(τ)=Ts*(1−ϵ)τ−1(3.3) T(\tau) = T_s * (1 - \epsilon) ^ {\tau- 1} \qquad(3.3)


Listing 3.20: An excerpt of the exponential temperature schedules. (src)

public static class Exponential
    extends TemperatureSchedule {
  public double epsilon;

  public double temperature(long tau) {
    return (this.startTemperature
        * Math.pow((1d - this.epsilon), (tau - 1L)));
  }
}






3.5.2.2 Logarithmic Temperature Schedule

The logarithmic temperature schedule will prevent the temperature from becoming very small for a longer time. Compared to the exponential schedule, it will thus longer retain a higher probability to accept worse solutions. It obeys Equation 3.4 and is implemented in Listing 3.21.. It, too, has the parameters ϵ∈(0,∞)\epsilon\in(0,\infty) and TsT_s. Larger values of ϵ\epsilon again lead to a faster temperature decline.

T(τ)=Tsln(ϵ(τ−1)+e)(3.4) T(\tau) = \frac{T_s}{\ln{\left(\epsilon(\tau-1)+e\right)}} \qquad(3.4)


Listing 3.21: An excerpt of the logarithmic temperature schedules. (src)

public static class Logarithmic
    extends TemperatureSchedule {
  public double epsilon;
  public double temperature(long tau) {
    if (tau >= Long.MAX_VALUE) {
      return 0d;
    }
    return (this.startTemperature
        / Math.log(((tau - 1L) * this.epsilon) + Math.E));
  }
}







3.5.3 The Algorithm

Now that we have the blueprints for temperature schedules, we can completely define our SA algorithm and implement it in Listing 3.22.


	Create random point xx in the search space 𝕏\mathbb{X} by using the nullary search operator.

	Map the point xx to a candidate solution yy by applying the representation mapping y=γ(x)y=\gamma(x).

	Compute the objective value by invoking the objective function z=f(y)z=f(y).

	Store yy in yby_{b} and zz in zbz_{b}, which we will use to preserve the best-so-far results.

	Set the iteration counter τ\tau to τ=1\tau=1.

	Repeat until the termination criterion is met:

	Set τ=τ+1\tau=\tau+1.

	Apply the unary search operator to xx to get the slightly modified copy x′x' of it.

	Map the point x′x' to a candidate solution y′y' by applying the representation mapping y′=γ(x′)y'=\gamma(x').

	Compute the objective value z′z' by invoking the objective function z′=f(y′)z'=f(y').

	If z′≤zz'\leq z, then

	Store x′x' in xx and store z′z' in zz.

	If z′≤zbz'\leq z_{b}, then store y′y' in yby_{b} and store z′z' in zbz_{b}.

	Perform next iteration by going to step 6.




	Compute the temperature TT according to the temperature schedule, i.e., set T=T(τ)T=T(\tau).

	If T≤0T\leq 0 the perform next iteration by going to step 6.

	Set ΔE=z′−z\Delta E = z' - z (see Equation 3.1).

	Compute P=e−ΔETP=e^{-\frac{\Delta E}{T}} (see Equation 3.2).

	Draw a random number rr uniformly distributed in [0,1)[0,1).

	If r≤Pr\leq P, then store x′x' in xx, store z′z' in zz, and perform next iteration by going to step 6.




	Return best encountered objective value zbz_{b} and the best encountered solution  zbz_{b} to the user.




Listing 3.22: An excerpt of the implementation of the Simulated Annealing algorithm. (src)

public class SimulatedAnnealing<X, Y>
    extends Metaheuristic1<X, Y> {
  public TemperatureSchedule schedule;

  public void solve(IBlackBoxProcess<X, Y> process) {
// init local variables xNew, xCur, random
// create starting point: a random point in the search space
    this.nullary.apply(xCur, random); // put random point in xCur
    double fCur = process.evaluate(xCur); // map & evaluate
    long tau = 1L; // initialize step counter to 1

    do { // repeat until budget exhausted
// create a slightly modified copy of xCur and store in xNew
      this.unary.apply(xCur, xNew, random);
      ++tau; // increase step counter
// map xNew from X to Y and evaluate candidate solution
      double fNew = process.evaluate(xNew);
      if ((fNew <= fCur) || // accept if better solution OR
          (random.nextDouble() < // probability is e^(-dE/T)
              Math.exp((fCur - fNew) / // -dE == -(fNew-fCur)
                  this.schedule.temperature(tau)))) {
// accepted: remember objective value and copy xNew to xCur
        fCur = fNew;
        process.getSearchSpace().copy(xNew, xCur);
      } // otherwise fNew > fCur and not accepted
    } while (!process.shouldTerminate()); // until time is up
  } // process will have remembered the best candidate solution
}




There exist a several proofs [89,156] showing that, with a slow-enough cooling schedule, the probability that Simulated Annealing will find the globally optimal solution approaches 1. However, the runtime one would need to invest to actually cash in on this promise exceeds the time needed to enumerate all possible solutions [156]. In Section 1.2.1 we discussed that we are using metaheuristics because for many problems, we can only guarantee to find the global optimum if we invest a runtime growing exponentially with the problem scale (i.e., proportional to the size of the solution space). So while we have a proof that SA will eventually find a globally optimal solution, this proof is not applicable in any practical scenario and we instead use SA as what it is: a metaheuristic that will hopefully give us good approximate solutions in reasonable time.



3.5.4 The Right Setup

Our algorithm has four parameters:


	the start temperature TsT_s,

	the parameter ϵ\epsilon,

	the type of temperature schedule to use (here, logarithmic or exponential), and

	the unary search operator (in our case, we could use 1swap or nswap).



We will only consider 1swap as choice for the unary operator and focus on the exponential temperature schedule. We have two more parameters to set: TsT_s and ϵ\epsilon and thus refer to the settings of this algorithm with the naming scheme sa_exp_Ts_epsilon_1swap.

At first glance, it seems entirely unclear how what to do with these parameters. However, we may get some ideas about their rough ranges if we consider Simulated Annealing as an improved hill climber. Then, we can get some leads from our prior experiments with that algorithm.



Table 3.13: The median of total performed function evaluations and the standard deviation sd of the final result qualities of the hill climber hc_1swap.


	ℐ\mathcal{I}
	med(total FEs)
	sd





	abz7
	35’648’639
	28



	la24
	70’952’285
	56



	swv15
	21’662’286
	137



	yn4
	27’090’511
	48



	median
	31’369’575
	52







In Table 3.13, we print the standard deviation sd of the final result qualities that our hc_1swap algorithm achieved on our four JSSP instances. This tells us something about how far the different local optima at which hc_1swap can get stuck are apart in terms of objective value. The value of sd ranges from 28 on abz7 to 137 on swv15. The median standard deviation over all four instances is about 50. Thus, accepting a solution which is worse by 50 units of makespan, i.e., with ΔE≈50\Delta E\approx 50, should be possible at the beginning of the optimization process.

How likely should accepting such a value be? Unfortunately, we are again stuck at making an arbitrary choice – but at least we can make a choice from within a well-defined region: Probabilities must be in [0,1][0,1] and can be understood relatively intuitively, whereas it was completely unclear in what range reasonable temperatures would be located. Let us choose that the probability P50P_{50} to accept a candidate solution that is 50 makespan units worse than the current one, i.e., has ΔE=50\Delta E = 50, should be P50=0.1P_{50}=0.1 at the beginning of the search. In other words, there should be a 10% chance to accept such a solution at τ=1\tau=1. At τ=1\tau=1, T(τ)=TsT(\tau)=T_s for both temperature schedules. Of course, at τ=1\tau=1 we do not really use the probability formula to decide whether or not to accept a solution, but we can expect that the temperature at τ=2\tau=2 would still be very similar to TsT_s and we are using rough and rounded approximations anyway, so let’s not make our life unnecessarily complicated here. We can now solve Equation 3.2 for TsT_s:

P50=e−ΔET(τ)0.1=e−50Tsln0.1=−50TsTs=−50ln0.1Ts≈21.7 \begin{array}{rl}
P_{50} =& e^{-\frac{\Delta E}{T(\tau)}}\\
0.1 =& e^{-\frac{50}{T_s}}\\
\ln{0.1}=& -\frac{50}{T_s}\\
T_s=&-\frac{50}{\ln{0.1}}\\
T_s\approx&21.7
\end{array} 

A starting temperature TsT_s of approximately Ts=20T_s=20 seems to be suitable in our scenario. Of course, we just got there using very simplified and coarse estimates. If we would have chosen P50=0.5P_{50}=0.5, we would have gotten Ts≈70T_s\approx 70 and if we additionally went with the maximum standard deviation 137 instead of the median one, we would obtain Ts≈200T_s\approx200. But at least we have a first understanding of the range where we will probably find good values for TsT_s.

But what about the ϵ\epsilon parameters? In order to get an idea for how to set it, we first need to know a proper end temperature TeT_e, i.e., the temperature which should be reached by the end of the run. It cannot be 0, because while both temperature schedules do approach zero for τ→∞\tau\rightarrow\infty, they will not actually become 0 for any finite number τ\tau of iterations.

So we are stuck with the task to pick a suitably small value for TeT_e. Maybe here our previous findings from back when we tried to restart the hill climber can come in handy. In Section 3.3.3.2, we learned that it makes sense to restart the hill climber after L=16′384L=16'384 unsuccessful search steps. So maybe a terminal state for our Simulated Annealing could be a scenario where the probability PeP_e of accepting a candidate solution which is ΔE=1\Delta E=1 makespan unit worse than the current one should be Pe=1/16′384P_e=1/16'384? This would mean that the chance to accept a candidate solution being marginally worse than the current one would be about as large as making a complete restart in hcr_16384_1swap. Of course, this is again an almost arbitrary choice, but it at least looks like a reasonable terminal state for our Simulated Annealing algorithm. We can now solve Equation 3.2 again to get the end temperature TeT_e:

Pe=e−ΔET(τ)1/16′384=e−1Teln(1/16′384)=−1TeTe=−1ln(1/16′384)Te≈0.103 \begin{array}{rl}
P_e =& e^{-\frac{\Delta E}{T(\tau)}}\\
1/16'384 =& e^{-\frac{1}{T_e}}\\
\ln{(1/16'384)}=& -\frac{1}{T_e}\\
T_e=&-\frac{1}{\ln{(1/16'384)}}\\
T_e\approx&0.103
\end{array} 

We choose a final temperature of Te=0.1T_e=0.1. But when should it be reached? In Table 3.13, we print the total number of function evaluations (FEs) that our hc_1swap algorithm performed on the different problem instances. We find that it generated and evaluated between 22 million on swv15 and 71 million on la24 candidate solutions.2 The overall median is at about 30 million FEs within the 3 minute computational budget. From this, we can conclude that after about 30 million FEs, we should reach approximately Te=0.1T_e=0.1. We can solve Equation 3.3 for ϵ\epsilon to configure the exponential schedule:

T(τ)=Ts*(1−ϵ)τ−1T(30′000′000)=20*(1−ϵ)30′000′000−10.1=20*(1−ϵ)29′999′9990.1/20=(1−ϵ)29′999′9990.0051/29′999′999=1−ϵϵ=1−0.0051/29′999′999ϵ≈1.776*10−7 \begin{array}{rl}
T(\tau) =& T_s * (1 - \epsilon) ^ {\tau- 1} \\
T(30'000'000) =& 20 * (1 - \epsilon) ^ {30'000'000 - 1} \\
0.1 =& 20 * (1 - \epsilon) ^ {29'999'999} \\
0.1/20 =& (1 - \epsilon) ^ {29'999'999} \\
0.005^{1/29'999'999} =& 1 - \epsilon \\
\epsilon =& 1 - 0.005^{1/29'999'999}\\
\epsilon \approx& 1.776*10^{-7}
\end{array} 

We can conclude, for an exponential temperature schedule, settings for ϵ\epsilon somewhat between 1!⋅10−71!\cdot\!10^{-7} and 2⋅10−72\!\cdot\!10^{-7} seem to be a reasonable choice if the start temperature TsT_s is set to 20.

In Figure 3.26, we illustrate the behavior of the exponential temperature schedule for starting temperature Ts=20T_s=20 and the six values 5⋅10−85\!\cdot\!10^{-8}, 1⋅10−71\!\cdot\!10^{-7}, 1.5⋅10−71.5\!\cdot\!10^{-7}, 2⋅10−72\!\cdot\!10^{-7}, 4⋅10−74\!\cdot\!10^{-7}, and 8⋅10−78\!\cdot\!10^{-7}. The sub-figure on top shows how the temperature declines over the performed objective value evaluations. Starting at Ts=20T_s=20 it reaches close to zero for ϵ≥1.5⋅10−7\epsilon\geq 1.5\!\cdot\!10^{-7} after about τ=30′000′000\tau=30'000'000 FEs. For the smaller ϵ\epsilon values, the temperature would need longer to decline, while for larger values, it declines quicklier. The next three sub-figures show how the probability to accept candidate solutions which are worse by ΔE\Delta E units of the objective value decreases with τ\tau for ΔE∈{1,3,10}\Delta E\in\{1, 3, 10\}. This decrease is, of course, the direct result of the temperature decrease. Solutions with larger ΔE\Delta E clearly have a lower probability of being accepted. The larger ϵ\epsilon, the earlier and faster does the acceptance probability decrease.


[image: Figure 3.26: The temperature progress of six exponential temperature schedules (top) plus their probabilities to accept solutions with objective values worse by 1, 3, or 10 than the current solution.]Figure 3.26: The temperature progress of six exponential temperature schedules (top) plus their probabilities to accept solutions with objective values worse by 1, 3, or 10 than the current solution.


[image: Figure 3.27: The median result quality of the sa_exp_20_epsilon_1swap algorithm, divided by the lower bound \textrm{lb}(f)^{\star} from Table 2.2 over different values of the parameter \epsilon. The best values of L on each instance are marked with bold symbols.]Figure 3.27: The median result quality of the sa_exp_20_epsilon_1swap algorithm, divided by the lower bound lb(f)⋆\textrm{lb}(f)^{\star} from Table 2.2 over different values of the parameter ϵ\epsilon. The best values of LL on each instance are marked with bold symbols.

In Figure 3.27, we illustrate the normalized median result quality that can be obtained by Simulated Annealing with starting temperature Ts=20T_s=20, exponential schedule, and 1swap operator for different values of the parameter ϵ\epsilon, including those from Figure 3.26. Interestingly, it turns out that ϵ=2\epsilon=2 is the best choice for the instances abz7, swv15, and yn4, which is quite close to what we could expect from our calculation. Smaller values will make the temperature decrease more slowly and lead to too much exploration and too little exploitation, as we already know from Figure 3.26. They work better on instance la24, which is no surprise: From Table 3.13, we know that on this instance, we can conduct more than twice as many objective value evaluations than on the others within the three minute budget: On la24, we can do enough steps to let the temperature decrease sufficiently even for smaller ϵ\epsilon.



3.5.5 Results on the JSSP

We can now evaluate the performance of our Simulated Annealing approach on the JSSP. We choose the setup with exponential temperature schedule, the 1swap operator, the starting temperature Ts=20T_s=20, and the parameter ϵ=2⋅10−7\epsilon=2\!\cdot\!10^{-7}. For simplicity, we refer to it as sa_exp_20_2_1swap.



Table 3.14: The results of the Simulated Annealing setup sa_exp_20_2_1swap in comparison with the best EA, eac_4_5%_nswap, and the hill climber with restarts hcr_16384_1swap. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	hcr_16384_1swap
	714
	732
	733
	6
	91s
	18’423’530



	
	
	eac_4_5%_nswap
	672
	690
	690
	9
	68s
	12’474’571



	
	
	sa_exp_20_2_1swap
	663
	673
	673
	5
	112s
	21’803’600



	la24
	935
	hcr_16384_1swap
	953
	976
	976
	7
	80s
	34’437’999



	
	
	eac_4_5%_nswap
	935
	963
	961
	16
	30s
	9’175’579



	
	
	sa_exp_20_2_1swap
	938
	949
	946
	8
	33s
	12’358’941



	swv15
	2885
	hcr_16384_1swap
	3752
	3859
	3861
	42
	92s
	11’756’497



	
	
	eac_4_5%_nswap
	3102
	3220
	3224
	65
	168s
	18’245’534



	
	
	sa_exp_20_2_1swap
	2936
	2994
	2994
	28
	157s
	20’045’507



	yn4
	929
	hcr_16384_1swap
	1081
	1115
	1115
	11
	91s
	14’804’358



	
	
	eac_4_5%_nswap
	1000
	1038
	1037
	18
	118s
	15’382’072



	
	
	sa_exp_20_2_1swap
	973
	985
	985
	5
	130s
	20’407’559







In Table 3.14, we compare results of the Simulated Annealing setup sa_exp_20_2_1swap to those of our best EA, eac_4_5%_nswap, and the hill climber with restarts hcr_16384_1swap. Simulated Annealing is better than these three algorithms in terms of the best, mean, and median result on almost all instances. Only on la24, eac_4_5%_nswap can win in terms of the best discovered solution, which already was the optimum. Our SA setup also is more reliable than the other algorithms, its standard deviation and only on la24, the standard deviation sdsd of its final result quality is not the lowest.

We know that on la24, ϵ=2⋅10−7\epsilon=2\!\cdot\!10^{-7} is not the best choice for SA and smaller values would perform better there. Interestingly, in the experiment, the settings ϵ=4⋅10−7\epsilon=4\!\cdot\!10^{-7} and ϵ=8⋅10−7\epsilon=8\!\cdot\!10^{-7} (not listed in the table) also each discovered a globally optimal solution on that instance. In Figure 3.29, we illustrate the one found by sa_exp_20_8_1swap.


[image: Figure 3.28: The Gantt charts of the median solutions obtained by the sa_exp_20_2_1swap algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.]Figure 3.28: The Gantt charts of the median solutions obtained by the sa_exp_20_2_1swap algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the instance name and makespan.


[image: Figure 3.29: The Gantt chart of the best solution obtained by the sa_exp_20_8_1swap algorithm on la24, which happens to be optimal. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of the diagram denotes the makespan.]Figure 3.29: The Gantt chart of the best solution obtained by the sa_exp_20_8_1swap algorithm on la24, which happens to be optimal. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of the diagram denotes the makespan.


[image: Figure 3.30: The median of the progress of the algorithms sa_exp_20_2_1swap, ea_8192_5%_nswap, eac_4_5%_nswap, and hcr_16384_1swap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.30: The median of the progress of the algorithms sa_exp_20_2_1swap, ea_8192_5%_nswap, eac_4_5%_nswap, and hcr_16384_1swap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.

If we compare our sa_exp_20_2_1swap with the related work, we find its best and mean solution quality on abz7 surpass those of the original Fast Simulated Annealing algorithm and its improved version HFSAQ from [4]. Its mean and best results of sa_exp_20_2_1swap on la24 outperform the algorithms proposed in [2,10,118,122,157,158]. On yn4, it outperforms all four AntGenSA algorithms (complex hybrids of three algorithms including SA and EAs) from [107] in mean and best result quality. Since this is an educational book, we are not really aiming for solving the JSSP outstandingly well and only use a very small set of instances. Our algorithms are not very complicated, but these comparisons indicate that they are at least somewhat working.

We plot the Gantt charts of the median result of sa_exp_20_2_1swap in Figure 3.28. Especially on instance swv15, changes are visible in comparison to the results produced by eac_4_5%_nswap and illustrated in Figure 3.21.

In Figure 3.30, we plot the progress of sa_exp_20_2_1swap over time in comparison to ea_8192_5%_nswap, eac_4_5%_nswap, and hcr_16384_1swap. Especially for swv15 and yn4, we find that sa_exp_20_2_1swap converges towards end results that are very visibly better than the other algorithms.

We also notice that the median solution quality obtained by sa_exp_20_2_1swap looks very similar to the shape of the temperature curve in Figure 3.26. Under the exponential schedule that we use, both the temperature and acceptance probability remain high for some time until they suddenly drop. Interestingly, the objective value of the best-so-far solution in SA seems to follow that pattern. Its , it first declines slowly, then there is a sudden transition where many improvements are made, before the curve finally becomes flat. This relationship between the temperature and the obtained result quality shows us that configuring the SA algorithm correctly is very important. Had we chosen ϵ\epsilon too small or the start temperature TsT_s too high, then the quick decline could have shifted beyond our three minute budget, i.e., would not take place. Then the results of Simulated Annealing would have been worse than those of the other three algorithms. This also explains the worse results for smaller ϵ\epsilon shown in Figure 3.27.

The behavior of SA is different from the hill climber and small-population EA, which do not exhibit such a transition region. The EA ea_8192_5%_nswap with the larger population also shows a transition from slow to faster decline, but there it takes longer and is much less steep.



3.5.6 Summary

Simulated Annealing is an optimization algorithm which tunes from exploration to exploitation during the optimization process. Its structure is similar to the hill climber, but different from that simple local search, it also sometimes moves to solutions which are worse than the one it currently holds. While it will always accept better solutions, the probability to move towards a worse solution depends on how much worse that solution is (via ΔE\Delta E) and on the number of search steps already performed. This later relationship is implemented by a so-called temperature schedule: At any step τ\tau, the algorithm has a current temperature T(τ)T(\tau). The acceptance probability of a worse solution is computed based on how bad its objective value is in comparison and based on T(τ)T(\tau). Two temperature schedules are most common: letting T(τ)T(\tau) decline either logarithmically or exponentially. Both have two parameters, the start temperature TsT_s and ϵ\epsilon.

In our experiments, we only considered the exponential schedule. We then faced the problem of how to set the values of these obscure parameters TsT_s and ϵ\epsilon. We did this by using the experience we already gained from our experiments with the simple hill climber: We already know something about how different good solutions can be from each other. This provides us with the knowledge of how deep a local optimum may be, i.e., what kind of values we may expect for ΔE\Delta E. We also know roughly how many algorithm steps we can perform in our computational budget, i.e., have a rough idea of how large τ\tau can become. Finally, we also know roughly the number LL of function evaluations after which it made sense to restart the hill climber. By setting the probability to accept a solution with ΔE=1\Delta E=1 to 1/L1/L, we got a rough idea of temperature that may be good at the end of the runs. The word rough appeared quite often in the above text. It is simply not really possible to compute the perfect values for TsT_s and ϵ\epsilon (and we could not compute the right values for μ\mu, λ\lambda, nor crcr for the Evolutionary Algorithm either). But the roughly computed values gave us a good idea of suitable settings and we could confirm them in a small experiments. Using them, our Simulated Annealing algorithm performed quite well. The very crude calculations in Section 3.5.4 may serve as rule-of-thumb in other scenarios, too.




3.6 Hill Climbing Revisited

Until now, we have entirely relied on randomness to produce new points in the search space. Our nullary, unary, and binary operators are all randomized. In case of the unary and binary operator, they of course depend on the input points in the search space fed to the operators, but still, the results are unpredictable and random. This is, in general, not a bad property. In the absence of knowledge about what is best, doing an arbitrary thing might have a better expected outcome than doing a fixed, pre-determined thing.

However, it also has some drawbacks. For example, there is no guarantee to not test the same 1swap move several times in the hc_1swap algorithm. Also, in our hill climber, we cannot know whether or when we have tested the complete neighborhood around the current best point xx in the search space. Thus, we also never know whether xx is a (local) optimum or not. We instead need to guess this and in Section 3.3.3 we therefore design an algorithm that restarts if it did not encounter an improvement for a certain number LL of steps. Thus, the restart might be too early, as there may still be undiscovered solutions in the neighborhood of xx. It also might happen too late: We may have already investigated the complete neighborhood several times.

Let us take one step back, to the simple hill climber and the original unary search operator 1swap for the JSSP from Section 3.3.1. This operator tries to perform a single swap, i.e., exchange the order of two job IDs in a point from the search space. We already discussed in Section 3.3.4 that the size of this neighborhood is 0.5*m2*n*(n−1)0.5*m^2*n*(n-1) for each point in the search space.


3.6.1 Idea: Enumerating Neighborhoods

Instead of randomly sampling elements from this neighborhood, we could enumerate over them completely. As soon as we encounter an improvement, we can stop the enumeration and accept the newly discovered better point. If we have finished enumerating all possible 1swap neighbors and none of them corresponds to a candidate solution with better objective value (e.g., a Gantt chart with shorter makespan), we know that we have arrived in a local optimum. This way, we do no longer need to guess if we have converged or not, we can know it directly. Also, as detailed in Section 6.1.2, we might even find the improving moves faster in average, because we would never try the same move twice when investigating the neighborhood of the current best solution.

Implementing this concept is a little bit more complicated than creating the simple unary operator that just returns one single new point in the search space as a result. Instead, such an enumerating unary operator for a black-box metaheuristic may create any number of points. Moreover, if one of the new points already maps to a candidate solutions which can improve upon the current best solution, then maybe we wish to terminate the enumeration process at that point.

