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Preface

A�er writing Global Optimization Algorithms – Theory and Applications [205] during my time as PhD

student a long time ago, I now want to write a more direct guide to optimization andmetaheuristics.

Currently, this book is in an early stage of development and work-in-progress, so expect many changes.

It is available as pdf, html, epub, and azw3.

The text tries to introduce optimization in an accessible way for an audience of undergraduate and

graduate students without background in the field. It tries to provide an intuition about how optimiza-

tion algorithms work in practice, what things to look for when solving a problem, or how to get from a

simple, working, proof-of-concept approach to an efficient solution for a given problem. We follow a

“learning-by-doing” approach by trying to solve one practical optimization problem as example theme

throughout the book. All algorithms are directly implemented and applied to that problem a�er we

introduce them. This allows us to discuss their strengths and weaknesses based on actual results. We

try to improve the algorithms step-by-step, moving from very simple approaches, which do not work

well, to efficient metaheuristics.

@book{aitoa,

author = {Thomas Weise},

title = {An Introduction to Optimization Algorithms},

year = {2018--2020},

publisher = {Institute of Applied Optimization ({IAO}),

School of Artificial Intelligence and Big Data,

Hefei University},

address = {Hefei, Anhui, China},

url = {http://thomasweise.github.io/aitoa/},

edition = {2020-12-26}

}

We use concrete examples and algorithm implementations written in Java. While originally designed

for educational purposes, the code is general andmay applicable to real research experiments, too.

All of it is freely available in the repository thomasWeise/aitoa-code on GitHub under the MIT License.

O�en, we will just look at certain portions of the code, maybe parts of a class where we omit methods
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or member variables, or even just snippets from functions. Each source code listing is accompanied by

a (src) link in the caption linking to the current full version of the file in the GitHub repository. If you

discover an error in any of the examples, please file an issue.

This book is written using our automated bookwriting environment, which integrates GitHub, Travis CI,

and docker-hub. Many of the charts and tables in the book have been generated with R scripts, whose

source code is available in the aitoaEvaluate on GitHub under the MIT License, too. The experimental

results are available in the repository aitoa-data. The text of the book itself is actively written and

available in the repository thomasWeise/aitoa on GitHub. There, you can also submit issues, such as

change requests, suggestions, errors, typos, or you can informme that something is unclear, so that I

can improve the book.

repository: http://github.com/thomasWeise/aitoa

commit: 2bf8b8a844a810daa8eefe6bc77bc96f65d17f7a

time and date: 2020-12-26 04:43:48 UTC+0000

example source repository: http://github.com/thomasWeise/aitoa-code

example source commit: 97666709e6ea4b473742cd8f032a16993c341410

experimental results: http://github.com/thomasWeise/aitoa-data

code for generating diagrams: http://github.com/thomasWeise/aitoaEvaluate

This book is released under the Attribution-NonCommercial-ShareAlike 4.0 International license

(CC BY-NC-SA 4.0), see http://creativecommons.org/licenses/by-nc-sa/4.0/ for a summary.

Prof. Dr. Thomas Weise

Institute of Applied Optimization (IAO),

School of Artificial Intelligence and Big Data,

Hefei University,

Hefei, Anhui, China.

Web: http://iao.hfuu.edu.cn/team/director

Email: tweise@hfuu.edu.cn, tweise@ustc.edu.cn
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1 Introduction

Today, algorithms influence a bigger and bigger part in our daily life and the economy. They support us

by suggesting good decisions in a variety of fields, ranging from engineering, timetabling and schedul-

ing, product design, over travel and logistic planning to even product or movie recommendations.

They will be the most important element of the transition of our industry to smarter manufacturing

and intelligent production, where they can automate a variety of tasks, as illustrated in Figure 1.1.

heuristics

metaheuristics

operations research

linear programming

machine learning

optimization

data mining

delivery

production

management

products/

services

sales

optimized logistics (business-to-customer)

planning and scheduling of maintenance visits

production planning and scheduling

optimization of factory layouts and -logistics

optimal assignment of employees to tasks/customers

optimization of product design

improved tailoring of products/services to customers

optimization of pricing and offers

mining of customer data for targeted offers

optimization of service offers

optimization of product feature configuration

scheduling of employee work

optimization of supply chains

optimization of intra-enterprise logistics

optimization of stock-keeping

optimization of production processes

optimized assignment of jobs/orders to machines

planning and scheduling of supply visits

optimized locations for new branch offices

(based on current or predicted future customers)

Figure 1.1: Examples for applications of optimization, computational intelligence, machine learning

techniques in five fields of smart manufacturing: the production itself, the delivery of the products, the

management of the production, the products and services, and the sales level.

Optimization and Operations Research provide us with algorithms that propose good solutions to

such a wide range of questions. Usually, it is applied in scenarios where we can choose frommany

possible options. The goal is that the algorithms propose solutions which minimize (at least) one

resource requirement, be it costs, energy, space, etc. If they can do this well, they also offer another

important advantage: Solutions that minimize resource consumption are o�en not only cheaper from

3
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an immediate economic perspective, but also better for the environment, i.e., with respect to ecological

considerations.

Thus, we already know three reasons why optimization will be a key technology for the next century,

which silently does its job behind the scenes:

1. Any form of intelligent production or smart manufacturing needs automated decisions. Since

these decisions should be intelligent, they can only come from a process which involves opti-

mization in one way or another.

2. In global and local competition inall branchesof industry andall service sectors those institutions

who can reduce their resource consumption and costs while improving product quality and

production efficiency will have the edge. One key technology for achieving this is better planning

via optimization.

3. Our world suffers from both depleting resources and too much pollution. Optimization can

“give us more while needing less.” It o�en inherently leads to more environmentally friendly

processes.

But how can algorithms help us to find solutions for hard problems in a variety of different fields? What

does “variety” evenmean? How general are these algorithms? And how can they help us to make good

decisions? And how can they help us to save resources?

In this book, we will try to answer all of these questions. We will explore quite a lot of different

optimization algorithms. We will look at their actual implementations and we will apply them to

example problems to see what their strengths and weaknesses are.

1.1 Examples

Let us first get a feeling about typical use cases of optimization.

1.1.1 Example: Layout of Factories

When we think about intelligent production, then there both dynamic and static aspects, as well as all

sorts of nuances in between. The question how a factory should look like is a rather static, but quite

important aspect. Let us assume we own a company and buy a plot of land to construct a new factory.

Of course we knowwhich products we will produce in this factory. We therefore also know the set of

facilities that we need to construct, i.e., the workshops, storage depots, and maybe an administrative

building. What we need to decide is where to place them on our land, as illustrated in Figure 1.2.

4 Thomas Weise



An Introduction to Optimization Algorithms 2020-12-26

road
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locations and the different material flows between them

Figure 1.2: Illustrative sketch of a quadratic assignment scenario, where different buildings of a

factory need to be laid out on a plot of land.

Let us assume we have n locations on our plot of land that we can use for our n facilities. In some

locations, there might be already buildings, in others, wemay need to construct them anew. For each

facility and location pair, a different construction cost may arise. A location with an existing shed

might be a good solution to put a warehouse in but may need to be demolished if we want to put the

administration department there.

But there also are costs arising from the relative distances between the facilities that we wish to place.

Maybe there is a lot ofmaterial flow between twoworkshops. Some finished products and rawmaterial

may need to be transported between a workshop and the storage depot. Between the administration

building and the workshops, on the other hand, there will usually be nomaterial flow. Of course, the

distance between two facilities will depend on the locations we pick for them.

For each pair of facilities that we place on the map, flow costs will arise as a function (e.g., the product)

of the amount of material to be transported between them and the distance of their locations.

The total cost of an assignment of facilities to locations is therefore the sum of the resulting base costs

and flow costs. Our goal would be to find the assignment with the smallest possible total cost.

This scenario is called quadratic assignment problem (QAP) [31]. It has been subject to research since

the 1950s [20]. QAPs appear in wide variety of scenarios such as the location of facilities on a plot of

land or the placement of work stations on the factory floor. But even if we need to place components

on a circuit board in a way that minimizes the total wire length, we basically have a QAP, too [190]!

Despite being relatively simple to understand, the QAP is hard to solve [176].

1.1.2 Example: Route Planning for a Logistics Company

Another, more dynamic application area for optimization is logistics. Let us look at a typical real-world

scenario from this field [211,212]: the situation of a logistics company that fulfills delivery tasks for its

clients. A client can order one or multiple containers to be delivered to her location within a certain

time window. She will fill the containers with goods, which are then to be transported to a destination
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location, again within a certain time window. The logistics company may receive many such customer

orders per day, maybe several hundreds or even thousands. The companymay have multiple depots,

where containers and trucks are stored. For each order, it needs to decide which container(s) to use

and how to get them to the customer, as sketched in Figure 1.3. The trucks it owns may have different

capacities and could, e.g., carry either one or two containers. Besides using trucks, which can travel

freely on the map, it may also be possible to utilize trains. Trains have higher capacities and can

carry many containers. Different from trucks, they must follow specific schedules. They arrive and

depart at fixed times to/from fixed locations. For each possible vehicle, different costs could occur.

Containers can be exchanged between different vehicles at locations such as parking lots, depots, or

train stations.

Figure 1.3: Illustrative sketch of logistics problems: Orders require us to pick up some items at source

locations within certain time windows and deliver them to their destination locations, again within

certain time windows. We need to decide which containers and vehicles to use and over which routes

we should channel the vehicles.

The company could have the goals to fulfill all transportation requests at the lowest cost. Actually, it

might seek to maximize its profit, which could evenmean to outsource some tasks to other companies.

The goal of optimization then would be to find the assignment of containers to delivery orders and

vehicles and of vehicles to routes, which maximizes the profit. And it should do so within a limited,

feasible time.
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Figure 1.4: A Traveling Salesman Problem (TSP) through eleven cities in China.

Of course, there is a wide variety of possible logistics planning tasks. Besides our real-world example

above, a classical task is the Traveling Salesman Problem (TSP) [8,94,133], where the goal is to find

the shortest round-trip tour throughn cities, as sketched in Figure 1.4. Many other scenarios can be

modeled as such logistics questions, too: If a robot arm needs to several drill holes into a circuit

board, finding the shortest tour means solving a TSP and will speed up the production process, for

instance [91].

1.1.3 Example: Packing, Cutting Stock, and Knapsack

Let’s say that your family is moving to a new home in another city. This means that you need to

transport all of your belongings from your old to your new place, your PC, your clothes, maybe some

furniture, a washing machine, and a fridge, as sketched in Figure 1.5. You cannot pack everything into

your car at once, so you will have to drive back and forth a couple of times. But how o�en will you

have to drive? Packing problems [68,180] aim to package sets of objects into containers as efficient as

possible, i.e., in such a way that we need as few containers as possible. Your car can be thought of as a

container and whenever it is filled, you drive to the new flat. If you need to fill the container four times,

then you have to drive back and forth four times.
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Figure 1.5: A sketch illustrating a packing problem.

Such bin packing problems exist in many variants and are very related to cutting stock problems [68].

They can be one-dimensional [56], for example if we want to transport dense/heavy objects with a

truck where the maximum load weight is limiting factor while there is enough space capacity. This

is similar to having a company which puts network cables into people’s homes and therefore bulk

purchases reels with 100m of cables each. Of course, each home needs a different required total length

of cables and we want to cut our cables such that we need as few reels as possible.

A two-dimensional variant [136] could correspond to printing a set of (rectangular) images of different

sizes on (rectangular) paper. Assume thatmore than one image fits on a sheet of paper but we have too

many images for one piece of paper. We can cut the paper a�er printing to separate the single images.

We then would like to arrange the images such that we need as few sheets of paper as possible.

The three-dimensional variant then corresponds to our moving homes scenario. Of course, there are

manymore different variants – the objects we want to pack could be circular, rectangular, or have an

arbitrary shape. Wemay also have a limited number of containers and thus may not be able to pack all

objects, in which case we would like to only package those that give us the most profit (arriving at a

task called knapsack problem [141]).

1.1.4 Example: Job Shop Scheduling Problem

Another typical optimization task arises in manufacturing, namely the assignment (“scheduling”) of

tasks (“jobs”) to machines in order to optimize a given performance criterion (“objective”). Schedul-

ing [165,166] is one of the most active areas of operational research for more than six decades.

In the Job Shop Scheduling Problem (JSSP) [33,43,66,88,132,134], we have a factory (“shop”) with

several machines. We receive a set of customer orders for products which we have to produce. We

know the exact sequence in which each product/order needs to pass through the machines and how

long it will need at eachmachine. Each production job has one sub-job (“operation”) for eachmachine

on which it needs to be processed. These operations must be performed in the right sequence. Of

course, no machine can process more than one operation at the same time. While we must obey
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these constraints, we can decide about the time at which each of the operations should begin. O�en,

we are looking for the starting times that lead to the earliest completion of all jobs, i.e., the shortest

makespan.

Such a scenario is sketched in Figure 1.6, where four orders for different types of shoe should be

produced. The resulting jobs pass through different workshops (or machines, if you want) in different

order. Some, like the green sneakers, only need to be processed by a subset of the workshops.

Figure 1.6: Illustrative sketch of a JSSP scenario with four jobs where four different types of shoe

should be produced, which require different workshops (“machines”) to perform different production

steps.

This general scenario encompasses many simpler problems. For example, if we only produce one

single product, then all jobs would pass through the samemachines in the same order. Customersmay

be able to order different quantities of the product, so the operations of the different jobs for the same

machine may need different amounts of time. This is the so-called Flow Shop Scheduling Problem

(FSSP) – and it has been defined back in 1954 [121]!

Clearly, since the JSSP allows for an arbitrary machine order per job, being able to solve the JSSP

would also enable us to solve the FSSP, where the machine order is fixed. We will introduce the JSSP

in detail in Section 2.2.2 and use it as the main example in this book on which we will step-by-step

exercise different optimization methods.

1.1.5 Summary

The four examples we have discussed so far are, actually, quite related. They all fit into the broad areas

of operational research, which and smart manufacturing [52,106]. The goal of smart manufacturing is

to optimize development, production, and logistics in the industry. Therefore, computer control is

applied to achieve high levels of adaptability in themulti-phase process of creating a product from
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rawmaterial. The manufacturing processes andmaybe even whole supply chains are networked. The

need for flexibility and a large degree of automation require automatic intelligent decisions. The key

technology necessary to propose such decisions are optimization algorithms. In a perfect world, the

whole productionprocess aswell as thewarehousing, packaging, and logistics of final and intermediate

productswould takeplace inanoptimizedmanner. No timeor resourceswouldbewastedasproduction

gets cleaner, faster, and cheaper while the quality increases.

1.2 Metaheuristics: Why dowe need them?

Themain topic of this book will be metaheuristic optimization (although I will eventually also discuss

some other methods (remember: work in progress). So why do we needmetaheuristic algorithms?

Why should you read this book?

1.2.1 Good Solutions within Acceptable Time

The first and foremost reason is that they can provide us good solutions within reasonable time. It is

easy to understand that there are some problemswhich are harder to solve than others. Everyone of us

already knows this from themathematics classes in school. Of course, the example problems discussed

before cannot be attacked as easily as solving a single linear equation. They require algorithms, they

require computer science.
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Figure 1.7: The growth of different functions in a log-log scaled plot. Exponential functions grow very

fast, so that an algorithmwhich needs∼ 2s steps to solve an optimization problem of size s quickly

becomes infeasible. (compare with Table 2.1 and Table 2.3)

Ever since primary school, we have learnedmany problems and types of equations that we can solve.

Unfortunately, theoretical computer science shows that for many problems, the time we need to

find the best-possible solution can grow exponentially with the number of involved variables in the

worst case. The number of involved variables here could be the number of cities in a TSP, the number

of jobs or machines in a JSSP, or the number of objects to pack in a, well, packing problem. A big

group of such complicated problems are calledN P-hard [37,134]. Unless some unlikely breakthrough

happens [44,124], there will be many problems that we cannot always solve exactly within reasonable

time. Each and every one of the example problems discussed belongs to this type!

As sketched in Figure 1.7, the exponential function rises very quickly. One idea would be to buy more

computers for bigger problems and to simply parallelize the computation. Well, parallelization can

provide a linear speed-up at best, but we are dealing with problems where the runtime requirements

may double every time we add a new decision variable. And no: Quantum computers are not the

answer. Most likely, they cannot even solve these problems qualitatively faster either [1].

So what can we do to solve such problems? The exponential time requirement occurs if we make

guarantees about the solution quality, especially about its optimality, over all possible scenarios.

What we can do, therefore, is that we can trade-in the guarantee of finding the best possible solution

for lower runtime requirements. We can use algorithms from which we hope that they find a good

approximation of the optimum, i.e., a solutionwhich is very goodwith respect to the objective function,

but which do not guarantee that their result will be the best possible solution. Wemay sometimes be
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lucky and even find the optimum, while in other cases, wemay get a solution which is close enough.

And we will get this within acceptable time limits.

Different algorithms offer different

trade-offs between runtime and

solution quality. Good algorithms

resulting from research push the

frontier of what can be achieved

towards the bottom-left corner.
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Figure 1.8: The trade-off between solution quality and runtime.

In Figure 1.8 we illustrate this idea on the example of the Traveling Salesman Problem [8,94,133] briefly

mentioned in Section 1.1.2. The goal of solving the TSP is to find the shortest round trip tour through

n cities. The TSP isN P-hard [79,94]. Today, it is possible to solvemany large instances of this problem

to optimality by using sophisticated exact algorithms [45,46]. Yet, finding the shortest possible tour

for a particular TSPmight still take many years if you are unlucky. Finding just one tour is, however,

very easy: I can write down the cities in any particular order. Of course, I can visit the cities in an

arbitrary order. That is an entirely valid solution, and I can obtain it basically in 0 time. This “tour”

would probably be very bad, very long, and generally not a good idea.

In the real world, we need something in between. We need a solution which is as good as possible as

fast as possible. Heuristic andmetaheuristic algorithms offer different trade-offs of solution quality

and runtime. Different from exact algorithms, they do not guarantee to find the optimal solution and

o�enmake no guarantee about the solution quality at all. Still, they o�en allow us to get very good

solutions for computationally hard problems in short time. Theymay o�en still discover them (just

not always, not guaranteed).
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1.2.2 Good Solutions within Acceptable Time

Saying that we need a good algorithm to solve a given problem is very easy. Developing a good

algorithm to solve a given problem is not, as any graduate student in the field can probably confirm.

Before, I stated that great exact algorithms for the TSP exist [45,46], that can solve many TSPs quickly

(although not all). There are years and years of research in these algorithms. Even the top heuristic and

metaheuristic algorithm for the TSP today result frommany years of targeted research [105,153,219]

and their implementation from the algorithm specification alone can takemonths [215]. Unfortunately,

if you do not have plain TSP, but one with some additional constraints – say, time windows to visit

certain cities – the optimized, state-of-the-art TSP solvers are no longer applicable. And in a real-world

application scenario, you do not have years to develop an algorithm. What you need are simple,

versatile, general algorithm concepts that you can easily adapt to your problem at hand. Something

that can be turned into a working prototype within a few weeks.

Metaheuristics are the answer. They are general algorithm concepts into which we can plug problem-

specific modules. General metaheuristics are usually fairly easy to implement and deliver acceptable

results. Once a sufficiently well-performing prototype has been obtained, we could go and integrate it

into the so�ware ecosystemof the customer. We also can try to improve its performance using different

ideas . . . and years and years of blissful research, if we are lucky enough to find someone paying for

it.
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2 The Structure of Optimization

2.1 Introduction

From the examples that we have seen, we know that optimization problems come in different shapes

and forms. Without training, it is not directly clear how to identify, define, understand, or solve them.

The goal of this chapter is to bring some order into this mess. We will approach an optimization task

step-by-step by formalizing its components, which will then allow us to apply efficient algorithms to it.

This structure of optimization is a blueprint that can be applied in many different scenarios as basis to

apply different optimization algorithms.

First, let us clarify what optimization problems actually are.

Definition 1. An optimization problem is a situation which requires deciding for one choice from a set

of possible alternatives in order to reach a predefined/required benefit at minimal costs.

Definition 1 presents an economical point of view on optimization in a rather informal manner. We can

refine it to the more mathematical formulation given in Definition 2.

Definition 2. The goal of solving an optimization problem is finding an input value y⋆ ∈ Y from a setY

of allowed values for which a function f : Y 7→ R takes on the smallest value.

From these definitions, we can already deduce a set of necessary components that make up such an

optimization problem. We will look at them from the perspective of a programmer:

1. First, there is the problem instance data I, i.e., the concrete situation which defines the frame-

work conditions for the solutions we try to find. This input data of the optimization algorithm is

discussed in Section 2.2.

2. The second component is the data structureY representing possible solutions to the problem.

This is the output of the optimization so�ware and is discussed in Section 2.3.

3. Finally, the objective function f : Y 7→ R rates the quality of the candidate solutions y ∈ Y.

This function embodies the goal that we try to achieve, e.g., (minimize) costs. It is discussed in

Section 2.4.

If we want to solve a Traveling Salesmen Problem (see Section 1.1.2), then the instance data includes

the names of the cities that we want to visit and amap with the information of all the roads between
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them (or simply a distance matrix). The candidate solution data structure could simply be a “city list”

containing each city exactly once and prescribing the visiting order. The objective function would take

such a city list as input and compute the overall tour length. It would be subject to minimization.

Usually, in order to actually practically implement an optimization approach, there o�en will also be

1. a search spaceX, i.e., a simpler data structure for internal use, which can more efficiently be

processed by an optimization algorithm thanY (Section 2.6),

2. a representation mapping γ : X 7→ Y, which translates “points” x ∈ X from the search spaceX

to candidate solutions y ∈ Y in the solution spaceY (Section 2.6),

3. search operators searchOp : Xn 7→ X, which allow for the iterative exploration of the search

spaceX (Section 2.7), and

4. a termination criterion, which tells the optimization process when to stop (Section 2.8).