Such behavior can be realized by following a visitor design pattern. An enumerating unary operator will receive a point xx in the search space and a call-back function from the optimization process. Every time it creates a neighbor x′x' of xx, it will invoke the call-back function and pass x′x' to it. If the function returns true, then the enumeration will be terminated. If false is returned, it will continue if there are more points in the neighborhood.

The call-back function provided by the optimization process could internally apply the representation mapping γ\gamma to x′x' and compute the objective value f(y′)f(y') of the resulting candidate solution y′=γ(x′)y'=\gamma(x'). If that solution is better than what we get for xx, the call-back function could store it and return true. This would stop the enumeration process and would return the control back to the main loop of the optimization algorithm. Otherwise, the call-back function would return false and be fed with the next neighbor, until the neighborhood was exhaustively enumerated.

This idea can be implemented by extending our original interface IUnarySearchOperator for unary search operations given in Listing 2.9.


Listing 3.23: A the generic interface for unary search operators, now able to enumerate neighborhoods. (src)

public interface IUnarySearchOperator<X>
    extends ISetupPrintable {
  void apply(X x, X dest, Random random);
  default boolean enumerate(Random random, X x,
      X dest, Predicate<X> visitor) {
    throw new UnsupportedOperationException("The operator " +
        this.getClass().getName() +
        " does not support exhaustive enumeration of neighborhoods.");
  }
}




The extension, presented in Listing 3.23, is a single new function, enumerate, which should realize the neighborhood enumeration. This function receives an existing point xin the search space as input, as well as a destination data structure dest where, iteratively, the neighboring points of x should be stored. Additionally, a call-back function visitor is provided as implementation of the Java 8-interface Predicate. The test function of this interface will, upon each call, receive the next neighbor of x (stored in dest). It returns true when the enumeration should be stopped (maybe because a better solution was discovered) and false to continue. enumerate itself will return true if and only if test ever returned true and false otherwise.

Of course, we cannot implement a neighborhood enumeration for all possible unary operators in a reasonable way: In the case of the nswap, operator, for instance, all other points in the search space could potentially be reached from the current one (just with different probabilities). Enumerating this neighborhood would include the complete search space and would take way too long. Hence, the default implementation of the new method should just create an error. It should only be overwritten by operators that span neighborhoods which are sufficiently small for efficient enumeration. A reasonable limit is neighborhood whose size grows quadratically with the problem scale or at most with the third power of the problem scale.



3.6.2 Ingredient: Neighborhood Enumerating 1swap Operators for the JSSP

Let us now consider how such an exhaustive enumeration of the neighborhood spanned by the 1swap operator can be implemented.


3.6.2.1 Enumerating in Deterministic Order

The easiest idea is to just enumerate all index pairs (i,j)(i,j). If the jobs at two indices ii and jj are different, we swap them, invoke the call-back function, then swap them back to the original order. Since swapping jobs at indices i=ji=j makes no sense and swapping the jobs at indices (i,j)(i,j) is the same as swapping at indices (j,i)(j,i), we only need to investigate m*n*(m*n−1)/2m*n*(m*n-1)/2 pairs.


	Make a copy x′x' of the input point xx from the search space.

	For index ii from 11 to m*n−1m*n-1 do:

	Store the job at index ii in x′x' in variable jobijob_i.

	For index jj from 00 to i−1i-1 do:

	Store the job at index jj in x′x' in variable jobjjob_j.

	If jobi≠jobjjob_i\neq job_j then: A. Store jobijob_i at index jj in x′x'. B. Store jobjjob_j at index ii in x′x'. C. Pass x′x' to a call-back function of the optimization process. If the function indicates that it wishes to terminate the enumeration, then quit. Otherwise continue with the next step. D. Store jobijob_i at index ii in x′x'. E. Store jobjjob_j at index jj in x′x'.









This simple algorithm is implemented in Listing 3.24, which only shows the new function that was added to our class JSSPUnaryOperator1Swap that we had already back in Section 3.3.1.


Listing 3.24: An excerpt of the 1swap operator for the JSSP, namely the implementation of the enumerate function from the interface IUnarySearchOpertor (Listing 3.23). (src)

public boolean enumerate(Random random, int[] x,
    int[] dest, Predicate<int[]> visitor) {
  int i = x.length; // get the length
  System.arraycopy(x, 0, dest, 0, i); // copy x to dest
  for (; (--i) > 0;) { // iterate over all indices 1..(n-1)
    int jobI = dest[i]; // remember job id at index i
    for (int j = i; (--j) >= 0;) { // iterate over 0..(i-1)
      int jobJ = dest[j]; // remember job at index j
      if (jobI != jobJ) { // both jobs are different
        dest[i] = jobJ; // then we swap the values
        dest[j] = jobI; // and will then call the visitor
        if (visitor.test(dest)) {
          return true; // visitor says: stop -> return true
        } // visitor did not say stop, so we need to
        dest[i] = jobI; // revert the change
        dest[j] = jobJ; // and continue
      } // end of creation of different neighbor
    } // end of iteration via index j
  } // end of iteration via index i
  return false; // we have enumerated the complete neighborhood
}






3.6.2.2 Random Enumeration Order

Our enumerating 1swap operator has one drawback: The order in which it processes the indices is always the same. We always check swapping jobs at the lower indices first. Swap moves involving two jobs near the end of the arrays xx are only checked if all other moves closer to the beginning have been checked. This introduces a bias in the way we search.

We again remember the concept mentioned right at the beginning of this chapter: If you do not know the best choice out of several options, pick a random one. While we can generate all neighbors, the order in which we generate them may be random! In other words, we now design an operator 1swapU which enumerates the same neighborhood as 1swap, but does so in a random order.


	Let SS be the list of all index pairs (i,j)(i,j) with 0<i<m*n0<i<m*n and 0≤j<i0\leq j<i. It has the length |S|=(m*n)(m*n−1)/2|S|=(m*n)(m*n-1)/2.

	Make a copy x′x' of the input point xx from the search space.

	For index uu from 00 to |S|−1|S|-1 do:

	Choose an index vv from u…|S|−1u\ldots|S|-1 uniform at random.

	Swap the index pairs at indices uu and vv in SS.

	Pick index pair (i,j)=S[u](i,j)=S[u].

	Store the job at index ii in x′x' in variable jobijob_i.

	Store the job at index jj in x′x' in variable jobjjob_j.

	If jobi≠jobjjob_i\neq job_j then:

	Store jobijob_i at index jj in x′x'.

	Store jobjjob_j at index ii in x′x'.

	Pass x′x' to a call-back function of the optimization process. If the function indicates that it wishes to terminate the enumeration, then quit. Otherwise continue with the next step.

	Store jobijob_i at index ii in x′x'.

	Store jobjjob_j at index jj in x′x'.









If this routine completes, then the lines 2a and 2b together will have performed a Fisher-Yates shuffle [76,129]. By always randomly choosing an index pair (i,j)(i,j) from the not-yet-chosen ones, it will enumerate the complete 1swap neighborhood in a uniformly random fashion. This might incur some small performance loss due to not being very cache-friendly. However, we will see that it can actually increase the search efficiency. We will refer to this algorithm as 1swapU and implement it in Listing 3.25.


Listing 3.25: An excerpt of the 1swapU operator for the JSSP, namely the random-order implementation of the enumerate function from the interface IUnarySearchOpertor (Listing 3.23). (src)

  public boolean enumerate(Random random, int[] x,
      int[] dest, Predicate<int[]> visitor) {
// indexes be the flattened list of unique index pairs and
// pairCount their number.
    System.arraycopy(x, 0, dest, 0, dest.length); // copy x

// We move along the index-pair array and shuffle the indices on
// the way with an iterative version of the Fisher-Yates shuffle.
    for (int i = 0, start = -1; i < pairCount; i++) {
// Get "a" and "b": the next, randomly chosen index pair.
      int swapWith = (i + random.nextInt(pairCount - i)) << 1;
      int a = indexes[swapWith];
      indexes[swapWith] = indexes[++start];
      indexes[start] = a;
      int b = indexes[++swapWith];
      indexes[swapWith] = indexes[++start];
      indexes[start] = b;

      int jobI = dest[a];// the job at first index
      int jobJ = dest[b];// the job at second index

      if (jobI != jobJ) {
        dest[a] = jobJ; // then we swap the values
        dest[b] = jobI; // and will then call the visitor
        if (visitor.test(dest)) {
          return true; // visitor says: stop -> return true
        } // visitor did not say stop, so we need to
        dest[a] = jobI; // revert the change
        dest[b] = jobJ; // and continue
      }
    }
    return false; // we have enumerated the complete neighborhood
  }







3.6.3 The Algorithm (with Restarts)

We can now design a new variant of the hill climber which enumerates the neighborhood of the current best point zbz_{b} from the search space spanned by a unary operator. As soon as it discovers an improvement with respect to the objective function, the new, better point replaces zbz_{b}. The neighborhood enumeration then starts again from there, until the termination criterion is met. Of course, it could also happen that the enumeration of the neighborhood is completed without discovering a better solution. In this case, we know that zbz_{b} is a local optimum. Then, we can simply restart at a new, random point. The general pattern of this algorithm is given below:


	Set the best-so-far objective value zbz_{b} to +∞+\infty and the best-so-far candidate solution yby_{b} to NULL.

	Create a random point xx in the search space 𝕏\mathbb{X} using the nullary search operator.

	Map the point xx to a candidate solution yy by applying the representation mapping y=γ(x)y=\gamma(x).

	Compute the objective value by invoking the objective function z=f(y)z=f(y).

	If z<zbz<z_{b}, then store zz in zbz_{b} and store yy in yby_{b}.

	Repeat until the termination criterion is met:

	For each point x′∈𝕏x'\in\mathbb{X} neighboring to xx according to the unary search operator do:

	Map the point x′x' to a candidate solution y′y' by applying the representation mapping y′=γ(x′)y'=\gamma(x').

	Compute the objective value z′z' by invoking the objective function z′=f(y′)z'=f(y').

	If z′<zz'<z, then A. Store x′x' in xx and store z′z' in zz. B. If z′<zbz'<z_{b}, then store y′y' in yby_{b} and store z′z' in zbz_{b}.

C. Stop the enumeration and go back to step 6a.




	If we arrive here, the neighborhood of xx did not contain any better solution. Hence, we perform a restart by going back to step 2.




	Return best encountered objective value zbz_{b} and the best encountered solution solspelbsolspel_{b} to the user.




Listing 3.26: An excerpt of the implementation of the Hill Climbing algorithm with restarts based on neighborhood enumeration. (src)

public class HillClimber2WithRestarts<X, Y>
    extends Metaheuristic1<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// initialization of local variables xCur, xBest, random omitted
// for brevity
    while (!process.shouldTerminate()) { // main loop
// create starting point: a random point in the search space
// put random point in xBest
      this.nullary.apply(xBest, random);
      fBest[0] = process.evaluate(xBest); // evaluate

      do { // repeat until budget exhausted or no improving move
// enumerate all neighboring solutions of xBest and receive them
// one-by-one in parameter x (for which xCur is used)
        improved = this.unary.enumerate(random, xBest, xCur,
            x -> {
// map x from X to Y and evaluate candidate solution
              double fCur = process.evaluate(x);
              if (fCur < fBest[0]) { // found better solution
// remember best objective value and copy x to xBest
                fBest[0] = fCur;
                process.getSearchSpace().copy(x, xBest);
                return true; // quit enumerating neighborhood
              }
// no improvement: continue enumeration unless time is up
              return process.shouldTerminate();
            });
// repeat until time is up or no further improvement possible
        if (process.shouldTerminate()) {
          return; // ok, we should exit
        } // otherwise: continue inner loop as long as we
      } while (improved); // can find improvements
    } // outer loop: if we get here, we need to restart
  } // process will have remembered the best candidate solution
}




If we want to implement this algorithm for black-box optimization, we face the situation that the algorithm does not know the nature of the search space nor the neighborhood spanned by the operator. Therefore, we rely on the design introduced in Listing 3.23, which allows us to realize this implicitly unknown looping behavior (point a above) in form of the visiting pattern. The idea is that, while our hill climber does not know how to enumerate the neighborhood, the unary operator does, since it defines the neighborhood. The resulting code is given in Listing 3.26.

Different from our original hill climber with restarts introduced in Section 3.3.3, this new algorithm does not need to count steps to know when to restart. It therefore also does not need a parameter LL determining the number of non-improving FEs after which a restart should be performed. Its implementation in Listing 3.26 is therefore also shorter and simpler than the implementation of the original algorithm variant in Listing 3.11. It should be noted that the new hill climber can only be applied in scenarios where we actually can enumerate the neighborhoods of the current best solutions efficiently. In other words, we pay for a potential gain of search efficiency by a reduction of the types of problems we can process.



3.6.4 Results on the JSSP



Table 3.15: The results of the new hill climbers hc2r_1swap and hc2r_1swapU in comparison with hcr_16384_1swap. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	hcr_16384_1swap
	714
	732
	733
	6
	91s
	18’423’530



	
	
	hc2r_1swap
	705
	736
	737
	9
	95s
	17’631’217



	
	
	hc2r_1swapU
	708
	731
	731
	6
	79s
	16’413’522



	la24
	935
	hcr_16384_1swap
	953
	976
	976
	7
	80s
	34’437’999



	
	
	hc2r_1swap
	959
	978
	978
	8
	93s
	41’131’198



	
	
	hc2r_1swapU
	952
	973
	974
	7
	78s
	32’552’884



	swv15
	2885
	hcr_16384_1swap
	3752
	3859
	3861
	42
	92s
	11’756’497



	
	
	hc2r_1swap
	3628
	3810
	3807
	74
	99s
	13’949’301



	
	
	hc2r_1swapU
	3731
	3829
	3831
	42
	89s
	11’380’041



	yn4
	929
	hcr_16384_1swap
	1081
	1115
	1115
	11
	91s
	14’804’358



	
	
	hc2r_1swap
	1093
	1131
	1132
	19
	92s
	12’816’913



	
	
	hc2r_1swapU
	1076
	1114
	1116
	13
	88s
	13’349’708







In Table 3.15, we list the results of new neighborhood-enumerating hill climbers with restarts (prefix hc2r). We compare the version using the deterministic neighborhood enumeration hc2r_1swap to hc2r_1swapU which enumerates the neighborhood in a random order. We further also list the results of hcr_16384_1swap, the stochastic hill climber which restarts after 16’384 unsuccessful steps. This setup was found to perform well in Section 3.3.3.2.

We find that hc2r_1swapU tends to have the edge over hc2r_1swap, except for instance swv15, where it does perform worse. Also, hc2r_1swapU and hcr_16384_1swap deliver very similar results, which also means that it performs worse than our Evolutionary Algorithms or Simulated Annealing.

In Figure 3.31, we plot the progress of the hc2r_1swap, hc2r_1swapU, and hcr_16384_1swap algorithms over time. It is very surprising to see that the median of best-so-far solution qualities of hc2r_1swapU and hcr_16384_1swap are almost identical during the whole three minute computational budget and on all four JSSP instances. Both hc2r_1swapU and hcr_16384_1swap perform random job swaps in each step. hc2r_1swapU avoids trying the same move twice and will restart when it has arrived in a local optimum. hcr_16384_1swap may try the same move multiple times and performs a restart after L=16′384L=16'384 unsuccessfuly steps. The fact that both algorithms perform so very similar probably means that the restart setting of L=16′384L=16'384 for hcr_16384_1swap is probably a rather good choice.

It is also clearly visible that hc2r_1swap is initially slower than the other two algorithms, although its end result is still similar. This shows that enumerating the neighborhood of a solution in a random fashion is better than doing it always in the same deterministic way. This supports the idea of doing things in a randomized way if no clear advantage of a deterministic approach is visible.

The question arises why we would bother with the hc2r-type hill climbers if we seemingly can get the exact same behavior from a stochastic hill climber with restarts. One answer is the fact that we found a method to actually know whether a solution is an optimum instead of having to guess. Another answer is that we need one parameter less. We retain the black-box ability of the algorithm but have zero parameters (except the choice of the unary search operator), as opposed to the EA and SA algorithms which each have three (μ\mu, λ\lambda, crcr and temperature schedule, TsT_s, ϵ\epsilon, respectively).


[image: Figure 3.31: The median of the progress of the algorithms hc2r_1swap, hc2r_1swapU, and hcr_16384_1swap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.31: The median of the progress of the algorithms hc2r_1swap, hc2r_1swapU, and hcr_16384_1swap over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.




3.7 Memetic Algorithms: Hybrids of Global and Local Search

Let remember two of the algorithms we have already seen:


	The hill climbers are local search methods, which can refine and improve one solution quickly but may get stuck at local optima.

	Evolutionary Algorithms are global optimization methods, which try to preserve a diverse set of solutions and are less likely to end up in local optima, but pay for it by slower optimization speed.



It is a natural idea to combine both types of algorithms, to obtain a hybrid algorithm which unites the best from both worlds. Such algorithms are today often called Memetic Algorithms (MAs) [103,148,155] (sometimes also Lamarkian Evolution [220]).


3.7.1 Idea: Combining Local Search and Global Search

The idea is as follows: In an Evolutionary Algorithm, the population guards against premature convergence to a local optimum. In each generation of the EA, new points in the search space are derived from the ones that have been selected in the previous step. From the perspective of a single point in the population, each generation of the EA is somewhat similar to one iteration of a hill climber. However, there are μ\mu points in the surviving population, not just one. As a result, the overall progress made towards a good solution is much slower compared to the hill climber.

Also, we introduced a binary search operator which combines traits from two points in the population to form a new, hopefully better solution. The idea is that the points that have survived selection should be good, hence they should include good components, and we hope to combine these. However, during the early stages of the search, the population contains first random and then slightly refined points (see above). They will not contain many good components yet.

Memetic Algorithms try to mitigate both issues with one simple idea: Let each new point, before it enters the population, become the starting point of a local search. The result of this local search then enters the population instead.



3.7.2 Algorithm: EA Hybridized with Neighborhood-Enumerating Hill Climber

We could choose any type of local search for this purpose, but here we will use the iterative neighborhood enumeration as done by our revisited hill climber in Section 3.6.3. As a result, the first generation of the MA behaves exactly the same as our neighborhood-iterating hill climber with restarts (until it has done μ+λ\mu+\lambda restarts). The inputs of the binary search operator will then not just be selected points, they will be local optima (with respect to the neighborhood spanned by the unary operator).

In the reproduction phase, an Evolutionary Algorithm applies either a unary or a binary operator. In an MA, it obviously makes no sense to use the same unary operator as in the local search here. We could therefore either use an unary operator that always makes different moves or only use the binary search operator. Here, we will follow the latter choice, simply to spare us the necessity to define yet another operator here (nswap would not be suitable, as it most often does single swaps like 1swap.)

The basic (μ+λ)(\mu+\lambda) Memetic Algorithm is given below and implemented in Listing 3.27.


	I∈𝕏×ℝI\in\mathbb{X}\times\mathbb{R} be a data structure that can store one point xx in the search space and one objective value zz.

	Allocate an array PP of length μ+λ\mu+\lambda of instances of II.

	For index ii ranging from 00 to μ+λ−1\mu+\lambda-1 do

	Create a random point from the search space using the nullary search operator and store it in Pi.xP_{i}.x.






	Repeat until the termination criterion is met:

	For index ii ranging from 00 to μ+λ−1\mu+\lambda-1 do

	If PiP_{i} is already a fully-evaluated solution and a local optimum, continue with the next iteration value of the loop 4b.

	Apply the representation mapping y=γ(Pi.x)y=\gamma(P_{i}.x) to get the corresponding candidate solution yy. ii Compute the objective objective value of yy and store it at index ii as well, i.e., Pi.z=f(y)P_{i}.z=f(y).



	Local Search: For each point x′x' in the search space neighboring to Pi.xP_{i}.x according to the unary search operator do: A. Map the point x′x' to a candidate solution y′y' by applying the representation mapping y′=γ(x′)y'=\gamma(x'). B. Compute the objective value z′z' by invoking the objective function z′=f(y′)z'=f(y'). C. If the termination criterion has been met, jump directly to step 5. D. If z′<zbz'<z_{b}, then store x′x' in  Pi.xP_{i}.x, store z′z' in Pi.zP_{i}.z, stop the enumeration, and go back to step 4b.iii.






	Sort the array PP in ascending order according to the objective values, i.e., such that the records rr with better associated objective value r.zr.z are located at smaller indices.

	Shuffle the first μ\mu elements of PP randomly.

	Set the first source index p1=−1p1=-1.

	For index ii ranging from μ\mu to μ+λ−1\mu+\lambda-1 do

	Set the first source index p1p1 to p1=(p1+1) mod μp1=(p1+1)\textrm{~mod~}\mu.

	Randomly choose another index p2p2 from 0…(μ−1)0\ldots(\mu-1) such that p2≠pp2\neq p.

	Apply binary search operator to the points stored at index p1p1 and p2p2 and store result at index ii, i.e., set Pi.x=searchOp2(Pp1.x,Pp2.x)P_{i}.x=\textrm{searchOp}_2(P_{p1}.x, P_{p2}.x).







	Return the candidate solution corresponding to the best record in PP to the user.



The condition in step 4b.i allows that in the first iteration, all members of the population are refined by local search, whereas in the latter steps, only the λ\lambda new offsprings are refined. This makes sense because the μ\mu parents have already been subject to local search and are local optima. Trying to refine them again would just lead to one useless enumeration of the entire neighborhood during which no improvement could be found.


Listing 3.27: An excerpt of the implementation of the Memetic Algorithm algorithm. (src)

public class MA<X, Y> extends Metaheuristic2<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// the initialization of local variables is omitted for brevity
// first generation: fill population with random solutions
    for (int i = P.length; (--i) >= 0;) {
// set P[i] = random solution (code omitted)
    }

    while (!process.shouldTerminate()) { // main loop
      for (LSRecord<X> ind : P) {
// If ind is not known to be local optimum, refine it with local
// search a la HillClimber2 for a given number of maximum steps
// (code omitted for brevity).
      } // end of 1 ls iteration: we have refined 1 solution
// sort the population: mu best records at front are selected
      Arrays.sort(P, Record.BY_QUALITY);
// shuffle the first mu solutions to ensure fairness
      RandomUtils.shuffle(random, P, 0, this.mu);
      int p1 = -1; // index to iterate over first parent

// override the worse lambda solutions with new offsprings
      for (int index = P.length; (--index) >= this.mu;) {
        LSRecord<X> dest = P[index];
        LSRecord<X> sel = P[(++p1) % this.mu];

        do { // find a second, different record
          p2 = random.nextInt(this.mu);
        } while (p2 == p1);
// perform recombination of the two selected solutions
        this.binary.apply(sel.x, P[p2].x, dest.x, random);
        dest.quality = process.evaluate(dest.x);
      } // the end of the offspring generation
    } // the end of the main loop
  }
}






3.7.3 The Right Setup

We can now evaluate the performance of our Memetic Algorithm variant. As unary operator with enumerable neighborhood, we use the 1swapU operator. As binary search operator, we apply the sequence crossover operator defined in Section 3.4.2 for the EA.

Since we always apply this operator in the reproduction step of our MA (i.e., cr=1cr=1), the only parameter we need to worry about is the population size. While a large population size was good for EAs, we need to remember that our budget is limited to 180 seconds and that every individual in the population will be refined using the hc2r_1swapU-style local search. This means that the limit for the total population size μ+λ\mu+\lambda would be the number of restarts that hc2r_1swapU can make within three minutes. Any larger size would mean that the first generation would not be completed.



Table 3.16: The median runtime that the neighborhood-enumerating hill climber would consume without restarts, i.e., the median time until arriving in a local optimum, as well as how many restarts we could do within our three-minute budget.


	ℐ\mathcal{I}
	med(total time) w/o restarts
	med(restarts)





	abz7
	313 ms
	575



	la24
	47 ms
	3’830



	swv15
	1’729 ms
	104



	yn4
	726 ms
	248



	median
	520 ms
	412







In Table 3.16, we apply hc2r_1swapU, but instead of restarting, we terminate the algorithm when it has arrived in a local optimum. We find that it needs between 47 ms (on la24) and 1’729 ms (on swv15) to do so. This means that within the 180 s, we can refine between 3’830 and 104 individuals with the local search. If we want to be able to do several generations of the MA, then μ+λ≪104\mu+\lambda \ll 104.

I did some small, preliminary experiments where I found that a population size of μ=λ=8\mu=\lambda=8 works well for our three minute budget on all instances except swv15. We will call this setup ma_8_1swapU and investigate it in the following text.



3.7.4 Results on the JSSP



Table 3.17: The results of the Memetic Algorithm ma_8_1swapU in comparison to the two EAs ea_8192_5%_nswap and eac_4_5%_nswap as well as the hill climber hc2r_1swapU. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	eac_4_5%_nswap
	672
	690
	690
	9
	68s
	12’474’571



	
	
	ea_8192_5%_nswap
	684
	703
	702
	8
	54s
	10’688’314



	
	
	hc2r_1swapU
	708
	731
	731
	6
	79s
	16’413’522



	
	
	ma_8_1swapU
	671
	689
	689
	7
	115s
	23’304’852



	la24
	935
	eac_4_5%_nswap
	935
	963
	961
	16
	30s
	9’175’579



	
	
	ea_8192_5%_nswap
	943
	967
	967
	11
	18s
	4’990’002



	
	
	hc2r_1swapU
	952
	973
	974
	7
	78s
	32’552’884



	
	
	ma_8_1swapU
	939
	958
	956
	11
	10s
	3’832’439



	swv15
	2885
	eac_4_5%_nswap
	3102
	3220
	3224
	65
	168s
	18’245’534



	
	
	ea_8192_5%_nswap
	3498
	3631
	3632
	65
	178s
	17’747’983



	
	
	hc2r_1swapU
	3731
	3829
	3831
	42
	89s
	11’380’041



	
	
	ma_8_1swapU
	3405
	3602
	3599
	64
	167s
	22’837’065



	yn4
	929
	eac_4_5%_nswap
	1000
	1038
	1037
	18
	118s
	15’382’072



	
	
	ea_8192_5%_nswap
	1026
	1056
	1053
	17
	114s
	13’206’552



	
	
	hc2r_1swapU
	1076
	1114
	1116
	13
	88s
	13’349’708



	
	
	ma_8_1swapU
	1005
	1036
	1035
	15
	159s
	25’517’707









Table 3.18: A statistical comparison of the end results of ma_8_1swapU, ea_8192_5%_nswap, and hc2r_1swapU, using the Mann-Whitney U test with Bonferroni correction and significance level α=0.02\alpha=0.02 on the four JSSP instances. The columns indicate the pp-values and the verdict (? for insignificant).









	Mann-Whitney U α′=3.03⋅10−4\alpha'=3.03\!\cdot\!10^{-4}
	abz7
	la24
	swv15
	yn4





	ea_8192_5%_nswap vs. hc2r_1swapU
	2.62⋅10−332.62\!\cdot\!10^{-33} <
	2.59⋅10−62.59\!\cdot\!10^{-6} <
	7.85⋅10−347.85\!\cdot\!10^{-34} <
	3.65⋅10−343.65\!\cdot\!10^{-34} <



	ea_8192_5%_nswap vs. ma_8_1swapU
	4.52⋅10−224.52\!\cdot\!10^{-22} >
	4.54⋅10−74.54\!\cdot\!10^{-7} >
	3.39⋅10−33.39\!\cdot\!10^{-3} ?
	1.31⋅10−131.31\!\cdot\!10^{-13} >



	hc2r_1swapU vs. ma_8_1swapU
	1.16⋅10−341.16\!\cdot\!10^{-34} >
	4.88⋅10−194.88\!\cdot\!10^{-19} >
	1.20⋅10−341.20\!\cdot\!10^{-34} >
	1.18⋅10−341.18\!\cdot\!10^{-34} >







In Table 3.17, we find that ma_8_1swapU performs clearly better than the plain EA and the hill climber on all four instances, which is confirmed by a statistical test in Table 3.18. Except on swv15, it also always has the best mean and median result quality. The differences to eac_4_5%_nswap are very small and therefore not interesting – except on swv15, where the Memetic Algorithm clearly loses. This must be the result of the very low number of individuals that can be refined on swv15 using the local search within the three minute budget.

From Figure 3.32, we can see that the ma_8_1swapU behaves almost identical to hc2r_1swapU during the first approximately ten seconds of the runs. This must be the time when the first μ+λ\mu+\lambda individuals undergo the local search. From then on, the algorithm makes better progress than hc2r_1swapU. It seems that our binary sequence operator can combine different good traits of candidate solutions after all! The fact that the ma_8_1swapU can improve beyond the hill climber means that sequence is able to combine two local optima to a new point in the search space, which then can be refined by local search to another local optimum.


[image: Figure 3.32: The median of the progress of the ma_8_1swapU, eac_4_5%_nswap, and hc2r_1swapU algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.32: The median of the progress of the ma_8_1swapU, eac_4_5%_nswap, and hc2r_1swapU algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.



3.7.5 Summary

With Memetic Algorithms, we learned about a family of hybrid optimization methods that combine local and global search. Of course, here we just scratched the surface of this concept.

For example, we again only considered one simple implementation of this idea. Instead of hc2r-style local search, we could as well have used our stochastic hill climber or even Simulated Annealing for a fixed number of iterations as refinement procedure. Indeed, instead of doing a full local search until reaching a local optimum, we could also limit it to only a fixed number SS of steps (and indeed the Java implementation Listing 3.27 has this feature).

Our MA did neither outperformed the EA with clearing nor Simulated Annealing.

Regarding the former, we could also apply clearing in the MA. I actually tried that, but it did not really lead to a big improvement in my preliminary experiments, so I did not discuss it here. The reason is most likely that the MA performs too few generations for it to really kick in.

The computational budget of only three minutes may have prevented us from finding better results. If we had a larger budget, we could have used a larger population. In a different application scenario, the comparison of an MA with the EA with clearing and SA algorithms might have turned out more favorable. On the plus side, the MA did perform significantly better than a pure EA with recombination and than the neighborhood-enumerating hill climber   the two algorithms it is composed of!




3.8 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [131,137,150,152] follow a completely different paradigm than the methods that we have discussed up to here. So far, we have directly focused on the points xx inside the search space 𝕏\mathbb{X}. We tried to somehow navigate from one or multiple such points to better points, by investigating their neighbors via the unary operator or by trying to good find locations between two points via the binary operator. EDAs instead look at the bigger picture and try to discover and exploit the structure of the space 𝕏\mathbb{X} itself. The ask the questions Can we somehow learn which areas in 𝕏\mathbb{X} are promising? Can we learn how good solutions look like?


3.8.1 The Algorithm

How do good solutions look like? It is unlikely that good (or even optimal) solutions are uniformly distributed over the search space. If the optimization problem that we are trying to solve is reasonable, then it should have some structure and there will be areas in the search space 𝕏\mathbb{X} that are more likely to contain good solutions than others. Distribution here is already an important keyword: There should be some kind of (non-uniform) probability distribution of good solutions over the search space. If we can somehow learn this distribution, we obtain a model of how good solutions look like. Then we could sample this distribution/model. Sampling a distribution just means to create random points according to it: If we sample λ\lambda points from a distribution MM, then more points will be created in areas where MM has a high probability density and fewer points from places where it has a low probability density.

A basic EDA works roughly as follows:


	Set the best-so-far objective value zbz_{b} to +∞+\infty and the best-so-far candidate solution yby_{b} to NULL.

	Initialize the model M0M_0, e.g., to approximate a uniform distribution.

	Create λ>2\lambda>2 random points xx in the search space 𝕏\mathbb{X}, either by sampling the model or by using a nullary search operator.

	Repeat until termination criterion is met (where ii be the iteration index):

	Map the λ\lambda points to candidate solutions y∈𝕐y\in\mathbb{Y} using the representation mapping γ:𝕏↦𝕐\gamma:\mathbb{X}\mapsto\mathbb{Y} and evaluate their objective value z=f(y)z=f(y).

	y′y' be the best of the λ\lambda new candidate solutions and z′z' be its objective value. If z′<zbz'<z_{b}, then store y′y' in yby_{b} and z′z' in zbz_{b}.

	Select the μ\mu best points from the set of λ\lambda points (with 1<μ<λ1<\mu<\lambda).

	Use the set PμP_\mu of these μ\mu points to build the new model MiM_i. This step can also be implemented as model update UU and make use of the information in the old model Mi−1M_{i-1} as well as the problem instance ℐ\mathcal{I}, i.e., Mi=U(Pμ,Mi−1,ℐ)M_i=U(P_\mu, M_{i-1}, \mathcal{I}).

	Sample λ\lambda points from MiM_i.




	Return the candidate solution yby_{b} and its objective value zbz_{b} to the user.



This structure looks different from what we had before, but we can recognize some familiar components. The algorithm starts by creating a set of λ\lambda random points in the search space. We can use the nullary search operator for this. So this step is very similar to what EAs do (see Section 3.4). From these λ\lambda points, the set PμP_\mu of the μ\mu best ones are selected – again, very similar to EAs. However, EDAs do not apply unary or binary search operations to these points to obtain an offspring generation. Instead, they condense the information from the selected points into a model MM, which usually is a stochastic distribution. This can be done by estimating the parameters of a stochastic distribution from all points in PμP_\mu. We then can create λ\lambda new points by sampling them from this parameterized distribution MM.


3.8.1.1 An Example

Maybe it is easier to understand how this algorithm works if we look at the simple example illustrated in Figure 3.33. Imagine you are supposed to find the minimum of an objective function ff defined over a two-dimensional sub-space space of the real numbers, i.e., 𝕐⊂ℝ2\mathbb{Y}\subset\mathbb{R}^2. For the sake of simplicity, let’s assume the search and solution space are the same (𝕏=𝕐\mathbb{X}=\mathbb{Y}) and its two decision variables be x1x1 and x2x2. The objective function is illustrated in the top-left corner of Figure 3.33. It has a nice basin with good solutions, but also is a bit rugged.


[image: Figure 3.33: An example of how we could apply an EDA to an objective function f defined over a two-dimensional search/solution space. In each iteration i>1, 101 points are sampled and the best 41 are used to derive a model M, which is defined as a normal distribution parameterized by the arithmetic means and standard devisions of the selected points along the two axes.]Figure 3.33: An example of how we could apply an EDA to an objective function ff defined over a two-dimensional search/solution space. In each iteration i>1i>1, 101 points are sampled and the best 41 are used to derive a model MM, which is defined as a normal distribution parameterized by the arithmetic means and standard devisions of the selected points along the two axes.

At the beginning of our EDA, we just generate λ=101\lambda=101 points uniformly distributed in the search space (step 3 of our algorithm). This is illustrated in the top-right sub-figure of Figure 3.33, where we only show two dimensions but put the contour of the objective function in the background. From the λ\lambda points, we keep the μ=41\mu=41 ones with the best objective values (colored green) and discarded the other 101−41=60101-41=60 points (colored red). We can now compute the mean and standard deviation of the μ\mu selected points along each axis, i.e., get four parameters. In the figures, these models are illustrated in blue. In their center, i.e., at the two mean coordinates, you can find a little blue cross. From the blue cross, one line along each axis, with the length of the corresponding standard deviation, forming the two axes of an ellipse. We can see that the ellipse is located nicely in the center of the area, where we indeed can find solutions which tend to have smaller (better) objective values.

But what can we do with this model? We can use it to generate λ\lambda new points. Since we are in the continuous space, a normal distribution lends itself for this purpose. A one-dimensional normal distribution has the feature that it gives high probability to values close to its mean. The probability of encountering points farther away from the mean decreases quickly. If we sample a normal distribution with a given mean and standard deviation, then most points will located within one standard deviation distance from the mean. Since we have two means and two standard deviations, we could just use one independent normal distribution for each coordinate, i.e., each of the two decision variables.

In the second sub-figure from the top on the right hand side of Figure 3.33, we did exactly that. As can be seen, the points are located more closely to the center of the figure. We again select the best μ=41\mu=41 points of the λ=101\lambda=101 samples obtained this way and build new model based on them. The standard deviations of the model are smaller now. We repeat this process for two more steps and tend to get points more closely to the optimum of ff and models which better represent this characteristic.

Of course, this was just an example. We could have chosen different probability distributions as model instead of the normal distribution. We could have updated the model in a different way, e.g., combine the previous model with the new parameters. Also we treated the two dimensions of our search space as independent, which may not be the case in many scenarios. And of course, for each search space, we may need to use a completely different type of model.




3.8.2 The Implementation

What we first need in order to implement EDAs is an interface to represent the new structural component: a model.


Listing 3.28: An excerpt of the interface of models that can be used in Estimation of Distribution Algorithms. (src)

public interface IModel<X> extends INullarySearchOperator<X> {
  void initialize();
  void update(Iterable<Record<X>> selected);
  void apply(X dest, Random random);
  default int minimumSamplesNeededForUpdate() {
    return 1;
  }

}




Listing 3.28 gives an idea how a very general interface for the required new functionality could look like. The search space 𝕏\mathbb{X} is represented by the generic parameter X. In our previous example, it could be equivalent the double[2]. The model used in our example would internally store four double values, namely the means and standard deviations along both dimensions.

We can update the model by passing μ\mu samples from the search space X to the update method in form of the Record<X> records we already used in our implementation of EAs. The source for these samples can be any Java collection (all of which implement Iterable). In our example in the previous section, the update method could iterate over the double[2] values provided to it and compute, for both of their dimensions, the means and standard deviations.

Then, we can call apply λ\lambda times to sample the model and generate a new points in the search space.3 This could be implemented for our example by generating the two normally distributed random numbers, one for each dimension, based on the means and standard deviations stored in the model.

It can be seen that this interface is rather general. We make very few assumptions about the nature of the model and how the update and sampling process will work. In order to cover models that are continuously updated and might need a certain (potentially changing) minimum number of unique samples for an update, we add two more methods: Before beginning an optimization run, the EDA should call the method initialize of the model. The model should then in an unbiased, initial state. Before updating the model, a call to minimumSamplesNeededForUpdate returns the minimum number of samples required for a meaningful update. If the number of selected individuals falls below this threshold, the algorithm could terminate or restart.


Listing 3.29: An excerpt of the implementation of the Estimation of Distribution Algorithm. (src)

public class EDA<X, Y> extends Metaheuristic0<X, Y> {
  public void solve(IBlackBoxProcess<X, Y> process) {
// local variable initialization omitted for brevity
      M.initialize(); // initialize to uniform distribution

// first generation: fill population with random solutions
      for (int i = P.length; (--i) >= 0;) {
        X x = searchSpace.create();
        this.nullary.apply(x, random);
        P[i] = new Record<>(x, process.evaluate(x));
      }

      for (;;) { // each iteration: update model, sample model
        Arrays.sort(P, Record.BY_QUALITY);
// update model with mu<lambda best solutions
        M.update(IModel.use(P, 0, this.mu));

// sample new population
        for (Record<X> dest : P) {
          M.apply(dest.x, random); // create new solution
          dest.quality = process.evaluate(dest.x);
          if (process.shouldTerminate()) { // we return
            return; // best solution is stored in process
          }
        } // the end of the solution generation
      } // the end of the main loop
  }
}




A basic EDA can now be implemented as shown in Listing 3.29. In this implementation excerpt, we have omitted the checks to minimumSamplesNeededForUpdate some calls to the termination criterion as well as the initialization of variables, to provide more concise and readable code.



3.8.3 Ingredient: A Stochastic Model for the JSSP Search Space

We now want to apply the EDA to our Job Shop Scheduling Problem. Our search space represents solutions for the JSSP as a permutation of a multi-set, where each of the nn jobs occurs exactly mm times, once for each machine. Unfortunately, this representation does not lend itself for stochastic modeling at all – we need a probability distribution over such permutations. It should be said that there exist clever solutions [35] for this problem, but for our introductory book, they may be too complicated.


3.8.3.1 A First and Naïve Idea

We will follow a very naïve approach to apply the EDA idea to the JSSP. The points in the search space are permutations with repetitions, integer vectors of length n*mn*m. At each index, there could be any of the nn jobs. We want to build a model by using μ\mu such vectors. For each index k∈0…(n*m−1)k\in0\ldots(n*m-1), we could simply store how often each of the jobs ii occurred there in the μ\mu permutations in Mk,iM_{k,i}. This means our model MM consists of n*mn*m vectors, each holding nn numbers ranging from 00 to μ\mu. A 00 at Mk,iM_{k,i} means that job ii never occurred at index kk in any of the μ\mu selected points, whereas a value of μ\mu would mean that all solutions had job ii at index kk.

When we sample a new point xx from this model, we would process all the indices k∈0…(n*m−1)k\in0\ldots(n*m-1). The probability of putting a job i∈0…(n−1)i\in0\ldots(n-1) at index kk into xx should be roughly proportional to Mk,iM_{k,i}. In other words, if a job ii occurs often at index kk in the μ\mu selected solutions, which we used to build the model MM, then it should also often occur there in λ\lambda new points we sample from MM. Of course, we will need to adher to the constraint that no job can occur more then mm times. While this indeed a naïve method with several shortcomings (which we will discuss later), it should work in principle.



3.8.3.2 An Example of the Naïve Idea

We illustrate the idea of this model update and sampling process by using our demo instance from Section 2.2.2.3 in Figures 3.34, 3.35.

The demo instance has n=4n=4 jobs that are processed on m=5m=5 machines. The points in the search space thus have m*n=20m*n=20 decision variables. We can build the model by considering each of the 20 decision variables separately. Their indices kk range from 00 to 1919.

Assume that μ=10\mu=10 such points have been selected. In the upper part of Figure 3.34, we illustrate these ten points, marking the occurrences of job 0 red, of job 1 blue, of ob 2 green, and leaving those of job 3 black for clarity. The model derived from the selected points is illustrated in the middle part. It has one row for each job and one column for each decision variable index. When looking at the first decision variable (index 0), we find that job 0 occurred twice in the selected points, job 1 seven times, job 3 once, and job 2 never. This is shown in the first column of the model. The second column of the model stands for the jobs seen at index 1. Here, job 0 was never encountered, job 1 and job 2 four times, and job 3 twice. These values are obtained by simply counting how often a given job ID appears at the same index in the μ=10\mu=10 selected solutions. The model can be built iteratively in about 𝒪(μ*m*n)\mathcal{O}(\mu*m*n) steps.


[image: Figure 3.34: An example of how the model update and sampling in our naïve EDA could look like on the demo instance from Section 2.2.2.3; we set \mu=10 and 1 new point x is sampled. See also Figure 3.35.]Figure 3.34: An example of how the model update and sampling in our naïve EDA could look like on the demo instance from Section 2.2.2.3; we set μ=10\mu=10 and 1 new point xx is sampled. See also Figure 3.35.


[image: Figure 3.35: A clearer illustration of the example for sampling the model in our naïve EDA one time given in Figure 3.34.]Figure 3.35: A clearer illustration of the example for sampling the model in our naïve EDA one time given in Figure 3.34.

An example for sampling one new point in the search space from this model is given in the lower part of Figure 3.34 and illustrated in complete detail in Figure 3.35. From the model which holds the frequencies of each job for each index kk, we now want to sample the points of length m*nm*n. In other words, based on the model, we need to decide which job to put at each index. The more often a job occurred at a given index in the μ\mu selected points, the more likely we should place it there as well. Naturally, we could iterate over all indices from k=0k=0 to k=(n*m−1)k=(n*m-1) from beginning to end. However, to increase the randomness, we process the indices in a random order.

Initially, the new point is empty. In each step of the sampling process, one index kk is chosen uniformly at random from the not-yet-processed ones. In our example, we first randomly picked k=11k=11. In the model MM, we have M11,0=0M_{11,0}=0, because job 0 never occurred at index 11 in any of the μ=10\mu=10 solutions used for building the model. Because job 1 was found at k=11k=11 exactly once, M111=1M_{11}{1}=1. Since job 2 was found at k=11k=11 5 times, M112=5M_{11}{2}=5. And M113=4M_{11}{3}=4 because job 3 was found four times at index 11 in the selected individuals. We find that (∑i=03M11i)=10=μ(\sum_{i=0}^3 M_{11}{i})=10=\mu. We want that the chance to sample job 0 at the here should be 0%, the chance to choose job 1 should be 10%, the chance to pick job 2 should be 50%, and, finally, job 3 should be picked with 40% probability. This can be done by drawing a random number RR uniformly distributed in 0…90\ldots 9. If it happens to be 0, we pick job 1, if it is in 1…51\ldots 5, we pick job 2, and if it happens to be in 6…96\ldots 9, we pick job 3. In our example, RR happened to be 3, so we set x11=2x_{11}=2.

This can be implemented by writing a cumulative sum of the nn frequencies into an array QQ of length nn. We would get Q=(0,1,6,10)Q=(0,1,6,10). After drawing RR, we can apply binary search to find the index of the smallest number r∈Qr\in Q which is larger than RR. Here, since R=3R=3, r=6r=6 and its zero-based index is 22, i.e., we chose job 2.

In the next step, we randomly choose kk from 0…19\110\ldots 19 \setminus 11. We happen to obtain k=0k=0. We find M0,0=2M_{0,0}=2, M0,1=7M_{0,1}=7, M0,2=0M_{0,2}=0, and M0,3=1M_{0,3}=1. We again draw a random number RR from 0…90\ldots 9, which this time happens to be 6. A value R∈{0,1}R\in\{0,1\} would have led to choosing job 0, but R∈2…8R\in 2\ldots 8 leads us to pick job 1 for index k=1k=1 and we set x0=1x_{0}=1.

The process is repeated an in step 3, we randomly choose kk from 0…19\{11,0}0\ldots 19 \setminus \{11,0\}. We happen to pick k=7k=7. Only two different jobs were found in the selected individuals, namely nine times job 0 and once job 2. We draw a random number RR from 0…90\ldots 9 again and obtained R=6R=6, which leads us to set x7=0x_{7}=0.

We repeat this again and again. At step 9, we this way chose job 2 for the fifth time. Since there are m=5m=5 machines, this means that job 2, placed at indices 11, 2, 12, 3, and now 2, is completed and cannot be chosen anymore – regardless what the model suggests. For instance, in step 11 (see Figure 3.35), we chose k=4k=4. Job 2 did occur four times at index 4 in the selected individuals! But since we already assigned it five times, it cannot be chosen here anymore. Thus, we cannot use the probabilities 30%, 40%, and 30% for jobs 1, 2, and 3 as suggested by the model. We have to deduce the already completed job  and raise the probabilities of jobs 1 and 3 to 50% each accordingly. We can still pick the job exactly as before, but instead using a random number RR from 0…90\ldots 9, we use one from 0…50\ldots 5 (because 3+3=63+3=6). As it turned out randomly to be R=2R=2, it falls in the interval 0…20\ldots 2 where we would choose job 1. Hence, we set x4=1x_{4}=1.

We continue this process and complete assigning job 0 in step 17, after which only either job 1 or job 3 remain as choices. Job 3 is assigned for the fifth time in step 18, after which only job 1 remains. After twenty steps, the sampling is complete. The resulting point x∈𝕏x\in\mathbb{X} is shown at the bottom of Figure 3.34.

Of course, this was just one concrete example. Every time we sample a new point xx in the search space 𝕏\mathbb{X} using our model MM, the indices kk and numbers RR would be drawn randomly and probably would be very different. But each time, we could hope to obtain results at least somewhat similar but yet slightly different from the μ\mu points that we have selected.

The complexity of the model sampling is 𝒪(n*m*(n+lnn))\mathcal{O}(n*m*(n+\ln{n})): For each of the n*m*n*m* indices kk into the new point xx, we need to add up the nn frequencies stored in the model and then draw the random number RR (which can be done in 𝒪(1)\mathcal{O}(1)) and find the corresponding job index via binary search (which takes 𝒪(lnn)\mathcal{O}(\ln{n})).



3.8.3.3 Shortcomings of the Naïve Idea

At first glance, it looks as if our approach might be a viable method to build and sample a model for our JSSP scenario. But we are unlucky: There is are two major shortcomings.

First, we might get into a situation where we have to pick a job which should have probability 0 in our model, because all other jobs have already been assigned! Let’s take a look at index k=5k=5 in Figure 3.34. Here, M5,1=10M_{5,1}=10, whereas the measured frequency of all other jobs is zero. In other words, our model prescribes that job 1 must be placed at index 5 into the new point xx, regardless of whatever other choice we made during the sampling process. However, since we proceed randomly, it is entirely possible, however, that index k=5k=5 is drawn later during the sampling process and job 1 has already been assigned five times.

This situation can always occur if one of the values in MM for a given index kk is 00. We may always end up in a situation where we cannot finish sampling the new point because of it.

Getting a 0 at an index kk for a job ii in the model MM also would mean that we never place job ii again at this index in any future iterations of our algorithm. The EDA concept prescribes and alternation between building the model from the μ\mu selected solutions, then sampling a new set of λ\lambda solutions and choosing the μ<λ\mu<\lambda best of them, and then building the model again from these. If job ii is not placed at index kk during the sampling process (for whatever reason), then it cannot have a non-zero probability in the next model. Thus, it would again not be placed at index kk – and this option would have disappeared forever in the optimization process.

We can combat this problem by changing our model building process a bit. When counting, the frequencies of the jobs for a given index kk in the μ\mu selected points, we do not start at 0 but at 1. This way, each job will always have non-zero probability. Of course, for a small value of μ\mu, this would skew our distributions quite a bit towards randomness. The solution is to not add 1 for each encounter of a job, but a very large number, say 1’000’000.

At index k=5k=5, we would then have M5,1=10*1′000′000M_{5,1}=10*1'000'000 and M5,i=1M_{5,i}=1 for i∈{0,2,3}i\in\{0,2,3\}. In other words, all jobs have non-zero probability, but if we can place job 1 at index k=5k=5, then we will most likely do so.