At first glance, this looks a bit complicated – but rest assured, it won’t be. We will explore all of

these structural elements that make up an optimization problem in this chapter, based on a concrete

example of the Job Shop Scheduling Problem (JSSP) from Section 1.1.4 [33,66,88,132,134]. This

example should give a reasonable idea about how the structural elements and formal definitions

involved in optimization can be realized in practice. While any actual optimization problem can require

very different data structures and operations fromwhat we will discuss here, the general approach

and ideas that we will discuss on specific examples should carry over to many scenarios.

At this point, I would like to make explicitly clear that the goal of this book is NOT to solve the

JSSP particularly well. Our goal is to have an easy-to-understand yet practical introduction to

optimization. This means that sometimes I will intentionally and knowingly choose an easy-to-

understand approach, algorithm, or data structure over a better but more complicated one. Also,

our aim is to nurture the general ability to come up with a solution approach to a new optimization

problemwithin a reasonably short time, i.e., without being able to conduct research over several years.

That being said, the algorithms and approaches discussed here are not necessarily inefficient. While

having much room for improvement, we eventually reach approaches that find decent solutions (see,

e.g., Section 3.5.5).

2.2 Problem Instance Data

2.2.1 Definitions

We implicitly distinguish optimization problems (see Definition 2) from problem instances. While an

optimization problem is the general blueprint of the tasks, e.g., the goal of scheduling production jobs
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to machines, the problem instance is a concrete scenario of the task, e.g., a concrete lists of tasks,

requirements, andmachines.

Definition 3. A concrete instantiation of all information that are relevant from the perspective of

solving an optimization problems is called a problem instance I.

The problem instance is the input of the optimization algorithms. A problem instance is related to an

optimization problem in the same way an object/instance is related to its class in an object-oriented

programming language like Java or a struct in C. The class defines whichmember variables exists

and what their valid ranges are. An instance of the class is a piece of memory which holds concrete

values for eachmember variable.

2.2.2 Example: Job Shop Scheduling

2.2.2.1 JSSP Instance Structure

So how can we characterize a JSSP instance I? In the a basic and yet general scenario [66,88,132,134],

our factory hasm ∈ N1 machines.1 At each point in time, amachine can either work on exactly one job

or do nothing (be idle). There aren ∈ N1 jobs that we need to schedule to thesemachines. For the sake

of simplicity and for agreement between our notation here, the Java source code, and the example

instances that we will use, we reference jobs andmachines with zero-based indices from 0 . . . (n − 1)

and 0 . . . (m − 1), respectively.

Each of the n jobs is composed ofm sub-jobs – the operations – one for eachmachine. Each job may

need to pass through these machines in a different order. The operation j of job imust be executed on

machineMi,j ∈ 0 . . . (m − 1) and doing so needs Ti,j ∈ N0 time units for completion.

This definition at first seems strange, but upon closer inspection is quite versatile. Assume that we have

a factory that produces exactly one product, but different customers may order different quantities.

Here, wewould have JSSP instances where all jobs need to be processed by exactly the samemachines

in exactly the same sequence. In this case Mi1,j = Mi2,j would hold for all jobs i1 and i2 and all

operation indices j. The jobs would pass through all machines in the same order but may have

different processing times (due to the different quantities).

Wemay also have scenarios where customers can order different types of products, say the same liquid

soap, but either in bottles or big cannisters. Then, different machines may be needed for different

orders. This is similar to the situation illustrated in Figure 1.6, where a certain job i does not need to

be executed on a machine j′. We then can simply set the required time Ti,j to 0 for the operation j

withMi,j = j′.

1whereN1 stands for the natural numbers greater than 0, i.e., 1, 2, 3, . . .
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In other words, the JSSP instance structure described here already encompasses a wide variety of

real-world production situations. This means that if we can build an algorithmwhich can solve this

general type of JSSP well, it can also automatically solve the above-mentioned special cases.

2.2.2.2 Sources for JSSP Instances

In order to practically play around with optimization algorithms, we need some concrete instances of

the JSSP. Luckily, the optimization community provides “benchmark instances” for many different

optimization problems. Such common, well-known instances are important, because they allow re-

searchers to compare their algorithms. The eight classical andmost commonly used sets of benchmark

instances are published in [3,9,57,66,74,135,191,224]. Their data can be found (sometimes partially) in

several repositories in the internet, such as

• the OR-Librarymanaged by Beasley [18],

• the comprehensive set of JSSP instances provided by van Hoorn [199,201], where also state-of-

the-art results are listed,

• Oleg Shylo’s Page [185], which, too, contains up-to-date experimental results,

• Éric Taillard’s Page, or, finally,

• myown repository jsspInstancesAndResults [207], where I collect all the aboveproblem instances

andmany results from existing works.

We will try to solve JSSP instances obtained from these collections. They will serve as illustrative

example of how to approach optimization problems. In order to keep the example and analysis simple,

we will focus on only four instances, namely

1. instance abz7 by Adams et al. [3] with 20 jobs and 15machines

2. instance la24 by Lawrence [135] with 15 jobs and 10machines,

3. instance swv15 by Storer et al. [191] with 50 jobs and 10machines, and

4. instance yn4 by Yamada and Nakano [224] with 20 jobs and 20machines.

These instances are contained in text files available at http://people.brunel.ac.uk/~mastjjb/jeb/orl

ib/files/jobshop1.txt, http://raw.githubusercontent.com/thomasWeise/jsspInstancesAndResults/

master/data-raw/instance-data/instance_data.txt, and in http://jobshop.jjvh.nl/. Of course, if we

really want to solve a new type of problem, we will usually use many benchmark problem instances

to get a good understand about the performance of our algorithm(s). Only for the sake of clarity of

presentation, we will here limit ourselves to these above four problems.
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2.2.2.3 File Format and demo Instance

For the sake of simplicity, we created one additional, smaller instance to describe the format of these

files, as illustrated in Figure 2.1.

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

Each of the n jobs

has m operations,

each consisting of

a machine index and

a time requirement.

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Figure 2.1: Themeaning of the text representing our demo instance of the JSSP, as an example of the

format used in the OR-Library.

In the simple text format used in OR-Library, several problem instances can be contained in one file.

Each problem instance I is starts and ends with a line of several + characters. The next line is a short

description or title of the instance. In the third line, the number n of jobs is specified, followed by the

numberm of machines. The actual IDs or indexes of machines and jobs are 0-based, similar to array

indexes in Java. The JSSP instance definition is completed by n lines of text, each of which specifying

the operations of one job i ∈ 0 . . . (n − 1). Each operation j is specified as a pair of two numbers,

the IDMi,j of the machine that is to be used (violet), from the interval 0 . . . (m − 1), followed by the

number of time units Ti,j the job will take on that machine. The order of the operations defines exactly

the order in which the job needs to be passed through the machines. Of course, each machine can

only process at most one job at a time.

In our demo instance illustrated in Figure 2.1, this means that we have n = 4 jobs andm = 5machines.

Job 0 first needs to be processed by machine 0 for 10 time units, it then goes to machine 1 for 20 time

units, then to machine 2 for 20 time units, then to machine 3 for 40 time units, and finally to machine 4

for 10 time units. This job will thus take at least 100 time units to be completed, if it can be scheduled

without any delay or waiting period, i.e., if all of its operations can directly be processed by their

corresponding machines. Job 3 first needs to be processed by machine 4 for 50 time units, then by

machine 3 for 30 time units, then by machine 2 for 15 time units, then by machine 0 for 20 time units,

and finally by machine 1 for 15 time units. It would not be allowed to first send Job 3 to any machine

different frommachine 4 and a�er being processed by machine 4, it must be processed by machine 3

– althoug it may be possible that it has to wait for some time, if machine 3 would already be busy

processing another job. In the ideal case, job 3 could be completed a�er 130 time units.
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2.2.2.4 A Java Class for JSSP Instances

This structure of a JSSP instance can be represented by the simple Java class given in Listing 2.1.

Listing 2.1 Excerpt from a Java class for representing the data of a JSSP instance. (src)

1 public class JSSPInstance {
2 public int m;
3 public int n;
4 public int[][] jobs;
5 }

Here, the two-dimensional array jobs directly receives the data from operation lines in the text files,

i.e., each rowstands for a job and containsmachine IDs andprocessing times in analternating sequence.

The actual source file of the class JSSPInstance accompanying our book also contains additional

code, e.g., for reading such data from the text file, which we have omitted here as it is unimportant for

the understanding of the scenario.

2.3 The Solution Space

2.3.1 Definitions

As stated in Definition 1, an optimization problem asks us to make a choice between different possible

solutions. We call them candidate solutions.

Definition 4. A candidate solution y is one potential solution of an optimization problem.

Definition 5. The solution space Y of an optimization problem is the set of all of its candidate solu-

tions y ∈ Y.

Basically, the input of an optimization algorithm is the problem instance I and the output would be

(at least) one candidate solution y ∈ Y. This candidate solution is the choice that the optimization

process proposes to the human operator. It therefore holds all the data that the human operator needs

to take action, in a for that the human operator can understand, interpret, and execute. During the

optimization process, many such candidate solutions may be created and compared to find and return

the best of them.

From the programmer’s perspective, the solution space is again a data structure, e.g., a class in Java.

An instance of this data structure is the candidate solution.
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2.3.2 Example: Job Shop Scheduling

What would be a candidate solution to a JSSP instance as defined in Section 2.2.2? Recall from

Section 1.1.4 that our goal is to complete the jobs, i.e., the production tasks, as soon as possible. Hence,

a candidate solution should tell us what to do, i.e., how to process the jobs on the machines.

2.3.2.1 Idea: Gantt Chart

This is basically what Gantt chart [126,223] are for, as illustrated in Figure 2.2. A Gantt chart defines

what each of ourmmachines has to do at each point in time. The operations of each job are assigned

to time windows on their corresponding machines.

Figure 2.2: One example candidate solution for the demo instance given in Figure 2.1: A Gantt chart

assigning a time window to each job on eachmachine.

The Gantt chart contains one row for each machine. It is to be read from le� to right, where the x-axis

represents the time units that have passed since the beginning of the job processing. Each colored

bar in the row of a given machine stands for a job and denotes the time window during which the job

is processed. The bar representing operation j of job i is painted in the row of machineMi,j and its

length equals the time requirement Ti,j .

The chart given in Figure 2.2, for instance, defines that job 0 starts at time unit 0 onmachine 0 and is

processed there for ten time units. Then themachine idles until the 70th time unit, at which point it

begins to process job 1 for another ten time units. A�er 15 more time units of idling, job 3 will arrive
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and be processed for 20 time units. Finally, machine 0 works on job 2 (coming frommachine 3) for ten

time units starting at time unit 150.

Machine 1 starts its day with an idle period until job 2 arrives frommachine 2 at time unit 30 and is

processed for 20 time units. It then processes jobs 1 and 0 consecutively and finishes with job 3 a�er

another idle period. And so on.

If we wanted to create a Java class to represent the complete information from a Gantt diagram, it

could look like Listing 2.2. Here, for each of themmachines, we create one integer array of length 3n.

Such an array stores three numbers for each of the n operations to be executed on the machine: the

job ID, the start time, and the end time.

Listing 2.2 Excerpt from a Java class for representing the data of a candidate solution to a JSSP. (src)

1 public class JSSPCandidateSolution {
2 public int[][] schedule;
3 }

Figure 2.3: An example how the internal int[][] data of the JSSPCandidateSolution class

maps to a Gantt chart.

Of course, wewould not strictly need a class for that, aswe could aswell use the integer arrayint[][]
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directly.

Also the third number, i.e., the end time, is not strictly necessary, as it can be computed based on the

instance data as start + Ti,j′ for job i on machine j a�er searching j′ such thatMi,j′ = j. Another

form of representing a solution would be to justmap each operation to a starting time, leading tom ∗ n

integer values per candidate solution [200]. But the presented structure – illustrated on an example in

Figure 2.3 – is handy and easier to understand. It allows the human operator to directly see what is

going on, to directly tell eachmachine or worker what to do and when to do it, without needing to look

up any additional information from the problem instance data.

2.3.2.2 Size of the Solution Space

We choose the set of all Gantt charts formmachines and n jobs as our solution spaceY. Now it is not

directly clear howmany such Gantt charts exist, i.e., how bigY is. If we allow arbitrary useless waiting

times between jobs, then we could create arbitrarily many different valid Gantt charts for any problem

instance. Let us therefore assume that no time is wasted by waiting unnecessarily.

There are n! =
∏n

i=1 i possible ways to arrange n jobs on onemachine. n!, called the factorial of n, is

the number of different permutations (or orderings) of n objects. If we have three jobs a, b, and c, then

there are 3! = 1 ∗ 2 ∗ 3 = 6 possible permutations, namely (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b),

and (c, b, a). Each permutation would equal one possible sequence in which we can process the jobs

on onemachine. If we have three jobs and onemachine, then six is the number of possible different

Gantt charts that do not waste time.

If we would have n = 3 jobs andm = 2machines, we then would have (3!)2 = 36 possible Gantt

charts, as for each of the 6 possible sequence of jobs on the first machines, there would be 6 possible

arrangements on the secondmachine. Form = 2machines, it is then (n!)3, and so on. In the general

case, we obtain Equation (2.1) for the size |Y| of the solution spaceY.

|Y| = (n!)m (2.1)

However, the fact that we can generate (n!)m possible Gantt charts without useless delay for a JSSP

with n jobs andmmachines does not mean that all of them are actual feasible solutions.

2.3.2.3 The Feasibility of the Solutions

Definition 6. A constraint is a rule imposed on the solution space Y which can either be fulfilled or

violated by a candidate solution y ∈ Y.
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Definition 7. A candidate solution y ∈ Y is feasible if and only if it fulfills all constraints.

Definition 8. A candidate solution y ∈ Y is infeasible if it is not feasible, i.e., if it violates at least one

constraint.

In order to be a feasible solution for a JSSP instance, a Gantt chart must indeed fulfill a couple of

constraints:

1. all operations of all jobs must be assigned to their respective machines and properly be com-

pleted,

2. only the jobs andmachines specified by the problem instance must occur in the chart,

3. a operation will must be assigned a time window on its corresponding machine which is exactly

as long as the operation needs on that machine,

4. the operations cannot intersect or overlap, eachmachine can only carry out one job at a time,

and

5. the precedence constraints of the operations must be honored.

While the first four constraints are rather trivial, the latter one proofs problematic. Imagine a JSSP

with n = 2 jobs andm = 2machines. There are (2!)2 = (1 ∗ 2)2 = 4 possible Gantt charts. Assume

that the first job needs to first be processed bymachine 0 and then bymachine 1, while the second

job first needs to go to machine 1 and then to machine 0. A Gantt chart which assigns the first job first

to machine 1 and the second job first to machine 0 cannot be executed in practice, i.e., is infeasible,

as such an assignment does not honor the precedence constraints of the jobs. Instead, it contains a

deadlock.

24 Thomas Weise



An Introduction to Optimization Algorithms 2020-12-26
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M0: Job 1, Job 0; M1: Job 1, Job 0

deadlock

Figure 2.4: Two different JSSP instances withm = 2machines and n = 2 jobs, one of which has only

three feasible candidate solutions while the other has four.

The third schedule in the first column of Figure 2.4 illustrates exactly this case. Machine 0 should begin

by doing job 1. Job 1 can only start onmachine 0 a�er it has been finished onmachine 1. At machine 1,

we should begin with job 0. Before job 0 can be put on machine 1, it must go through machine 0.

So job 1 cannot go to machine 0 until it has passed throughmachine 1, but in order to be executed

on machine 1, job 0 needs to be finished there first. Job 0 cannot begin on machine 1 until it has

been passed throughmachine 0, but it cannot be executed there, because job 1 needs to be finished

there first. A cyclic blockage has appeared: no job can be executed on anymachine if we follow this

schedule. This is called a deadlock. No jobs overlap in the schedule. All operations are assigned to

proper machines and receive the right processing times. Still, the schedule is infeasible, because it

cannot be executed or written down without breaking the precedence constraint.

Hence, there are only three out of four possible Gantt charts that work for this problem instance. For a
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problem instance where the jobs need to pass through all machines in the same sequence, however,

all possible Gantt charts will work, as also illustrated in Figure 2.4. The number of actually feasible

Gantt charts inY thus is different for different problem instances.

This is very annoying. The potential existence of infeasible solutions means that we cannot just pick

a good element fromY (according to whatever goodmeans), we also must be sure that it is actually

feasible. An optimization algorithm which might sometimes return infeasible solutions will not be

acceptable.

2.3.2.4 Summary

Table 2.1: The size |Y| of the solution spaceY (without schedules that stall uselessly) for selected

values of the number n of jobs and the numberm of machines of an JSSP instance I (later compare

also with Figure 1.7).

name n m min(#feasible) |Y|

2 2 3 4

2 3 4 8

2 4 5 16

2 5 6 32

3 2 22 36

3 3 63 216

3 4 147 1’296

3 5 317 7’776

4 2 244 576

4 3 1’630 13’824

4 4 7’451 331’776

5 2 4’548 14’400

5 3 91’461 1’728’000

5 4 207’360’000

5 5 24’883’200’000

demo 4 5 7’962’624
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name n m min(#feasible) |Y|

la24 15 10 ≈ 1.462*10121

abz7 20 15 ≈ 6.193*10275

yn4 20 20 ≈ 5.278*10367

swv15 50 10 ≈ 6.772*10644

We illustrate some examples for the number |Y| of schedules which do not waste time uselessly for

different values of n andm in Table 2.1. Since we use instances for testing our JSSP algorithms, we

have added their settings as well and listed them in column “name”. Of course, there are infinitely

many JSSP instances for a given setting ofn andm and our instances always onlymark single examples

for them.

We find that even small problems with m = 5 machines and n = 5 jobs already have billions of

possible solutions. The four more realistic problem instances which we will try to solve here already

have more solutions that what we could ever enumerate, list, or store with any conceivable hardware

or computer. As we cannot simply test all possible solutions and pick the best one, we will need some

more sophisticated algorithms to solve these problems. This is what we will discuss in the following.

The number#feasible of possible feasible Gantt charts can be different, depending on the problem

instance. For one setting ofm and n, we are interested in theminimummin(#feasible) of this number,

i.e., the smallest value that#feasible can take on over all possible instances with n jobs andmma-

chines. It is not so easy to finda formula for thisminimum, sowewon’t do this here. Instead, in Table 2.1,

we provided the corresponding numbers for a few selected instances. We find that, if we are unlucky,

most of the possible Gantt charts for a problem instancemight be infeasible, asmin(#feasible) can

bemuch smaller than |Y|.

2.4 Objective Function

We now know themost important input and output data for an optimization algorithm: the problem

instances I and candidate solutions y ∈ Y, respectively. But we do not just want to produce some

output, not just want to find “any” candidate solution – we want to find the “good” ones. For this, we

need ameasure rating the solution quality.
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2.4.1 Definitions

Definition 9. An objective function f : Y 7→ R rates the quality of a candidate solution y ∈ Y from the

solution spaceY as real number.

Definition 10. An objective value f(y) of the candidate solution y ∈ Y is the value that the objective

function f takes on for y.

Without loss of generality, we assume that all objective functions are subject tominimization, meaning

that smaller objective values are better. In this case, a candidate solution y1 ∈ Y is better than another

candidate solution y2 ∈ Y if and only if f(y1) < f(y2). If f(y1) > f(y2), then y2 would be better

and for f(y1) = f(y2), there would be no benefit of either solution over the other, at least from

the perspective of the optimization criterion f . The minimization scenario fits to situations where f

represents a cost, a time requirement, or, in general, any number of required resources.

Maximization problems, i.e., where the candidate solution with the higher objective value is better, are

problems where the objective function represents profits, gains, or any other form of positive output

or result of a scenario. Maximization andminimization problems can be converted to each other by

simply negating the objective function. In other words, if f is the objective function of a minimization

problem, we can solve the maximization problemwith−f and get the same result, and vice versa.

From the perspective of a Java programmer, the general concept of objective functions can be rep-

resented by the interface given in Listing 2.3. The evaluate function of this interface accepts one

instance of the solution space class Y and returns a double value. doubles are floating point num-

bers in Java, i.e., represent a subset of the real numbers. We keep the interface generic, so that

we can implement it for arbitrary solution spaces. Any actual objective function would then be an

implementation of that interface.

Listing 2.3 A generic interface for objective functions. (src)

1 public interface IObjectiveFunction<Y> {
2 double evaluate(Y y);
3 }

2.4.2 Example: Job Shop Scheduling

As stated in Section 1.1.4, our goal is to complete the production jobs as soon as possible. This means

that we want to minimize the makespan, the time when the last job finishes. Obviously, the smaller

this value, the earlier we are done with all jobs, the better is the plan. As illustrated in Figure 2.5, the

makespan is the time index of the right-most edge of any of the machine rows/schedules in the Gantt
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chart. In the figure, this happens to be the end time 230 of the last operation of job 0, executed on

machine 4.

makespan: 230

Figure 2.5: Themakespan (purple), i.e., the time when the last job is completed, for the example

candidate solution illustrated in Figure 2.2 for the demo instance from Figure 2.1.

Our objective function f is thus equivalent to the makespan and subject to minimization. Based on

our candidate solution data structure from Listing 2.2, we can easily compute f . We simply have to

look at the last number in each of the integer arrays stored in the member schedule, as it represents

the end time of the last job processed by a machine. We then return the largest of these numbers. We

implement the interface IObjectiveFunction in class JSSPMakespanObjectiveFunction

accordingly in Listing 2.4.

With this objective function f , subject to minimization, we have defined that a Gantt chart y1 is better

than another Gantt chart y2 if and only if f(y1) < f(y2).2

2under the assumption that both are feasible, of course
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Listing 2.4 Excerpt from a Java class computing the makespan resulting from a candidate solution to
the JSSP. (src)

1 public class JSSPMakespanObjectiveFunction
2 implements IObjectiveFunction<JSSPCandidateSolution> {
3 public double evaluate(JSSPCandidateSolution y) {
4 int makespan = 0;
5 // look at the schedule for each machine

6 for (int[] machine : y.schedule) {
7 // the end time of the last job on the machine is the last number

8 // in the array, as array machine consists of "flattened" tuples

9 // of the form ((job, start, end), (job, start, end), ...)