The model sampling does not need to be changed in any way: For each index kk, we first sum up all the nn numbers in the model and obtain a number ZZ. For index k=5k=5, we would obtain Z=1′000′003Z=1'000'003. Then we sample a random number RR uniformly distributed from 0…Z−10\ldots Z-1. At index 5, if R=0R=0, we would pick job 0. If R∈1…1′000′000R\in 1\ldots 1'000'000, we would pick job 1. If R=1′000′001R=1'000'001, we pick job 2 and if R=1′000′002R=1'000'002, we pick job 3. The binary search does not take any longer if the numbers we search are larger, so the problem is solved without causing any harm.

The situation remains that we cannot perfectly faithfully model and sample the selected points. When approaching the end of the sampling of one new point, we are always likely to deviate from the observed job probabilities. By randomizing the order in which we visit the indices kk, which we already do, we try to at least distribute this unfaithfulness evenly over the whole length of the solutions in average.

The second big problem with this naïve idea is that it does not distinguish between, e.g., the first and the second occurrence of a job in the solutions we use to update the model from. For instance, in Figure 3.34, we have two solutions that contain the first occurrence of job 0 at index 0 (namely solutions 1 and 3) and two solutions (2 and 6) that contain it at index 3. There is no solution that contains the second occurrence of job 0 at index 3. Yet, if we sample the model, we might well choose index 0 for the first and index 3 for the second occurrence of job 0. In other words, even if we could faithfully sample our model, we might still arrive at solutions that are completely different from those that we used to build it. Darn.

The reader will understand that this chapter is already somewhat complex and we will have to leave it at this naïve approach. As stated before, better models and methods exists, e.g., in [35]. The focus of the book, however, is to learn about different algorithms by attacking a problem with them in a more or less ad-hoc way, i.e., by doing what seems to be a reasonable first approach. The idea proposed here, to me, seems to be something like that.



3.8.3.4 Implementation of the Naïve Idea

We can now implement our model and we do this in the class JSSPUMDAModel. We call it UMDA model because it the probability of choosing one value for a given decision variable assigned by the model only depends on the values of only that variable in the solutions used for building the model – and the first EDA doing something like that was the Univariate Marginal Distribution Algorithm (UMDA) [151,152]. The model can be stored in a two-dimensional array of type long[n*m][n]. Here, we discuss the code for model building and model sampling in Listings 3.30, 3.31, respectively.


Listing 3.30: The building process of our naïve model for the JSSP in EDAs. (src)

  public void update(Iterable<Record<int[]>> selected) {
    int l = this.mModel.length; // == m*n

// Make sure that all values are >= 1
    for (long[] a : this.mModel) {
      Arrays.fill(a, 1L);
    }

// For each encountered job, add the large value this.base
    for (Record<int[]> ind : selected) { // selected
      int[] sel = ind.x;
      for (int k = l; (--k) >= 0;) { // valid indices
        this.mModel[k][sel[k]] += this.base;
      }
    }
  }




We realize the model building by implementing the routine IModel.update (see Listing 3.28) in Listing 3.30. We first initialize the complete model matrix MM to all 11 values. We then process each selected point in the search space from beginning to end. If a job is encountered at an index kk, we add a value this.m_base to the corresponding cell of the matrix. While allowing this.base to be set as a configuration parameter, we use Integer.MAX_VALUE by default. This means that jobs not encountered at a certain index kk in the selected individuals will only be placed there during the sampling process if all other jobs have already been scheduled mm times.


Listing 3.31: The sampling process of our naïve model for the JSSP in EDAs. (src)

  public void apply(int[] dest,
      Random random) {
    int[] perm = this.mPerm; // all indices
// each job occurs m times
    int[] jobRemainingTimes = this.mJobRemainingTimes;
    Arrays.fill(jobRemainingTimes, this.mMachines);
// the jobs we can choose from:
    int[] jobChooseFrom = this.mJobChoseFrom;
    long[] prob = this.mProb; // used for cumulative sum
    long[][] model = this.mModel; // the model
// we can choose from n jobs
    int jobChooseLength = jobChooseFrom.length; // = n

// permute the indexes for which we pick jobs
    RandomUtils.shuffle(random, perm, 0, perm.length);

// iterate over the indices into the array (in random order)
    for (int k : perm) {
      long N = 0L;

// build the cumulative frequency vector, N be the overall sum
      for (int j = 0; j < jobChooseLength; ++j) {
        N += model[k][jobChooseFrom[j]];
        prob[j] = N;
      }

// pick index with probability proportional to cumulative sum via
// modified binary search.
      int select = JSSPUMDAModel.find(
          RandomUtils.uniformFrom0ToNminus1(random, N), prob,
          jobChooseLength);

      int job = jobChooseFrom[select]; // get selected job
      dest[k] = job; // store job in result
      if ((--jobRemainingTimes[job]) == 0) { // job completed?
        jobChooseFrom[select] = jobChooseFrom[--jobChooseLength];
        jobChooseFrom[jobChooseLength] = job;
      }
    } // end iteration over array indices
  }




The routine IModel.apply is implemented in Listing 3.31. It starts by picking the full set of jobs and permitting mm occurrences for each. It then shuffles the array of indices. Processing this array from front to end then means picking all values for kk in a random order. For each index kk, it fills an array N with the cumulative sum of the (modified) encounter frequencies of the jobs that are not finished. The random number RR is then drawn and its location in N is determined. From this, we know the selected job. The job is placed into the new solution and the number of remaining times it can be placed is reduced. If the number reaches 00, the job is removed from the set of selectable jobs. This is repeated until the destination point is completed. This implements the process discussed in the previous section.




3.8.4 The Right Setup

We again do a similar setup experiment as we did for the EA in Section 3.4.1.2 to configure our EDA. The setup umda_3_32768, which, in each iteration, samples λ=32768\lambda=32768 new solutions and uses the μ=3\mu=3 best of them to update the model, seems to yield the best performance in average. We also try apply clearing in the objective space discussed in Section 3.4.5 in the EDA. Clearing removes candidate solutions with duplicate makespan value before the model update. This is done by simply applying the routine specified in Listing 3.17 before the selection step into our algorithm. The implementation of the EDAWithClearing thus is almost the same as the basic EDA implementation in Listing 3.29 and both are given in the online repository. After another setup experiment, we identify the best setup of our UMDA-EDA with clearing for the JSSP. In each iteration, it samples λ=64\lambda=64 new candidate solutions and keeps the μ=2\mu=2 unique best of them. We will call this setup umdac_2+64.



3.8.5 Results on the JSSP

In Table 3.19, we compare the performance on the JSSP of both EDA variants to the best stochastic hill climber with restarts, namely hcr_65536_nswap. We can find that the UMDA without clearing is generally worse than the hill climber, while the umdac_2+64 with clearing can perform somewhat better on abz7 and yn4. On swv15, both algorithms perform particularly badly. The performance of our adaptation of the EDA concept towards the JSSP is not very satisfying.



Table 3.19: The results of the EDAs umda_3_32768 (without clearing) and umdac_2+64 (with clearing) in comparison to hcr_65536_nswap. The columns present the problem instance, lower bound, the algorithm, the best, mean, and median result quality, the standard deviation sd of the result quality, as well as the median time med(t) and FEs med(FEs) until the best solution of a run was discovered. The better values are emphasized.


	ℐ\mathcal{I}
	lbf\textrm{lb}{f}
	setup
	best
	mean
	med
	sd
	med(t)
	med(FEs)





	abz7
	656
	hcr_65536_nswap
	712
	731
	732
	6
	96s
	21’189’358



	
	
	umda_3_32768
	713
	742
	742
	14
	93s
	1’901’332



	
	
	umdac_2+64
	701
	727
	726
	15
	141s
	2’860’265



	la24
	935
	hcr_65536_nswap
	942
	973
	974
	8
	71s
	31’466’420



	
	
	umda_3_32768
	982
	1020
	1018
	20
	15s
	659’470



	
	
	umdac_2+64
	956
	996
	991
	23
	70s
	3’021’933



	swv15
	2885
	hcr_65536_nswap
	3740
	3818
	3826
	35
	89s
	10’783’296



	
	
	umda_3_32768
	4117
	4306
	4318
	62
	156s
	1’481’110



	
	
	umdac_2+64
	4480
	4606
	4609
	35
	94s
	859’250



	yn4
	929
	hcr_65536_nswap
	1068
	1109
	1110
	12
	78s
	18’756’636



	
	
	umda_3_32768
	1071
	1148
	1151
	37
	158s
	2’488’518



	
	
	umdac_2+64
	1044
	1096
	1092
	26
	152s
	2’143’989







In Table 3.19 we make an interesting observation: It seems that the EDAs have a much lower median number of FEs med(FEs) until discovering their end result compared to the hill climber, while the time med(t) they need for these FEs does not tend to be lower at all. The time that our EDA needs to create and evaluate one candidate solution, to perform one objective function evaluation (one FE), is higher compared to the hill climber. For instance the 1’901’332 FEs within 93 seconds of umda_3_32768 on abz7 equal roughly 20’450 FEs/s, whereas the hill climber hcr_65536_nswap can generate 21’189’358 candidate solutions within 96 seconds, i.e., achieves 220’700 FEs/s on the same problem, which is roughly ten times as much. On swv15, the hill climber converges to its final result within 89 seconds, during which it performs 10’783’296 FEs, i.e., 12’1000 FEs/s. Here, umdac_2+64 is 13 times slower and performs 859’250 FEs in 94 seconds, i.e., 9140 FEs/s.

Let us therefore compare two perspectives on the progress that EDAs make with what our EAs are doing. In Figure 3.36, we plot the progress over (log-scaled) time in milliseconds as we did before. This perspective fits to our goal, to obtain good solutions for the JSSP within three minutes. The umda_32768 behaves somewhat similar to the ea_32768_nswap, which also creates λ=32768\lambda=32768 new solutions in each generations, but is generally slower and finishes at worse results. The gap between umdac_2+64 and eac_4+5%_nswap, which both apply clearing, is much wider.


[image: Figure 3.36: The median of the progress of the ea_32768_nswap, eac_4+5%_nswap, umda_32768, and umdac_2+64 algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.]Figure 3.36: The median of the progress of the ea_32768_nswap, eac_4+5%_nswap, umda_32768, and umdac_2+64 algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.


[image: Figure 3.37: The median of the progress of the ea_32768_nswap, eac_4+5%_nswap, umda_32768, and umdac_2+64 algorithms over the consumed FEs, i.e., the current best solution found by each of the 101 runs at each point of FE (over a logarithmically scaled time FE). The color of the areas is more intense if more runs fall in a given area.]Figure 3.37: The median of the progress of the ea_32768_nswap, eac_4+5%_nswap, umda_32768, and umdac_2+64 algorithms over the consumed FEs, i.e., the current best solution found by each of the 101 runs at each point of FE (over a logarithmically scaled time FE). The color of the areas is more intense if more runs fall in a given area.

Now we take a look at the same diagrams, but instead of the actual consumed clock time, we use the number of generated solutions as horizontal time axis. This basically shows us the progress that the algorithms make per call to the objective function, i.e., per FE. This perspective is very useful in many theoretical scenarios and also justified in scenarios where the FEs take a very long time (see later in Section 4.2.2).

Figure 3.37 shows a very different picture. umda_32768 actually has a better median solution quality than ea_32768_nswap, but it stops much earlier and then is overtaken. Only on la24, the plain EA overtakes the plain EDA before the EDA stops. With the exception of instance swv15, the gap between umdac_2+64 and eac_4+5%_nswap also becomes smaller.

Of course we cannot really know whether the EDA would eventually reach better solutions than the EA if it perform the same number of FEs. We could find this out with more experiments, maybe with runtime limits of 30 minutes instead of three. We will not do this here, as our scenario has a hard time limit.

What we found out is still interesting: Even the trivial, naïve model for the JSSP seems to work, despite its shortcomings. The biggest problem here seems to be the algorithmic time complexity of the model sampling process. The 1swap or nswap operators in the EA copy the original point in the search space 𝕏\mathbb{X} and then swap one or multiple jobs. To generate a new point in 𝕏\mathbb{X}, they thus require a number of algorithm steps roughly proportional to n*mn*m. As discussed at the end of Section 3.8.3.2, our UMDA model needs 𝒪(n*m*(n+lnn))\mathcal{O}(n*m*(n+\ln{n})) steps for this. The higher complexity of sampling the search space here clearly shows.



3.8.6 Summary

In this chapter, we have discussed the concept of Estimation of Distribution Algorithms (EDAs): the idea of learning statistical models of good solutions. Models can be probability distributions, which assign higher probability densities to areas where good previously observed solutions were located. In each generation, we can sample λ\lambda points in the search space using this model/distribution and then use the best μ\mu of these samples to update the model. What we hopefully gain are two things: better solutions, but also a better model, i.e., an abstract representation of what good solutions look like in general.

This concept lends itself to many domains. Already in high school we learned probability distributions over real numbers. It is very straightforward to adapt the idea of EDAs to subsets of the nn-dimensional Euclidean space, which we did as introductory example in Figure 3.33. The concept also sends itself if the our search space are vectors of bits, which is the domain where the original Univariate Marginal Distribution Algorithm (UMDA) [151,152] was applied.

Unfortunately for the author of the book, probability distributions over permutations are a much harder nut to crack. As mentioned before, we tried a very naïve approach to this with several flaws – but we got it to work. Some of the flaws of our approach could also be fixed: The fact that the model does not distinguish between the first and second occurrence of a job ID can be fixed by using unique operation IDs instead of job IDs, i.e., using m*nm*n unique values for each location in the model instead of only nn ones. I tried this out, but it does not lead to tangibly better results within our three minute budget. Most likely because it makes the sampling of new solutions even slower and thus decreases the total number of search steps we can do in total even more…

And this brings us two unexpected lessons to learn from this section: First, algorithmic time complexity does matter. Well, every computer scientist knows this. Professors do not bother undergraduate students with this topic for fun. But here we are reminded that efficiently implementing algorithms is important, also in the field of randomized metaheuristics. If we were to invent a very strong optimization approach but would not be able to implement it with low complexity, then it could be infeasible in practice.

The second lesson is that comparing algorithm performance using FEs could yield different results from comparing them based on clock time. Both have different advantages which we discuss in detail in Section 4.2.2, but we need to always be clear which one is more important in our scenario. In our scenario here, clock time is more important.

So was this all what is to say about EDAs? No. The EDAs we discussed here are very simple. There are at least two aspects that we did not cover here:

One aspect that we did not discuss here is that our model MM is actually not updated but overwritten in each generation. Instead, we could also combine the new information MnewM_{new} with the current model MoldM_{old} the model MM in. The UMDA implementation in [152] and the equivalent Population-based Incremental Learning Algorithm (PBIL) [13,14], for instance, do this by simply setting M=δMnew+(1−δ)MoldM=\delta M_{new} + (1-\delta)M_{old}, where δ∈(0,1]\delta\in(0,1] is a learning rate. Another interesting approach to such iterative learning is the Compact Genetic Algorithm (cGA) [102].

The second aspect is that we treated all decision variables as if they were independent in our model. This is where the univariate in UMDA comes from. However, variables are hardly independent in practical problems (see also Section 5.5). For instance, the decision whether I should next put job 1 on machine 2 or job 3 in the JSSP will likely depend on which job I assigned to which machine just now. Such inter-dependencies between decision variables can be represented by multivariate distributions. Examples for algorithms trying to construct such models are the Bayesian Optimization Algorithm (BOA) [159,160] for bit strings. The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [11,99] learns the relationship between pairs of variables for continuous problems in the Euclidean space. It is basically the state-of-the-art for complicated numerical optimization problems.




3.9 Ant Colony Optimization

Ant Colony Optimization (ACO) [62–65] is a family of metaheuristics, which can be considered EDAs with two special characteristics:


	They are designed for problems whose solutions can be expressed as paths xx in graphs GG.

	During the model sampling (i.e., the creation of a path xx), they make use of additional heuristic information obtained from the problem instance.



You can imagine a graph as a mathematical abstraction that can represent a street map, a computer network, a power network, a network of water pipes, and such and such. More formally, graph G=(V,E)G=(V,E) is a structure described by a set VV of vv vertices, which we will here identify by integers IDs, i.e., V=0…v−1}V=0\ldots{v-1}\}. E⊆V×VE\subseteq V\times V is the set of edges connecting the vertices. A path xx through the graph GG is a sequence (x0,x1,…,xl)(x_{0},x_{1},\ldots,x_{l}) such that xi∈Vx_{i}\in V for ∀i∈0…(l−1)\forall i\in 0\ldots(l-1). The vertexes at index ii and i+1i+1 in xx for i∈0…l−2i\in 0\ldots{l-2} form the edges of the path, i.e., (xi,xi+1)(x_{i},x_{i+1}) are elements of EE. The search space 𝕏\mathbb{X} of ACO corresponds to the set of all paths x∈𝕏x\in\mathbb{X} admissible by the problem instance. If we represent a street map as a graph GG, then a path xx through GG corresponds to a route on the map from a starting point to an end point.


3.9.1 The Algorithm

If we recall the structure of EDAs from Section 3.8.1, then ACO adds


	a special model structure,

	a special sampling method, and

	a special model update method.



We do not require a new overall algorithm structure or new implementation – Listing 3.29 will do just fine – all we need is to understand these new concepts.


3.9.1.1 Model and Model Sampling

The model sampling in ACO works by iteratively building a path through a graph. In each step, a vertex is added to the path until no nodes can be added anymore and the path xx is completed. The choice which vertex to add is probabilistic. It depends on two factors: the model MM and the heuristic information HH.

Definition 30. The model MM used in ACO is a two-dimensional table called pheromone matrix and the values stored in it are called pheromones.

Each row i∈0…(v−1)i\in 0\ldots(v-1) stands for one of the vertices and holds a value Mi,jM_{i,j} for each other vertex j∈0…(v−1)j\in 0\ldots(v-1) with j≠ij\neq i. The higher the value Mi,jM_{i,j}, the more likely should it be that the edge (i,j)(i,j) is added to the path, i.e., that vertex jj follows after vertex ii.

Besides the model MM, ACO also uses one heuristic value Hi,jH_{i,j} for each such edge. This value reflects a gain that can be obtained by adding the edge. As in the case of Mi,jM_{i,j}, larger values of Hi,jH_{i,j} make adding the edge (i,j)(i,j) to the path more likely.

The first vertex at which the path xx is started at iteration index i=0i=0 is either chosen completely randomly, fixed, or based on some policy. In each following step i>0i>0 of the model sampling, the algorithm first determines the set NN of vertices that can be added. Often, these are all the vertices not yet present in xx, i.e., V\xV\setminus x. In this case, we can initially set N=V\x0N=V\setminus x_{0} and iteratively remove every vertex added to xx from NN. But there may also be other scenarios, for instance, if we navigate through a graph where not all vertexes are directly connected.

Either way, once NN has been determined, the choice about which edge to add to xx in iteration i>0i>0 is made probabilistically. Assume that NN contains v′v' vertices, then the probability P(add Nj)P(\text{add~}N_{j}) to add vertex NjN_{j} to xx is:

P(add Nj)=(Mxi−1,Nj)α*(Hxi−1,Nj)β∑k=0v′−1(Mxi−1,Nk)α*(Hxi−1,Nk)β(3.5) P(\text{add~}N_{j}) = \frac{\left(M_{x_{i-1},N_{j}}\right)^{\alpha}*\left(H_{x_{i-1},N_{j}}\right)^{\beta}}{\sum_{k=0}^{v'-1} \left(M_{x_{i-1},N_{k}}\right)^{\alpha}*\left(H_{x_{i-1},N_{k}}\right)^{\beta} } \qquad(3.5)

Here, α>0\alpha>0 and β>0\beta>0 are two configuration parameters which weight the impact of the model MM and the heuristic information HH, respectively. The higher the model and heuristic values for the edge from the last-added vertex xix_{i} to a potential next vertex NjN_{j}, the more likely it is selected. The model sampling then works as follows:


	The point to sample xx will be an array of vertexes which represents the path. It is initially empty.

	Allocate an array pp of real numbers of length v−1v-1.

	Set an index variable i=0i=0.

	Choose a first vertex and store it in xix_{i}.

	Repeat:

	Set i=i+1i=i+1.

	Obtain N⊂VN\subset V as the set of vertices that can potentially be added to xx in this round. (NN is usually equivalent to VV minus all vertices already added.)

	The number of vertices in NN be v′v'.

	If v′=0v'=0, exit the loop, because the path construction is complete.

	If v′=1v'=1, set k=0k=0, because there is only one vertex to choose from.

	else, i.e., if v′>1v'>1, do:

	Set a real variable psps to 00.

	For jj from 00 to v′−1v'-1 do: A. Set ps=ps+(Mxi−1,Nj)α*(Hxi−1,Nj)βps=ps+\left(M_{x_{i-1},N_{j}}\right)^{\alpha}*\left(H_{x_{i-1},N_{j}}\right)^{\beta}. B. Set pj=psp_{j}=ps.

	Draw a random number rr uniformly distributed in [0,ps)[0,ps).

	Determine kk to be the index of the smallest value in pp which is greater than rr. It can be found via binary search (we may need to check for smaller values left-wards if model or heuristic values can be 0).




	Set xi=Nkx_{i}=N_{k}, i.e., append the vertex to xx.




	Return the completed path xx.



Definition 31. A completed path xx sampled from the model in ACO is called an ant.

We implement Equation 3.5 in lines 5.e and 5.f. Obviously, if there is only v′=1v'=1 node that could be added, then it will have probability 1 and we do not need to actually compute the equation. If v′>1v'>1, then we need to compute the product PjP_{j} of the model value Mxi−1,NjαM_{x_{i-1},N_{j}}^{\alpha} and heuristic value Hxi−1,NjβH_{x_{i-1},N_{j}}^{\beta} for each vertex. The probability for each vertex to be chosen would then be their corresponding result divided by the overall sum of all of these values. Lines 5.f.i to 5.f.iv show how this can be done efficiently: Instead of assigning the results directly to the vertices, we use a running sum psps instead. Thus, the value p0p_{0} is P0P_{0}, p1=P0+P1p_{1}=P_{0}+P_{1}, p2=P0+P1+P2p_{2}=P_{0}+P_{1}+P_{2}, and so on. Finally, we just need to draw a random number rr from [0,ps)[0,ps). If it is less than p0=P0p_{0}=P_{0}, then we choose vertex N0N_{0}. Otherwise, if it is less than p1=P0+P1p_{1}=P_{0}+P_{1}, we pick N1N_{1}. Otherwise, if it is less than p2=P0+P1+P2p_{2}=P_{0}+P_{1}+P_{2}, we pick N2N_{2}, and so on. We can speed up finding the right node by doing a binary search. (In the case that model or heuristic values can be zero, we need to be careful because we then could have some pκ=pκ+1p_{\kappa}=p_{\kappa+1} and thus would need to check that we really have the lowest index k$ for which pk>rp_{k}>r.)

If we need to add all vertexes in VV, then it is relatively easy to see that this model sampling routine has quadratic complexity: For each current vertex we need to look at all other (not-yet-chosen) vertices due to line 5.f.ii.



3.9.1.2 Model Update

In the traditional ACO approach, the model will be sampled λ>0\lambda>0 times in each iteration and 0<μ≤λ0<\mu\leq \lambda of the solutions are used in the model update step. Here, we discuss the model update procedure for the first ACO algorithm, the Ant System (AS) [62,64] and its improved version, the Max-Min Ant System (MMAS) [192].

Let XX be the list of the μ\mu selected paths. Then, the model values in the matrix MM are updated as follows:

Mi,j=min{U,max{L,(1−ρ)Mi,j+∑∀x∈Xτi,jx}}(3.6) M_{i,j} = \min\{U, \max\{L, (1-\rho)M_{i,j} + \sum_{\forall x\in X} \tau^{x}_{i,j} \}\} \qquad(3.6)

All model values are limited to the real interval [L,U][L,U] and LL and UU are its upper and lower bound, respectively. If the pheromone Mi,jM_{i,j} on an edge (i,j)(i,j) would become 0, then its probability to be added will also be zero and jj will never be added again to any xx directly after ii. Since we want to preserve a certain minimum probability, setting a lower limit L>0L>0 makes sense. If Mi,jM_{i,j} gets too large, this can have the opposite effect and then jj will always be chosen directly after ii. Thus, the upper limit U>LU>L is introduced.

The current model value is reduced by multiplying it with (1−ρ)(1-\rho), where ρ∈[0,1]\rho\in[0,1] is called the evaporation rate. This concept has already been mentioned in our summary on EDAs (Section 3.8.6) and is used in the PBIL [13,14] algorithm.

The amount τi,jx\tau^{x}_{i,j} added to the model values for each x∈Xx\in X is:

τi,jx={Q/f(γ(x))if edge (i,j) appears in x0otherwise \tau^{x}_{i,j} = \left\{\begin{array}{ll}
Q / f(\gamma(x))&\text{if~edge~}(i,j)\text{~appears~in~}x\\
0&\text{otherwise}
\end{array}\right. 

where QQ is a constant. In other words, the pheromone Mi,jM_{i,j} of an edge (i,j)(i,j) increases more if it appears in selected solutions with small objective values.

In the AS, μ=λ\mu=\lambda and now bounds for the pheromones are given, i.e., L=0L=0 and U=+∞U=+\infty. In the MMAS in [192], the matrix MM is initialized with the value UU, α=1\alpha=1, β=2\beta=2, λ=v\lambda=v (i.e., the number of vertices), μ=1\mu=1, Q=1Q=1. There, values of ρ∈[0.7,0.99]\rho\in[0.7,0.99] are investigated and the smaller values lead to slower convergence and more exploration whereas the high ρ\rho values increase the search speed but also the chance of premature convergence.

Either way, from Equation 3.6, we know that the model update will need at least a quadratic number of algorithm steps and the model itself is also requires quadratic amount of memory, i.e., both are at least in 𝒪(()v2)\mathcal{O}(()v^2). Both of these can be problematic for large numbers vv of vertices or short time budgets.

The actual size of the model MM and the heuristic information HH depends on whether the edges in the graph are directed or not: Normally, the size is v(v−1)v(v-1). If going from ii to jj always has exactly the same cost and is equivalent to going from jj to ii, then it is sufficient to maintain one single pheromone for both edges, i.e., v(v−1)/2v(v-1)/2 in total. A quadratic data structure size begins to become problematic for v≥10′000v\geq 10'000 on today’s machines. In our JSSP scenario, we are far from that, but have already learned in Section 3.8.5 that the quadratic runtime of the model sampling is indeed a bottleneck.









	For now, we will discuss EAs in a form without recombination. Wait for the binary recombination operator until Section 3.4.3.↩︎


	Notice that back in Table 3.3, we printed the median number FEs until the best solution was discovered, not until the algorithm has terminated.↩︎


	We call this method apply and it has the same structure as the apply method of the INullarySearchOperator interface which it overrides. This trick will come in handy later on, as it allows us to also use biased models as nullary search operator. For now, please ignore it.↩︎







4 Evaluating and Comparing Optimization Algorithms

We have now learned quite a few different approaches for solving optimization problems. Whenever we have introduced a new algorithm, we have compared it with some of the methods we have discussed before.

Clearly, when approaching an optimization problem, our goal is to solve it in the best possible way. What the best possible way is will depend on the problem itself as well as the framework conditions applying to us, say, the computational budget we have available.

It is important that performance is almost always relative. If we have only a single method that can be applied to an optimization problem, then it is neither good nor bad, because we can either take it or leave it. Instead, we often start by first developing one idea and then try to improve it. Of course, we need to compare each new approach with the ones we already have. Alternatively, especially if we work in a research scenario, maybe we have a new idea which then needs to be compared to a set of existing state-of-the-art algorithms. Let us now discuss here how such comparisons can be conducted in a rigorous, reliable, and reproducible way.


4.1 Testing and Reproducibility as Important Elements of Software Development

The very first and maybe one of the most important issues when evaluating an optimization algorithms is that you never evaluate an optimization algorithm. You always evaluate an implementation of an optimization algorithm. You always compare implementations of different algorithms.

Before we even begin to think about running experiments, we need to be assert whether our algorithm implementations are correct. In almost all cases, it is not possible to proof whether a software is implemented correctly or not. However, we can apply several measures to find potential errors.


4.1.1 Unit Testing

A very important tool that should be applied when developing a new optimization method is unit testing. Here, the code is divided into units, each of which can be tested separately.

In this book, we try to approach optimization in a structured way and have defined several interfaces for the components of an optimization and the representation in Section 2. An implementation of such an interface can be considered as a unit. The interfaces define methods with input and output values. We now can write additional code that tests whether the methods behave as expected, i.e., do not violate their contract. Such unit tests can be executed automatically. Whenever we compile our software after changing code, we can also run all the tests again. This way, we are very likely to spot a lot of errors before they mess up our experiments.

In the Java programming language, the software framework JUnit provides an infrastructure for such testing. In the example codes of our book, in the folder src/test/java, we provide JUnit tests for general implementations of our interfaces as well as for the classes we use in our JSSP experiment.

Here, the encapsulation of different aspects of black-box optimization comes in handy. If we can ensure that the implementations of all search operations, the representation mapping, and the objective function are correct, then our implemented black-box algorithms will – at least – not return any invalid candidate solutions. The reason is that they use exactly only these components (along with utility methods in the ISpace interface which we can also test) to produce solutions. A lot of pathological errors can therefore be detected early.

Always develop the tests either before or at least along with your algorithm implementation. Never say I will do them later. Because you won’t. And if you actually would, you will find errors and then repeat your experiments.



4.1.2 Reproducibility

A very important aspect of rigorous research is that experiments are reproducible. It is extremely important to consider reproduciblity before running the experiments. From personal experiments, I can say that sometimes, even just two or three years after running the experiments, I have looked at the collected data and did no longer know, e.g., the settings of the algorithms. Hence, the data became useless. The following measures can be taken to ensure that your experimental results are meaningful to yourself and others in the years to come:


	Always use self-explaining formats like plain text files to store your results.

	Create one file for each run of your experiment and automatically store at least the following information [206,209]:

	the algorithm name and all parameter settings of the algorithm,

	the relevant measurements, i.e., the logged data,

	the seed of the pseudo-random number generator used,

	information about the problem instance on which the algorithm was applied,

	short comments on how the above is to be interpreted,

	maybe information about the computer system your code runs on, maybe the Java version, etc., and

	maybe even your contact information. This way, you or someone else can, next year, or in ten years from now, read your results and get a clear understanding of what is what. Ask yourself: If I put my data on my website and someone else downloads it, does every single file contain sufficient information to understand its content?




	Store the files and the compiled binaries of your code in a self-explaining directory structure [206,209]. I prefer having a base folder with the binaries that also contains a folder results. results then contains one folder with a short descriptive name for each algorithm setup, which, in turn, contain one folder with the name of each problem instance. The problem instance folders then contain one text file per run. After you are done with all experiments and evaluation, such folders lend them self for compression, say in the tar.xz format, for long-term archiving.

	Write your code such that you can specify the random seeds. This allows to easily repeat selected runs or whole experiments. All random decisions of an algorithm depend on the random number generator (RNG). The seed (see point 2.iii above) is an initialization value of the RNG. If I initialize the (same) RNG with the same seed, it will produce the same sequence of random numbers. If I know the random seed used for an experiment, then I can start the same algorithm again with the same initialization of the RNG. Even if my optimization method is randomized, it will then make the same random decisions. In other words, you should be able to repeat the experiments in this book and get more or less identical results. There might be differences if Java changes the implementation of their RNG or if your computer is significantly faster or slower than mine, though.

	Ensure that all random seeds in your experiments are generated in a deterministic way in your code. This can be a proof that you did not perform cherry picking during your experiments, i.e., that you did not conduct 1000 runs and picked only the 101 where your newly-invented method works best. In other words, the seeds should come from a reproducible sequence, say the same random number generator, but seeded with the MD5 checksum of the instance name. This would also mean that two algorithms applied to the same instance have the same random seed and may therefore start at the same random point.

	Clearly document and comment your code. In particular, comment the contracts of each method such that you can properly verify them in unit tests. Never say I document the code when I am finished with my work. Because you won’t.

	Prepare your code from the very beginning as if you would like to put it on your website. Prepare it with the same care and diligence you want to see your name associated with.

	If you are conducting research work, consider to publish both your code and data online:

	For code, several free platforms such as GitHub or bitbucket exist. These platforms often integrate with free continuous integration platforms, which can automatically compile your code and run your unit tests when you make a change.

	For results, there, too, are free platforms such as zenodo. Using such online repositories also protects us from losing data. This is also a great way to show what you are capable of to potential employers…




	If your code depends on external libraries or frameworks, consider using an automated dependency management and build tool. For the code associated with this book, I use Apache Maven, which ensures that my code is compiled using the correct dependencies (e.g., the right JUnit version) and that the unit tests are executed on each built. If I or someone else wants to use the code later again, the chances are good that the build tool can find the same, right versions of all required libraries.



From the above, I think it should have become clear that reproducibility is nothing that we can consider after we have done the experiments. Hence, like the search for bugs, it is a problem we need to think about beforehand. Several of the above are basic suggestions which I found useful in my own work. Some of them are important points that are necessary for good research   and which sadly are never mentioned in any course.




4.2 Measuring Time

Let us investigate the question: What does good optimization algorithm performance mean? As a first approximation, we could state that an optimization algorithm performs well if it can solve the optimization problem to optimality. If two optimization algorithms can solve the problem, then we prefer the faster one. This brings us to the question what faster means. If we want to compare algorithms, we need a concept of time.


4.2.1 Clock Time

Of course, we already know a very well-understood concept of time. We use it every day: the clock time. In our experiments with the JSSP, we have measured the runtime mainly in terms of milliseconds that have passed on the clock as well.

Definition 32. The consumed clock time is the time that has passed since the optimization process was started.

This has several advantages:


	Clock time is a quantity which makes physical sense and which is intuitive clear to us.

	In applications, we often have well-defined computational budgets and thus need to know how much time our processes really need.

	Many research works report the consumed runtime, so there is a wide basis for comparisons.

	If you want to publish your own work, you should report the runtime that your implementation of your algorithm needs as well.

	If we measure the runtime of your algorithm implementation, it will include everything that the code you are executing does. If your code loads files, allocates data structures, or does complicated calculations – everything will be included in the measurement.

	If we can parallelize or even distribute our algorithms, clock time measurements still make sense.



But reporting the clock time consumed by an algorithm implementation also has disadvantages:


	The measured time strongly depends on your computer and system configuration. Runtimes measured on different machines or on different system setups are therefore inherently incomparable or, at least, it is easy to make mistakes here. Measured runtimes reported twenty years ago are basically useless now, unless they differ from current measurements very significantly, by orders of magnitudes.

	Runtime measurements also are measurements based on a given implementation, not algorithm. An algorithm implemented in the C programming language may perform very different compared to the very same algorithm implemented in Java. An algorithm implementation using a hash map to store and retrieve certain objects may perform entirely different from the same algorithm implemented using a sorted list. Hence, effort should be invested to create good implementations before measuring their consumed runtime and, very important, the same effort should be invested into all compared algorithms…

	Runtime measurements are not always very accurate. There may be many effects which can mess up our measurements, ranging from other processes being executed on the same system and slowing down our process, delays caused by swapping or paging, to shifts of CPU speeds due to dynamic CPU clocking.

	Runtime measurements are not very precise. Often, clocks have resolutions only down to a few milliseconds, and within even a millisecond many action can happen on today’s CPUs.



There exist ideas to mitigate the drawback that clock times are hard to compare [120,209]. For a specific optimization problem, one can clearly specify a simple standardized algorithm 𝐁\mathbf{B}, which always terminates in a relatively short time, say a simple heuristic. Before applying the algorithm 𝐀\mathbf{A} that we actually want to investigate to an instance ℐ\mathcal{I} of the problem, we first apply 𝐁\mathbf{B} to ℐ\mathcal{I} and measure the time T[𝐁|ℐ]T[\mathbf{B}|\mathcal{I}] it takes on our machine. We then can divide the runtime T[𝐀|ℐ]T[\mathbf{A}|\mathcal{I}] needed by 𝐀|ℐ\mathbf{A}|\mathcal{I} by T[𝐁|ℐ]T[\mathbf{B}|\mathcal{I}]. We can then hope that the resulting, normalized runtime is somewhat comparable across machines. Of course, this is a problem-specific approach, it does not solve the other problems with measuring runtime directly, and it likely will still not generalize over different computer architectures or programming languages.



4.2.2 Consumed Function Evaluations

Instead of measuring how many milliseconds our algorithm needs, we often want a more abstract measure. Another idea is to count the so-called (objective) function evaluations or FEs for short.

Definition 33. The consumed function evaluations (FEs) are the number of calls to the objective function issued since the beginning of the optimization process.

Performing one function evaluation means to take one point from the search space x∈𝕏x\in\mathbb{X}, map it to a candidate solution y∈𝕐y\in\mathbb{Y} by applying the representation mapping y=γ(x)y=\gamma(x) and then computing the quality of yy by evaluating the objective function f(y)f(y). Usually, the number of FEs is also equal to the number of search operations applied, which means that each FE includes one application of either a nullary, unary, or binary search operator. Counting the FEs instead of measuring time directly has the following advantages:


	FEs are completely machine- and implementation-independent and therefore can more easily be compared. If we re-implement an algorithm published 50 years ago, it should still consume the same number of FEs.

	Counting FEs is always accurate and precise, as there cannot be any outside effect or process influencing the measurement (because that would mean that an internal counter variable inside of our process is somehow altered artificially).

	Results in many works are reported based on FEs or in a format from which we can deduce the consumed FEs.

	If you want to publish your research work, you should probably report the consumed FEs as well.

	In many optimization processes, the steps included in an FE are the most time consuming ones. Then, the actual consumed runtime is proportional to the consumed FEs and performing more FEs roughly equals to needing more runtime.

	Measured FEs are something like an empirical, simplified version of algorithmic time complexity. FEs are inherently close to theoretical computer science, roughly equivalent to algorithm steps, which are the basis for theoretical runtime analysis. For example, researchers who are good at Mathematics can go an derive things like bounds for the expected number of FEs to solve a problem for certain problems and certain algorithms. Doing this with clock time would neither be possible nor make sense. But with FEs, it can sometimes be possible to compare experimental with theoretical results.



But measuring time in function evaluations also has some disadvantages, namely:


	There is no guaranteed relationship between FEs and real time.

	An algorithm may have hidden complexities which are not appearing in the FEs. For instance, an algorithm could necessitate a lengthy pre-processing procedure before sampling even the first point from the search space. This would not be visible in the FE counter, because, well, it is not an FE. The same holds for the selection step in an Evolutionary Algorithm (realized as sorting in Section 3.4.1.1). Although this is probably a very fast procedure, it will be outside of what we can measure with FEs.

	A big problem is that one function evaluation can have extremely different actual time requirements and algorithmic complexity in different algorithms. For instance, it is known that in a Traveling Salesman Problem (TSP) [8,94] with nn cities, some algorithms can create an evaluate a new candidate solution from an existing one within a constant number of steps, i.e., in 𝒪(1)\mathcal{O}(1), while others need a number of steps growing quadratically with nn, i.e., are in 𝒪(n2)\mathcal{O}(n^2) [209]. We observed this problem in the experiment with our EDA implementation for the JSSP in Section 3.8.5. FEs are fair time measures only if the algorithms that we compare have roughly the same time complexity per FE.

	Time measured in FEs is harder to comprehend in the context of parallelization and distribution of algorithms.



There exists an idea to mitigate the problem with the different per-FE complexities: counting algorithm steps in a problem-specific method with a higher resolution. In [209], for example, it was proposed to count the number of distance evaluations on the TSP and in [97], bit flips are counted on the MAX-SAT problem.



4.2.3 Do not count generations!

As discussed in Definition 24 in Section 3.4.1, a generation is one iteration of a population-based optimization method. At first glance, generations seem to be a machine-independent time measure much like FEs. However, measuring runtime in generations is a very bad thing to do.

In one such generation, multiple candidate solutions are generated and evaluated. How many? This depends on the population size settings, e.g., μ\mu and λ\lambda. So generations are not comparable across different population sizes.

Even more: if we use algorithm enhancements like clearing (see Section 3.4.5), then the number of new points sampled from the search space may be different in each generation. In other words, the number of consumed generations does not necessarily have a relationship to FEs (and neither to the actual consumed runtime). Therefore, counting FEs should always be preferred over counting generations.



4.2.4 Summary

Both ways of measuring time have advantages and disadvantages. If we are working on a practical application, then we would maybe prefer to evaluate our algorithm implementations based on the clock time they consume. When implementing a solution for scheduling jobs in an actual factory or for routing vehicles in an actual logistics scenario, what matters is the real, actual time that the operator needs to wait for the results. Whether these time measurements are valuable ten years from now or not plays no role. It also does not matter too much how much time our processes would need if executed on a hardware from what we have or if they were re-implemented in a different programming language.

If we are trying to develop a new algorithm in a research scenario, then may counting FEs is slightly more important. Here we aim to make our results comparable in the long term and we very likely need to compare with results published based on FEs. Another important point is that a black-box algorithm (or metaheuristic) usually makes very few assumptions about the actual problem to which it will be applied later. While we tried to solve the JSSP with our algorithms, you probably have seen that we could plug almost arbitrary other search and solution spaces, representation mappings, or objective functions into them. Thus, we often use artificial problems where FEs can be done very quickly as test problems for our algorithms, because then we can do many experiments. Measuring the runtime of algorithms solving artificial problems does not make that much sense, unless we are working on some algorithms that consume an unusual amount of time.

That being said, I personally prefer to measure both FEs and clock time. This way, we are on the safe side.




4.3 Performance Indicators

Unfortunately, many optimization problems are computationally hard. If we want to guarantee that we can solve them to optimality, this would often incur an unacceptably long runtime. Assume that an algorithm 𝐀\mathbf{A} can solve a problem instance in ten million years while algorithm 𝐁\mathbf{B} only needs one million. In a practical scenario, usually neither is useful nor acceptable and the fact that 𝐁\mathbf{B} is better than 𝐀\mathbf{A} would not matter.1

As mentioned in Section 1.2.1, heuristic and metaheuristic optimization algorithms offer a trade-off between runtime and solution quality. This means we have two measurable performance dimensions, namely:


	the time, possibly measured in different ways (see Section 4.2), and

	the solution quality, measured in terms of the best objective value achieved.



If we want to break down performance to single-valued performance indicators, this leads us to two possible choices [73,98], which are:


	the solution quality we can get within a pre-defined time and

	the time we need to reach a pre-defined solution quality.



We illustrate these two options, which corresponds to define vertical and horizontal cuts through the progress diagrams, respectively, in Figure 4.1.


[image: Figure 4.1: Illustration of the two basic forms to measure performance from raw data, based on a fraction of the actual experimental results illustrated in Figure 3.7 and inspired by [73,98].]Figure 4.1: Illustration of the two basic forms to measure performance from raw data, based on a fraction of the actual experimental results illustrated in Figure 3.7 and inspired by [73,98].


4.3.1 Vertical Cuts: Best Solution Quality Reached within Given Time

What we did in our simple experiments so far was mainly to focus on the quality that we could achieve within a certain time, i.e., to proceed according to the vertical cut scenario.

In a practical application, we have a limited computational budget and what counts is the quality of the solutions that we can produce within this budget. The vertical cuts correspond directly to this goal. When creating the final version of an actual implementation of an optimization method, we will have to focus on this measure. Since we then will also have to measure time in clock time, this means that our results will depend on the applied hardware and software configuration as well as on the way we implemented our algorithm, down to the choice of the programming language or even compiler. Of course, budgets based consumed clock time are hard to compare or reproduce [119].

The advantage of the vertical cut approach is that it can capture all of these issues, as well as performance gains from parallelization or distribution of the algorithms. Our results obtained with vertical cuts will, however not necessarily carry over to other system configurations or problems.

The vertical cuts approach is applied in quite a few competitions and research publications, including, for instance, [195].



4.3.2 Horizontal Cuts: Runtime Needed until Reaching a Solution of a Given Quality

The idea horizontal cuts corresponds to defining fixed goal qualities and measuring the runtime needed to get there. For a given problem instance, we would define the target solution quality at which we would consider the problem as solved. This could be a globally optimal quality or a threshold at which the user considers the solution quality as satisfying. This approach is preferred in [73,98] for benchmarking algorithms.

It has the advantage that the number of algorithm steps or seconds needed to solve the problem is a meaningful and interpretable quantity. We can then make statements such as Algorithm 𝐁\mathbf{B} is ten times faster than algorithm 𝐀\mathbf{A} [in solving this problem]. An improvement in the objective value, as we could measure in the vertical cut approach, has no such interpretable meaning, since we do not know whether it is hard or easy to, for instance, squeeze out 10 more time units of makespan in a JSSP instance.

The horizontal cuts idea is applied, for instance, in the COCO Framework for benchmarking numerical optimization algorithms [73,98].

One disadvantage of this method is that we cannot guarantee that a run will reach the specified goal quality. Maybe sometimes the algorithm will get trapped in a local optimum before that. This is also visible in Figure 4.1, where one of the runs did not reach the horizontal cut. How to interpret such a situation is harder.2 In the vertical cut scenario, all runs will always reach the pre-defined maximum runtimes, as long as we do not artificially abort them earlier, so we always have a full set of measurements.



4.3.3 Determining Goal Values

Regardless of whether we choose vertical or horizontal cuts through the progress diagrams as performance indicators, we will need to define corresponding target values. In some cases, e.g., in a practical application with fixed budgets and/or upper bounds for the acceptable solution quality, we may trivially know them as parts of the specified requirements. In other cases, we may:


	first conduct a set of smaller experiments and get an understand of time requirements or obtainable solution qualities,

	know reasonable defaults from experience,

	set goal objective values based on known lower bounds or even known global optima (e.g., from literature), or

	set them based on what is used in current literature.



Especially in a research setup, the latter is advised. Here, we need to run experiments that produce outputs which are comparable to what we can find in literature, so we need to have the same goal thresholds.



4.3.4 Summary

Despite its major use in research scenarios, the horizontal cut method can also make sense in practical applications. Remember that it is our goal to develop algorithms that can solve the optimization problems within the computational budget, where solve again means reaching a solution of a quality that the user can accept. If we fail to do so, then our software will probably be rejected. If we succeed, then the vertical view would allow us to distinguish algorithms which can over-achieve the user requirements. The horizontal view would allow us to distinguish algorithms which can achieve the user requirements earlier.

In my opinion, it makes sense to use both indicators. In [209,210,213], for example, we voted for defining a couple of horizontal and vertical cuts to describe the performance of algorithms solving the Traveling Salesman Problem. By using both horizontal and vertical cuts and measure runtime both in FEs and milliseconds, we can get a better understanding of the performance and behavior of our algorithms.

Finally, it should be noted that the goal thresholds for horizontal or vertical cuts can directly lead us to defining termination criteria (see Section 2.8).




4.4 Statistical Measures

Most of the optimization algorithms that we have discussed so far are randomized (Section 3.1.3). A randomized algorithm makes at least one random decision which is not a priori known or fixed. Such an algorithm can behave differently every time it is executed.

Definition 34. One independent application of one optimization algorithm to one instance of an optimization problem is called a run.

Each run is considered as independent and may thus lead to a different result. This also means that the measurements of the basic performance indicators discussed in Section 4.3 can take on different values as well. We may measure kk different result solution qualities at the end of kk times applications of the same algorithm to the same problem instance (which was also visible in Figure 4.1). In order to get a handy overview about what is going on, we often want to reduce this potentially large amount of information to a few, meaningful and easy-to-interpret values. These values are statistical measures. Of course, this here is neither a book about statistics nor probability, so we can only scratch on the surface of these topics. For better discussions, please refer to text books such as [127,172,186,194,196].


4.4.1 Statistical Samples vs. Probability Distributions

One issues we need to clarify first is that there is a difference between a probability distribution and data sample.

Definition 35. A probability distribution FF is an assignment of probabilities of occurrence to different possible outcomes in an experiment.

Definition 36. A random sample of length k≥1k\geq 1 is a set of kk independent observations of an experiment following a random distribution FF.

Definition 37. An observation is a measured outcome of an experiment or random variable.

The specification of an optimization algorithm together with its input data, i.e., the problem instance to which it is applied, defines a probability distribution over the possible values a basic performance indicator takes on. If I would possess sufficient mathematical wisdom, I could develop a mathematical formula for the probability of every possible makespan that the 1-swap hill climber hc_1swap without restarts could produce on the swv15 JSSP instance within 100’000 FEs. I could say something like: With 4% probability, we will find a Gantt chart with a makespan of 2885 time units within 100’000 FEs (by applying hc_1swap to swv15. With sufficient mathematical skills, I could define such probability distributions for all algorithms. Then, I would know absolutely which algorithm will be the best for which problem.

However, I do not possess such skill and, so far, nobody seems to possess. Despite significant advances in modeling and deriving statistical properties of algorithms for various optimization problems, we are not yet at a point where we can get deep and complete information for most of the relevant problems and algorithms.

We cannot obtain the actual probability distributions describing the results. We can, however, try to estimate their parameters by running experiments and measuring results, i.e., by sampling the results.



Table 4.1: The results of one possible outcome of an experiment with several simulated dice throws. The number # throws and the thrown number are given in the first two columns, whereas the relative frequency of occurrence of number ii is given in the columns fif_i.