10 int end = machine[machine.length - 1];
11 if (end > makespan) {
12 makespan = end; // remember biggest end time

13 }
14 }
15 return makespan;
16 }
17 }

2.5 Global Optima and the Lower Bound of the Objective Function

We now know the three key-components of an optimization problem. We are looking for a candidate

solution y⋆ ∈ Y that has the best objective value f(y⋆) for a given problem instance I. But what is the

meaning “best”?

2.5.1 Definitions

Assume that we have a single objective function f : Y 7→ R defined over a solution space Y. This

objective function is our primary guide during the search and we are looking for its global optima.

Definition 11. If a candidate solution y⋆ ∈ Y is a global optimum for an optimization problem defined

over the solution spaceY, then there is no other candidate solution inYwhich is better.

Definition12.For everyglobal optimumy⋆ ∈ Yof single-objectiveoptimizationproblemwith solution

spaceY and objective function f : Y 7→ R subject to minimization, it holds that f(y) ≥ f(y⋆)∀y ∈

Y.

Notice that Definition 12 does not state that the objective value of y⋆ needs to be better than the

objective value of all other possible solutions. The reason is that there may bemore than one global

optimum, in which case all of them have the same objective value. Thus, a global optimum is not
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defined as a candidate solutions better than all other solutions, but as a solution for which no better

alternative exists.

The real-world meaning of a “globally optimal” is nothing else than “superlative” [30]. If we solve a

JSSP for a factory, our goal is to find the shortestmakespan. If we try to pack the factory’s products

into containers, we look for the packing that needs the least amount of containers. Thus, optimization

means searching for such superlatives, as illustrated in Figure 2.6. Vice versa, whenever we are looking

for the cheapest, fastest, strongest, best, biggest or smallest “thing”, then we have an optimization

problem at hand.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

...shortest delay

... on the smallest possible area

...best trade-offs between ....

fastest...

...with the highest score

...highest quality

with the least energy...
biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

...shortest delay

... on the smallest possible area

...best trade-offs between ....

fastest...

...with the highest score

...highest quality

with the least energy...

Figure 2.6: Optimization is the search for superlatives [30].

For example, for the JSSP there exists a simple and fast algorithm that can find the optimal schedules

for problem instances with exactly m = 2 machines and if all n jobs need to be processed by the

two machines in exactly the same order [121]. If our application always falls into a special case of

the problem, we may be lucky to find an efficient way to always solve it to optimality. The general

version of the JSSP, however, isN P-hard [37,134], meaning that we cannot expect to solve it to global

optimality in reasonable time. Developing a good (meta-)heuristic algorithm, which cannot provide

guaranteed optimality but will give close-to-optimal solutions in practice, is a good choice.

2.5.2 Bounds of the Objective Function

If we apply an approximation algorithm, then we do not have the guarantee that the solution we get is

optimal. We o�en do not even know if the best solution we currently have is optimal or not. In some

cases, we be able to compute a lower bound lb(f) for the objective value of an optimal solution, i.e.,

we know “It is not possible that any solution can have a quality better than lb(f), but we may not

knowwhether a solution actually exists that has quality lb(f).” This is not directly useful for solving the

problem, but it can tell us whether ourmethod for solving the problem is good. For instance, if we have

developed an algorithm for approximately solving a given problem and we know that the qualities of
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the solutions we get are close to a the lower bound, then we know that our algorithm is good. We then

know that improving the result quality of the algorithmmay be hard, maybe even impossible, and

probably not worthwhile. However, if we cannot produce solutions as good as or close to the lower

quality bound, this does not necessarily mean that our algorithm is bad.

It should be noted that it is not necessary to know the bounds of objective values. Lower bounds are a

“nice to have” feature allowing us to better understand the performance of our algorithms.

2.5.3 Example: Job Shop Scheduling

We have already defined our solution spaceY for the JSSP in Listing 2.2 and the objective function f in

Listing 2.3. A Gantt chart with the shortest possible makespan is then a global optimum. There may be

multiple globally optimal solutions, which then would all have the samemakespan.

When facing a JSSP instance I, we do not knowwhether a given Gantt chart is the globally optimal

solution or not, because we do not know the shortest possible makespan. There is no direct way in

which we can compute it. But we can, at least, compute some lower bound lb(f) for the best possible

makespan.

For instance, we know that a job i needs at least as long to complete as the sum
∑m−1

j=0 Ti,j over the

processing times of all of its operations. It is clear that no schedule can complete faster then the longest

job. Furthermore, we know that the makespan of the optimal schedule also cannot be shorter than

the latest “finishing time” of any machine j. This finishing time is at least as big as the sum bj of the

runtimes of all the operations assigned to this machine. But it may also include a least initial idle

time aj : If the operations for machine j never come first in their job, then for each job, we need to sum

up the runtimes of the operations coming before the one onmachine j. The least initial idle time aj is

then the smallest of these sums. Similarly, there is a least idle time cj at the end if these operations

never come last in their job. As lower bound for the fastest schedule that could theoretically exist, we

therefore get:

lb(f) = max







max
i







m−1
∑

j=0

Ti,j







, max
j

{aj + bj + cj}







(2.2)

More details are given in Section 6.1.1 and [66]. O�en, wemay not have such lower bounds, but it does

never hurt to think about them, because it will provide us with somemore understanding about the

nature of the problemwe are trying to solve.

Even if we have a lower bound for the objective function, we can usually not knowwhether any solution

of that quality actually exists. In other words, we do not knowwhether it is actually possible to find

a schedule whose makespan equals the lower bound. There simply may not be any way to arrange
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the jobs such that no operation stalls any other operation. This is why the value lb(f) is called lower

bound: We know no solution can be better than this, but we do not knowwhether a solution with such

minimal makespan exists.

However, if our algorithms produce solutions with a quality close to lb(f), we know that we are doing

well. Also, if we would actually find a solution with that makespan, then we would know that we have

perfectly solved the problem. The lower bounds for the makespans of our example problems are

illustrated in Table 2.2.

Table 2.2: The lower bounds lbf for the makespan of the optimal solutions for our example problems.

For the instances abz7, la24, and yn4, research literature (last column) provides better (i.e., higher)

lower bounds lb(f)⋆.

name n m lb(f) lb(f)⋆

source

for lb(f)⋆

demo 4 5 180 180 Equation (2.2)

abz7 20 15 638 656 [143,199,203,204]

la24 15 10 872 935 [9,199]

swv15 50 10 2885 2885 Equation (2.2)

yn4 20 20 818 929 [199,203,204]

lower bound and optimal makespan: 180

c3a3

b3

Figure 2.7: The globally optimal solution of the demo instance Figure 2.1, whose makespan happens

to be the same as the lower bound.
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Figure 2.7 illustrates theglobally optimal solution for our small demoJSSP instancedefined in Figure 2.1

(wewill get to how to find such a solution later). Herewewere lucky: The objective value of this solution

happens to be the same as the lower bound for themakespan. Upon closer inspection, the limiting

machine is the one at index 3.

We will find this by again looking at Figure 2.1. Regardless with which job we would start here, it

would need to initially wait at least a3 = 30 time units. The reason is that no first operation of any job

starts at machine 3. Job 0 would get to machine 3 the earliest a�er 50 time units, job 1 a�er 30, job 2

a�er 62, and job 3 a�er again 50 time units. Also, no job in the demo instance finishes at machine 3.

Job 0, for instance, needs to be processed bymachine 4 for 10 time units a�er it has passed through

machine 3. Job 1 requires 80 more time units a�er finishing at machine 3, job 2 also 10 time units,

and job 3 again 50 time units. In other words, machine 3 needs to wait at least 30 time units before

it can commence its work and will remain idle for at least 10 time units a�er processing the last sub

job. In between, it will need to work for exactly 140 time units, the total sum of the running time of all

operations assigned to it. This means that no schedule can complete faster than 30 + 140 + 10 = 180

time units. Thus, Figure 2.7 illustrates the optimal solution for the demo instance.

Then, all the jobs together on the machine will consume b3 = 150 time units if we can execute them

without further delay. Finally, it regardless with which job we finish on this machine, it will lead to a

further waiting time of c3 = 10 time units. This leads to a lower bound lb(f) of 180 and since we found

the illustrated candidate solution with exactly this makespan, we have solved this (very easy) JSSP

instance.

Listing 2.5 A generic interface for objective functions, now including a function for the lower bound.
(src)

1 public interface IObjectiveFunction<Y> {
2 double evaluate(Y y);
3 default double lowerBound() {
4 return Double.NEGATIVE_INFINITY;
5 }
6 }

We can extend our interface for objective functions in Listing 2.5 to now also allow us to implement a

function lowerBoundwhich returns, well, the lower bound. If we have no idea how to compute that

for a given problem instance, this function can simply return−∞.
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2.6 The Search Space and Representation Mapping

The solution spaceY is the data structure that “makes sense” from the perspective of the user, the

decision maker, who will be supplied with one instance of this structure (a candidate solution) at

the end of the optimization procedure. ButY it not necessarily is the space that is most suitable for

searching inside.

We have already seen that there are several constraints that apply to the Gantt charts. For every

problem instance, different solutions may be feasible. Besides the constraints, the space of Gantt

charts also looks kind of unordered, unstructured, and messy. It would be nice to have a compact,

clear, and easy-to-understand representation of the candidate solutions.

2.6.1 Definitions

Definition 13. The search spaceX is a representation of the solution spaceY suitable for exploration

by an algorithm.

Definition 14. The elements x ∈ X of the search spaceX are called points in the search space.

Definition15.The representationmappingγ : X 7→ Y is a le�-total relationwhichmaps thepointsx ∈

X of the search spaceX to the candidate solutions y ∈ Y in the solution spaceY.

For applying an optimization algorithm, we usually choose a data structureXwhich we can under-

stand intuitively. Ideally, it should be possible to define concepts such as distances, similarity, or

neighborhoods on this data structure. Spaces that are especially suitable for searching in include, for

instances:

1. subsets of s-dimensional real vectors, i.e.,Rs,

2. the set P(s) of sequences/permutations of s objects, and

3. a number of s yes-no decisions, which can be represented as bit strings of length s and spans

the space {0, 1}s.

For such spaces, we can relatively easily define good search methods and can rely on a large amount

of existing research work and literature. If we are lucky, then our solution spaceY is already “similar”

to one of these well-known and well-researched data structures. Then, we can setX = Y and use the

identity mapping γ(x) = x∀x ∈ X as representationmapping. In other cases, we will o�en prefer to

mapY to something similar to these spaces and define γ accordingly.

Themapping γ does not need to be injective, as it maymap two points x1 and x2 to the same candi-

date solution even though they are different (x1 6= x2). Then, there exists some redundancy in the

search space. We would normally like to avoid redundancy, as it tends to slow down the optimization

process [128]. Being injective is therefore a good feature for γ.
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Themappingγ also does not necessarily need to be surjective, i.e., there canbe candidate solutions y ∈

Y for which no x ∈ Xwith γ(x) = y exists. However, such solutions then can never be discovered. If

the optimal solution would reside in the set of such solutions to which no point in the search space can

be mapped, then, well, it could not be found by the optimization process. Being surjective is therefore

a good feature for γ.

Listing 2.6 A general interface for representation mappings. (src)

1 public interface IRepresentationMapping<X, Y> {
2 void map(Random random, X x, Y y);
3 }

The interface given in Listing 2.6 provides a function mapwhich maps one point x in the search space

class X to a candidate solution instance y of the solution space class Y. We define the interface as

generic, because we here do not make any assumption about the nature of X and Y. This interface

therefore truly corresponds to the general definition γ : X 7→ Y of the representation mapping. Side

note: An implementation ofmapwill overwritewhatever contentswere stored in objecty in theprocess,

i.e., we assume that Y is a class whose instances can bemodified.

2.6.2 Example: Job Shop Scheduling

In our JSSP example, we have developed the class JSSPCandidateSolution given in Listing 2.2

to represent the data of a Gantt chart (candidate solution). It can easily be interpreted by the user and

we have defined a suitable objective function for it in Listing 2.4. Yet, it is not that clear howwe can

efficiently create such solutions, especially feasible ones, let alone how to search in the space of Gantt

charts.3 What we would like to have is a search spaceX, which can represent the possible candidate

solutions of the problem in amore machine-tangible, algorithm-friendly way. While comprehensive

overviews about different such search spaces for the JSSP can be found in [2,40,217,225], we here

develop only one single idea which I find particularly appealing.

2.6.2.1 Idea: 1-dimensional Encoding

Imagine you would like to construct a Gantt chart as candidate solution for a given JSSP instance. How

would you do that? Well, we know that each of the n jobs hasm operations, one for each machine.

We could simply begin by choosing one job and placing its first operation on the machine to which it

belongs, i.e., write it into the Gantt chart. Then we again pick a job, take the first not-yet-scheduled

3Of course, there aremany algorithms that can do that andwe could discover one if wewould seriously think about it, but
here we take the educational route where we investigate the full scenario withX 6= Y.
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operation of this job, and “add” it to the end of the row of its correspondingmachine in the Gantt chart.

Of course, we cannot pick a job whose operations all have already be assigned. We can continue doing

this until all jobs are assigned – and we will get a valid solution.

This solution is defined by the order in which we chose the jobs. Such an order can be described as a

simple, linear string of job IDs, i.e., of integer numbers. If we process such a string from the beginning

to the end and step-by-step assign the jobs, we get a feasible Gantt chart as result.

The encoding and corresponding representationmapping can best be described by an example. In

the demo instance, we havem = 5machines and n = 4 jobs. Each job hasm = 5 operations that

must be distributed to the machines. We use a string of lengthm ∗ n = 20 denoting the priority of the

operations. We know the order of the operations per job as part of the problem instance data I. We

therefore do not need to encode it. This means that we just include each job’s idm = 5 times in the

string. This was the original idea: The encoding represents the order in which we assign the n jobs,

and each jobmust be pickedm times. Our search space is thus somehow similar to the set P(n ∗ m) of

permutations of n ∗ m objects mentioned earlier, but instead of permutations, we have permutations

with repetitions.

x=(0, 2, 1, 0, 3, 1, 0, 1, 2, 3, 2, 1, 1, 2, 3, 0, 2, 0, 3, 3)
job 3

job 2

job 1

job 0

++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

++++++++++++++++++++

y=

I

time

Figure 2.8: Illustration of the first four steps of the representation mapping of an example point in the

search space to a candidate solution.

A point x ∈ X in the search space X for the demo JSSP instance would thus be an integer string of
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length 20. As example, we chose x = (0, 2, 1, 0, 3, 1, 0, 1, 2, 3, 2, 1, 1, 2, 3, 0, 2, 0, 3, 3) in Figure 2.8. The

representation mapping starts with an empty Gantt chart. This string is interpreted from le� to right,

as illustrated in the figure. The first value is 0, which means that job 0 is assigned to a machine first.

From the instance data, we know that job 0 first must be executed for 10 time units on machine 0. The

job is thus inserted onmachine 0 in the chart. Since machine 0 is initially idle, it can be placed at time

index 0. We also know that this operation can definitely be executed, i.e., won’t cause a deadlock,

because it is the first operation of the job.

The next number in the string is 2, so job 2 is next. This job needs to go for 30 time units to machine 2,

which also is initially idle. So it can be inserted into the candidate solution directly as well (and cannot

cause any deadlock either).

Then job 1 is next in x, and from the instance data we can see that it will go to machine 1 for 20 time

units. This machine is idle as well, so the job can start immediately.

We now encounter job 0 again in the integer string. Since we have already performed the first operation

of job 0, we nowwould like to schedule its second operation. According to the instance data, the second

operation takes place on machine 1 and will take 20 time units. We know that completing the first

operation took 10 time units. We also know that machine 1 first has to process job 1 for 20 time units.

The earliest possible time at which we can begin with the second operation of job 0 is thus at time

unit 20, namely the bigger one of the above two values. This means that job 0 has to wait for 10 time

units a�er completing its first operation and then can be processed bymachine 1. No deadlock can

occur, as wemade sure that the first operation of job 0 has been scheduled before the second one.

We now encounter job 3 in the integer string, and we know that job 3 first goes to machine 4, which

currently is idle. It can thus directly be placed onmachine 4, which it will occupy for 50 time units.

Then we again encounter job 1 in the integer string. Job 1 should, in its second operation, go to

machine 0. Its first operation to 20 time units on machine 1, while machine 0 was occupied for 10 time

units by job 0. We can thus start the second operation of job 1 directly at time index 20.

Further processing of y leads us to job 0 again, whichmeanswewill need to schedule its third operation,

which will need 20 time units on machine 2. Machine 2 is occupied by job 2 from time unit 0 to 30 and

becomes idle therea�er. The second operation of job 0 finishes on time index 40 at machine 1. Hence,

we can begin with the third operation at time index 40 at machine 2, which had to idle for 10 time

units.

We continue this iterative processing until reaching the end of the string x. We now have constructed

the complete Gantt chart y illustrated in Figure 2.8. Whenever we assign a operation i > 0 of any given

job to a machine, then we already had assigned all operations at smaller indices first. No deadlock can

occur and y must therefore be feasible.
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In Listing 2.7, we illustrate howsuchamapping canbe implemented. It basically is a function translating

an instance of int[] to JSSPCandidateSolution. This is done by keeping track of time that has

passed for each machine and each job, as well as by remembering the next operation for each job and

the position in the schedule of eachmachine.

2.6.2.2 Advantages of a very simple Encoding

This is a very nice and natural way to represent Gantt charts with a much simpler data structure. As a

result, it has been discovered by several researchers independently, the earliest being Gen et al. [81],

Bierwirth [24,25], and Shi et al. [182], all in the 1990s.

But what do we gain by using this search space and representation mapping? First, well, we now have

a very simple data structureX to represent our candidate solutions. Second, we also have very simple

rules for validating a point x in the search space: If it contains the numbers 0 . . . (n − 1) each exactlym

times, it represents a feasible candidate solution.

Third, the candidate solution corresponding to a valid point from the search space will always be

feasible [24]. Themapping γ will ensure that the order of the operations per job is always observed.

We do not need to worry about the issue of deadlocks mentioned in Section 2.3.2.3. We know from

Table 2.1, that the vast majority of the possible Gantt charts for a given problemmay be infeasible –

and nowwe do no longer need to worry about that. Our mapping also makes sure of the more trivial

constraints, such as that eachmachine will process at most one job at a time and that all operations

are eventually processed.

Finally, we also could modify our representationmapping γ to adapt to more complicated and con-

straint versions of the JSSP if need be: For example, imagine that it would take a job- andmachine-

dependent time requirement for carrying a job from onemachine to another, then we could facilitate

this by changing γ so that it adds this time to the starting time of the job. If there was a job-dependent

setup time for eachmachine [5], which could be different if job 1 follows job 0 instead of job 2, then

this could be facilitated easily as well. If our operations would be assigned to “machine types” instead

of “machines” and there could be more than one machine per machine type, then the representation

mapping could assign the operations to the next machine of their type which becomes idle. Our rep-

resentation also trivially covers the situation where each jobmay havemore thanm operations, i.e.,

where a job may need to cycle back and pass one machine twice. It is also suitable to simple scenarios,

such as the Flow Shop Problem, where all jobs pass through themachines in the same, pre-determined

order [66,80,217].

Many such different problem flavors can now be reduced to investigating the same space X using

the same optimization algorithms, just with different representation mappings γ and/or objective

functions f . Additionally, it became very easy to indirectly create andmodify candidate solutions by
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sampling points from the search space andmoving to similar points, as we will see in the following

chapters.

2.6.2.3 Size of the Search Space

It is relatively easy to compute the size |X| of our proposed search space X [182]. We do not need

tomake any assumptions regarding “no useless waiting time”, as in Section 2.3.2.2, since this is not

possible by default. Each element x ∈ X is a permutation of a multiset where each of the n elements

occurs exactly m times. This means that the size of the search space can be computed as given in

Equation (2.3).

|X| =
(m ∗ n)!

(m!)n (2.3)

Table 2.3: The sizes |X| and |Y| of the search and solution spaces for selected values of the number n

of jobs and the numberm of machines of an JSSP instance I. (compare with Figure 1.7 and with the

size |Y| of the solution space); compare with Figure 5.8

name n m |Y| |X|

3 2 36 90

3 3 216 1’680

3 4 1’296 34’650

3 5 7’776 756’756

4 2 576 2’520

4 3 13’824 369’600

4 4 331’776 63’063’000

5 2 14’400 113’400

5 3 1’728’000 168’168’000

5 4 207’360’000 305’540’235’000

5 5 24’883’200’000 623’360’743’125’120

demo 4 5 7’962’624 11’732’745’024

la24 15 10 ≈ 1.462*10121 ≈ 2.293*10164
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name n m |Y| |X|

abz7 20 15 ≈ 6.193*10275 ≈ 1.432*10372

yn4 20 20 ≈ 5.278*10367 ≈ 1.213*10501

swv15 50 10 ≈ 6.772*10644 ≈ 1.254*10806

We give some example values for this search space size |X| in Table 2.3. From the table, we can

immediately see that the number of points in the search space, too, grows very quickly with both the

number of jobs n and the number of machinesm of an JSSP instance I.

For our demo JSSP instance with n = 4 jobs andm = 5machines, we already have about 12 billion

different points in the search space and 7million possible, non-wasteful candidate solutions.

We now find the drawback of our encoding: There is some redundancy in our mapping, γ here is not

injective. If we would exchange the first three numbers in the example string in Figure 2.8, we would

obtain the same Gantt chart, as jobs 0, 1, and 2 start at different machines.

As said before, we should avoid redundancy in the search space. However, here we will stick with our

proposed mapping because it is very simple, it solves the problem of feasibility of candidate solutions,

and it allows us to relatively easily introduce and discuss many different approaches, algorithms, and

sub-algorithms.
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Listing 2.7 Excerpt from a Java class for implementing the representation mapping. (src)

1 public class JSSPRepresentationMapping implements

2 IRepresentationMapping<int[], JSSPCandidateSolution> {
3 public void map(Random random, int[] x,
4 JSSPCandidateSolution y) {
5 // create variables machineState, machineTime of length m and

6 // jobState, jobTime of length n, filled with 0 [omitted brevity]

7 // iterate over the jobs in the solution

8 for (int nextJob : x) {
9 // get the definition of the steps that we need to take for

10 // nextJob from the instance data stored in this.m_jobs

11 int[] jobSteps = this.mJobs[nextJob];
12 // jobState tells us the index in this list for the next step to

13 // do, but since the list contains machine/time pairs, we

14 // multiply by 2 (by left-shifting by 1)

15 int jobStep = (jobState[nextJob]++) << 1;
16

17 // so we know the machine where the job needs to go next

18 int machine = jobSteps[jobStep]; // get machine

19

20 // start time is maximum of the next time when the machine

21 // becomes idle and the time we have already spent on the job

22 int start =
23 Math.max(machineTime[machine], jobTime[nextJob]);
24 // the end time is simply the start time plus the time the job

25 // needs to spend on the machine

26 int end = start + jobSteps[jobStep + 1]; // end time

27 // it holds for both the machine (it will become idle after end)

28 // and the job (it can go to the next station after end)

29 jobTime[nextJob] = machineTime[machine] = end;
30

31 // update the schedule with the data we have just computed

32 int[] schedule = y.schedule[machine];
33 schedule[machineState[machine]++] = nextJob;
34 schedule[machineState[machine]++] = start;
35 schedule[machineState[machine]++] = end;
36 }
37 }
38 }
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2.7 Search Operations

One of the most important design choices of a metaheuristic optimization algorithm are the search

operators employed.

2.7.1 Definitions

Definition 16. An k-ary search operator searchOp : X
k 7→ X is a le�-total relation which accepts

k points in the search spaceX as input and returns one point in the search space as output.

Special cases of search operators are

• nullary operators (k = 0, see Listing 2.8), which sample a new point from the search space

without using any information from an existing points,

• unary operators (k = 1, see Listing 2.9), which sample a new point from the search space based

on the information of one existing point,

• binary operators (k = 2, see Listing 2.10), which sample a new point from the search space by

combining information from two existing points, and

• ternary operators (k = 3), which sample a new point from the search space by combining

information from three existing points.

Listing 2.8 A generic interface for nullary search operators. (src)

1 public interface INullarySearchOperator<X>
2 extends ISetupPrintable {
3 void apply(X dest, Random random);
4 }

Listing 2.9 A generic interface for unary search operators. (src)

1 public interface IUnarySearchOperator<X>
2 extends ISetupPrintable {
3 void apply(X x, X dest, Random random);
4 }

Whether, which, and how such such operators are used depends on the nature of the optimization

algorithms and will be discussed later on.

Search operators are o�en randomized, which means invoking the same operator with the same input

multiple times may yield different results. This is why Listings 2.8 to 2.10 all accept an instance of

java.util.Random, a pseudorandom number generator.
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Listing 2.10 A generic interface for binary search operators. (src)

1 public interface IBinarySearchOperator<X>
2 extends ISetupPrintable {
3 void apply(X x0, X x1, X dest, Random random);
4 }

Operators that take existing points in the search space as input tend to sample new points which, in

some sort, are similar to their inputs. They allow us to define proximity-based relationships over the

search space, such as the common concept of neighborhoods.

Definition 17. A unary operator searchOp : X 7→ X defines a neighborhood relationship over a search

space where a point x1 ∈ X is called a neighbor of a point x2 ∈ X are called neighbors if and only if x1

could be the result of an application of searchOp to x2.

2.7.2 Example: Job Shop Scheduling

We will step-by-step introduce the concepts of nullary, unary, and binary search operators in the

subsections of chapter 3 on metaheuristics as they come. This makes more sense from a didactic

perspective.

2.8 The Termination Criterion and the Problem of Measuring Time

We have seen that the search space for even small instances of the JSSP can already be quite large.

We simply cannot enumerate all of them, as it would take too long. This raises the question: “If we

cannot look at all possible solutions, how can we find the global optimum?” We may also ask: “If

we cannot look at all possible solutions, how can we knowwhether a given candidate solution is the

global optimum or not?” In many optimization scenarios, we can use theoretical bounds to solve that

issue, but a priori, these questions are valid and their answer is simply: No. No, without any further

theoretical investigation of the optimization problem, we don’t know if the best solution we know so

far is the global optimum or not. This leads us to another problem: If we do not know whether we

found the best-possible solution or not, how do we know if we can stop the optimization process or

should continue trying to solve the problem? There are two basic answers: Either when the time is up

or when we found a reasonably-good solution.
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2.8.1 Definitions

Definition 18. The termination criterion is a function of the state of the optimization process which

becomes true if the optimization process should stop (and then remains true) and remains false

as long as it can continue.

Listing 2.11 A general interface for termination criteria. (src)

1 public interface ITerminationCriterion {
2 boolean shouldTerminate();
3 }

With a termination criterion defined as implementation of the interface given in Listing 2.11, we can

embedany combinationof timeor solutionquality limits. We could, for instance, define a goal objective

value g goodenough so thatwe can stop theoptimizationprocedure as soonas a candidate solutiony ∈

Y has been discovered with f(y) ≤ g, i.e., which is at least as good as the goal. Alternatively – or in

addition – wemay define amaximum amount of time the user is willing to wait for an answer, i.e., a

computational budget a�er which we simply need to stop. Discussions of both approaches from the

perspective of measuring algorithm performance are given in Sections 4.2 and 4.3.

2.8.2 Example: Job Shop Scheduling

In our example domain, the JSSP, we can assume that the human operator will input the instance

data I into the computer. Then she may go drink a coffee and expect the results to be ready upon her

return. While she does so, can we solve the problem? Unfortunately, probably not. As said, for finding

the best possible solution, if we are unlucky, we would need in invest a runtime growing exponentially

with the problem size, i.e.,m and n [37,134]. So can we guarantee to find a solution which is, say, 1%

worse, until she finishes her drink? Well, it was shown that there is no algorithmwhich can guarantee

us to find a solution only 25%worse than the optimumwithin a runtime polynomial in the problem

size [117,222] in 1997. Since 2011, we know that any algorithm guaranteeing to provide schedules that

are only be a constant factor (be it 25% or 1’000’000) worse than the optimummay need the dreaded

exponential runtime [142]. So whatever algorithmwe will develop for the JSSP, defining a some limit

solution quality based on the lower bound of the objective value at which we can stop makes little

sense.

Hence, we should rely on the simple practical concern: The operator drinks a coffee. A termination

criterion granting three minutes of runtime seems to be reasonable to me here. We should look for the

algorithm implementation that can give us the best solution quality within that time window.
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Of course, there may also be other constraints based on the application scenario, e.g., whether a

proposed schedule can be implemented/completed within the working hours of a single day. We

might let the algorithm run longer than threeminutes until such a solution was discovered. But, as

said before, if a very odd scenario occurs, it might take a long time to discover such a solution, if

ever. The operator may also need to be given the ability to manually stop the process and extract the

best-so-far solution if needed. For our benchmark instances, however, this is not relevant and we can

limit ourselves to the runtime-based termination criterion.

2.9 Solving Optimization Problems

Thank you for sticking with me during this long and a bit dry introduction chapter. Why did we go

through all of this long discussion? We did not even solve the JSSP yet. . .

Well, in the following you will see that we now are actually only a few steps away from getting good

solutions for the JSSP. Or any optimization problem. Because we now have actually exercise a the

basic process that we need to go through whenever we want to solve a new optimization task.

1. The first thing to do is to understand the scenario information, i.e., the input data I that our

programwill receive.

2. The second step is to understand what our users will consider as a solution – a Gantt chart, for

instance. Then we need to define a data structureYwhich can hold all the information of such a

candidate solution.

3. Oncewe have the data structureY representing a complete candidate solution, we need to know

when a solution is good. We will define the objective function f , which returns one number (say

the makespan) for a given candidate solution.

4. If we want to apply any of the optimization algorithms introduced in the following chapters,

then we also to know when to stop. As already discussed, we usually cannot solve instances of a

new problem to optimality within feasible time and o�en don’t know whether the current-best

solution is optimal or not. Hence, a termination criterion usually arises frompractical constraints,

such as the acceptable runtime.

All the above points need to be tackled in close collaborationwith the user. The usermay be the person

who will eventually, well, use the so�ware we build or at least a domain expert. The following steps

then are our own responsibility:

5. In the future, we will need to generate many candidate solutions quickly, and these better be

feasible. Can this be done easily using the data structure Y? If yes, then we are good. If not,

then we should think about whether we can define an alternative search spaceX, a simpler data

structure. Creating and modifying instances of such a simple data structureX is much easier
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than Y. Of course, defining such a data structure Xmakes only sense if we can also define a

mapping γ fromX toY.

6. We select optimization algorithms and plug in the representation and objective function. We

may need to implement some other algorithmic modules, such as search operations. In the

following chapters, we discuss a variety of methods for this.

7. We test, benchmark, and compare several algorithms to pick those with the best and most

reliable performance (see chapter 4).
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3 Metaheuristic Optimization Algorithms

Optimization problems are solved by optimization algorithms. We can roughly divide these into exact

and heuristicmethods.

An exact algorithmguarantees to find the optimal solution if sufficient runtime is granted. This required

runtimemight, in the worst case, exceedwhat we can afford, in particular forN P-hard problems, such

as the JSSP. Alternatively, many exact methods can be halted before completing their run and they

can then still provide an approximate solution (without the guarantee that it is optimal).

For heuristic algorithms, this directly is the basic premise; They give us some approximate solution

relatively quickly. They either do not make any guarantees at all how good it will be or, sometimes,

provide some bound guarantee (like: “This solution will not cost more than two times of the optimal

cost.”) Simple heuristics are usually tailor-made for specific problems, like the TSP or JSSP.

Definition 19. Ametaheuristic is a general algorithm that can produce approximate solutions for a

class of different optimization problems.

Metaheuristics [42,82,83,205] are the most important class of algorithms that we explore in this book.

These algorithms have the advantage that we can easily adapt them to new optimization problems. As

long as we can construct the elements discussed in chapter 2 for a problem, we can attack it with a

metaheuristic. We will introduce several such general algorithms in this book. We explore them by

again using the Job Shop Scheduling Problem (JSSP) from Section 1.1.4 as example.

3.1 Common Characteristics

Before we delve into our first algorithms, let us first take a look on some things that all metaheuristics

have in common.

3.1.1 Anytime Algorithms

Definition 20. An anytime algorithm is an algorithmwhich can provide an approximate result during

almost any time of its execution.
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All metaheuristics – andmany other optimization andmachine learning methods – are anytime algo-

rithms [27]. The idea behind anytime algorithms is that they start with (potentially bad) guess about

what a good solution would be. During their course, they try to improve their approximation quality,

by trying to produce better and better candidate solutions. At any point in time, we can extract the

current best guess about the optimum (and stop the optimization process if we want to). This fits to

the optimization situation that we have discussed in Section 2.8: We o�en cannot find out whether the

best solution we currently have is the globally optimal solution for the given problem instance or not,

so we simply continue trying to improve upon it until a termination criterion tells us to quit, e.g., until

the time is up.

3.1.2 Return the Best-So-Far Candidate Solution

This one is actually quite simple, yet o�en ignored and misunderstood by novices to the subject:

Regardless what the optimization algorithm does, it will never NEVER forget the best-so-far candidate

solution. O�en, this is not explicitly written in the formal definition of the algorithms, but there always

exists a special variable somewhere storing that solution. This variable is updated each time a better

solution is found. Its value is returned when the algorithm stops.

3.1.3 Randomization

O�en, metaheuristics make randomized choices. In cases where it is not clear whether doing “A” or

doing “B” is better, it makes sense to simply flip a coin and do “A” if it is heads and “B” if it is tails. That

our search operator interfaces in Listings 2.8 to 2.10 all accept a pseudorandom number generator as

parameter is onemanifestation of this issue. Random number generators are objects which provide

functions that can return numbers from certain ranges, say from [0, 1) or an integer interval. Whenever

we call such a function, it may return any value from the allowed range, but we do not know which

one it will be. Also, the returned value should be independent from those returned before, i.e., from

known the past random numbers, we should not be able to guess the next one. By using such random

number generators, we can let an algorithmmake random choices, randomly pick elements from a set,

or change a variable’s value in some unpredictable way.
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3.1.4 Black-Box Optimization

Figure 3.1: The black-box character of manymetaheuristics, which can o�en accept arbitrary search

operators, representations, and objective functions.

The concept of general metaheuristics, the idea to attack a very wide class of optimization problems

with one basic algorithm design, can be realized when following a black-box approach. If we want to

have one algorithm that can be applied to all the examples given in in the introduction, then this can

best be done if we hide all details of the problems under the hood of the structural elements introduced

in chapter 2. For a black-box metaheuristic, it does not matter how the objective function f works. The

only thing that matters is that gives a rating of a candidate solution y ∈ Y and that smaller ratings are

better.

There are different degrees of how general black-box metaheuristics can be. For the most general

algorithms, it does not matter what exactly the search operators do or even what data structure is used

as search space X. For them, it only matters that these operators can be used to get to new points

in the search space (which can bemapped to candidate solutions y via a representationmapping γ

whose nature is also unimportant for the metaheuristic). Then, even the nature of the candidate

solutions y ∈ Y and the solution spaceY play no big role for black-box optimization methods, as they

only work on and explore the search spaceX.

Then there are also black-boxmetaheuristics that demand a special type of search space, e.g., a specific

subset of then-dimensional real numbers (X ⊂ R
n), bit strings of a given length, or permutations of the

first n natural numbers. These algorithms can still be general, as they maymake very few assumptions

about the nature of the objective function f defined over the solution spaceY.

The solution space is relevant for the human operator using the algorithm only, the search space is

what the algorithmworks on. Of course, in many cases,X = Y.
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Thus, ablack-boxmetaheuristic is a general algorithm intowhichwecanplug representations, objective

functions, and o�en also search operations as needed by a specific application. This is illustrated in

Figure 3.1. Black-box optimization is the highest level of abstraction on which we can work when trying

to solve complex problems.

3.1.5 Putting it Together: A simple API

Before, I promised that we will implement all the algorithms discussed in this book.

If we would be dealing with “classical” algorithms, things would be somewhat easier: A classical

algorithm has clearly defined input and output data structures. Dijkstra’s shortest path algorithm [60],

for instance, gets fed with a graph of weighted edges and a start node and will return the paths of

minimumweight to all other nodes (or a specified target node). In Machine Learning, the situation is

quite similar: We would have a lot of specialized algorithms for clearly defined situations. The input

and output data would usually adhere to some basic, fixed structures. If you implement k-means

clustering [77,104], for instance, you have real vectors coming in and k real vectors going out of your

algorithm and that’s that. Deep Learning [87] basically takes, as input, a set of labeled real vectors

(plus a network structure) and, as output, produces the vector of weights for the network. However,

we have to deal with the black-box concept, meaning that our algorithms will be very variable in terms

of the data structures we can feed to them. Matter in fact: Any of the three scenarios above can be

modeled as optimization problem. Any of them can be tackled with (most of) the metaheuristics in

this book as well!

This is challenging from a programming perspective, especially when we try to tackle this in an educa-

tional setting, where stuff should not be overly complicated. What we want is to not just implement

general algorithms, but also be able to execute them and obtain their results in a convenient fashion.

Ideally, we do not want to be bothered with too much book keeping or the creation of log files and

such and such. It should be possible to implement the most general type of black-box methods as well

as problem-specific optimization methods and to run them in a uniform environment.

I therefore try to define a simple API for black-box optimization that combines all of our considerations

far. The goal is to make the implementation of metaheuristics as simple as possible. We do this

by clearly dividing between the optimization algorithms for solving a problem on one side and the

structural components of the problem on the other side. The algorithms that we will implement will

be general black-box methods. At the same time, we will develop the components that we need to

plug into them to solve JSSPs as educational example.

We therefore first need to consider what an optimization process needs as input. Obviously, in the

most common case, these are all the items we have discussed in the previous section, ranging from the

termination criterion over the search operators (which we will discuss later) and the representation
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mapping to the objective function. Let us therefore define an interface that can provide all these com-

ponents with corresponding “getter methods.” We call this interface IBlackBoxProcess<X,Y>

from which an excerpt is given in Listing 3.1. The interface is generic, meaning it allows us to provide a

search spaceX as type parameter X and a solution spaceY via the type parameter Y.

Listing 3.1 A generic interface for representing black-box processes to an optimization algorithm. (src)

1 public interface IBlackBoxProcess<X, Y> extends

2 IObjectiveFunction<X>, ITerminationCriterion, Closeable {
3 Random getRandom();
4 ISpace<X> getSearchSpace();
5 double getBestF();
6 double getGoalF();
7 void getBestX(X dest);
8 void getBestY(Y dest);
9 long getConsumedFEs();

10 long getLastImprovementFE();
11 long getMaxFEs();
12 long getConsumedTime();
13 long getLastImprovementTime();
14 long getMaxTime();
15 }

Actually, such an interface does not need to expose the representation mapping γ and objective func-

tion f as separate components to an optimization algorithm. It is sufficient if the interface directly

implements an evaluate that takes, as input, an element x ∈ X, internally performs the repre-

sentation mapping y = γ(x), then invokes the objective function f(y), and returns its result. This

evaluatemethod could then even be implemented such that it remembers the best-so-far-solution.

We then no longer need to keep track of it in the optimization itself.

Of course, we can also implement logging of the search progress inside of evaluate, which would

make this functionality available to all of our experiments in a transparent fashion. Furthermore, we

could also keep track of the total number of calls to the objective function as well as of the consumed

runtime. This, in turn, can be used to implement the termination criterion.

All in all, this interface allows us to create transparent implementations that

1. provide a random number generator to the algorithm,

2. wrap an objective function f together with a representation mapping γ to allow us to evaluate a

point in the search space x ∈ X in a single step, effectively performing f(γ(x)),

3. keep track of the elapsed runtime and FEs as well as when the last improvement was made by

updating said information when necessary during the invocations of the “wrapped” objective

function,
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4. keep track of the best points in the search space and solution space so far as well as their associ-

ated objective value in special variables by updating themwhenever the “wrapped” objective

function discovers an improvement (taking care of the issue from Section 3.1.2 automatically),

5. represent a termination criterion based on the above information (e.g., maximumFEs, maximum

runtime, reaching a goal objective value), and

6. log the improvements that the algorithmmakes to a text file, so that we can use them tomake

tables and draw diagrams.

Along with the interface class IBlackBoxProcess, we also provide a builder for instantiating it.

The actual implementation behind this interface does not matter here. It is clear what it does, and the

actual code is simple and not contributing to the understand of the algorithms or processes. Thus, you

do not need to bother with it, just the assumption that an object implementingIBlackBoxProcess

has the abilities listed above shall suffice here.

When instantiating this interface via the builder, we can provide the termination criterion, represen-

tation mapping, and objective function. Additionally, we also need to provide the functionality to

instantiate and copy the data structuresmaking up the spacesX andY. On one hand, these are needed

for the internal book-keeping so thatevaluate can internallymake a copy of the best-so-far elements

inX andY). On the other hand, the black-box optimization algorithms that we will implement also

must be able to make such copies. Since we do not make any assumption about the Java classes

corresponding to the spacesX andY, we add another easy-to-implement and very simple interface,

namely ISpace, see Listing 3.2. It can be implemented for each problem type and then provides the

required functionality.

Listing 3.2 A excerpt of the generic interface ISpace for representing basic functionality of search
and solution spaces needed by Listing 3.1. (src)

1 public interface ISpace<Z> {
2 Z create();
3 void copy(Z from, Z to);
4 }

Equipped with this, defining an interface for black-box metaheuristics becomes easy: The optimization

algorithms themselves then are implementations of the generic interface IMetaheuristic<X,Y>

given in Listing 3.3. As you can see, this interface only really needs a single method, solve. This

method will use the functionality provided by the IBlackBoxProcess handed to it as parameter

process. The implemented algorithm can generate new points in the search space X and send them

to the evaluatemethod of process. This is the core behavior of every basic metaheuristic and in

the rest of this chapter, we will learn how different algorithms realize it.
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Listing 3.3 A generic interface of a metaheuristic optimization algorithm. (src)

1 public interface IMetaheuristic<X, Y> extends ISetupPrintable {
2 void solve(IBlackBoxProcess<X, Y> process);
3 }

Notice that the interface IMetaheuristic is, again, generic, allowing us to specify a search spaceX

as type parameter X and a solution space Y via the type parameter Y. Whether an implementation

of this interface is generic too or whether it ties down X or Y to concrete types will then depend on

the algorithms we try to realize. The most general black-box metaheuristics may be able to deal with

any search- and solution space, as long they are provided with the right operators. Still, we could

also implement an algorithm specified to numerical problems where X ⊂ R
n, by tying down X to

double[] in the algorithm class specification.

3.1.6 Example: Job Shop Scheduling

What we need to provide for our JSSP example are implementations of our ISpace interface for both

the search and the solution space, which are given in Listing 3.4 and Listing 3.5, respectively. These

classes implement themethods that anIBlackBoxProcess implementation needs under the hood

to, e.g., copy and store candidate solutions and points in the search space.