	# throws
	number
	f1f_1
	f2f_2
	f3f_3
	f4f_4
	f5f_5
	f6f_6





	1
	5
	0.0000
	0.0000
	0.0000
	0.0000
	1.0000
	0.0000



	2
	4
	0.0000
	0.0000
	0.0000
	0.5000
	0.5000
	0.0000



	3
	1
	0.3333
	0.0000
	0.0000
	0.3333
	0.3333
	0.0000



	4
	4
	0.2500
	0.0000
	0.0000
	0.5000
	0.2500
	0.0000



	5
	3
	0.2000
	0.0000
	0.2000
	0.4000
	0.2000
	0.0000



	6
	3
	0.1667
	0.0000
	0.3333
	0.3333
	0.1667
	0.0000



	7
	2
	0.1429
	0.1429
	0.2857
	0.2857
	0.1429
	0.0000



	8
	1
	0.2500
	0.1250
	0.2500
	0.2500
	0.1250
	0.0000



	9
	4
	0.2222
	0.1111
	0.2222
	0.3333
	0.1111
	0.0000



	10
	2
	0.2000
	0.2000
	0.2000
	0.3000
	0.1000
	0.0000



	11
	6
	0.1818
	0.1818
	0.1818
	0.2727
	0.0909
	0.0909



	12
	3
	0.1667
	0.1667
	0.2500
	0.2500
	0.0833
	0.0833



	100
	…
	0.1900
	0.2100
	0.1500
	0.1600
	0.1200
	0.1700



	1’000
	…
	0.1700
	0.1670
	0.1620
	0.1670
	0.1570
	0.1770



	10’000
	…
	0.1682
	0.1699
	0.1680
	0.1661
	0.1655
	0.1623



	100’000
	…
	0.1671
	0.1649
	0.1664
	0.1676
	0.1668
	0.1672



	1’000’000
	…
	0.1673
	0.1663
	0.1662
	0.1673
	0.1666
	0.1664



	10’000’000
	…
	0.1667
	0.1667
	0.1666
	0.1668
	0.1667
	0.1665



	100’000’000
	…
	0.1667
	0.1666
	0.1666
	0.1667
	0.1667
	0.1667



	1’000’000’000
	…
	0.1667
	0.1667
	0.1667
	0.1667
	0.1667
	0.1667







Think about throwing an ideal dice. Each number from one to six has the same probability to occur, i.e., the probability 16=0.1666¯\frac{1}{6}=0.166\overline{6}. If we throw a dice a single time, we will get one number. If we throw it twice, we see two numbers. Let fif_i be the relative frequency of each number in k=#throwsk=\text{\# throws} of the dice, i.e., fi=number of times we got ikf_i=\frac{\text{number of times we got }i}{k}. The more often we throw the dice, the more similar should fif_i get to 16\frac{1}{6}, as illustrated in Table 4.1 for a simulated experiments with of many dice throws.

As can be seen in Table 4.1, the first ten or so dice throws tell us very little about the actual probability of each result. However, when we throw the dice many times, the observed relative frequencies become more similar to what we expect. This is called the Law of Large Numbers – and it holds for the application of optimization algorithms too.

There are two take-away messages from this section:


	It is never enough to just apply an optimization algorithm once or twice to a problem instance to get a good impression of a performance indicator. It is a good rule of thumb to always perform at least 20 independent runs. In our experiments on the JSSP, for instance, we did 101 runs per problem instance.


	We can estimate the performance indicators of our algorithms or their implementations via experiments, but we do not know their true value.






4.4.2 Averages: Arithmetic Mean vs. Median

Assume that we have obtained a sample A=(a0,a1,…,an−1)A=(a_{0},a_{1}, \ldots, a_{n-1}) of nn observations from an experiment, e.g., we have measured the quality of the best discovered solutions of 101 independent runs of an optimization algorithm. We usually want to get reduce this set of numbers to a single value which can give us an impression of what the average outcome (or result quality) is. Two of the most common options for doing so, for estimating the center of a distribution, are to either compute the arithmetic mean or the median.


4.4.2.1 Mean and Median

Definition 38. The arithmetic mean mean(A)\textrm{mean}(A) is an estimate of the expected value of a data sample A=(a0,a1,…,an−1)A=(a_{0},a_{1}, \ldots, a_{n-1}). It is computed as the sum of all nn elements aia_{i} in the sample data AA divided by the total number nn of values.

mean(A)=1n∑i=0n−1ai \textrm{mean}(A) = \frac{1}{n} \sum_{i=0}^{n-1} a_{i} 

Definition 39. The median med(A)\textrm{med}(A) is the value separating the bigger half from the lower half of a data sample or distribution. It is the value right in the middle of a sorted data sample A=(a0,a1,…,an−1)A=(a_{0},a_{1}, \ldots, a_{n-1}) where ai−1≤ai∀i∈1…(n−1)a_{i-1}\leq a_{i} \; \forall i \in 1\ldots(n-1).

med(A)={an−12if n is odd12(an2−1+an2)otherwiseif ai−1≤ai∀i∈1…(n−1)(4.1) \textrm{med}(A) = \left\{\begin{array}{ll}
a_{\frac{n-1}{2}} & \text{if }n\text{ is odd}\\
\frac{1}{2}\left(a_{\frac{n}{2}-1} + a_{\frac{n}{2}}\right) & \text{otherwise}
\end{array}\right. \quad \text{if~}a_{i-1}\leq a_{i} \; \forall i \in 1\ldots(n-1) \qquad(4.1)

Notice the zero-based indices in our formula, i.e., the data samples AA start with a0a_{0}. Of course, any data sample can be transformed to a sorted data sample fulfilling the above constraints by, well, sorting it.

We may now ask: Why are we considering two measures of the average, the arithmetic mean and the median? Which one is better? Which one should I take?

This question is actually hard to answer. It very much depends on your application. In particular, it depends very much on the question of whether or not your data might contain outliers and ‐ very important – what could cause these outliers?



4.4.2.2 Outliers and Skewed Distributions

Let us consider two example data sets AA and BB, both with nA=nB=19n_A=n_B=19 values, only differing in their largest observation:


	A=(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,14)A=(1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

	B=(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10′008)B=(1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10'008)



We find that:


	mean(A)=119∑i=018ai=13319=7\textrm{mean}(A)=\frac{1}{19}\sum_{i=0}^{18} a_{i} = \frac{133}{19} = 7 and

	mean(B)=119∑i=018bi=1012719=553\textrm{mean}(B)=\frac{1}{19}\sum_{i=0}^{18} b_{i} = \frac{10127}{19} = 553, while

	med(A)=a9=6\textrm{med}(A)=a_{9} = 6 and

	med(B)=b9=6\textrm{med}(B)=b_{9} = 6.



The value b18=10′008b_{18}=10'008 is an unusual value in BB. It is about three orders of magnitude larger than all other measurements. Its appearance has led to a complete change in the average computed based on the arithmetic mean in comparison to dataset AA, while it had no impact on the median.


[image: Figure 4.2: Illustrative example for outliers in our JSSP experiment: sometimes the first function evaluation takes unusually long, although this did not have an impact on the end result (clipping from Figure 3.4).]Figure 4.2: Illustrative example for outliers in our JSSP experiment: sometimes the first function evaluation takes unusually long, although this did not have an impact on the end result (clipping from Figure 3.4).

We often call such odd values outliers [93,139]. They sometimes may represent measurement errors or observations which have been been disturbed by unusual effects. In our experiments on the JSSP, for instance, some runs may perform unexpectedly few function evaluations, maybe due to scheduling issues. In Figure 4.2, this becomes visible in some cases where the first FE was delayed for some reason – while it would not be visible if somewhere during the run an unusual delay would occur. As a result, some runs might perform worse, because they receive fewer FEs.

So outliers have a big impact on the arithmetic mean and no influence on the median. What does that mean? Do we want our measure of average to be influenced by outliers or not?

This very much depends on the source of outliers. Let’s say you are a biologist and want to count ants per square meters of a lawn. There can be lots of totally uncontrollable factors that influence the outcome. Maybe an ant eater has passed through and ate all the ants of one the lawn cells and then left. Such factors are probably not what you are after. You would probably want a representative value and do not care about outliers very much. Then, you prefer statistical measures, which do not suffer too much from anomalies in the data. You would prefer the median.

For example, in [170] we find that the annual average income of all families in US grew by 1.2% per year from 1976 to 2007. This mean growth, however, is not distributed evenly, as the top-1% of income recipients had a 4.4% per-year growth while the bottom 99% could only improve by 0.6% per year. The arithmetic mean does not necessarily give an indicator of the range of the most likely observations to encounter. The median would show us that, for normal people, the income did not really grow significantly.

But there are also scenarios where outliers contain important information, e.g., represent some unusual side-effect in a clinical trial of a new medicine. Actually, in our domain – optimization – outliers will very often give us very important information! Think about it: When we measure the performance of an algorithm implementation, there are few possible sources of measurement errors apart from unusual scheduling delays and even these cannot occur if we measure runtime in FEs. If there are unusually behaving runs, then the most likely source is a bug in the algorithm implementation! If the cause is not a bug, then the second most likely source is that our algorithm has a bad worst case behavior. We do want to know this. Thus, we must check the arithmetic mean.

Let us take the MAX‑SAT problem, an 𝒩𝒫\mathcal{NP}‑hard problem. If we apply a local search algorithm to a set of different MAX‑SAT instances, it may well be that the algorithm requires exponential runtime on 25% of them while solving the others in polynomial time [111]! This would mean that if we consider only the median runtime, it would appear that we could solve an 𝒩𝒫\mathcal{NP}‑hard problem in polynomial time, as the median is not influenced by the worst 25% of the runs… In other words, our conclusion would be quite spectacular, but also quite wrong. The arithmetic mean is much more likely to be influenced by the long runs. From it, we could see that our algorithm, in average, still needs exponential time.

In optimization, the quality of good results is limited by the quality of the global optimum. Most reasonable algorithms will give us solutions not too far from it (but obviously never anything better). In such a case, the objective function appears almost unbounded towards worse solutions. The real upper bound of the objective function, i.e., the worst possible objective value, will normally be very far away from what the algorithm tends to deliver. This means that we may likely encounter algorithms that often give us very good results (close to the lower bound) but rarely also bad results, which can be far from the bound. Thus, the distribution of the final result quality might be skewed, too. Thinking that we will most often get results similar to the arithmetic mean might then be wrong.



4.4.2.3 Summary

Both the arithmetic mean and median carry useful information. The median tells us about values we are likely to encounter if we perform an experiment once and it is robust against outliers and unusual behaviors. The mean tells us about the average performance if we perform the experiment many times. If we try to solve 1000 problem instances, the overall time we will need will probably be similar to 1000 times the average time we observed in previous experiments. It also incorporates information about odd, rarely occurring situations while the median may ignore phenomena even if they occur in one third of the samples. If the outcome in such situations is bad, then it is good to have this information.

Today, the median is often preferred over the mean because it is a robust statistic. Actually, I myself often preferred it in the past. The fact that skewed distributions and outliers have little impact on it makes it very attractive to report average result qualities. There is no guarantee whatsoever that a solution of mean quality exists in an experiment.

However, the weakness of the arithmetic mean, i.e., the fact that every single measured value does have an impact on it, can also be its strength: If we have a bug in our algorithm implementation that only very rarely has an impact on the algorithm behavior and that only in these very few cases leads unexpectedly bad results, this will show up in the mean but not in the median. If our algorithm on a few problem instances needs particularly long to converge, we will see it in the mean but not in the median. For this reason, I now find the mean to be the more important metric.

But we do not need to decide which is better. I think there is no reason for us to limit ourselves to only one measure of the average. I suggest to report both, the median and the mean, to be on the safe side – as we did in our JSSP experiments. Indeed, the maybe best idea would be to consider both the mean and median value and then take the worst of the two. This should always provide a conservative and robust outlook on algorithm performance.




4.4.3 Spread: Standard Deviation vs. Quantiles

The average gives us a good impression about the central value or location of a distribution. It does not tell us much about the range of the data. We do not know whether the data we have measured is very similar to the median or whether it may differ very much from the mean. For this, we can compute a measure of dispersion, i.e., a value that tells us whether the observations are stretched and spread far or squeezed tight around the center.


4.4.3.1 Variance, Standard Deviation, and Quantiles

Definition 40. The variance is the expectation of the squared deviation of a random variable from its mean. The variance var(A)\textrm{var}(A) of a data sample A=(a0,a1,…,an−1)A=(a_{0},a_{1}, \ldots, a_{n-1}) with nn observations can be estimated as:

var(A)=1n−1∑i=0n−1(ai−mean(A))2 \textrm{var}(A) = \frac{1}{n-1} \sum_{i=0}^{n-1} \left(a_{i} - \textrm{mean}(A)\right)^2 

Definition 41. The statistical estimate sd(A)\textrm{sd}(A) of the standard deviation of a data sample A=(a0,a1,…,an−1)A=(a_{0},a_{1}, \ldots, a_{n-1}) with nn observations is the square root of the estimated variance var(A)\textrm{var}(A).

sd(A)=var(A) \textrm{sd}(A) = \sqrt{\textrm{var}(A)} 

Bigger standard deviations mean that the data tends to be spread farther from the mean. Smaller standard deviations mean that the data tends to be similar to the mean.

Small standard deviations of the result quality and runtimes are good features of optimization algorithms, as they indicate reliable performance. A big standard deviation of the result quality may be exploited by restarting the algorithm, if the algorithms converge early enough so sufficient computational budget is left over to run them a couple of times. We made use of this in Section 3.3.3 when developing the hill climber with restarts. Big standard deviations of the result quality together with long runtimes are bad, as they mean that the algorithms perform unreliable.

A problem with using standard deviations as measure of dispersion becomes visible when we notice that they are derived from and thus depend on the arithmetic mean. We already found that the mean is not a robust statistic and the median should be prefered over it whenever possible. Hence, we would like to see robust measures of dispersion as well.

Definition 42. The qq-quantiles are the cut points that divide a sorted data sample A=(a0,a1,…,an−1)A=(a_{0},a_{1}, \ldots, a_{n-1}) where ai−1≤ai∀i∈1…(n−1)a_{i-1}\leq a_{i} \; \forall i \in 1\ldots(n-1) into qq-equally sized parts.

quantileqk\textrm{quantile}^{k}_{q} be the kkth qq-quantile, with k∈1…(q−n)k\in 1\ldots(q-n), i.e., there are q−1q-1 of the qq-quantiles. The probability P[z<quantileqk]P\left[z < \textrm{quantile}^{k}_{q}\right] to make an observation zz which is smaller than the kkth qq-quantile should be less or equal than k/qk/q. The probability to encounter a sample which is less or equal to the quantile should be greater or equal to k/qk/q:

P[z<quantileqk]≤kq≤P[z≤quantileqk] P\left[z < \textrm{quantile}^{k}_{q}\right] \leq \frac{k}{q} \leq P\left[z \leq \textrm{quantile}^{k}_{q}\right] 

Quantiles are a generalization of the concept of the median, in that quantile21=med=quantile2ii∀i>0\textrm{quantile}^{1}_{2}=\textrm{med}=\textrm{quantile}^{i}_{2i}\forall i>0. There are actually several approaches to estimate quantiles from data. The R programming language widely used in statistics applies Equation 4.2 as default [19,115]. In an ideally-sized data sample, the number of elements minus 1, i.e., n−1n-1, would be a multiple of qq. In this case, the kkth cut point would directly be located at index h=(n−1)kqh=(n-1)\frac{k}{q}. Both in Equation 4.2 and in the formula for the median Equation 4.1, this is included the first of the two alternative options. Otherwise, both Equation 4.1 and Equation 4.2 interpolate linearly between the elements at the two closest indices, namely ⌊h⌋\lfloor h\rfloor and ⌊h⌋+1\lfloor h\rfloor + 1.

h=(n−1)kqquantileqk(A)={ahif h is integera⌊h⌋+(h−⌊h⌋)*(a⌊h⌋+1−a⌊h⌋)otherwise(4.2)\begin{array}{rcl}
h&=&(n-1)\frac{k}{q}\\ 
\textrm{quantile}^{k}_{q}(A) &=& \left\{\begin{array}{ll}
a_{h}&\text{if~}h\text{~is integer}\\
a_{\lfloor h\rfloor}+\left(h-\lfloor h\rfloor\right)*\left(a_{\lfloor h\rfloor+1}-a_{\lfloor h\rfloor}\right)&\text{otherwise}
\end{array}\right.\end{array} \qquad(4.2)

Quantiles are more robust against skewed distributions and outliers.

If we do not assume that the data sample is distributed symmetrically, it makes sense to describe the spreads both left and right from the median. A good impression can be obtained by using quantile41\textrm{quantile}^{1}_{4} and quantile43\textrm{quantile}^{3}_{4}, which are usually called the first and third quartile (while med=quantile42\textrm{med}=\textrm{quantile}^{2}_{4}).



4.4.3.2 Outliers

Let us look again at our previous example with the two data samples


	A=(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,14)A=(1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

	B=(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10008)B=(1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10008)



We find that:


	var(A)=119−1∑i=0n−1(ai−7)2=19818=11\textrm{var}(A)=\frac{1}{19-1} \sum_{i=0}^{n-1} \left(a_{i} - 7\right)^2 = \frac{198}{18}=11 and

	var(B)=119−1∑i=0n−1(bi−533)2=9476330618≈5264628.1\textrm{var}(B)=\frac{1}{19-1} \sum_{i=0}^{n-1} \left(b_{i} - 533\right)^2 = \frac{94763306}{18}\approx 5264628.1, meaning

	sd(A)=var(A)≈3.317\textrm{sd}(A)=\sqrt{\textrm{var}(A)} \approx 3.317 and

	sd(B)=var(B)≈2294.5\textrm{sd}(B)=\sqrt{\textrm{var}(B)} \approx 2294.5, while on the other hand

	quantile41(A)=quantile41(B)=4.5\textrm{quantile}^{1}_{4}(A)=\textrm{quantile}^{1}_{4}(B)=4.5 and

	quantile43(A)=quantile43(B)=9\textrm{quantile}^{3}_{4}(A)=\textrm{quantile}^{3}_{4}(B)=9.





4.4.3.3 Summary

There again two take-away messages from this section:


	An average measure without a measure of dispersion does not give us much information, as we do not know whether we can rely on getting results similar to the average or not.

	We can use quantiles to get a good understanding of the range of observations which is most likely to occur, as quantiles are more robust than standard deviations.



Many research works report standard deviations, though, so it makes sense to also report them – especially since there are probably more people who know what a standard deviation than who know the meaning of quantiles.

Nevertheless, there is one important issue: I often see reports of ranges in the form of [mean−sd,mean+sd][\textrm{mean}-\textrm{sd},\textrm{mean}+\textrm{sd}]. Handle these with extreme caution. In particular, before writing such ranges anywhere, it should be verified first whether the observations actually contain values less than or equal to mean−sd\textrm{mean}-\textrm{sd} and greater than or equal to mean+sd\textrm{mean}+\textrm{sd}. If we have a good optimization method which often finds globally optimal solutions, then distribution of discovered solution qualities is probably skewed towards the optimum with a heavy tail towards worse solutions. The mean of the returned objective values minus their standard deviation could be a value smaller than the optimal one, i.e., an invalid, non-existing objective value…





4.5 Testing for Significance

We can now e.g., perform 20 runs each with two different optimization algorithms 𝐀\mathbf{A} and 𝐁\mathbf{B} on one problem instance and compute the median of one of the two performance measures for each set of runs. Likely, they will be different. Actually, most the performance indicators in the result tables we looked at in our experiments on the JSSP were different. Almost always, one of the two algorithms will have better results. What does this mean?

It means that one of the two algorithms is better – with a certain probability. We could get the results we get either because 𝐀\mathbf{A} is really better than 𝐁\mathbf{B} or – as mentioned in Section 3.3.5.2 – by pure coincidence, as artifact from the randomness of our algorithms.

If we say 𝐀\mathbf{A} is better than 𝐁\mathbf{B} because this is what we saw in our experiments, we have a certain probability pp to be wrong. Strictly speaking, the statement 𝐀\mathbf{A} is better than 𝐁\mathbf{B} makes only sense if we can give an upper bound α\alpha for the error probability.

Assume that we compare two data samples A=(a0,a1,…,anA−1)A=(a_{0},a_{1}, \ldots, a_{n_A-1}) and B=(b0,b1,…,bnB−1)B=(b_{0},b_{1}, \ldots, b_{n_B-1}). We observe that the elements in AA tend to be bigger than those in BB, for instance, med(A)>med(B)\textrm{med}(A)>\textrm{med}(B). Of course, just claiming that the algorithm 𝐀\mathbf{A} from which the data sample AA stems tends to produce bigger results than 𝐁\mathbf{B} which has given us the observations in BB, we would run the risk of being wrong. Instead of doing this directly, we try to compute the probability pp that our conclusion is wrong. If pp is lower than a small threshold α\alpha, say, α=0.02\alpha=0.02, then we can accept the conclusion. Otherwise, the differences are not significant and we do not make the claim.


4.5.1 Example for the Underlying Idea (Binomial Test)

Let’s say I invited you to play a game of coin tossing. We flip a coin. If it shows up as heads, then you win 1 RMB and if it is tails, you give me 1 RMB instead. We play 160 times and I win 128 times, as illustrated in Figure 4.3.


[image: Figure 4.3: The results of our coin tossing game, where I win 128 times (red) and you only 32 times (green).]Figure 4.3: The results of our coin tossing game, where I win 128 times (red) and you only 32 times (green).

This situation makes you suspicious, as it seems unlikely to you that I would win four times as often as you with a fair coin. You wonder if I cheated on you, i.e., if used a fixed coin with a winning probability different from 0.5. So your hypothesis H1H_1 is that I cheated. Unfortunately, it is impossible to make any useful statement about my winning probability if I cheated apart from that it should be bigger than 0.5.

What you can do is use make the opposite hypothesis H0H_0: I did not cheat, the coin is fair and both of us have winning probability q=0.5q=0.5. Under this assumption you can compute the probability that I would win at least m=128m=128 times out of n=160n=160 coin tosses. Flipping a coin nn times is a Bernoulli process. The probability P[k|n]P[k|n] to win exactly kk times in nn coin tosses is then:

P[k|n]=(nk)qk(1−q)n−k=(nk)0.5k0.5n−k=(nk)0.5n=(nk)12n P[k|n] = \binom{n}{k} q^k (1-q)^{n-k} = \binom{n}{k} 0.5^k 0.5^{n-k} = \binom{n}{k} 0.5^n = \binom{n}{k} \frac{1}{2^n} 

where (nk)=n!k!(n−k)!\binom{n}{k}=\frac{n!}{k!(n-k)!} is the binomial coefficient nn over kk. Of course, if winning 128 times would be an indication of cheating, winning even more often would have been, too. Hence we compute the probability P[k≥m|n]P[k\geq m|n] for me to win at least mm times if we had played with a fair coin, which is:

P[k≥m|n]=∑k=mn(nk)12n=12n∑k=mn(nk) P[k\geq m|n] = \sum_{k=m}^n \binom{n}{k} \frac{1}{2^n} = \frac{1}{2^n} \sum_{k=m}^n \binom{n}{k} 

In our case, we get

P[k≥128|160]=12160∑k=128160(nk)=1′538′590′628′148′134′280′316′221′828′039′113365′375′409′332′725′729′550′921′208′179′070′754′913′983′135′744≈1.539*10333.654*1047≈0.00000000000000421098571≈4.211*10−15 \begin{array}{rcl}
P[k\geq 128|160] &=& \frac{1}{2^{160}} \sum_{k=128}^{160} \binom{n}{k}\\
&=&\frac{1'538'590'628'148'134'280'316'221'828'039'113}{365'375'409'332'725'729'550'921'208'179'070'754'913'983'135'744}\\
&\approx& \frac{1.539*10^{33}}{3.654*10^{47}}\\
&\approx& 0.00000000000000421098571\\
&\approx& 4.211 * 10^{-15}
\end{array} 

In other words, the chance that I would win that often in a fair game is very, very small. If you reject the hypothesis H0H_0, your probability p=P[k≥128|160]p=P[k\geq 128|160] to be wrong is, thus, very small as well. If you reject H0H_0 and accept H1H_1, pp would be your probability to be wrong. Normally, you would set yourself beforehand a limit α\alpha, say α=0.01\alpha=0.01 and if pp is less than that, you will risk accusing me. Since p≪αp \ll \alpha, you therefore can be confident to assume that the coin was fixed. The calculation that we performed here, actually, is called the binomial test.



4.5.2 The Concept of Many Statistical Tests

This is, roughly, how statistical tests work. We make a set of observations, for instance, we run experiments with two algorithms 𝐀\mathbf{A} and 𝐁\mathbf{B} on one problem instance and get two corresponding lists (AA and BB) of measurements of a performance indicator. The mean or median values of these lists will probably differ, i.e., one of the two methods will have performed better in average. Then again, it would be very unlikely to, say, apply two randomized algorithms to a problem instance, 100 times each, and get the same results. Matter of fact, it would be very unlikely to apply the same randomized algorithm to a problem instance 100 times and then again for another 100 times and get the same results again.

Still, our hypothesis H1H_1 could be Algorithm 𝐀\mathbf{A} is better than algorithm 𝐁\mathbf{B}. Unfortunately, if that is indeed true, we cannot really know how likely it would have been to get exactly the experimental results that we got. Instead, we define the null hypothesis H0H_0 that The performance of the two algorithms is the same, i.e., 𝐀≡𝐁\mathbf{A} \equiv \mathbf{B}. If that would have been the case, the the data samples AA and BB would stem from the same algorithm, would be observations of the same random variable, i.e., elements from the same population. If we combine AA and BB to a set OO, we can then wonder how likely it would be to draw two sets from OO that show the same characteristics as AA and BB. If the probability is high, then we cannot rule out that 𝐀≡𝐁\mathbf{A} \equiv \mathbf{B}. If the probability is low, say below α=0.02\alpha=0.02, then we can reject H0H_0 and confidently assume that H1H_1 is true and our observation was significant.



4.5.3 Second Example (Randomization Test)

Let us now consider a more concrete example. We want to compare two algorithms 𝐀\mathbf{A} and 𝐁\mathbf{B} on a given problem instance. We have conducted a small experiment and measured objective values of their final runs in a few runs in form of the two data sets AA and BB, respectively:


	A=(2,5,6,7,9,10)A = (2, 5, 6, 7, 9, 10) and

	B=(1,3,4,8)B = (1, 3, 4, 8)



From this, we can estimate the arithmetic means:


	mean(A)=396=6.5\textrm{mean}(A)=\frac{39}{6}=6.5 and

	mean(B)=164=4\textrm{mean}(B)=\frac{16}{4}=4.



It looks like algorithm 𝐁\mathbf{B} may produce the smaller objective values. But is this assumption justified based on the data we have? Is the difference between mean(A)\textrm{mean}(A) and mean(B)\textrm{mean}(B) significant at a threshold of α=2\alpha=2?

If 𝐁\mathbf{B} is truly better than 𝐀\mathbf{A}, which is our hypothesis H1H_1, then we cannot calculate anything. Let us therefore assume as null hypothesis H0H_0 the observed difference did just happen by chance and, well, 𝐀≡𝐁\mathbf{A} \equiv \mathbf{B}. Then, this would mean that the data samples AA and BB stem from the same algorithm (as 𝐀≡𝐁\mathbf{A} \equiv \mathbf{B}). The division into the two sets would only be artificial, an artifact of our experimental design. Instead of having two data samples, we only have one, namely the union set OO with 10 elements:


	O=A∪B=(1,2,3,4,5,6,7,8,9,10)O = A \cup B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)



Moreover, any division CC of OO into two sets A′A' and B′B' of sizes 6 and 4, respectively, would have had the same probability of occurrence. Maybe I had first taken all the measurements in AA and then those in BB afterwards. If I had first taken the measurements in BB and then those for AA, then I would have gotten B′=(2,5,6,7)B'=(2, 5, 6, 7) and A′=(9,10,1,3,4,8)A'=(9, 10, 1, 3, 4, 8). Since I could have taken the measurements in any possible way, if H0H_0 is true, any division of OO into AA and BB could have happened – and I happened to get one particular division just by pure chance. If H0H_0 is true, then the outcome that we observed should not be very unlikely, not very surprising. If the observation that mean(A)−mean(B)≥2.5\textrm{mean}(A)-\textrm{mean}(B)\geq 2.5 would, however, have a very low probability to occur under H0H_0, then we can probably reject it.

From high school combinatorics, we know that there are (104)=210\binom{10}{4}=210 different ways of drawing 4 elements from OO. Whenever we draw 4 elements from OO to form a potential set B′B'. This leaves the remaining 6 elements for a potential set A′A', meaning (106)=210\binom{10}{6}=210 as well. Any of these 210 possible divisions of OO would have had the same probability to occur in our experiment – if H0H_0 holds.

If we enumerate all possible divisions with the small program Listing 4.1, we find that there are exactly 27 of them which lead to a set B′B' with mean(B′)≤4\textrm{mean}(B')\leq 4. This, of course, means that in exactly these 27 divisions, mean(A′)≥6.5\textrm{mean}(A')\geq 6.5, because A′A' contains the numbers which are not in B′B'.


Listing 4.1: An excerpt of a simple program enumerating all different four-element subsets of OO and counting how many have a mean at last as extreme as 6.5. (src)

// how often did we find a mean <= 4?
    int meanLowerOrEqualTo4 = 0;
// total number of tested combinations
    int totalCombinations = 0;
// enumerate all sets of four different numbers from 1..10
    for (int i = 10; i > 0; i--) { // as O = numbers from 1 to 10
      for (int j = (i - 1); j > 0; j--) { // we can iterate over
        for (int k = (j - 1); k > 0; k--) { // the sets of size 4
          for (int l = (k - 1); l > 0; l--) { // with 4 loops
            if (((i + j + k + l) / 4.0) <= 4) {
              meanLowerOrEqualTo4++;// yes, found an extreme case
            } // count the extreme case
            totalCombinations++; // add up combos, to verify
          }
        }
      }
    }
// print the result: 27 210
    System.out.println(
        meanLowerOrEqualTo4 + " " + totalCombinations);




If H0H_0 holds, there would have been a probability of p=27210=970≈0.1286p=\frac{27}{210}=\frac{9}{70}\approx 0.1286 that we would see arithmetic mean performances as extreme as we did. If we would reject H0H_0 and instead claim that H1H_1 is true, i.e., algorithm 𝐁\mathbf{B} is better than 𝐀\mathbf{A}, then we have a 13% chance of being wrong. Since this is more than our pre-defined significance threshold of α=0.02\alpha=0.02, we cannot reject H0H_0. Based on the little data we collected, we cannot be sure whether algorithm 𝐁\mathbf{B} is better or not.

While we cannot reject H0H_0, this does not mean that it might not be true – actually, the pp-value is just 13%. H0H_0 may or may not be true, and the same holds for H1H_1. We just do not have enough experimental evidence to reach a conclusion. Thus, we need to be conservative, which here means to not reject H0H_0 and not accept H1H_1.

This here just was an example for a Randomization Test [28,69]. It exemplifies how many statistical (non-parametric) tests work.

The number of all possible divisions the joint sets OO of measurements grows very quickly with the size of OO. In our experiments, where we always conducted 101 runs per experiment, we would already need to enumerate (202101)≈3.6*1059\binom{202}{101} \approx 3.6*10^{59} possible divisions when comparing two sets of results. This, of course, is not possible. Hence, practically relevant tests avoid this by applying clever mathematical tricks.



4.5.4 Parametric vs. Non-Parametric Tests

There are two types of tests: parametric and non-parametric tests. The so-called parametric tests assume that the data follows certain distributions. Examples for parametric tests [32] include the tt‑test, which assumes normal distribution. This means that if our observations follow the normal distribution, then we cannot apply the tt‑test. Since we often do not know which distribution our results follow, we should not apply the tt‑test. In general, if we are not 100% sure that our data fulfills the requirements of the tests, we should not apply the tests. Hence, we are on the safe side if we do not use parametric tests.

Non-Parametric tests, on the other hand, are more robust in that make very few assumptions about the distributions behind the data. Examples include


	the Wilcoxon rank sum test with continuity correction (also called Mann-Whitney U test [16,110,140,186],

	Fisher’s Exact Test [75],

	the Sign Test [95,186],

	the Randomization Test [28,69], and

	Wilcoxon’s Signed Rank Test [221].



They tend to work similar to the examples given above. When comparing optimization methods, we should always apply non-parametric tests.

The most suitable test in many cases is the above-mentioned Mann-Whitney U test. Here, the hypothesis H1H_1 is that one of the two distributions 𝐀\mathbf{A} and 𝐁\mathbf{B} producing the two measured data samples AA and BB, which are compared by the test, tends to produce larger or smaller values than the other. The null hypothesis H0H_0 would be that this is not true and it can be rejected if the computed pp-values are small. Doing this test manually is quite complicated and describing it is beyond the scope of this book. Luckily, it is implemented in many tools, e.g., as the function wilcox.test in the R programming language, where you can simply feed it with two lists of numbers and it returns the pp-value.

Good significance thresholds α\alpha are 0.02 or 0.01.



4.5.5 Performing Multiple Tests

We do not just compare two algorithms on a single problem instance. Instead, we may have multiple algorithms and several problem instances. In this case, we need to perform multiple comparisons and thus apply N>1N>1 statistical tests. Before we begin this procedure, we will define a significance threshold α\alpha, say 0.01. In each single test, we check one hypothesis, e.g., this algorithm is better than that one and estimate a certain probability pp to err. If p<αp<\alpha, we can accept the hypothesis.

However, with N>1N>1 tests at a significance level α\alpha each, our overall probability to accept at least one wrong hypothesis is not α\alpha. In each of the NN test, the probability to err is α\alpha and the probability to be right is 1−α1-\alpha. The chance to always be right is therefore (1−α)N(1-\alpha)^N and the chance to accept at least one wrong hypothesis becomes

P[error|α]=1−(1−α)N P[\text{error}|\alpha]=1-(1-\alpha)^N 

For N=100N=100 comparisons and α=0.01\alpha=0.01 we already arrive at P[error|α]≈0.63P[\text{error}|\alpha]\approx 0.63, i.e., are very likely to accept at least one conclusion. One hundred comparisons is not an unlikely situation: Many benchmark problem sets contain at 100 instances or more. One comparison of two algorithms on each instance means that N=100N=100. Also, we often compare more than two algorithms. For kk algorithms on a single problem instance, we would already have N=k(k−1)/2N=k(k-1)/2 pairwise comparisons.

In all cases with N>1N>1, we therefore need to use an adjusted significance level α′\alpha' in order to ensure that the overall probability to make wrong conclusions stays below α\alpha. The most conservative – and therefore my favorite – way to do so is to apply the Bonferroni correction [67]. It defines:

α′=α/N \alpha' = \alpha/N 

If we use α′\alpha' as significance level in each of the NN tests, we can ensure that the resulting probability to accept at least one wrong hypothesis P[error|α′]≤αP[\text{error}|\alpha']\leq \alpha, as illustrated in Figure 4.4.


[image: Figure 4.4: The probability P[\text{error}|\alpha] of accepting at least one wrong hypothesis when applying an unchanged significance level \alpha in N tests (left axis) versus similar – and almost constant – P[\text{error}|\alpha'] when using corrected value \alpha'=\alpha/N instead (both right axis), for \alpha=0.01.]Figure 4.4: The probability P[error|α]P[\text{error}|\alpha] of accepting at least one wrong hypothesis when applying an unchanged significance level α\alpha in NN tests (left axis) versus similar – and almost constant – P[error|α′]P[\text{error}|\alpha'] when using corrected value α′=α/N\alpha'=\alpha/N instead (both right axis), for α=0.01\alpha=0.01.




4.6 Comparing Algorithm Behaviors: Processes over Time

We already discussed that optimization algorithm performance has two dimensions: the required runtime and the solution quality we can get. However, this is not all. Many optimization algorithms are anytime algorithms. In Section 3.1.1 and in our experiments we have learned that they attempt to improve their solutions incrementally. The performance of an algorithm on a given problem instance is thus not a single point in the two-dimensional time vs. quality-space. It is a curve. We have plotted several diagrams illustrating exactly this, the progress of algorithms over time, in our JSSP experiments in Section 3. However, in all of our previous discussions, we have ignored this fact and concentrated on computing statistics and comparing end results.

Is this a problem? In my opinon, yes. In a practical application, like in our example scenario of the JSSP, we have a clear computational budget. If this is exhausted, we have an end result.

However, in research, this is not actually true. If we develop a new algorithm or tackle a new problem in a research setup, we do not necessarily have an industry partner who wants to directly apply our results. This is not the job of research, the job of research is to find new methods and concepts that are promising, from which concrete practical applications may arise later. As researchers, we therefore do often not have a concrete application scenario. We therefore need to find results which should be valid in a wide variety of scenarios defined by the people who later use our research.

This means we do not have a computational budget fixed due to constraints arising from an application. Anytime optimization algorithms, such as metaheuristics, do usually not guarantee that they will find the global optimum. Often we cannot determine whether the current best solution is a global optimum or not either. This means that such algorithms do not have a natural end point – we could let them run forever. Instead, we define termination criteria that we deem reasonable.


4.6.1 Why reporting only end results is bad.

As a result, many publications only provide statistics about the results they have measured at these self-selected termination criteria in form of tables in their papers. When doing so, the imaginary situation illustrated in Figure 4.5 could occur.


[image: Figure 4.5: “End results” experiments with algorithms versus how the algorithms could actually have performed.]Figure 4.5: End results experiments with algorithms versus how the algorithms could actually have performed.

Here, three imaginary researchers have applied three imaginary algorithms to an imaginary problem instance. Independently, they have chosen three different computational budgets and report the median end results of their algorithms. From the diagram on the left-hand side, it looks as if we have three incomparable algorithms. Algorithm 𝐂\mathbf{C} needs a long time, but provides the best median result quality. Algorithm 𝐁\mathbf{B} is faster, but we pay for it by getting worse results. Finally, algorithm 𝐀\mathbf{A} is the fastest, but has the worst median result quality. We could conclude that, if we would have much time, we would choose algorithm 𝐂\mathbf{C} while for small computational budgets, algorithm 𝐀\mathbf{A} looks best.

In reality, the actual course of the optimization algorithms could have looked as illustrated in the diagram on the right-hand side. Here, we find that algorithm 𝐂\mathbf{C} is always better than algorithm 𝐁\mathbf{B}, which, in turn, is always better than algorithm 𝐀\mathbf{A}. However, we cannot get this information as only the end results were reported.

Takeaway-message: Analyzing end results is normally not enough, you need to analyze the whole algorithm behavior [209,213,214].



4.6.2 Progress Plots

We, too, provide tables for the average achieved result qualities in our JSSP examples. However, we always provide diagrams that illustrate the progress of our algorithms over time, too. Visualizations of the algorithm behavior over runtime can provide us important information.


[image: Figure 4.6: Different algorithms may perform best at different points in time.]Figure 4.6: Different algorithms may perform best at different points in time.

Figure 4.6, for instance, illustrates a scenario where the best algorithm to choose depends on the available computational budget. Initially, an algorithm 𝐁\mathbf{B} produces the better median solution quality. Eventually, it is overtaken by another algorithm 𝐀\mathbf{A}, which initially is slower but converges to better results later on. Such a scenario would be invisible if only results for one of the two computational budgets are provided.

Hence, such progress diagrams thus cannot only tell us which algorithms to choose in an actual application scenario later on, where an exact computational budget is defined. During our research, they can also tell us if it makes sense to, e.g., restart our algorithms. If the algorithm does not improve early on but we have time left, a restarting may be helpful – which is what we did for the hill climbing algorithm in Section 3.3.3, for instance.








	From a research perspective, it does matter, though.↩︎


	This can be done by assuming that the algorithms would be restarted after consuming certain FEs, but this will be subject to another section (not yet written).↩︎







5 Why is optimization difficult?

So far, we have learned quite a lot of optimization algorithms. These algorithms have different strengths and weaknesses. We have gathered some experience in solving optimization problems. Some optimization problems are hard to solve, some are easy. Actually, sometimes there are instances of the same problem that are harder than others. It is natural to ask what makes an optimization problem hard for a given algorithm. It is natural to ask Why is optimization difficult? [208,216]


5.1 Premature Convergence

Definition 43. An optimization process has converged if it cannot reach new candidate solutions anymore or if it keeps on producing candidate solutions from a small subset of the solution space 𝕐\mathbb{Y}.

One of the problems in global optimization is that it is often not possible to determine whether the best solution currently known is situated on local or a global optimum and thus, if convergence is acceptable. We often cannot even know if the current best solution is a local optimum or not. In other words, it is usually not clear whether the optimization process can be stopped, whether it should concentrate on refining the current best solution, or whether it should examine other parts of the search space instead. This can, of course, only become cumbersome if there are multiple (local) optima, i.e., the problem is multi-modal.

Definition 44. An optimization problem is multi-modal if it has more than one local optimum [53,113,167,181].

The existence of multiple global optima (which, by definition, are also local optima) itself is not problematic and the discovery of only a subset of them can still be considered as successful in many cases. The occurrence of numerous local optima, however, is more complicated, as the phenomenon of premature convergence can occur.


5.1.1 The Problem: Convergence to a Local Optimum

Definition 45. Convergence to a local optimum is called premature convergence ([208,216], see also Definition 23).


[image: Figure 5.1: An example for how a hill climber from Section 3.3 could get trapped in a local optimum when minimizing over a one-dimensional, real-valued search space.]Figure 5.1: An example for how a hill climber from Section 3.3 could get trapped in a local optimum when minimizing over a one-dimensional, real-valued search space.

Figure 5.1 illustrates how a simple hill climber as introduced in Section 3.3 could get trapped in a local optimum. In the example, we assume that we have a sub-range of the real numbers as one-dimensional search space and try to minimize a multi-model objective function. There are more than three optima in the figure, but only one of them is the global minimum. The optimization process, however, discovers the basin of attraction of one of the local optima first.

Definition 46. As basin of attraction of a local optimum, we can loosely define the set of points in the search space where applications of the search operator that yield improvements in objective value are likely to guide an optimization process towards the optimum.

Once the hill climber has traced deep enough into this hole, all the new solutions it can produce are higher on the walls around the local optimum and will thus be rejected (illustrated in gray color). The algorithm has prematurely converged.



5.1.2 Countermeasures

What can we do to prevent premature convergence? Actually, we already learned a wide set of techniques! Many of them boil down to balancing exploitation and exploration, as already discovered back in Section 3.4.1.4.


5.1.2.1 Restarts

The first method we learned is to simple restart the algorithm if the optimization process did not improve for a long time, as we did, for instance, with the hill climber in Section 3.3.3. This can help us to exploit the variance in the end solution quality, but whether it can work strongly depends on the number of local optima and the relative size of their basins of attraction. Assume that we have an objective function with ss optima and that one of which is the global optimum. Further assume that the basins of attraction of all optima have the same size and are uniformly distributed over the search space. One would then expect that we need to restart an hill climber about ss times in average to discover the global optimum. Unfortunately, there are problems where the number of optima grows exponentially with the dimension of the search space [72], so restarts alone will often not help us to discover the global optimum. This is also what we found in Section 3.3.3: While restarting the hill climber improved its solution quality, we did not discover any globally optimal schedule. Indeed, we did not even prematurely converge to the better local optima.



5.1.2.2 Search Operator Design

To a certain degree we can also combat premature convergence by designing search operators that induce a larger neighborhood. We introduced the nswap operator for our hill climber in Section 3.3.4.2 in such a way that it, most of the time, behaves similar to the original 1swap operator. Sometimes, however, it can make a larger move. A hill climber using this operator will always have a non-zero probability from escaping a local optimum. This would require that the nswap operator makes a step large enough to leave the basin of attraction of the local optimum that it is trapped in and that the result of this step is better than the current local optimum. However, nswap also can swap three jobs in the job sequence, which is a relatively small change but still something that 1swap cannot do. This happens much more likely and may help in cases where the optimization process is already at a solution which is locally optimal from the perspective of the 1swap operator but could be improved by, say, swapping three jobs at once. This latter scenario is more likely and larger neighborhoods take longer to be explored, which further decreases the speed of convergence. Nevertheless, a search operator whose neighborhood spans the entire search space could still sometimes help to escape local optima, especially during early stages of the search, where the optimization process did not yet trace down to the bottom of a really good local optimum.



5.1.2.3 Investigating Multiple Points in the Search Space at Once

With the Evolutionary Algorithms in Section 3.4, we attempted yet another approach. The population, i.e., the μ\mu solutions that an (μ+λ)(\mu+\lambda) EA preserves, also guard against premature convergence. While a local search might always fall into the same local optimum if it has a large-enough basin of attraction, an EA that preserves a sufficiently large set of diverse points from the search space may find a better solution. If we consider using a population, say in a (μ+λ)(\mu+\lambda) EA, we need to think about its size. Clearly, a very small population will render the performance of the EA similar to a hill climber: it will be fast, but might converge to a local optimum. A large population, say big μ\mu and λ\lambda values, will increase the chance of eventually finding a better solution. This comes at the cost that every single solution is investigated more slowly: In a (1+1)(1+1)-EA, every single function evaluation is spent on improving the current best solution (as it is a hill climber). In a (2+1)(2+1)-EA, we preserve two solutions and, in average, the neighborhood of each of them is investigated by creating a modified copy only every second FE, and so on. We sacrifice speed for a higher chance of getting better results. Populations mark a trade-off.



5.1.2.4 Diversity Preservation

If we have already chosen to use a population of solutions, as mentioned in the previous section, we can add measures to preserve the diversity of solutions in it. Of course, a population is only useful if it consists of different elements. A population that has collapsed to only include copies of the same point from the search space is not better than performing hill climbing and preserving only that one single current best solution. In other words, only that part of the μ\mu elements of the population is effective that contains different points in the search space. Several techniques have been developed to increase and preserve the diversity in the population [48,184,189], including:


	Sharing and Niching [50,109,179] are techniques that decrease the fitness of a solution if it is similar to the other solutions in the population. In other words, if solutions are similar, their chance to survive is decreased and different solutions, which are worse from the perspective of the objective function, can remain in the population.

	Clearing [161,162] takes this idea one step further and only allows the best solution within a certain radius survive. We plugged a variant of this idea with radius 0 into an Evolutionary Algorithm in Section 3.4.4 and found that it indeed improves the performance.





5.1.2.5 Sometimes Accepting Worse Solutions

Another approach to escape from local optima is to sometimes accept worse solutions. This is a softer approach than performing full restarts. It allows the search to retain some information about the optimization, whereas a hard restart discards all knowledge gathered so far. Examples for the idea of sometimes moving towards worse solutions include:


	When the Simulated Annealing algorithm (Section 3.5) creates a new solution by applying the unary operator to its current point in the search space, it will make the new point current if it is better. If the new point is worse, however, it may still move to this point with a certain probability. This allows the algorithm to escape local optima.

	Evolutionary Algorithms do not always have to apply the strict truncation selection scheme "(μ+λ)(\mu+\lambda) that we introduced in Section 3.4. There exist alternative methods, such as

	(μ,λ)(\mu,\lambda) population strategies, where the μ\mu current best solutions are always disposed and replaced by the μ\mu best ones the λ\lambda newly sampled points in the search space.

	When the EAs we have discussed so far have to select some solutions from a given population, they always pick those with the best objective value. This is actually not necessary. Actually, there exists a wide variety of different selection methods [26,85] such as Tournament selection [26,29], Ranking Selection [12,29], or the (discouraged! [26,55,218]) fitness-proportionate selection [53,85,109] may also select worse candidate solutions with a certain probability.










5.2 Ruggedness and Weak Causality

All the optimization algorithms we have discussed utilize memory in one form or another. The hill climbers remember the best-so-far point in the search space. Evolutionary algorithms even remember a set of multiple such points, called the population. We do this because we expect that the optimization problem exhibits causality: Small changes to a candidate solution will lead to small changes in its utility (see Definition 21 in Section 3.3). If this is true, than we are more likely to discover a great solution in the neighborhood of a good solution than in the neighborhood of a solution with bad corresponding objective value. But what if the causality is weak?


5.2.1 The Problem: Ruggedness


[image: Figure 5.2: An illustration of problems exhibiting increasing ruggedness (from left to right).]Figure 5.2: An illustration of problems exhibiting increasing ruggedness (from left to right).

Figure 5.2 illustrates different problems with increasing ruggedness of the objective function. Obviously, unimodal problems, which only have a single optimum, are the easiest to solve. Multi-modal problems (Definition 44) are harder, but the difficulty steeply increases if the objective function gets rugged, i.e., rises and falls quickly. Ruggedness has detrimental effects on the performance because it de-values the use of memory in optimization. Under a highly rugged objective function, there is little relationship between the objective values of a given solution and its neighbors. Remembering and investigating the neighborhood of the best-so-far solution will then not be more promising than remembering any other solution or, in the worst case, simply conducting random sampling.

Moderately rugged landscapes already pose a problem, too, because they will have many local optima. Then, techniques like restarting local searches will become less successful, because each restarted search will likely again end up in a local optimum.



5.2.2 Countermeasures


5.2.2.1 Hybridization with Local Search


[image: Figure 5.3: An illustration of how the objective functions from Figure 5.2 would look like from the perspective of a Memetic Algorithm: The local search traces down into local optima and the MA hence only “sees” the objective values of optima [220].]Figure 5.3: An illustration of how the objective functions from Figure 5.2 would look like from the perspective of a Memetic Algorithm: The local search traces down into local optima and the MA hence only sees the objective values of optima [220].

It has been suggested that combining global and local search can mitigate the effects of ruggedness to some degree [220]. There are two options for this:

Memetic Algorithms or Lamarckian Evolution (see Section 3.7): Here, the hosting global optimization method, say an evolutionary algorithm, samples new points from the search space. It could create them randomly or obtain them as result of a binary search operator. These points are then the starting points of local searches. The result of the local search is then entered into the population. Since the result of a local search is a local optimum, this means that the EA actually only sees the bottoms of valleys of the objective functions and never the peaks. From its perspective, the objective function looks more smoothly.