Listing 3.4 An excerpt of the implementation of our ISpace interface for the search space for the
JSSP problem. (src)

1 public class JSSPSearchSpace implements ISpace<int[]> {
2 public int[] create() {
3 return new int[this.mLength];
4 }
5 public void copy(int[] from, int[] to) {
6 System.arraycopy(from, 0, to, 0, this.mLength);
7 }
8 }

With the exception of the search operators, which we will introduce “when they are needed,” we have

already discussed how the other components needed to solve a JSSP can be realized in Section 2.3.2.1,

Section 2.6.2, Section 2.4.2, and Section 2.8.2.
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Listing 3.5 An excerpt of the implementation of the ISpace interface for the solution space for the
JSSP problem. (src)

1 public class JSSPSolutionSpace
2 implements ISpace<JSSPCandidateSolution> {
3 public JSSPCandidateSolution create() {
4 return new JSSPCandidateSolution(this.instance.m,
5 this.instance.n);
6 }
7 public void copy(JSSPCandidateSolution from,
8 JSSPCandidateSolution to) {
9 int n = this.instance.n * 3;

10 int i = 0;
11 for (int[] s : from.schedule) {
12 System.arraycopy(s, 0, to.schedule[i++], 0, n);
13 }
14 }
15 }

3.2 Random Sampling

If we have our optimization problem and its components properly defined according to chapter 2, then

we already have the proper tools to solve the problem. We know

• how a solution can internally be represented as “point” x in the search spaceX (Section 2.6),

• howwe canmap such apointx ∈ X to a candidate solution y in the solution spaceY (Section 2.3)

via the representation mapping γ : X 7→ Y (Section 2.6), and

• how to rate a candidate solution y ∈ Ywith the objective function f (Section 2.4).

The only question le� for us to answer is how to “create” a point x in the search space. We can then

apply γ(x) and get a candidate solution y whose quality we can assess via f(y). Let us look at the

problem as a black box (Section 3.1.4). In other words, we do not really know structures and features

“make” a candidate solution good. Hence, we do not know how to “create” a good solution either. Then

the best we can do is just create the solutions randomly.

3.2.1 Ingredient: Nullary Search Operation for the JSSP

For this purpose, we need to implement the nullary search operation from Listing 2.8. We create a

new search operator which needs no input and returns a point in the search space. Recall that our

representation (Section 2.6.2) requires that each index i ∈ 0 . . . (n − 1) of the nmust occur exactlym

times in the integer array of lengthm ∗ n, wherem is the number of machines in the JSSP instance.

In Listing 3.6, we achieve this by first creating the sequence (n − 1, n − 2, . . . , 0) and then copying
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itm times in the destination array dest. We then randomly shuffle dest by applying the Fisher-Yates

shuffle algorithm [76,129], which simply brings the array into an entirely random order.

Listing 3.6 An excerpt of the implementation of the nullary search operation interface Listing 2.8 for
the JSSP, which will create one random point in the search space. (src)

1 public class JSSPNullaryOperator
2 implements INullarySearchOperator<int[]> {
3 public void apply(int[] dest, Random random) {
4 // create first sequence of jobs: n-1, n-2, ..., 0

5 for (int i = this.n; (--i) >= 0;) {
6 dest[i] = i;
7 }
8 // copy this m-1 times: n-1, n-2, ..., 0, n-1, ... 0, n-1, ...

9 for (int i = dest.length; (i -= this.n) > 0;) {
10 System.arraycopy(dest, 0, dest, i, this.n);
11 }
12 // now randomly shuffle the array: create a random sequence

13 RandomUtils.shuffle(random, dest, 0, dest.length);
14 }
15 }

The applymethod of our implemented operator creates one random point in the JSSP search space.

We can then pass this point through the representation mapping that we already implemented in

Listing 2.7 and get a Gantt diagram. Easily we then obtain the quality, i.e., makespan, of this candidate

solution as the right-most edge of any an job assignment in the diagram, as defined in Section 2.4.2.

3.2.2 Single Random Sample

3.2.2.1 The Algorithm

Now thatwe have all ingredients ready, we can test the idea. In Listing 3.7, we implement this algorithm

(here called 1rs) which creates exactly one random point x in the search space. It then takes this

point and passes it to the evaluation function of our black-box process, which will perform the

representation mapping y = γ(x) and compute the objective value f(y). Internally, we implemented

this function in such a way that it automatically remembers the best candidate solution it ever has

evaluated. Thus, we do not need to take care of this in our algorithm, whichmakes the implementation

so short.
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Listing 3.7 An excerpt of the implementation of an algorithmwhich creates a single random candidate
solution. (src)

1 public class SingleRandomSample<X, Y>
2 extends Metaheuristic0<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // Allocate data structure for holding 1 point from search space.

5 X x = process.getSearchSpace().create();
6

7 // Apply the nullary operator: Fill data structure with a random

8 // but valid point from the search space.

9 this.nullary.apply(x, process.getRandom());
10

11 // Evaluate the point: process.evaluate automatically applies the

12 // representation mapping and calls objective function. The

13 // objective value is ignored here (not stored anywhere), but

14 // "process" will remember the best solution. Thus, whoever

15 // called this "solve" function can obtain the result.

16 process.evaluate(x);
17 }
18 }

3.2.2.2 Results on the JSSP

Of course, since the algorithm is randomized, it may give us a different result every time we run it. In

order to understand what kind of solution qualities we can expect, we hence have to run it a couple of

times and compute result statistics. We therefore execute our program 101 times and the results are

summarized in Table 3.1, which describes them using simple statistics whose meanings are discussed

in-depth in Section 4.4.

What we can find in Table 3.1 is that the makespan of the best solution that any of the 101 runs has

delivered for each of the four JSSP instances is roughly between 60% and 100% longer than the lower

bound. The arithmetic mean and median of the solution qualities are even between 10% and 20%

worse. In the Gantt charts of themedian solutions depicted in Figure 3.2, we can find big gaps between

the operations.
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Table 3.1: The results of the single random sample algorithm 1rs for each instance I in comparison

to the lower bound lb(f) of the makespan f over 101 runs: the best,mean, andmedian (med) result

quality, the standard deviation sd of the result quality, as well as the median timemed(t) and

FEsmed(FEs) until a run was finished.

I lbf best mean med sd med(t) med(FEs)

abz7 656 1131 1334 1326 106 0s 1

la24 935 1487 1842 1814 165 0s 1

swv15 2885 5935 6600 6563 346 0s 1

yn4 929 1754 2036 2039 125 0s 1
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Figure 3.2: The Gantt charts of the median solutions obtained by the 1rs algorithm. The x-axes are

the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote

the instance name andmakespan.
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This is completely reasonable. A�er all, we just create a single random solution. We can hardly assume

that doing all jobs of a JSSP in a random order would be good idea.

But we also notice more. Themedian time t(med) until the runs stop improving is approximately 0s.

The reason is that we only perform one single objective function evaluation per run, i.e., 1 FE. Creating,

mapping, and evaluating a solution can be very fast, it can happen within milliseconds. However,

we had originally planned to use up to three minutes for optimization. Hence, almost all of our time

budget remains unused. At the same time, we already know that that there is a 10-20% difference

between the best and the median solution quality among the 101 random solutions we created. The

standard deviation sd of the solution quality also is always above 100 time units of makespan. So why

don’t we try to make use of this variance and the high speed of solution creation?

3.2.3 Random Sampling Algorithm

3.2.3.1 The Algorithm

Random sampling algorithm, also called random search, repeats creating random solutions until

the computational budget is exhausted [188]. In our corresponding Java implementation given in

Listing 3.8, we therefore only needed to add a loop around the code from the single random sampling

algorithm from Listing 3.7.

Listing 3.8 An excerpt of the implementation of the random sampling algorithmwhich keeps createing
randomcandidate solutions and remembering thebest encounteredonuntil the computational budget
is exhausted. (src)

1 public class RandomSampling<X, Y>
2 extends Metaheuristic0<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // Allocate data structure for holding 1 point from search space.

5 X x = process.getSearchSpace().create();
6 Random random = process.getRandom();// get random gen

7

8 do { // Repeat until budget is exhausted.

9 this.nullary.apply(x, random); // Create random point in X.

10 // Evaluate the point: process.evaluate applies the

11 // representation mapping and calls objective function. It

12 // remembers the best solution, so the caller can obtain it.

13 process.evaluate(x);
14 } while (!process.shouldTerminate()); // do until time is up

15 }
16 }

The algorithm can be described as follows:
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1. Set the best-so-far objective value z to+∞ and the best-so-far candidate solution y to NULL.

2. Create random point x′ in search spaceX by using the nullary search operator.

3. Map the point x′ to a candidate solution y′ by applying the representation mapping y′ = γ(x′).

4. Compute the objective value z′ of y′ by invoking the objective function z′ = f(y′).

5. If z′ is better than best-so-far-objective value z, i.e., z′ < z, then

a. store z′ in z and

b. store y′ in y.

6. If the termination criterion is not met, return to step 2.

7. Return the best-so-far objective value z and the best solution y to the user.

In actual program code, steps 3 to 5 can again be encapsulate by a wrapper around the objective

function. This reduces a lot of potential programmingmistakes andmakes the codemuch shorter. This

is what we did with the implementations of the black-box process interface IBlackBoxProcess

given in Listing 3.1.

3.2.3.2 Results on the JSSP

Let usnowcompare theperformanceof this iterated randomsamplingwithour initialmethod. Table 3.2

shows us that the iterated random sampling algorithm is better in virtually all relevant aspects than

the single random sampling method. Its best, mean, andmedian result quality are significantly better.

Since creating random points in the search space is so fast that we can sample many more than

101 candidate solutions, even the median andmean result quality of the rs algorithm are better than

the best quality obtainable with 1rs. Matter of fact, each run of our rs algorithm can create and test

several million candidate solutions within the three minute time window, i.e., perform several million

FEs. By remembering the best of millions of created solutions, what we effectively do is we exploit

the variance of the quality of the random solutions. As a result, the standard deviation of the results

becomes lower. This means that this algorithm has a more reliable performance, we are more likely to

get results close to the mean or median performance when we use rs compared to 1rs.

Actually, if we would have infinite time for each run (instead of three minutes), then each run would

eventually guess the optimal solutions. The variance would become zero and the mean, median, and

best solution would all converge to this global optimum. Alas, we only have three minutes, so we are

still far from this goal.
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Table 3.2: The results of the single random sample algorithm 1rs and the random sampling

algorithm rs. The columns present the problem instance, lower bound, the algorithm, the best, mean,

andmedian result quality, the standard deviation sd of the result quality, as well as the median time

med(t) and FEsmed(FEs) until the best solution of a run was discovered. The better values are

emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 1rs 1131 1334 1326 106 0s 1

rs 895 947 949 12 85s 6’512’505

la24 935 1rs 1487 1842 1814 165 0s 1

rs 1153 1206 1208 15 82s 15’902’911

swv15 2885 1rs 5935 6600 6563 346 0s 1

rs 4988 5166 5172 50 87s 5’559’124

yn4 929 1rs 1754 2036 2039 125 0s 1

rs 1460 1498 1499 15 76s 4’814’914

In Figure 3.3, we now again plot the solutions of median quality, i.e., those which are “in the middle”

of the results, quality-wise. The improved performance becomes visible when comparing Figure 3.3

with Figure 3.2. The spacing between the jobs on the machines has significantly reduced. Still, the

schedules clearly have a lot of unused time, visible as white space between the operations on the

machines. We are also still relatively far away from the lower bounds of the objective function, so there

is lots of room for improvement.
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Figure 3.3: The Gantt charts of the median solutions obtained by the rs algorithm. The x-axes are the

time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the

instance name andmakespan.
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Figure 3.4: The progress of the rs algorithm over time, i.e., the current best solution found by each of

the 101 runs at each point of time (over a logarithmically scaled time axis).
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3.2.3.3 Progress over Time and the Law of Diminishing Returns

Another new feature of ourrs algorithm is that it truly is an Anytime Algorithm (Section 3.1.1). It begins

with an entirely random solution and tries to find better solutions as time goes by. Let us take a look at

Figure 3.4, which illustrates how the solution quality of the runs improves over time. At first glance, this

figure looks quite nice. For each of the four problem instances we investigate, our algorithm steadily

and nicely improves the solution quality. Each single line (one per run) keeps slowly going down, which

means that the makespan (objective value) of its best-so-far solution decreases steadily.

However, upon closer inspection, we notice that the time axes in the plots are logarithmically scaled.

The first of the equally-spaces axis tick marks is at 1s, the second one at 10s, the third one at 100s,

and so on. The progress curves plotted over these logarithmically scaled axes seem to progress more

or less like straight linear lines, maybe even slower. A linear progress over a logarithmic time scale

could mean, for instance, that wemaymake the same improvements in the time intervals 1s . . . 9s,

10s . . . 99s, 100s . . . 999s, and so on. In otherwords, the algorithm improves the solution quality slower

and slower.

This is thefirst timewewitness amanifestationof a verybasic law inoptimization. When trying to solvea

problem,weneed to invest resources, be it so�waredevelopment effort, research effort, computational

budget, or expenditure for hardware, etc. If you invest a certain amount a of one of these resources,

youmay be lucky to improve the solution quality that you can get by, say, b units. Investing 2a of the

resources, however, will rarely lead to an improvement by 2b units. Instead, the improvements will

become smaller and smaller the more you invest. This is exactly the Law of Diminishing Returns [177]

known from the field of economics.

And this makes a lot of sense here. On one hand, the maximal possible improvement of the solution

quality is bounded by the global optimum – once we have obtained it, we cannot improve the quality

further, even if we invest infinitely much of an resource. On the other hand, in most practical problems,

the amount of solutions that have a certain quality gets the smaller the closer said quality is to the

optimal one. This is actually what we see in Figure 3.4: The chance of randomly guessing a solution of

quality F becomes the smaller the better (smaller) F is.

From the diagramswe can also see that random sampling is not a goodmethod to solve the JSSP. It will

not matter very much if we have threeminutes, six minutes, or one hour. In the end, the improvements

we would get by investing more time would probably become smaller and the amount of time we

need to invest to get any improvement would keep to increase. The fact that random sampling can

be parallelized perfectly does not help much here, as we would need to provide an exponentially

increasing number of processors to keep improving the solution quality.

66 Thomas Weise



An Introduction to Optimization Algorithms 2020-12-26

3.2.4 Summary

With random sampling, we nowhave a very primitiveway to tackle optimization problems. In each step,

the algorithm generates a new, entirely random candidate solution. It remembers the best solution

that it encounters and, a�er its computational budget is exhausted, returns it to the user.

Obviously, this algorithm cannot be very efficient. But we already also learned one method to improve

the result quality and reliability of optimization methods: restarts. Restarting an optimization can be

beneficial if the following conditions are met:

1. If we have a budget limitation, then most of the improvements made by the algorithm must

happen early during the run. If the algorithm already uses its budget well can keep improving

even close to its end, then it makes no sense to stop and restart. The budget must be large

enough so that multiple runs of the algorithm can complete or at least deliver reasonable results.

2. Different runs of the algorithmmust generate results of different quality. A restarted algorithm is

still the same algorithm. It just exploits this variance, i.e., we will get something close to the best

result of multiple runs. If the different runs deliver bad results anyway, doing multiple runs will

not solve the problem.

Above we said that random sampling is not a very efficient algorithm. This is true in most reasonable

scenarios. In problems where information about existing good solutions does not help us in any way

to find new good solutions, we cannot really do better than random sampling. In most reasonable

problems that one may try to solve, however, such information is helpful. Random sampling then

is also a basic yardstick: An optimization algorithm that does not significantly outperform random

sampling is useless.

3.3 Hill Climbing

Our first algorithm, random sampling, is not very efficient. It does not make any use of the information

it “sees” during the optimization process. Each search step consists of creating an entirely new, entirely

random candidate solution. Each search step is thus independent of all prior steps. If the problem

that we try to solve is entirely without structure, then this is already the best we can do. But our JSSP

problem is not without structure. For example, we can assume that if we swap the last two jobs in a

schedule, the makespan of the resulting new schedule should still be somewhat similar to the one of

the original plan. Actually, most reasonable optimization problems have a lot of structure. We therefore

should try to somehowmake use of the information gained from sampling candidate solutions.

Local search algorithms [112,205] offer one idea for how to do that. They remember one point xm

in the search spaceX. In every step, a local search algorithm investigates g ≥ 1 points xi which are
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derived from and are similar to xm. From the joined set of these g points and xm, only one point is

chosen as the (new or old) xm. All the other points are discarded.

Definition 21. Causality means that small changes in the features of an object (or candidate solution)

also lead to small changes in its behavior (or objective value).

Local search exploits a property of many optimization problems which is called causal-

ity [168,169,208,216]. If we have two points in the search space that only differ a little bit,

then they likely map to similar schedules, which, in turn, likely have similar makespans. This means

that if we have a good candidate solution, then there may exist similar solutions which are better. We

hope to find one of them and then continue trying to do the same from there.

3.3.1 Ingredient: Unary Search Operation for the JSSP

For now, let us limit ourselves to local searches creating g = 1 newpoint in each iteration. The question

arises howwe can create a candidate solution which is similar to, but also slightly different from, one

that we already have? Our search algorithms are working in the search space X. So we need one

operation which accepts an existing point x ∈ X and produces a slightly modified copy of it as result.

In other words, we need to implement a unary search operator!

On a JSSP withmmachines and n jobs, our representationX encodes a schedule as an integer array

of lengthm ∗ n containing each of the job IDs (from 0 . . . (n − 1)) exactlym times. The sequence in

which these job IDs occur then defines the order in which the jobs are assigned to themachines, which

is realized by the representation mapping γ (see Listing 2.7).

One idea to create a slightly modified copy of such a point x in the search space would be to simply

swap two of the jobs in it. Such a 1swap operator can be implemented as follows:

1. Make a copy x′ of the input point x from the search space.

2. Pick a random index i from 0 . . . (m ∗ n − 1).

3. Pick a random index j from 0 . . . (m ∗ n − 1).

4. If the values at indexes i and j in x′ are the same, then go back to point 3.

5. Swap the values at indexes i and j in x′.

6. Return the nowmodified copy x′ of x.

Point 4 is important since swapping the same values makes no sense, as we would then get x′ = x.

Then, also the mappings γ(x) and γ(x′)would be the same, i.e., we would actually not make a “move”

and just waste time.

We implemented this operator in Listing 3.9. Notice that the operator is randomized, i.e., applying it

twice to the same point in the search space will likely yield different results.
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Listing 3.9 An excerpt of the 1swap operator for the JSSP, an implementation of the unary search
operation interface Listing 2.9. 1swap swaps two jobs in our encoding of Gantt diagrams. (src)

1 public class JSSPUnaryOperator1Swap
2 implements IUnarySearchOperator<int[]> {
3 public void apply(int[] x, int[] dest,
4 Random random) {
5 // copy the source point in search space to the dest

6 System.arraycopy(x, 0, dest, 0, x.length);
7

8 // choose the index of the first operation to swap

9 int i = random.nextInt(dest.length);
10 int jobI = dest[i]; // remember job id

11

12 for (;;) { // try to find a location j with a different job

13 int j = random.nextInt(dest.length);
14 int jobJ = dest[j];
15 if (jobI != jobJ) { // we found two locations with two

16 dest[i] = jobJ; // different values

17 dest[j] = jobI; // then we swap the values

18 return; // and are done

19 }
20 }
21 }
22 }
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Figure 3.5: An example for the application of 1swap to an existing point in the search space (top-le�)

for the demo JSSP instance. It yields a slightly modified copy (top-right) with two jobs swapped. If we

map these to the solution space (bottom) using the representation mapping γ, the changes marked

with violet frames occur (bottom-right).
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InFigure3.5,we illustrate theapplicationof this operator toonepointx in the search space for ourdemo

JSSP instance. It swaps the two jobs at index i = 10 and j = 15 of x. In the new, modified copy x′, the

jobs 3 and 0 at these indices have thus traded places. The impact of this modification becomes visible

whenwemap both x and x′ to the solution space using the representationmapping γ. The 3which has

beenmoved forward nowmeans that job 3will be scheduled before job 1 onmachine 2. As a result,

the last two operations of job 3 can now finish earlier onmachines 0 and 1, respectively. However, time

is wasted onmachine 2, as we first need to wait for the first two operations of job 3 to finish before we

can execute it there. Also, job 1 finishes now later on that machine, which also delays its last operation

to be executed onmachine 4. This pushes back the last operation of job 0 (on machine 4) as well. The

new candidate solution γ(x′) thus has a longer makespan of f(γ(x′)) = 195 compared to the original

solution with f(γ(x)) = 180.

In other words, our application of 1swap in Figure 3.5 has led us to a worse solution. This will happen

most of the time. As soon as we have a good solution, the solutions similar to it tend to be worse in

average and the number of even better solutions in the neighborhood tends to get smaller. However, if

we would have been at x′ instead, an application of 1swap could well have resulted in x. In summary,

we can hope that the chance to find a really good solution by iteratively sampling the neighborhoods

of good solutions is higher compared to trying to randomly guessing them (as rs does) even if most

of our samples are worse.

3.3.2 Stochastic Hill Climbing Algorithm

3.3.2.1 The Algorithm

Stochastic Hill Climbing [173,187,205] is the simplest implementation of local search. It is also some-

times called localized random search [188]. It proceeds as follows:

1. Create one random point x in the search spaceX using the nullary search operator.

2. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

3. Compute the objective value by invoking the objective function z = f(y).

4. Repeat until the termination criterion is met:

a. Apply the unary search operator to x to get a slightly modified copy x′ of it.

b. Map the point x′ to a candidate solution y′ by applying the representation mapping y′ =

γ(x′).

c. Compute the objective value z′ by invoking the objective function z′ = f(y′).

d. If z′ < z, then store x′ in x, store y′ in y, and store z′ in z.

5. Return the best encountered objective value z and the best encountered solution y to the user.
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Listing 3.10 An excerpt of the implementation of the Hill Climbing algorithm, which remembers the
best-so-far solution and tries to find better solutions in its neighborhood. (src)

1 public class HillClimber<X, Y>
2 extends Metaheuristic1<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // initialize local variables xCur, xBest, random

5 // Create starting point: a random point in the search space.