A similar idea is utilizing the Baldwin Effect [92,108,220]. Here, the global optimization algorithm still works in the search space 𝕏\mathbb{X} while the local search (in this context also called learning) is applied in the solution space 𝕐\mathbb{Y}. In other words, the hosting algorithm generates new points x∈𝕏x\in\mathbb{X} in the search space and maps them to points y=γ(x)y=\gamma(x) in the solution space 𝕐\mathbb{Y} by applying the representation mapping γ\gamma. These points are then refined directly in the solution space, but the refinements are not coded back by some reverse mapping. Instead, only their objective values are assigned to the original points in the search space. The algorithm will remember the overall best-ever candidate solution, of course. In our context, the goal here is again to smoothen out the objective function that is seen by the global search method. This smoothing is illustrated in Figure 5.3, which is inspired by [220].





5.3 Deceptiveness

Besides causality, another very basic assumption behind metaheuristic optimization is that if candidate solution y1y_1 is better than y2y_2, it is more likely that we can find even better solutions in the neighborhood around y1y_1 than in the neighborhood of y2y_2. In other words, we assume that following a trail of solutions with improving objective values is in average our best chance of discovering the optimum or, at least, some very good solutions.


5.3.1 The Problem: Deceptiveness


[image: Figure 5.4: An illustration of problems exhibiting increasing deceptiveness (from left to right).]Figure 5.4: An illustration of problems exhibiting increasing deceptiveness (from left to right).

A problem is deceptive if following such a trail of improving solutions leads us away from the actual optimum [208,216]. Figure 5.4 illustrates different problems with increasing deceptiveness of the objective function.

Definition 47. A objective function is deceptive (under a given representation and over a subset of the search space) if a hill climber started at any point in this subset will move away from the global optimum.

Definition 47 is an attempt to formalize this concept. We define a specific area X⊆𝕏X\subseteq\mathbb{X} of the search space 𝕏\mathbb{X}. In this area, we can apply a hill climbing algorithm using a unary search operator searchOp\textrm{searchOp} and a representation mapping γ:𝕏↦𝕐\gamma:\mathbb{X}\mapsto \mathbb{Y} to optimize an objective function ff. If this objective function ff is deceptive on XX, then regardless where we start the hill climber, it will move away from the nearest global optimum x⋆x^{\star}. Move away here means that we also need to have some way to measure the distance between x⋆x^{\star}. and another point in the search space and that this distance increases while the hill climber proceeds. OK, maybe not a very handy definition after all – but it describes the phenomena shown in Figure 5.4. The bigger the subset XX over which ff is deceptive, the harder the problem tends to become for the metaheuristics, as they have an increasing chance of searching into the wrong direction.



5.3.2 Countermeasures


5.3.2.1 Representation Design

From the explanation of the attempted Definition 47 of deceptiveness, we can already see that the design of the search space, representation mapping, and search operators will play a major role in whether a problem is deceptive or not.





5.4 Neutrality and Redundancy

An optimization problem and its representation have the property of causality if small changes in a candidate solution lead to small changes in the objective value. If the resulting changes are large, then causality is weak and the objective function is rugged, which has negative effects on optimization performance. However, if the resulting changes are zero, this can have a similar negative impact.


5.4.1 The Problem(?): Neutrality


[image: Figure 5.5: An illustration of problems exhibiting increasing neutrality (from left to right).]Figure 5.5: An illustration of problems exhibiting increasing neutrality (from left to right).

Neutrality means that a significant fraction of the points in neighborhood of a given point in the search space map to candidate solutions with the same objective value. From the perspective of an optimization process, exploring the neighborhood of a good solution will yield the same solution again and again, i.e., there is no direction into which it can progress in a meaningful way. If half of the candidate solutions have the same objective value, then every second search step cannot lead to an improvement and, for most algorithms, does not yield useful information. This will slow down the search.

Definition 48. The evolvability of an optimization process in its current state defines how likely the search operations will lead to candidate solutions with new (and eventually, better) objectives values.

While there are various slightly differing definitions of evolvability both in optimization and evolutionary biology (see [114]), they all condense to the ability to eventually produce better offspring. Researchers in the late 1990s and early 2000s hoped that adding neutrality to the representation could increase the evolvability in an optimization process and may hence lead to better performance [15,183,198]. A common idea on how neutrality could be beneficial was the that neutral networks would form connections in the search space [15,183].

Definition 49. Neutral networks are sets of points in the search space which map to candidate solutions of the same objective value and which are transitively connected by neighborhoods spanned by the unary search operator [183].

The members of a neutral network may have neighborhoods that contain solutions with the same objective value (forming the network), but also solutions with worse and better objective values. An optimization process may drift along a neutral network until eventually discovering a better candidate solution, which then would be in a (better) neutral network of its own. It seems that the performance of our (1+1)(1+1) EA in Section 3.4.6.2 was much better than that of our hill climber in Section 3.3.2.2 because our search space 𝕏\mathbb{X} is much larger than the solution space 𝕐\mathbb{Y}, i.e., |𝕏|≫|𝕐|\mathbb{X}|\gg|\mathbb{Y} and such networks seem to naturally exist in this representation.

The question then arises how we can introduce such a beneficial form of neutrality into the search space and representation mapping, i.e., how we can create such networks intentionally and controlled. Indeed, it was shown that random neutrality is not beneficial for optimization [128]. Actually, there is no reason why neutral networks should provide a better method for escaping local optima than other methods, such as well-designed search operators (remember Section 3.3.4.2), even if we could create them [128]. Random, uniform, or non-uniform redundancy in the representation are not helpful for optimization [128,171] and should be avoided.

Another idea [198] to achieve self-adaptation in the search is to encode the parameters of search operators in the points in the search space. This means that, e.g., the magnitude to which a unary search operator may modify a certain decision variable is stored in an additional variable which undergoes optimization together with the actual variables. Since the search space size increases due to the additional variables, this necessarily leads to some redundancy. (We will discuss this useful concept when I get to writing a chapter on Evolution Strategy, which I will get to eventually, sorry for now.)



5.4.2 Countermeasures


5.4.2.1 Representation Design

From Table 2.3 we know that in our job shop example, the search space is larger than the solution space. Hence, we have some form of redundancy and neutrality. We did not introduce this additionally, however, but it is an artifact of our representation design with which we pay for a gain in simplicity and avoiding infeasible solutions. Generally, when designing a representation, we should try to construct it as compact and non-redundant as possible. A smaller search space can be searched more efficiently.





5.5 Epistasis: One Root of the Evil

Did you notice that we often said and found that optimization problems get the harder, the more decision variables we have? Why is that? The simple answer is this: Let’s say each element y∈𝕐y\in\mathbb{Y} from the solution space 𝕐\mathbb{Y} has nn variables, each of which can take on qq possible values. Then, there are |𝕐|=qn|\mathbb{Y}|=q^n points in the solution space – in other words, the size of 𝕐\mathbb{Y} grows exponentially with nn. Hence, it takes longer to find the best elements it.

But this is only partially true! It is only true if the variables depend on each other. As a counter example, consider the following problem subject to minimization:

f(y)=(y1−3)2+(y2+5)2+(y3−1)2,y∈{−10…10}3 f(y) = (y_{1} - 3)^2 + (y_{2} + 5)^2 + (y_{3} - 1)^2, {\quad}y\in \{-10 \ldots 10\}^3 

There are three decision variables. However, upon close inspection, we find that they are entirely unrelated. Indeed, we could solve the three separate minimization problems given below one-by-one instead, and would obtain the same values for y1y_{1}, y2y_{2}, and y3y_{3}.

f1(y1)=(y1−3)2y1∈−10…10f2(y2)=(y1+5)2y2∈−10…10f3(y3)=(y1−1)2y3∈−10…10
\begin{array}{rcll}
f_1(y_{1}) &=& (y_{1} - 3)^2 & {\quad}y_{1}\in -10 \ldots 10 \\
f_2(y_{2}) &=& (y_{1} + 5)^2 & {\quad}y_{2}\in -10 \ldots 10\\
f_3(y_{3}) &=& (y_{1} - 1)^2 & {\quad}y_{3}\in -10 \ldots 10
\end{array}


Both times, the best value for y1y_{1} is 3, for y2y_{2} its -5, and for y3y_{3}, it is 1. However, while the three solution spaces of the second set of problems each contain 21 possible values, the solution space of the original problem contains 213=926121^3=9261 values. Obviously, we would prefer to solve the three separate problems, because even in sum, they are much smaller. But in this example, we very lucky: our optimization problem was separable, i.e., we could split it into several easier, independent problems.

Definition 50. A function of nn variables is separable if it can be rewritten as a sum of nn functions of just one variable [96,100].

For the JSSP problem that we use as example application domain in this book, this is not the case: Neither can we schedule each jobs separately without considering the other jobs nor can we consider the machines separately. There is also no way in which we could try to find the best time slot for any operation without considering the other jobs.


5.5.1 The Problem: Epistasis

The feature that makes optimization problems with more decision variables much harder is called epistasis.


[image: Figure 5.6: An illustration of how genes in biology could exhibit epistatic and pleiotropic interactions in an (entirely fictional) dinosaur.]Figure 5.6: An illustration of how genes in biology could exhibit epistatic and pleiotropic interactions in an (entirely fictional) dinosaur.

In biology, epistasis is defined as a form of interaction between different genes [163]. The interaction between genes is epistatic if the effect on the fitness of resulting from altering one gene depends on the allelic state of other genes [138].

Definition 51. In optimization, epistasis is the dependency of the contribution of one decision variable to the value of the objective functions on the value of other decision variables [6,51,154,208,216].

A representation has minimal epistasis when every decision variable is independent of every other one. Then, the optimization problem is separable and can be solved by finding the best value for each decision variable separately. A problem is maximally epistatic (or non-separable [100]) when no proper subset of decision variables is independent of any other decision variable [154].

Another related biological phenomenon is pleiotropy, which means that a single gene is responsible for multiple phenotypical traits [114]. Like epistasis, pleiotropy can sometimes lead to unexpected improvements but often is harmful. Both effects are sketched in Figure 5.6.


[image: Figure 5.7: How epistasis creates and influences the problematic problem features discussed in the previous sections.]Figure 5.7: How epistasis creates and influences the problematic problem features discussed in the previous sections.

As Figure 5.7 illustrates, epistasis causes or contributes to the problematic traits we have discussed before [208,216]. First, it reduces the causality because changing the value of one decision variable now has an impact on the meaning of other variables. In our representation for the JSSP problem, for instance, changing the order of job IDs at the beginning of an encoded solution can have an impact on the times at which the operations coming later will be scheduled, even if these themselves were not changed.

If two decision variables interact epistatically, this can introduce local optima, i.e., render the problem multi-modal. The stronger the interaction is, the more rugged the problem becomes. In a maximally-epistatic problem, every decision variable depends on every other one, so applying a small change to one variable can have a large impact.

It is also possible that one decision variable have such semantics that it may turn on or off the impact of another one. Of course, any change applied to a decision variable which has no impact on the objective value then, well, also has no impact, i.e., is neutral. Finding rugged, deep valleys in a neutral plane in the objective space corresponds to finding a needle-in-a-haystack, i.e., an ill-defined optimization task.



5.5.2 Countermeasures

Many of the countermeasures for ruggedness, deceptiveness, and neutrality are also valid for epistatic problems. In particular, a good representation design should aim to make the decision variables in the search space as independent as possible


5.5.2.1 Learning the Variable Interactions

Often, a problem may neither be fully-separable nor maximally epistasic. Sometimes, there are groups of decision variables which depend on each others while being independent from other groups. Or, at least, groups of variables which interact strongly and which interact only weakly with variables outside of the group. In such a scenario, it makes sense trying to learn which variables interact during the optimization process. We could then consider each group as a unit, e.g., make sure to pass their values on together when applying a binary operator, or even try to optimize each group separately. Examples for such techniques are:


	linkage learning in EAs [39,86,101,149]

	modeling of variable dependency via statistical models [34,160]

	variable interaction learning [38]







5.6 Scalability

The time required to solve a hard problem grows exponentially with the input size, e.g., the number of jobs nn or machines mm in JSSP. Many optimization problems with practically relevant size cannot be solved to optimality in reasonable time. The purpose of metaheuristics is to deliver a reasonably good solution within a reasonable computational budget. Nevertheless, any will take longer for a growing number of decision variables for any (non-trivial) problems. In other words, the curse of dimensionality [21,22] will also strike metaheuristics.


5.6.1 The Problem: Lack of Scalability
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Figure 5.8 illustrates how the size |𝕏||\mathbb{X}| of the search space 𝕏\mathbb{X} grows with the number of machines mm and jobs nn in our representation for the JSSP. Since the axis for |𝕏||\mathbb{X}| is logarithmically scaled, it is easy to see that the size grows very fast, exponentially with mm and nn. This means that most likely, the number of points to be investigated by an algorithm to discover a near-optimal solution also increases quickly with these problem parameters. In other words, if we are trying to schedule the production jobs for a larger factory with more machines and customers, the time needed to find good solutions will increase drastically.

This is also reflected in our experimental results: Simulated Annealing could discover the globally optimal solution for instance la24 (Section 3.5.5) and in median is only 1.1% off. la24 is the instance with the smallest search space size. For abz7, the second smallest instance, we almost reached the optimum with SA and in median were 3% off, while for the largest instances, the difference was bigger.



5.6.2 Countermeasures


5.6.2.1 Parallelization and Distribution

First, we can try to improve the performance of our algorithms by parallelization and distribution. Parallelization means that we utilize multiple CPUs or CPU cores on the same machine at the same time. Distribution means that we use multiple computers connected by network. Using either approach approach makes sense if we already perform close to acceptable.

For example, I could try to use the four CPU cores on my laptop to solve a JSSP instance instead of only one. I could, for instance, execute four separate runs of the hill climber of Simulated Annealing in parallel and then just take the best result after the three minutes have elapsed. Matter of fact, I could four different algorithm setups or four different algorithms at once. It makes sense to assume that this would give me a better chance to obtain a good solution. However, it is also clear that, overall, I am still just utilizing the variance of the results. In other words, the result I obtain this way will not really be better than the results I could expect from the best of setups or algorithms if run alone.

One more interesting option is that I could run a metaheuristic together with an exact algorithm which can guarantee to find the optimal solution. For the JSSP, for instance, there exists an efficient dynamic programming algorithm which can solve several well-known benchmark instances within seconds or minutes [90,200,202]. Of course, there can and will be instances that it cannot solve. So the idea would be that in case the exact algorithm can find the optimal solution within the computational budget, we take it. In case it fails, one or multiple metaheuristics running other CPUs may give us a good approximate solution.

Alternatively, I could take a population-based metaheuristic like an Evolutionary Algorithm. Instead of executing ν\nu independent runs on ν\nu CPU cores, I could divide the offspring generation between the different cores. In other words, each core could create, map, and evaluate λ/ν\lambda/\nu offsprings. Later populations are more likely to find better solutions, but require more computational time to do so. By parallelizing them, I thus could utilize this power without needed to wait longer.

However, there is a limit to the speed-up we can achieve with either parallelization or distribution. Amdahl’s Law [7], in particular with the refinements by Kalfa [123] shows that we can get at most a sub-linear speed-up. On the one hand, only a certain fraction of a program can be parallelized and each parallel block has a minimum required execution time (e.g., a block must take at least as long as one single CPU instruction). On the other hand, communication and synchronization between the ν\nu involved threads or processes is required, and the amount of it grows with their number ν\nu. There is a limit value for the number of parallel processes ν\nu above which no further runtime reduction can be achieved. In summary, when battling an exponential growth of the search space size with a sub-linear gain in speed, we will hit certain limits, which may only be surpassed by qualitatively better algorithms.



5.6.2.2 Indirect Representations

In several application areas, we can try to speed up the search by reducing the size of the search space. The idea is to define a small search space 𝕏\mathbb{X} which is mapped by a representation mapping γ:𝕏↦𝕐\gamma:\mathbb{X}\mapsto\mathbb{Y} to a much larger solution space 𝕐\mathbb{Y}, i.e., |𝕏|≪|𝕐||\mathbb{X}|\ll|\mathbb{Y}| [23,58].

The first group of indirect representations uses so-called generative mappings assume some underlying structure, usually forms of symmetry, in 𝕐\mathbb{Y} [49,174]. When trying to optimize, e.g., the profile of a tire, it makes sense to assume that it will by symmetrically repeated over the whole tire. Most houses, bridges, trains, car frames, or even plants are symmetric, too. Many physical or chemical processes exhibit symmetries towards the surrounding system or vessel as well. Representing both sides of a symmetric solution separately would be a form of redundancy. If a part of a structure can be repeated, rotated, scaled, or copied to obtain the whole, then we only need to represent this part. Of course, there might be asymmetric tire profiles or oddly-shaped bridges which could perform even better and which we would then be unable to discover. Yet, the gain in optimization speed may make up for this potential loss.

If there are two decision variables x1x_{1} and x2x_{2} and, usually, x2≈−x1x_{2}\approx-x_{1}, for example, we could reduce the number of decision variables by one by always setting x2=−x1x_{2}=-x_{1}. Of course, we then cannot investigate solutions where x2≠−x1x_{2}\neq-x_{1}, so we may lose some generality.

Based on these symmetries, indirect representations create a compressed version 𝕏\mathbb{X} of 𝕐\mathbb{Y} of a much smaller size |𝕏|≪|𝕐||\mathbb{X}|\ll|\mathbb{Y}|. The search then takes place in this compressed search space and thus only needs to consider much fewer possible solutions. If the assumptions about the structure of the search space is correct, then we will lose only very little solution quality.

A second form of indirect representations is called ontogenic representation or developmental mappings [58,59,71]. They are similar to generative mapping in that the search space is smaller than the solution space. However, their representational mappings are more complex and often iteratively transform an initial candidate solution with feedback from simulations. Assume that we want to optimize a metal structure composed of hundreds of beams. Instead of encoding the diameter of each beam, we encode a neural network that tells us how the diameter of a beam should be changed based on the stress on it. Then, some initial truss structure is simulated several times. After each simulation, the diameters of the beams are updated according to the neural network, which is fed with the stress computed in the simulation. Here, the search space encodes the weights of the neural network 𝕏\mathbb{X} while the solution space 𝕐\mathbb{Y} represents the diameters of the beams. Notice that the size of 𝕏\mathbb{X} is unrelated to the size of 𝕐\mathbb{Y}, i.e., could be the same for 100 or for 1000 beam structures.



5.6.2.3 Exploiting Separability

Sometimes, some decision variables may be unrelated to each other. If this information can be discovered (see Section 5.5.2.1), the groups of independent decision variables can be optimized separately. This will then be faster.







6 Appendix

It is my goal to make this book easy to read and fast to understand. This goal somehow conflicts with two other goals, namely those of following a clear, abstract, and unified structure as well as being very comprehensive. Unfortunately, we cannot have all at once. Therefore, I choose to sometimes just describe some issues from the surface perspective and dump the details into this appendix.


6.1 Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) is used as leading example to describe the structure of optimization in Section 2 and then serves again as application and experiment example when introducing the different metaheuristic algorithms in Section 3. In order to not divert too much from the most important issues in these sections, we moved the detailed discussions into this appendix.


6.1.1 Lower Bounds

The way to compute the lower bound from Section 2.5.3 for the JSSP is discussed by Taillard in [66]. As said there, the makespan of a JSSP schedule cannot be smaller than the total processing time of the longest job. But we also know that the makespan cannot be shorter than the latest finishing time FjF_{j} of any machine jj in the optimal schedule. For a machine jj to finish, it will take at least the sum bjb_{j} of the runtimes of all the operations to be executed on it, where

bj=∑i=0n−1Ti,j′ with Mi,j′=j b_{j} = \sum_{i=0}^{n-1} T_{i,j'}\text{~with~}M_{i,j'}=j

Of course, some operations j′j' cannot start right away on the machine, namely if they are not the first operation of their job. The minimum idle time of such a sub job is then the sum of the runtimes of the operations that come before it in the same job ii. This means there may be an initial idle period aja_{j} for the machine jj, which is at least as big as the shortest possible idle time.

aj≥min∀i∈0…(n−1){∑j″=0j−1Ti,j′ with Mi,j′=j} a_{j} \geq \min_{\forall i\in 0\ldots(n-1)} \left\{ \sum_{j''=0}^{j-1} T_{i,j'}\text{~with~}M_{i,j'}=j\right\} 

Vice versa, there also is a minimum time cjc_{j} that the machine will stay idle after finishing all of its operations.

cj≥min∀i∈0…(n−1){∑j″=j+1n−1Ti,j′ with Mi,j′=j} c_{j} \geq \min_{\forall i\in 0\ldots(n-1)} \left\{ \sum_{j''=j+1}^{n-1} T_{i,j'}\text{~with~}M_{i,j'}=j\right\} 

With this, we now have all the necessary components of Equation 2.2. We now can put everything together in Listing 6.1.


Listing 6.1: Excerpt from the function for computing the lower bound of the makespan of a JSSP instance. (src)

// a, b: int[m] filled with MAX_VALUE, T: int[m] filled with 0
    int lowerBound = 0; // overall lower bound

    for (int n = inst.n; (--n) >= 0;) {
      int[] job = inst.jobs[n];

// for each job, first compute the total job runtime
      int jobTimeTotal = 0; // total time
      for (int m = 1; m < job.length; m += 2) {
        jobTimeTotal += job[m];
      }
// lower bound of the makespan must be >= total job time
      lowerBound = Math.max(lowerBound, jobTimeTotal);

      // now compute machine values
      int jobTimeSoFar = 0;
      for (int m = 0; m < job.length;) {
        int machine = job[m++];

// if the sub-job for machine m starts at jobTimeSoFar, the
// smallest machine start idle time cannot be bigger than that
        a[machine] = Math.min(a[machine], jobTimeSoFar);

        int time = job[m++];
// add the sub-job execution time to the machine total time
        T[machine] += time;

        jobTimeSoFar += time;
// compute the remaining time of the job and check if this is
// less than the smallest-so-far machine end idle time
        b[machine] =
            Math.min(b[machine], jobTimeTotal - jobTimeSoFar);
      }
    }

// For each machine, we now know the smallest possible initial
// idle time and the smallest possible end idle time and the
// total execution time. The lower bound of the makespan cannot
// be less than their sum.
    for (int m = inst.m; (--m) >= 0;) {
      lowerBound = Math.max(lowerBound, a[m] + T[m] + b[m]);
    }




More information about lower bounds of the JSSP can be found in [9,66,143,199,203,204].



6.1.2 Probabilities for the 1swap Operator

Every point in the search space contains m*nm*n integer values. If we swap two of them, we have m*n*m*(n−1)=m2n2−nm*n*m*(n-1)=m^2 n^2-n choices for the indices, half of which would be redundant (like swapping the jobs at index (10,5)(10,5) and (5,10)(5,10)). In total, this yields T=0.5*m2*n*(n−1)T=0.5*m^2*n*(n-1) possible different outcomes for a given point from the search space, and our 1swap operator produces each of them with the same probability.

If 0<k≤T0<k\leq T of outcomes would be an improvement, then the number AA of times we need to apply the operator to obtain one of these improvements would follow a geometric distribution and have expected value 𝔼A{\mathbb{E}}A:

𝔼A=1kT=Tk {\mathbb{E}}A = \frac{1}{\frac{k}{T}} = \frac{T}{k} 

We could instead enumerate all possible outcomes and stop as soon as we arrive at an improving move. Again assume that we have kk improving moves within the set of TT possible outcomes. Let BB be the number of steps we need to perform until we haven an improvement. BB follows the negative hypergeometric distribution, with successes and failures swapped, with one trial added (for drawing the improving move). The expected value 𝔼B{\mathbb{E}}B becomes:

𝔼B=1+(T−k)T−(T−k)+1=1+T−kk+1=T−k+k+1k+1=T+1k+1 {\mathbb{E}}B = 1+\frac{(T-k)}{T-(T-k)+1} = 1+\frac{T-k}{k+1}=\frac{T-k+k+1}{k+1}=\frac{T+1}{k+1} 

It holds that 𝔼B≤𝔼A{\mathbb{E}}B \leq {\mathbb{E}}A since Tk−T+1k+1=T(k+1)−(T+1)kk(k+1)=Tk+T−Tk−kk(k+1)=T−kk(k+1)\frac{T}{k}-\frac{T+1}{k+1}=\frac{T(k+1)-(T+1)k}{k(k+1)} = \frac{Tk+T-Tk-k}{k(k+1)}=\frac{T-k}{k(k+1)} is positive or zero. This makes sense, as no point would be produced twice during an exhaustive enumeration, whereas random sampling might sample some points multiple times.

This means that enumerating all possible outcomes of the 1swap operator should also normally yield an improving move faster than randomly sampling them!
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