6 this.nullary.apply(xBest, random); // xBest = random point

7 double fBest = process.evaluate(xBest); // map & evaluate

8

9 while (!process.shouldTerminate()) {
10 // Create a slightly modified copy of xBest and store in xCur.

11 this.unary.apply(xBest, xCur, random);
12 // Map xCur from X to Y and evaluate candidate solution.

13 double fCur = process.evaluate(xCur);
14 if (fCur < fBest) { // we found a better solution

15 // Remember best objective value and copy xCur to xBest.

16 fBest = fCur;
17 process.getSearchSpace().copy(xCur, xBest);
18 } // Otherwise, i.e., fCur >= fBest: Just forget xCur.

19 } // Repeat until computational budget is exhausted.

20 } // `process` has remembered the best candidate solution.

21 }

This algorithm is implemented in Listing 3.10 and we will refer to it as hc.

If you are wondering what would happen if we would accept the new solution x′ also if z′ = z, i.e.,

replace the z′ < z with an z′ ≤ z in point 4.d of the algorithm definition: This algorithm is called

(1 + 1) EA and discussed later in Section 3.4.6.1.

3.3.2.2 Results on the JSSP

We now plug our unary operator 1swap into our hc algorithm and apply it to the JSSP. We will refer to

this setup as hc_1swap and present its results with those of rs in Table 3.3.
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Table 3.3: The results of the hill climber hc_1swap in comparison with those of random sampling

algorithm rs. The columns present the problem instance, lower bound, the algorithm, the best, mean,

andmedian result quality, the standard deviation sd of the result quality, as well as the median time

med(t) and FEsmed(FEs) until the best solution of a run was discovered. The better values are

emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 1rs 1131 1334 1326 106 0s 1

rs 895 947 949 12 85s 6’512’505

hc_1swap 717 800 798 28 0s 16’978

la24 935 1rs 1487 1842 1814 165 0s 1

rs 1153 1206 1208 15 82s 15’902’911

hc_1swap 999 1095 1086 56 0s 6’612

swv15 2885 1rs 5935 6600 6563 346 0s 1

rs 4988 5166 5172 50 87s 5’559’124

hc_1swap 3837 4108 4108 137 1s 104’598

yn4 929 1rs 1754 2036 2039 125 0s 1

rs 1460 1498 1499 15 76s 4’814’914

hc_1swap 1109 1222 1220 48 0s 31’789

The hill climber outperforms random sampling in almost all aspects. It produces better mean, me-

dian, and best solutions. Actually, its median andmean solutions are better than the best solutions

discovered by rs. Furthermore, it finds its solutions muchmuch faster. Themedian time med(t) con-

sumed until the algorithm converges is not more than one seconds. The median number of consumed

FEs med(FEs) to find the best solutions per run is between 7000 and 105’000, i.e., between one 50th

and one 2500th of the number of FEs needed by rs.

Itmay be interesting to know that this simplehc_1swap algorithmcan already achieve some remotely

acceptable performance, even though it is very far from being useful. For instance, on instance abz7,

it delivers better best andmean results than all four Genetic Algorithms (GAs) presented in [122]. On

la24, only one of the four (GA-PR) has a better best result and all lose in terms of mean result. On this

instance, hc_1swap finds a better best solution than all six GAs in [2] and better mean results than

five of them. In Section 3.4, we will later introduce (better-performing!) Evolutionary Algorithms, to
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which GAs belong.

The Gantt charts of the median solutions of hc_1swap are illustrated in Figure 3.6. They are more

compact than those discovered by rs and illustrated in Figure 3.3.
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Figure 3.6: The Gantt charts of the median solutions obtained by the hc_1swap algorithm. The

x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each

diagram denote the instance name andmakespan.
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Figure 3.7: Themedian of the progress of the hc_1swap and rs algorithm over time, i.e., the current

best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time

axis). Different from Figure 3.4, we do not plot the single runs but only shade areas between quantiles.
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Figure 3.7 shows how both hc_1swap and rs progress over time. In Figure 3.4, we plotted every

individual run. This time, we plot the median (see Section 4.4.2) of achieved quality at each time step

as thick line. In the background, we plot the whole range of the values as semi-transparent region.

The more runs fall into one region, the stronger we plot the color: In the outer borders of the lightest

color shademark the range between the best and worst results of any run at a given time. The next

stronger-shaded region contains about 95% of the runs. Then follow by 68% of the runs while the

strongest-shaded region holds half of the runs.

It should be noted that I designed the experiments in such a way that there were 101 different ran-

dom seeds per instance. For each instance, all algorithms use the same random seeds, i.e., the hill

climber and random sampling start with the same initial solutions. Still, the shaded regions of the two

algorithms separate almost immediately.

We already knew from Table 3.3 that hc_1swap converges very quickly. A�er initial phases with quick

progress, it stops making any further progress, usually before 1000 milliseconds have been consumed.

This fits well to the values med(t) given in Table 3.3. With the exception of instance la24, where

two runs of the hill climber performed exceptionally bad, there is much space between the runs of rs

and hc_1swap. We can also see again that there is more variance in the end results of hc_1swap

compared to those of rs, as they are spread wider in the vertical direction.

3.3.3 Stochastic Hill Climbing with Restarts

Upon close inspection of the results, we notice that we are again in the same situation as with the 1rs

algorithm: There is some variance between the results andmost of the “action” takes place in a short

time compared to our total computational budget (1 second vs. 3 minutes). Back in Section 3.2.3 we

made use of this situation by simply repeating 1rs until the computational budget was exhausted,

whichwe called thers algorithm. Now the situation is a bit different, however. 1rs creates exactly one

solution and is finished, whereas our hill climber does not actually finish. It keeps creating modified

copies of the current solution, only that these eventually do not mark improvements anymore. Then,

the algorithm has converged into a local optimum.

Definition 22. A local optimum is a point x× in the search space which maps to a better candidate

solution than any other points in its neighborhood (see Definition 17).

Definition 23. An optimization process has prematurely converged if it has not yet discovered the

global optimum but can no longer improve its approximation quality. [208,216]

Due to the black-box nature of our basic hill climber algorithm, it is not really possible to knowwhen

the complete neighborhood of the current solution has already been tested. We thus cannot know

whether or not the algorithm is trapped in a local optimum and has prematurely converged. However,

we can try to guess it: If there has not been any improvement for a high numberL of steps, then the
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current point x in the search space is probably a local optimum. If that happens, we just restart at a

new random point in the search space. Of course, we will remember the best-so-far candidate solution

in a special variable yb over all restarts and return it to the user in the end.

3.3.3.1 The Algorithm

1. Set counterC of unsuccessful search steps to 0.

2. Set the best-so-far objective value zb to+∞ and the best-so-far candidate solution yb to NULL.

3. Create a random point x in the search spaceX using the nullary search operator.

4. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

5. Compute the objective value by invoking the objective function z = f(y).

6. If z < zb, then store z in zb and store y in yb.

7. Repeat until the termination criterion is met:

a. Apply the unary search operator to x to get the slightly modified copy x′ of it.

b. Map the point x′ to a candidate solution y′ by applying the representation mapping y′ =

γ(x′).

c. Compute the objective value z′ by invoking the objective function z′ = f(y′).

d. If z′ < z, then

i. store z′ in z and store x′ in x and

ii. setC to 0.

iii. If z′ < zb, then store z′ in zb and store y′ in yb.

otherwise to step 7d, i.e., if z′ ≥ z, then

iv. incrementC by 1.

v. IfC ≥ L, then perform a restart by going back to step 3.

8. Return best encountered objective value zb and the best encountered solution yb to the user.

Now this algorithm – implemented in Listing 3.11 – is a bit more elaborate. Basically, we embed the

original hill climber into a loop. This inner hill climber will stop a�er a certain numberL of unsuccessful

search steps, which then leads to a new round in the outer loop. In combination with the 1swap oper-

ator, we refer to this algorithm as hcr_L_1swap, where L is to be replaced with the actual value of

the parameterL.

3.3.3.2 The Right Setup

We now realize that we do not know which value ofL is good. If we pick it too low, then the algorithm

will restart before it actually converges to a local optimum, i.e., stop while it could still improve. If we

pick it too high, we waste runtime and do fewer restarts than what we could do.
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Listing 3.11 An excerpt of the implementation of the Hill Climbing algorithm with restarts, which
remembers the best-so-far solution and tries to find better solutions in its neighborhood but restarts if
it seems to be trapped in a local optimum. (src)

1 public class HillClimberWithRestarts<X, Y>
2 extends Metaheuristic1<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // omitted for brevity initialize local variables xCur, xBest,

5 // random, failsBeforeRestart, and failCounter=0

6 while (!(process.shouldTerminate())) { // outer loop: restart

7 this.nullary.apply(xBest, random); // start=random solution

8 double fBest = process.evaluate(xBest); // evaluate it

9 long failCounter = 0L; // initialize counters

10

11 while (!(process.shouldTerminate())) { // inner loop

12 this.unary.apply(xBest, xCur, random); // try to improve

13 double fCur = process.evaluate(xCur); // evaluate

14

15 if (fCur < fBest) { // we found a better solution

16 fBest = fCur; // remember best quality

17 process.getSearchSpace().copy(xCur, xBest); // copy

18 failCounter = 0L; // reset number of unsuccessful steps

19 } else { // ok, we did not find an improvement

20 if ((++failCounter) >= this.failsBeforeRestart) {
21 break; // jump back to outer loop for restart

22 } // increase fail counter

23 } // failure

24 } // inner loop

25 } // outer loop

26 } // process has stored best-so-far result

27 }

If we do not know which value for a parameter is reasonable, we can always do an experiment to

investigate. Since the order of magnitude of the proper value forL is not yet clear, it makes sense to

test exponentially increasing numbers. Here, we test the powers of two from 27 = 128 to 218 = 262′144.

For each value, we plot the scaledmedian result quality over the 101 runs in Figure 3.8. In this diagram,

the horizontal axis is logarithmically scaled.

From the plot, we can confirm our expectations: Small numbers ofL perform bad and high numbers

ofL cannot really improve above the basic hill climber. Actually, if we would setL to a number larger

than theoverall budget, thenwewouldobtain exactly theoriginal hill climber, as itwouldnever perform

any restart. For different problem instances, different values ofL perform good, butL ≈ 214 = 16′384

seems to be a reasonable choice for three of the four instances.
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Figure 3.8: Themedian result quality of the hcr_1swap algorithm, divided by the lower bound

lb(f)⋆ from Table 2.2 over different values of the restart limit parameterL. The best values ofL on

each instance are marked with bold symbols.

3.3.3.3 Results on the JSSP

The performance indicators of three settings of our hill climber with restarts in comparison with the

plain hill climber are listed in Table 3.4. We know thatL = 214 seems a reasonable setting. Additionally,

we also list the adjacent setups, i.e., give the results forL ∈ {213, 214, 215}.

Table 3.4: The results of the hill climber hcr_L_1swapwith restarts for values ofL from 213, 214,

and 215. hcr_L_1swap restarts a�erL unsuccessful search moves. The columns present the

problem instance, lower bound, the algorithm, the best, mean, andmedian result quality, the

standard deviation sd of the result quality, as well as the median timemed(t) and FEsmed(FEs) until

the best solution of a run was discovered. The better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hc_1swap 717 800 798 28 0s 16’978

hcr_8192_1swap 719 734 734 5 83s 17’711’879

hcr_16384_1swap 714 732 733 6 91s 18’423’530

hcr_32768_1swap 716 732 733 6 73s 15’707’437
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I lbf setup best mean med sd med(t) med(FEs)

la24 935 hc_1swap 999 1095 1086 56 0s 6’612

hcr_8192_1swap 956 975 976 6 84s 35’242’182

hcr_16384_1swap 953 976 976 7 80s 34’437’999

hcr_32768_1swap 951 979 980 8 90s 36’493’494

swv15 2885 hc_1swap 3837 4108 4108 137 1s 104’598

hcr_8192_1swap 3745 3881 3886 37 91s 12’892’041

hcr_16384_1swap 3752 3859 3861 42 92s 11’756’497

hcr_32768_1swap 3677 3853 3858 37 89s 11’562’962

yn4 929 hc_1swap 1109 1222 1220 48 0s 31’789

hcr_8192_1swap 1084 1117 1118 11 89s 13’258’408

hcr_16384_1swap 1081 1115 1115 11 91s 14’804’358

hcr_32768_1swap 1075 1114 1116 13 85s 13’126’688

Table 3.4 shows us that the restarted algorithms hcr_L_1swap almost always provide better best,

mean, andmedian solutions than hc_1swap. Only the overall best result of hcr_8192_1swap on

abz7 is worse than forhc_1swap – on all other instances and for all other qualitymetrics,hc_1swap

loses.

The standard deviations of the end results of the variants with restarts are also always smaller, meaning

that these algorithms perform more reliably. Their median time until they converge is now higher,

which means that wemake better use of our computational budget.

As a side note, the median andmean result of the three listed setups of our very basic hcr_L_1swap

algorithms for instance la24 are already better than the best result (982) delivered by the Grey Wolf

Optimization algorithm proposed in [118]. In other words, even with such a simple algorithmwe can

already achieve results not very far from recent publications. . .
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Figure 3.9: The Gantt charts of the median solutions obtained by the hcr_16384_1swap algorithm.

The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each

diagram denote the instance name andmakespan.
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Figure 3.10: Themedian of the progress of the algorithms rs, hc_1swap, and hcr_16384_1swap

over time, i.e., the current best solution found by each of the 101 runs at each point of time (over a

logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.
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Themedian solutions discovered by hcr_16384_1swap, illustrated in Figure 3.9, again show less

wasted time. The scheduled jobs again move a bit closer together.

From the progress diagrams plotted in Figure 3.10, we can see that the algorithm version with restart

initially behave very similar to the “original” hill climber. Its median quality is almost exactly the

same during the first 100 ms. This makes sense, because until its first restart, hcr_16384_1swap is

identical to hc_1swap. However, when hc_1swap has converged and stops making improvements,

hcr_16384_1swap still continues to make progress.

Of course, ourwayof finding the right value for the restart parameterLwas rather crude. Most likely, the

right choice could be determined per instance based on the numberm of machines and the number n

of jobs. But even with such a coarse way of algorithm configuration, wemanaged to get rather good

results.

3.3.3.4 Drawbacks of the Idea of Restarts

With our restart method, we could significantly improve the results of the hill climber. It directly

addressed the problem of premature convergence, but it tried to find a remedy for its symptoms, not

for its cause.

Basically, a restarted algorithm is still the same algorithm–we just restart it again and again. If there are

manymore local optima than global optima, every restart will probably end again in a local optimum. If

there are manymore bad'' local optima thangood’ ’ local optima, every restart will probably

end in a “bad’ ’ local optimum. While restarts improve the chance to find better solutions, they cannot

solve the intrinsic shortcomings of an algorithm.

Another problem is: With every restart we throw away all accumulated knowledge and information of

the current run. Restarts are therefore also somewhat wasteful.

3.3.4 Hill Climbing with a Different Unary Operator

3.3.4.1 Small vs. Large Neighborhoods – and Uniform vs. Non-Uniform Sampling

One of issues limiting the performance of our restarted hill climber is the design of the unary operator.

1swapwill swap two jobs in an encoded solution. Since the solutions are encoded as integer arrays of

lengthm ∗ n, there arem ∗ n possible choices when picking the index of the first job to be swapped.

We swap only with different jobs and each job appearsm times in the encoding. This leavesm ∗ (n − 1)

choices for the second swap index, becausewewill only use a second index that points to a different job

ID. If we think about the size of the neighborhood spanned by 1swap, we can also ignore equivalent

swaps: Exchanging the jobs at indexes (10, 5) and (5, 10), for example, would result in the same
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outcome. In total, from any given point in the search space, 1swapmay reach 0.5 ∗ (m ∗ n) ∗ [m ∗

(n − 1)] = 0.5 ∗ m2(n2 − n) different other points. Some of these points might still actually encode

the same candidate solutions, i.e., identical schedules. In other words, the neighborhood spanned by

our 1swap operator equals only a tiny fraction of the big search space (remember Table 2.3).

This has two implications:

1. The chance of premature convergence for a hill climber applying this operator is relatively high,

since the neighborhoods are relatively small. If the neighborhood spanned by the operator was

larger, it would contain more, potentially better solutions. Hence, it would take longer for the

optimization process to reach a point where no improving move can be discovered anymore.

2. Assume that there is no better solution in the 1swap neighborhood of the current best point

in the search space. There might still be a much better, similar solution. Finding it could, for

instance, require swapping three or four jobs – but the hc_1swap algorithmwill never find it,

because it can only swap two jobs. If the search operator would permit suchmoves, then even

the plain hill climber may discover this better solution.

So let us try to think about how we could define a new unary operator which can access a larger

neighborhood. As we should always do, we first consider the extreme cases.

On the one hand, we have 1swapwhich samples from a relatively small neighborhood. Because the

neighborhood is small, the stochastic hill climber will eventually have visited all of the solutions it

contains. If none of them is better than the current best solution, it will not be able to depart from it.

The other extreme could be to use our nullary operator as unary operator: It would return an entirely

random point from the search spaceX and ignore its input. Then, each point x ∈ Xwould have the

wholeX as the neighborhood. Using such a unary operator would turn the hill climber into random

sampling (and we do not want that).

From this thought experiment we know that unary operators which indiscriminately sample from very

large neighborhoods are probably not very good ideas, as they are “too random.” They also make less

use of the causality of the search space, as they make large steps and their produced outputs are very

different from their inputs.

Using an operator that creates larger neighborhoods than 1swap, which are still smaller thanXwould

be one idea. For example, we could always swap three jobs instead of two. The more jobs we swap in

each application, the larger the neighborhood gets. Then we will be less likely to get trapped in local

optima (as there will be fewer local optima). But we will also make less and less use of the causality

property, i.e., the solutions we derive from the current best one will be more andmore different from

it. Where should we draw the line? Howmany jobs should we swap?

Well, there is onemore aspect of the operators that we did not think about yet. An operator does not

just span a neighborhood, but it also defines a probability distribution over it. So far, our 1swap unary
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operator samplesuniformly fromtheneighborhoodof its input. Inotherwords, all of the0.5∗m2(n2−n)

new points that it could create in one step have exactly the same probability, the same chance to be

chosen.

But we do not need to do it like that. We could construct an operator that o�en creates outputs very

similar to its input (like 1swap), but also, from time to time, samples points a bit farther away in the

search space. This operator could have a huge neighborhood – but sample it non-uniformly.

3.3.4.2 Second Unary Search Operator for the JSSP

We define the nswap operator for the JSSP as follows and implement it in Listing 3.12:

1. Make a copy x′ of the input point x from the search space.

2. Pick a random index i from 0 . . . (m ∗ n − 1).

3. Store the job-id at index i in the variable f for holding the very first job, i.e., set f = x′
i.

4. Set the job-id variable l for holding the last-swapped-job to x′
i as well.

5. Repeat

a. Decide whether we should continue the loop a�er the current iteration (TRUE) or not

(FALSE) with equal probability and remember this decision in variable n.

b. Pick a random index j from 0 . . . (m ∗ n − 1).

c. If l = x′
j , go back to point b.

d. If f = xj and we will not do another iteration (n = FALSE), go back to point b.

e. Store the job-id at index j in the variable l.

f. Copy the job-id at index j to index i, i.e., set x′
i = x′

j .

g. Set i = j.

6. If we should do another iteration (n = TRUE), go back to point 5.

7. Store the first-swapped job-id f in x′
i.

8. Return the nowmodified copy x′ of x.

Here, the idea is that we will perform at least one iteration of the loop (point 5). If we would do exactly

one iteration, then we would pick two indices i and j where different job-ids are stored, as lmust be

different from f (point c and d). We would then swap the jobs at these indices (points f, g, and 7). In the

case of exactly one iteration of the main loop, this operator behaves the same as 1swap. This takes

place with a probability of 0.5 (point a).

If we do two iterations, i.e., pick true the first time we arrive at point a and false the second time,

then we swap three job-ids instead. Let us say we picked indices α at point 2, β at point b, and γ when

arriving the second time at b. We will store the job-id originally stored at index β at index α, the job

originally stored at index γ at index β, and the job-id from index γ to index α. Condition c prevents
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index β from referencing the same job-id as index α and index γ from referencing the same job-id as

what was originally stored at index β. Condition d only applies in the last iteration and prevents γ from

referencing the original job-id at α.

This three-job swap will take place with probability 0.5 ∗ 0.5 = 0.25. Similarly, a four-job-swap will

happen with half of that probability, and so on. In other words, we have something like a Bernoulli

process, where we decide whether or not to do another iteration by flipping a fair coin, where each

choice has probability 0.5. The number of iterations will therefore be geometrically distributed with an

expectation of two job swaps. Of course, we only havem different job-ids in a finite-length array x′,

so this is only an approximation. Generally, this operator will most o�en apply small changes and

sometimes bigger steps. The bigger the search step, the less likely will it be produced. The operator

therefore canmake use of the causality while – at least theoretically – being able to escape from any

local optimum.

3.3.4.3 Results on the JSSP

Let us now compare the end results that our hill climbers can achieve using either the 1swap or the

new nswap operator a�er three minutes of runtime onmy laptop computer in Table 3.5.

Table 3.5: The results of the hill climbers hc_1swap and hc_nswap. The columns present the

problem instance, lower bound, the algorithm, the best, mean, andmedian result quality, the

standard deviation sd of the result quality, as well as the median timemed(t) and FEsmed(FEs) until

the best solution of a run was discovered. The better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hc_1swap 717 800 798 28 0s 16’978

hcr_16384_1swap 714 732 733 6 91s 18’423’530

hc_nswap 724 758 758 17 35s 7’781’762

la24 935 hc_1swap 999 1095 1086 56 0s 6’612

hcr_16384_1swap 953 976 976 7 80s 34’437’999

hc_nswap 945 1018 1016 29 25s 9’072’935

swv15 2885 hc_1swap 3837 4108 4108 137 1s 104’598

hcr_16384_1swap 3752 3859 3861 42 92s 11’756’497

hc_nswap 3602 3880 3872 112 70s 8’351’112

yn4 929 hc_1swap 1109 1222 1220 48 0s 31’789
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I lbf setup best mean med sd med(t) med(FEs)

hcr_16384_1swap 1081 1115 1115 11 91s 14’804’358

hc_nswap 1095 1162 1160 34 71s 11’016’757

From Table 3.5, we find that hc_nswap performs almost always better than hc_1swap. Only on

instance abz7, hc_1swap finds the better best solution. For all other instances, hc_nswap has

better best, mean, andmedian results. It also converges much later and o�en performs 7 to 15 million

function evaluations and consumes 14% to 25% of the three minute budget before it cannot improve

anymore. Still, the hill climber hcr_16384_1swap using the 1swap operator with restarts tends to

outperform hc_nswap.
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Figure 3.11:Median of the progress of the hill climbers with the 1swap and nswap operators over

time, i.e., the current best solution found by each of the 101 runs at each point of time (over a

logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.
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Figure 3.11 illustrates the progress of the hill climbers with the 1swap and nswap operators. Initially,

both algorithms behave very similar in median. This may be because half of the time, hc_nswap also

performs single-swapmoves. However, while hc_1swap stops improving even before one second

has elapsed, hc_nswap can still improve a�er ten seconds. Still, these late improvements tend to be

small and occur infrequently. It may be that the algorithm arrives in local optima fromwhich it can

only escape with complicated multi-swapmoves, which are harder to discover by chance.
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Listing 3.12 An excerpt of the nswap operator for the JSSP, an implementation of the unary search
operation interface Listing 2.9. nswap can swap an arbitrary number of jobs in our encoding, while
favoring small search steps. (src)

1 public class JSSPUnaryOperatorNSwap
2 implements IUnarySearchOperator<int[]> {
3 public void apply(int[] x, int[] dest,
4 Random random) {
5 // copy the source point in search space to the dest

6 System.arraycopy(x, 0, dest, 0, x.length);
7

8 // choose the index of the first operation to swap

9 int i = random.nextInt(dest.length);
10 int first = dest[i];
11 int last = first; // last stores the job id to "swap in"

12

13 boolean hasNext;
14 do { // we repeat a geometrically distributed number of times

15 hasNext = random.nextBoolean();
16 inner: for (;;) { // find a location with a different job

17 int j = random.nextInt(dest.length);
18 int jobJ = dest[j];
19 if ((last != jobJ) && // don't swap job with itself

20 (hasNext || (first != jobJ))) { // also not at end

21 dest[i] = jobJ; // overwrite job at index i with jobJ

22 i = j; // remember index j: we will overwrite it next

23 last = jobJ; // but not with the same value jobJ...

24 break inner;
25 }
26 }
27 } while (hasNext); // Bernoulli process

28

29 dest[i] = first; // write back first id to last copied index

30 }
31 }
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3.3.5 Combining Bigger Neighborhoodwith Restarts

Both restarts and the idea of allowing bigger search steps with small probability are intended to

decrease the chance of premature convergence, while the latter one also can investigatemore solutions

similar to the current best one. We have seen that both measures work separately. The fact that

hc_nswap improves more andmore slowly towards the end of the computational budget means that

it could be interesting to try to combine both ideas, restarts and larger neighborhoods.

We plug the nswap operator into the hill climber with restarts and obtain algorithm hcr_L_nswap.

Weperformthe sameexperiment tofind the right setting for the restart limitLas for thehcr_L_1swap

algorithm and illustrate the results in Figure 3.12.

Figure 3.12: Themedian result quality of the hcr_nswap algorithm, divided by the lower bound

lb(f)⋆ from Table 2.2 over different values of the restart limit parameterL. The best values ofL on

each instance are marked with bold symbols.

The “sweet spot” for the number of unsuccessful FEs before a restart has increased compared to before.

This makes sense, because we already know that nswap can keep improving longer.

3.3.5.1 Results on the JSSP
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Table 3.6: The results of the hill climber hcr_L_nswapwith restarts. The columns present the

problem instance, lower bound, the algorithm, the best, mean, andmedian result quality, the

standard deviation sd of the result quality, as well as the median timemed(t) and FEsmed(FEs) until

the best solution of a run was discovered. The better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hcr_16384_1swap 714 732 733 6 91s 18’423’530

hc_nswap 724 758 758 17 35s 7’781’762

hcr_32768_nswap 711 730 731 6 79s 16’172’407

hcr_65536_nswap 712 731 732 6 96s 21’189’358

la24 935 hcr_16384_1swap 953 976 976 7 80s 34’437’999

hc_nswap 945 1018 1016 29 25s 9’072’935

hcr_32768_nswap 959 974 975 6 92s 38’202’616

hcr_65536_nswap 942 973 974 8 71s 31’466’420

swv15 2885 hcr_16384_1swap 3752 3859 3861 42 92s 11’756’497

hc_nswap 3602 3880 3872 112 70s 8’351’112

hcr_32768_nswap 3703 3830 3832 37 87s 11’288’261

hcr_65536_nswap 3740 3818 3826 35 89s 10’783’296

yn4 929 hcr_16384_1swap 1081 1115 1115 11 91s 14’804’358

hc_nswap 1095 1162 1160 34 71s 11’016’757

hcr_32768_nswap 1081 1114 1113 11 84s 12’742’795

hcr_65536_nswap 1068 1109 1110 12 78s 18’756’636

From Table 3.6, where we print the results of hcr_32768_nswap and hcr_65536_nswap, we can

find that the algorithm version with restarts performs better in average than the one without. However,

it does not always find the best solution, as can be seen on instance swv15, where hc_nswap

finds a schedule of length 3602. The differences between hcr_16384_1swap and hcr_L_nswap,

however, are quite small. If we compare the progress over time of hcr_16384_1swap and

hcr_65536_nswap, then the latter seems to have a slight edge over the former – but only by

about half of a percent. This small difference is almost indistinguishable in the progress diagram

Figure 3.13.
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Figure 3.13:Median of the progress of the hill climbers with restarts with the 1swap and nswap

operators over time, i.e., the current best solution found by each of the 101 runs at each point of time

(over a logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a

given area.
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3.3.5.2 Testing for Significance

Still, even small improvements can have a big economical impact. Saving 0.5% of 10’000’000 RMB is

still 50’000 RMB. The problem is knowing whether such small improvements are true improvements or

artifacts of the randomness in the algorithm.

In order to understand the latter situation, consider the following thought experiment. Assume you

have a completely unbiased, uniform source of true random real numbers from the interval [0, 1).

You draw 500 such numbers, i.e., have a list A containing 500 numbers, each from [0, 1). Now you

repeat the experiment and get another such listB. Since the numbers stem from a random source,

we can expect thatA 6= B. If we compute the mediansA andB, they are likely to be different as well.

Actually, I just did exactly this in the R programming language and got median(A)=0.5101432

and median(B)=0.5329007. Does this mean that the generator producing the numbers in A

creates somehow smaller numbers than the generator fromwhich the numbers inB stem? Obviously

not, because we sampled the numbers from the same source. Also, every time I would repeat this

experiment, I would get different results.

So how do we knowwhether or not the sources ofA andB are truly different? Well, we cannot really

know for sure. But we can we canmake a statement which is wrong with at most a given probability.

This is called statistical testing, and we discuss it in detail in Section 4.5. Thus, in order to see whether

the observed small performance difference of the hcr setups is indeed “real” or just random jitter, we

compare their sets of 101 end results on each of the problem instances. For this purpose, we use the

Mann-Whitney U test, as prescribed in Section 4.5.4.

Table 3.7: The end results of hcr_16384_1swap and hcr_65536_nswap compared with a

Mann-Whitney U test with Bonferroni correction and significance level α = 0.02 on the four JSSP

instances. The columns indicate the p-values and the verdict (? for insignificant).

Mann-Whitney U

α′ = 7.14·10−4 abz7 la24 swv15 yn4

hcr_16384_1swap

vs.hcr_65536_nswap

3.04·10−1 ? 3.57·10−3 ? 9.35·10−11 > 5.19·10−4 >

From Table 3.7 we know that if we would claim “hcr_16384_1swap tends to produce results with

large makspan than hcr_65536_nswap on abz7,” then, from our experimental data, we can esti-

mate our chance to be wrong to be about 30%. In other words, making that claim would be quite a

gamble and we can conclude that here, the differences we observed in the experiment are not statisti-

cally significant (marked with ? in the table). However, if we would claim the same for swv15, our

94 Thomas Weise



An Introduction to Optimization Algorithms 2020-12-26

chance to be wrong is about 1·10−10, i.e., very small. So on swv15, we find that hcr_65536_nswap

very likely performs better.

In summary, Table 3.7 tells us that it seems that the hill climber with restarts using the nswap operator

can outperform the one using the 1swap operator on swv15 and yn4. For abz7, there certainly is no

significant difference. The p-value of 3.57·10−3 on la24 is fairly small but still above the Bonferroni-

corrected α′ = 7.14·10−4, so we cannot make any statement here.

We found that the nswap operator tends to be better then the 1swap operator when plugged into the

hill climber. We found that restarts are also beneficial to improve the performance of our hill climber.

While we did not find that combining these twomethods will yield a convincing improvement, we can

at least conclude that preferring hcr_65536_nswap over hcr_16384_1swap seems reasonable.

Itmight sometimes give better performance while it is unlikely to perform worse.

3.3.6 Summary

In this section, we have learned about our first “reasonable” optimization method. The stochastic hill

climbing algorithm always remembers the best-so-far point in the search space. In each step, it applies

the unary operator to obtain a similar but slightly different point. If it is better, then it becomes the

new best-so-far point. Otherwise, it is forgotten.

The performance of hill climbing depends very much on the unary search operator. If the operator

samples from a very small neighborhood only, like our 1swap operator does, then the hill climber

might quickly get trapped in a local optimum. A local optimum here is a point in the search space

which is surrounded by a neighborhood that does not contain any better solution. If this is the case, the

two conditions for doing efficient restarts may be fulfilled: quick convergence and variance of result

quality.

The question when to restart then arises, as we usually cannot find out if we are actually trapped in a

local optimum or whether the improving move (application of the unary operator) just has not been

discovered yet. The most primitive solution is to simply set a limit L for the maximum number of

moves without improvement that are permitted.

Our hcr_L_1swap was born. We configured L in a small experiment and found that L = 16384

seemed to be reasonable. The setup hcr_16384_1swap performedmuch better than hc_1swap.

It should be noted that our experiment used for configuration was not very thorough, but it should

suffice at this stage. We can also note that it showed that different settings ofL are better for different

instances. This is probably related to the corresponding search space size – but we will not investigate

this any further here.

A second idea to improve the hill climber was to use a unary operator spanning a larger neighborhood,

but which still most o�en sampled solutions similar to current one. The nswap operator gave better
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results than than the 1swap operator in the basic hill climber. The take-awaymessage is that different

search operators may (well, obviously) deliver different performance and thus, testing some different

operators can always be a good idea.

Finally, we tried to combine our two improvements, restarts and better operator, into the

hcr_L_nswap algorithm. Here we learned the lesson that performance improvements do not

necessarily add up. If we have amethod that can deliver an improvement of 10% of solution quality

and combine it with another one delivering 15%, wemay not get an overall 25% improvement. Indeed,

our hcr_65536_nswap algorithm only performed a little bit better than hcr_16384_1swap.

From this chapter, we also learned onemore lesson: Many optimization algorithms have parameters.

Our hill climber had two: the unary operator and the restart limitL. Configuring these parameters well

can lead to significant improvements.

3.4 Evolutionary Algorithms

We now already have one functional, basic optimization method – the hill climber. Different from the

randomsampling approach, itmakes use of someknowledge gatheredduring the optimizationprocess,

namely the best-so-far point in the search space. However, only using this single point led to the danger

of premature convergence, which we tried to battle with two approaches, namely restarts and the

search operator nswap, spanning a larger neighborhood fromwhich we sampled in a non-uniform

way. These concepts can be transfered rather easily to many different kinds of optimization problems.

Nowwe will look at a third concept to prevent premature convergence: Instead of just remembering

and utilizing only one single point from the search space in each iteration of our algorithm, we will

now work on an array of points!

3.4.1 Evolutionary Algorithmwithout Recombination

Today, thereexists awidevarietyofdifferentEvolutionaryAlgorithms (EAs) [17,41,54,84,145,146,188,205].

We will here discuss a simple yet efficient variant: the (µ + λ) EA without recombination.1 This

algorithm always remembers the best µ ∈ N1 points in the search space found so far. In each step, it

derives λ ∈ N1 new points from them by applying the unary search operator.

3.4.1.1 The Algorithm (without Recombination)

The basic (µ + λ) Evolutionary Algorithmworks as follows:

1For now, we will discuss EAs in a form without recombination. Wait for the binary recombination operator until Sec-
tion 3.4.3.
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1. I ∈ X × R be a data structure that can store one point x in the search space and one objective

value z.

2. Allocate an array P of length µ + λ of instances of I .

3. For index i ranging from 0 to µ + λ − 1 do

a. Create a random point from the search space using the nullary search operator and store it

in Pi.x.

b. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate solu-

tion y.

c. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z = f(y).

4. Repeat until the termination criterion is met:

d. Sort the array P in ascending order according to the objective values, i.e., such that the

records r with better associated objective value r.z are located at smaller indices.

e. Shuffle the first µ elements of P randomly.

f. Set the source index p = −1.

g. For index i ranging from µ to µ + λ − 1 do

i. Set the source index p to p = (p + 1) mod µ.

ii. Apply unary search operator to the point stored at index p and store result at index i,

i.e., set Pi.x = searchOp1(Pp.x).

iii. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate

solution y.

iv. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z =

f(y).

5. Return the candidate solution corresponding to the best record in P (i.e., the best-ever encoun-

tered solution) to the user.

This algorithm is implemented in Listing 3.13. There, we make use of instances of the utility class

Record<X>, which holds one point x in the search space along with their corresponding objective

values stored in the field quality.

Basically, the algorithm starts out by creating and evaluating µ + λ random candidate solutions

(point 3).

Definition 24. Each iteration of the main loop of an Evolutionary Algorithm is called a generation.

Definition 25. The array of solutions under investigation in an EA is called population.

In each generation, the µ best points in the population P are retained and the other λ solutions are

overwritten with newly sampled points.
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Definition26.The selection step in anEvolutionary Algorithmpicks the set of points in the search space

fromwhich new points should be derived. This usually involves choosing a smaller number µ ∈ N1 of

points from a larger array P . [17,26,36,146,205]

Selection can be done by sorting the array P (point 4d). This way, the best µ solutions end up at the

front of the array on the indices from 0 toµ−1. Theworseλ solutions are at indexµ toµ+λ−1. These

are overwritten by sampling points from the neighborhood of the µ selected solutions by applying the

unary search operator (which, in the context of EAs, is o�en calledmutation operator).

Definition 27. The selected points in an Evolutionary Algorithm are called parents.

Definition 28. The points in an Evolutionary Algorithm that are sampled from the neighborhood of

the parents by applying search operators are called offspring.

Definition 29. The reproduction step in an Evolutionary Algorithm uses the selected µ ∈ N1 points

from the search space to derive λ ∈ N1 new points.

For each new point to be created during the reproduction step, we apply a search operator to one of

the selectedµ points. The index p in steps 4f to 4g identifies the point to be used as source for sampling

the next new solution. By incrementing p before each application of the search operator, we try to

make sure that each of the selected points is used approximately equally o�en to create new solutions.

Of course, µ and λ can be different (o�en λ > µ), so if we would just keep increasing p for λ times, it

could exceed µ. We thus perform amodulo division with µ in step 4g.i, i.e., set p to the remainder of

the division with µ, which makes sure that pwill be in 0 . . . (µ − 1).

If µ 6= λ, then the best solutions in P tend to be usedmore o�en, since they may “survive” selection

several times and o�en be at the front of P . This means that, in our algorithm, they would be used

more o�en as input to the search operator. To make our algorithmmore fair, we randomly shuffle the

selected µ points (point 4e). This does not change the fact that they have been selected.

Since our algorithm will never prefer a worse solution over a better one, it will also never lose the

best-so-far solution. We therefore can simply pick the best element from the population once the

algorithm has converged. It should be mentioned that there are selection methods in EAs which might

reject the best-so-far solution. In this case, we would need to remember it in a special variable like

we did in case of the hill climber with restarts. Here, we do not consider such methods, as we want to

investigate a plain EA.

3.4.1.2 The Right Setup

A�er implementing the (µ + λ) EA as discussed above, we already have all the ingredients ready to

apply to the JSSP. We need to decide which values for µ and λwewant to use. The configuration of EAs

is a whole research area itself. The question arises which values for µ and λ are reasonable. Without

98 Thomas Weise



An Introduction to Optimization Algorithms 2020-12-26

investigating whether this is the best idea, let us set µ = λ here, so we only have two parameters to

worry about: µ and the unary search operator. We already have two unary search operators. Let us call

our algorithms of this type ea_mu_unary, where muwill stand for the value of µ and λ and unary

can be either 1swap or nswap. We no therefore do a similar experiment as in Section 3.3.3.2 in order

to find the right parameters.

Figure 3.14: Themedian result quality of the ea_mu_unary algorithm, divided by the lower bound

lb(f)⋆ from Table 2.2 over different values of the population size parameter µ = λ and the two unary

search operators 1swap and nswap. The best values of µ for each operator and instance are marked

with bold symbols.

In Figure 3.14, we illustrate this experiment. Regarding µ and λ, we observe the same situation as

with the restarts parameters hill climber. There is a “sweet spot” somewhere between small and large

population sizes. For small values of µ, the algorithm may end up in a local optimum, whereas for

large values, it may not be able to perform sufficiently many generations to arrive at a good solution.

Nevertheless, compared to the hill climber with restart and with the exception for instance swv15,

the EA performs quite stable: There are only relatively little differences in result quality for both unary

operators and over many scales of µ. This generally a nice feature, as we would like to have algorithms

that are not too sensitive to parameter settings.

The setting µ = λ = 16′384 seems to work well for instances abz7, la25, and yn4. Interestingly,

instance swv15 behaves different: here, the setting µ = λ = 1024works best. It is quite common

in optimization that different problem instances may require different setups to achieve the best
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performance. Here we see this quite pronounced. This is generally a feature that we do not like. We

would ideally like to have algorithms where a good parameter setting performs well onmany instances

as opposed to such where each instance requires a totally different setup. Luckily, this here only

concerns one of our example problem instances.

Regarding the choice of the unary search operator: With the exception of problem swv15, both

operators provide the samemedian result quality. In the other setups, if one of the two is better, it is

most of the time nswap.

Therefore, we will consider the two setups ea_16384_nswap and ea_1024_nswapwhen evaluat-

ing the performance of our Evolutionary Algorithms.

3.4.1.3 Results on the JSSP

Let us now compare the results of the best two EA setups with those that we obtained with the hill

climber.

Table 3.8: The results of the Evolutionary Algorithm ea_mu_nswapwithout recombination in

comparison with the best hill climber hc_nswap and the best hill climber with restarts

hcr_65536_nswap. The columns present the problem instance, lower bound, the algorithm, the

best, mean, andmedian result quality, the standard deviation sd of the result quality, as well as the

median timemed(t) and FEsmed(FEs) until the best solution of a run was discovered. The better

values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hc_nswap 724 758 758 17 35s 7’781’762

hcr_65536_nswap 712 731 732 6 96s 21’189’358

ea_16384_nswap 691 707 707 8 151s 25’293’859

ea_1024_nswap 696 719 719 9 14s 4’703’601

la24 935 hc_nswap 945 1018 1016 29 25s 9’072’935

hcr_65536_nswap 942 973 974 8 71s 31’466’420

ea_16384_nswap 945 968 967 12 39s 10’161’119

ea_1024_nswap 941 983 984 19 2s 971’842

swv15 2885 hc_nswap 3602 3880 3872 112 70s 8’351’112

hcr_65536_nswap 3740 3818 3826 35 89s 10’783’296
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I lbf setup best mean med sd med(t) med(FEs)

ea_16384_nswap 3577 3723 3728 50 178s 18’897’833

ea_1024_nswap 3375 3525 3509 85 87s 16’979’178

yn4 929 hc_nswap 1095 1162 1160 34 71s 11’016’757

hcr_65536_nswap 1068 1109 1110 12 78s 18’756’636

ea_16384_nswap 1022 1063 1061 16 168s 26’699’633

ea_1024_nswap 1035 1083 1085 20 31s 4’656’472

Table 3.8 shows us that we can improve the best, mean, and median solution quality that we can

get within three minutes of runtime when using our either of the two EA setups instead of the hill

climber. The exception is case la24, where the hill climber already came close to the lower bound

of the makespan and has a better best solution than ea_16384_nswap. Here, the best solution

encountered now has a makespan which is only 0.7% longer than what is theoretically possible.

Nevertheless, we find quite a tangible improvement in case swv15 on ea_1024_nswap.

Our ea_16384_nswap outperforms the four Evolutionary Algorithms from [122] both in terms of

mean and best result quality on abz7 and la24. It does the same for HIMGA-Mutation, the worst of

the four HIMGA variants introduced in [130], for abz7, la24, and yn4. It obtains better results than

the PABC from [175] onswv15. Onla24, both in terms ofmean and best result, it outperforms also all

six EAs from [2], both variants of the EA in [157], and the LSGA from [158]. The best solution quality for

abz7 delivered by ea_16384_nswap is better than the best result found by the old Fast Simulated

Annealing algorithmwhich was improved in [4].

The Gantt charts of the median solutions of ea_16384_nswap are illustrated in Figure 3.15. They

appear only a bit denser than those in Figure 3.9.

More interesting are the progress diagrams of the ea_16384_nswap, ea_1024_nswap,

hcr_65536_nswap, and hc_nswap algorithms given in Figure 3.16. Here we find big visual

differences between the way the EAs and hill climbers proceed. The EAs spend the first 10 to 1000 ms

to discover some basins of attraction of local optima before speeding up. The larger the population,

the longer it takes them until this happens: The difference between ea_16384_nswap, is very

obvious ea_1024_nswap in this respect. It is interesting to notice that the two problems where the

EAs visually outperform the hill climber the most, swv15 and yn4, are also those with the largest

search spaces (see Table 2.3). la24, however, which already can “almost be solved” by the hill climber

and where there are the smallest differences in performance, is the smallest instance. The population

used by the EA seemingly guards against premature convergence and allows it to keep progressing for

a longer time.
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Wealso notice that – for the first time in our endeavor to solve the JSSP – runtime is the limiting factor. If

we would have 20 minutes instead of three, then we could not expect much improvement from the hill

climbers. Even with restarts, they already improve very slowly towards the end of the computational

budget. Tuning their parameter, e.g., increasing the time until a restart is performance, would probably

not help then either. However, we can clearly see that ea_16384_nswap has not fully converged on

neither abz7, swv15, nor on yn4 a�er the three minutes. Its median curve is still clearly pointing

downwards. And even if it had converged: If we had a larger computational budget, we could increase

the population size. The reason why the performance for larger populations in Figure 3.14 gets worse

is very likely the limited time budget.
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Figure 3.15: The Gantt charts of the median solutions obtained by the ea_16384_nswap setup.

The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each

diagram denote the instance name andmakespan.
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Figure 3.16: Themedian of the progress of the ea_16384_nswap, ea_1024_nswap,

hcr_65536_nswap, and hc_nswap algorithms over time, i.e., the current best solution found by

each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the

areas is more intense if more runs fall in a given area.
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3.4.1.4 Exploration versus Exploitation

Naturally, when discussing EAs, wemay ask why the population is helpful in the search. While we now

have some anecdotal evidence that this is the case, we may also think about this more philosophically.

Let us therefore do a thought experiment. If we would set µ = 1 and λ = 1, then the EA would always

remember the best solution we had so far and, in each generation, derive one new solution from it. If it

is better, it will replace the remembered solution. Such an EA is actually a hill climber.

Now imagine what would happen if we would set µ to infinity instead. We would not even complete

one single generation. Instead, if µ → ∞, it would also take infinitely long to finish creating the first

population of random solutions. This does not even require infinity µ – µ just needs to be large enough

so that the complete computational budget (in our case, three minutes) is consumed before creating

the initial, random candidate solutions is completed. In other words, the EA would then equal random

sampling.

The parameterµbasically allows us to “tune” between these twobehaviors [214]! If wepick it small, our

algorithm becomesmore “greedy”. It will spendmore time investigating (exploiting) the neighborhood

of the current best solutions. It will trace down local optima faster but be trappedmore easily in local

optima as well.

If we set µ to a larger value, we will keepmore not-that-great solutions in its population. The algorithm

spends more time exploring the neighborhoods of solutions which do not look that good, but from

which wemight eventually reach better results. The convergence is slower, but we are less likely to get

trapped in a local optimum.

The question on which of the two to focus is known as the dilemma of “Exploration versus Exploita-

tion” [48,70,205,208,216]. To make matters worse, theorists have proofed that there are scenarios

where only a small population can performwell, while there are other scenarios where only a large

population works well [45]. In other words, if we apply an EA, we always need to do at least some

rudimentary tuning of µ and λ.
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Listing 3.13 An excerpt of the implementation of the Evolutionary Algorithmwithout recombination.
(src)

1 public class EA<X, Y> extends Metaheuristic2<X, Y> {
2 public void solve(IBlackBoxProcess<X, Y> process) {
3 // omitted: initialize local variables random, searchSpace, and

4 // the array P of length mu+lambda

5 // first generation: fill population with random solutions

6 for (int i = P.length; (--i) >= 0;) {
7 X x = searchSpace.create(); // allocate point

8 this.nullary.apply(x, random); // fill with random data

9 P[i] = new Record<>(x, process.evaluate(x)); // evaluate

10 }
11

12 for (;;) { // main loop: one iteration = one generation

13 // sort the population: mu best records at front are selected

14 Arrays.sort(P, Record.BY_QUALITY);
15 // shuffle the first mu solutions to ensure fairness

16 RandomUtils.shuffle(random, P, 0, this.mu);
17 int p1 = -1; // index to iterate over first parent

18

19 // overwrite the worse lambda solutions with new offsprings

20 for (int index = P.length; (--index) >= this.mu;) {
21 if (process.shouldTerminate()) { // we return

22 return; // best solution is stored in process

23 }
24

25 Record<X> dest = P[index];
26 p1 = (p1 + 1) % this.mu; // step the parent 1 index

27 Record<X> sel = P[p1];
28 // create modified copy of parent using unary operator

29 this.unary.apply(sel.x, dest.x, random);
30 // map to solution/schedule and evaluate quality

31 dest.quality = process.evaluate(dest.x);
32 } // the end of the offspring generation

33 } // the end of the main loop

34 }
35 }
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3.4.2 Ingredient: Binary Search Operator

On one hand, keeping a population of theµ > 1 best solutions as starting points for further exploration

helps us to avoid premature convergence. On the other hand, it also represents more information. The

hill climber only used the information in current-best solution as guide for the search (and the hill

climber with restarts used, additionally, the number of steps performed since the last improvement).

Now we have a set of µ selected points from the search space. These points have, well, been selected.

At least a�er some time has passed in our optimization process, “being selected” means “being good”.

If you compare the Gantt charts of the median solutions of ea_16384_nswap (Figure 3.15) and

hcr_16384_1swap (Figure 3.9), you can see some good solutions for the same problem instances.

These solutions differ in some details. Wouldn’t it be nice if we could take two good solutions and

derive a solution “in between,” a new solution which is similar to both of its “parents”?

This is the idea of the binary search operator (also o�en referred to as recombination or crossover

operator). By defining such an operator, we hope that we canmerge the “good characteristics” of two

selected solutions to obtain one new (ideally better) solution [53,109]. If we are lucky and that works,

then ideally such good characteristics could aggregate over time [84,147].

How can we define a binary search operator for our JSSP representation? One possible idea would

be to create a new encoded solution x′ by processing both input points x1 and x2 from front to back

and “schedule” their not-yet scheduled job IDs into x′ similar to what we do in our representation

mapping.

1. Allocate a data structure x′ to hold the new point in the search space that we want to sample.

2. Set the index iwhere the next operation should be stored in x′ to i = 0.

3. Repeat

a. Randomly choose one of the input points x1 or x2with equal probability as source x.

b. Select the first (at the lowest index) operation in x that is not marked yet and store it in

variable J .

c. Set x′
i = J .

d. Increase i by one (i = i + 1).

e. If i = n ∗ m, then all operations have been assigned. We exit and returning x′.

f. Mark the first unmarked occurrence of J as “already assigned” in x1.

g. Mark the first unmarked occurrence of J as “already assigned” in x2.

This can be implemented efficiently by keeping indices of the first unmarked element for both x1

and x2, which we do in Listing 3.14.

As we discussed in Section 2.6.2, our representation mapping processes the elements x ∈ X from the

front to the back and assigns the jobs tomachines according to the order in which their IDs appear. It is
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a natural idea to design a binary operator that works in a similar way. Our sequence recombination

processes two points from the search space x1 and x2 from their beginning to the end. At each step

randomly picks one of them to extract the next operation, which is is then stored in the output x′ and

marked as “done” in both x1 and x2.

If it would, by chance, always choose x1 as source, then it would produce exactly x1 as output. If it

would always pick x2 as source, then it would also return x2. If it would pick x1 for the first half of the

times and then always pick x2, it would basically copy the first half of x1 and then assign the rest of

the operations in exactly the order in which they appear in x2.

x'=(2,0,3,1,1,1,0,2,2,2,0,1,3,1,0,0,3,3,2,3)

f(y')=192
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Figure 3.17: An example application of our sequence recombination operator to two points x1 and x2

in the search space of the demo instance, resulting in a new point x′. Wemark the selected job IDs

with pink and cyan color, while crossing out those IDs which were not chosen because of their received

marks in the source points. The corresponding candidate solutions y1, y2, and y′ are illustrated as

well.

For illustration purposes, one example application of this operator is sketched in Figure 3.17. As input,

we chose to points x1 and x2 from the search space for our demo instance. They encode two different
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corresponding Gantt charts, y1 and y2, with makespans of 202 and 182 time units, respectively.

Our operator begins by randomly choosing x1 as the source of the first operation for the new point x′.

The first job ID in x1 is 2, which is placed as first operation into x′. We alsomark the first occurrence of 2

in x2, which happens to be at position 4, as “already scheduled.” Then, the operator again randomly

picks x1 as source for the next operation. The first not-yet marked element in x1 is now at the second 0,

so it is placed into x′ andmarked as scheduled in x2, where the fi�h element is thus crossed out. As

next source, the operator, again, chooses&bsnp;x1. The first unmarked operation inx1 is 3 at position 3,

which is added to x′ and leads to the first element of x2 being marked. Finally, for picking the next

operation, x2 is chosen. The first unmarked operation there has ID 1 and is located at index 2. It is

inserted at index 4 into x′. It also occurs at index 4 in x1, which is thusmarked. This process is repeated

again and again, until x′ is constructed completely, at which point all the elements of x1 and x2 are

marked.

The application of our binary operator yields a new point x′ which corresponds to the Gantt chart y′

with makespan 192. This new candidate solution clearly “inherits” some characteristics from either of

its parents.
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Listing 3.14 An excerpt of the sequence recombination operator for the JSSP, an implementation of
the binary search operation interface Listing 2.10. (src)

1 public class JSSPBinaryOperatorSequence
2 implements IBinarySearchOperator<int[]> {
3 public void apply(int[] x0, int[] x1,
4 int[] dest, Random random) {
5 // omitted: initialization of arrays doneX0 and doneX1 (that

6 // remember the already-assigned operations from x0 and x1) of

7 // length=m*n to all false; and indices desti, x0i, x10 to 0

8 for (;;) { // repeat until dest is filled, i.e., desti=length

9 // randomly chose a source point and pick next operation from it

10 int add = random.nextBoolean() ? x0[x0i] : x1[x1i];
11 dest[desti++] = add; // we picked a operation and added it

12 if (desti >= length) { // if desti==length, we are finished

13 return; // in this case, desti is filled and we can exit

14 }
15

16 for (int i = x0i;; i++) { // mark operation as done in x0

17 if ((x0[i] == add) && (!doneX0[i])) { // find added job

18 doneX0[i] = true;// found it and marked it

19 break; // quit operation finding loop

20 }
21 }
22 while (doneX0[x0i]) { // now we move the index x0i to the

23 x0i++; // next, not-yet completed operation in x0

24 }
25

26 for (int i = x1i;; i++) { // mark operation as done in x1

27 if ((x1[i] == add) && (!doneX1[i])) { // find added job

28 doneX1[i] = true; // found it and marked it

29 break; // quit operation finding loop

30 }
31 }
32 while (doneX1[x1i]) { // now we move the index x1i to the

33 x1i++; // next, not-yet completed operation in x0

34 }
35 } // loop back to main loop and to add next operation

36 } // end of function

37 }
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3.4.3 Evolutionary Algorithmwith Recombination

We now want to utilize this new operator in our EA. The algorithm now has two ways to create new

offspring solutions: either via the unary operator (mutation, in EA-speak) or via the binary operator

(recombination in EA-speak). Wemodify the original EA as follows.

3.4.3.1 The Algorithm (with Recombination)

We introduce a new parameter cr ∈ [0, 1], the so-called “crossover rate”. It is used whenever we want

to derive a new points in the search space from existing ones. It denotes the probability that we apply

the binary operator (while we will otherwise apply the unary operator, i.e., with probability 1 − cr).

The basic (µ + λ) Evolutionary Algorithmwith recombination works as follows:

1. I ∈ X × R be a data structure that can store one point x in the search space and one objective

value z.

2. Allocate an array P of length µ + λ of instances of I .

3. For index i ranging from 0 to µ + λ − 1 do

a. Create a random point from the search space using the nullary search operator and store it

in Pi.x.

b. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate solu-

tion y.

c. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z = f(y).

4. Repeat until the termination criterion is met:

d. Sort the array P in ascending order according to the objective values, i.e., such that the

records r with better associated objective value r.z are located at smaller indices.

e. Shuffle the first µ elements of P randomly.

f. Set the first source index p1 = −1.

g. For index i ranging from µ to µ + λ − 1 do

i. Set the first source index p1 to p1 = (p1 + 1) mod µ.

ii. Draw a random number c uniformly distributed in [0, 1).

iii. If c is less than the crossover rate cr, then we apply the binary operator: A. Randomly

choose a second index p2 from 0 . . . (µ − 1) such that p2 6= p1. B. Apply binary

search operator to the points stored at index p1 and p2 and store result at index i, i.e.,

set Pi.x = searchOp2(Pp1.x, Pp2.x).

iv. otherwise to step 4g.iii, i.e., if c ≥ cr, then we apply the unary operator: C. Apply

unary search operator to the point stored at index p1 and store result at index i, i.e.,

set Pi.x = searchOp1(Pp1.x).
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v. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate

solution y.

vi. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z =

f(y).

5. Return the candidate solution corresponding to the best record in P to the user.

This algorithm, implemented in Listing 3.15 only differs from the variant in Section 3.4.1.1 by choosing

whether to use the unary or binary operator to sample new points from the search space (steps 4g.iii.A,

B, and C). If cr is the probability to apply the binary operator and we draw a random number cwhich is

uniformly distributed in [0, 1), then the probability that c < cr is exactly cr (see point iii).

3.4.3.2 The Right Setup

Unfortunately, with cr ∈ [0, 1], a new algorithm parameter has emerged. It is not really clear whether

a large or a small crossover rate is good. We already tested cr = 0: The EA without recombination.

Similar to our other small tuning experiments, let us compare the performance of different settings

of cr. We investigate the crossover rates cr ∈ {0, 0.05, 0.3, 0.98}. We will stick with nswap as unary

operator and keep µ = λ.

Figure 3.18: Themedian result quality of the ea_mu_cr_nswap algorithm, divided by the lower

bound lb(f)⋆ from Table 2.2 over different values of the population size parameter µ = λ and the

crossover rates in {0, 0.05, 0.3, 0.98}. The best values of µ for each crossover rate and instance are

marked with bold symbols.
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From Figure 3.18, we immediately find that the large crossover rate cr = 0.98 is performing much

worse than using no crossover at all (cr = 0) on all instances. Smaller rates cr ∈ {0.05, 0.3} tend

to be sometimes better and sometimes worse than cr = 0, but there is no big improvement. On

instance swv15, the binary operator does not really help. On instance la24, cr = 0.05 performs best

on mid-sized populations, while there is no distinguishable difference between cr = 0.05 and cr = 0

for large populations. On abz7 and yn4, cr = 0.05 always seems to be a good choice. On these three

instances, the population size µ = λ = 8192 in combination with cr = 0.05 looks promising. We will

call this setup ea_8192_5%_nswap in the following, where 5% stands for the crossover rate of 0.05

using the binary sequence operator.

3.4.3.3 Results on the JSSP

We can now investigate whether our results have somewhat improved.

Table 3.9: The results of the Evolutionary Algorithm ea_8192_5%_nswap in comparison two the

same population size without recombination (ea_8192_nswap) and the two EAs from Table 3.8. The

columns present the problem instance, lower bound, the algorithm, the best, mean, andmedian

result quality, the standard deviation sd of the result quality, as well as the median timemed(t) and

FEsmed(FEs) until the best solution of a run was discovered. The better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 ea_16384_nswap 691 707 707 8 151s 25’293’859

ea_1024_nswap 696 719 719 9 14s 4’703’601

ea_8192_nswap 687 709 709 9 75s 13’347’232

ea_8192_5%_nswap 684 703 702 8 54s 10’688’314

la24 935 ea_16384_nswap 945 968 967 12 39s 10’161’119

ea_1024_nswap 941 983 984 19 2s 971’842

ea_8192_nswap 941 973 973 15 16s 4’923’721

ea_8192_5%_nswap 943 967 967 11 18s 4’990’002

swv15 2885 ea_16384_nswap 3577 3723 3728 50 178s 18’897’833

ea_1024_nswap 3375 3525 3509 85 87s 16’979’178

ea_8192_nswap 3497 3630 3631 54 178s 18’863’017

ea_8192_5%_nswap 3498 3631 3632 65 178s 17’747’983
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I lbf setup best mean med sd med(t) med(FEs)

yn4 929 ea_16384_nswap 1022 1063 1061 16 168s 26’699’633

ea_1024_nswap 1035 1083 1085 20 31s 4’656’472

ea_8192_nswap 1027 1061 1061 17 138s 17’882’160

ea_8192_5%_nswap 1026 1056 1053 17 114s 13’206’552

The results in Table 3.9 show that amoderate crossover rate of 0.05 can indeed improve our algorithm’s

performance – a little bit. For swv15, we already know that recombination was not helpful and this

is confirmed in the table. On the three other instances, ea_8192_5%_nswap has better mean and

median results than ea_1024_nswap, ea_8192_nswap, and ea_16384_nswap. On abz7, it

can also slightly improve on the best result we got so far.

Interestingly, on swv15, the ea_1024_nswap stops improving in median a�er about 87 seconds,

whereas all other EAs keep finding improvements even very close to the end of the 180 seconds budget.

This probably means that they would also perform better than ea_1024_nswap if only we hadmore

time. There might just not be enough time for any potential benefits of the binary operator to kick in.

This could also be a valuable lesson: it does not help if the algorithm gives better results if it needs too

much time. Any statement about an achieved result quality is only valid if it also contains a statement

about the required computational budget. If we would have let the algorithms longer, maybe the

setups using the binary operator would have givenmore saliently better results . . . but these would

then be useless in our real-world scenario, since we only have 3 minutes of runtime.

By the way: It is very important to always test the cr = 0 rate! Only by doing this, we can find whether

our binary operator is designed properly. It is a common fallacy to assume that an operator which

we have designed to combine good characteristics from different solutions will actually do that. If

the algorithm setups with cr = 0would be better than those that use the binary operator, it would

be a clear indication that we are doing something wrong. So we need to carefully analyze whether

the small improvements that our binary operator can provide are actually significant. We therefore

apply the same statistical approach as already used in Section 3.3.5.2 and later discussed in detail in

Section 4.5.
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Table 3.10: The end results of ea_8192_nswap and ea_8192_5%_nswap compared with a

Mann-Whitney U test with Bonferroni correction and significance level α = 0.02 on the four JSSP

instances. The columns indicate the p-values and the verdict (? for insignificant).

Mann-Whitney U

α′ = 7.14·10−4 abz7 la24 swv15 yn4

ea_8192_nswap

vs.ea_8192_5%_nswap

2.32·10−6 > 2.73·10−3 ? 9.78·10−1 ? 4.32·10−2 ?

In Table 3.10, we find that that EA using the binary sequence operator to generate 5% of the offspring

solutions leads to significantly better results on abz7. It never performs significantly worse, not even

on swv15, and the p-values are below α but above α′ on the other two instances. Overall, this is not a

very convincing result. Not enough for us to claim that our particular recombination operator is a very

good invention – but enough to convince us that using it may sometimes be good and won’t hurt too

much otherwise.
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Figure 3.19: Themedian of the progress of the ea_8192_5%_nswap, ea_8192_nswap,

and ea_16384_nswap algorithms over time, i.e., the current best solution found by each of the 101

runs at each point of time (over a logarithmically scaled time axis). The color of the areas is more

intense if more runs fall in a given area.
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If we look at Figure 3.19, we can confirm that using the binary sequence operator at the low 5% rate

does make some difference in how themedian solution quality over time changes, although only a

small one. On abz7, ea_8192_5%_nswap improves faster than the setup without recombination.

On la24 and yn4, theremay be a small advantage during the phase when the algorithm improves the

fastest, but this could also be caused by the randomness of the search. On swv15, there is a similarly

small disadvantage of ea_8192_5%_nswap.

In summary, it seems that using our binary operator is reasonable. Different fromwhat wemay have

hoped for (and which would have been very nice for this book. . . ), it does not improve the results by

much. We now could try to design a different recombination operator in the hope to get better results,

similar to what we did with the unary operator by moving from 1swap to nswap. We will not do this

here – the interested reader is invited to do that by herself as an exercise.

As the end of this section, let me point out that binary search operators are a hot and important

research topic right now. On one of themost well-known classical optimization problems, the Traveling

Salesman Problemmentioned already back in the introduction in Section 1.1.2, they are part of the

most efficient algorithms [153,178,197,219]. It also has theoretically been proven that a binary operator

can speed-up optimization on some problems [61].
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Listing 3.15 An excerpt of the implementation of the Evolutionary Algorithmwith crossover. (src)

1 public class EA<X, Y> extends Metaheuristic2<X, Y> {
2 public void solve(IBlackBoxProcess<X, Y> process) {
3 // omitted: initialize local variables random, searchSpace, and

4 // array P of length mu+lambda

5 // first generation: fill population with random solutions

6 for (int i = P.length; (--i) >= 0;) {
7 X x = searchSpace.create(); // allocate point

8 this.nullary.apply(x, random); // fill with random data

9 P[i] = new Record<>(x, process.evaluate(x)); // evaluate

10 }
11

12 for (;;) { // main loop: one iteration = one generation

13 // sort the population: mu best records at front are selected

14 Arrays.sort(P, Record.BY_QUALITY);
15 // shuffle the first mu solutions to ensure fairness

16 RandomUtils.shuffle(random, P, 0, this.mu);
17 int p1 = -1; // index to iterate over first parent

18

19 // overwrite the worse lambda solutions with new offsprings

20 for (int index = P.length; (--index) >= this.mu;) {
21 if (process.shouldTerminate()) { // we return

22 return; // best solution is stored in process

23 }
24

25 Record<X> dest = P[index];
26 p1 = (p1 + 1) % this.mu; // step the parent 1 index

27 Record<X> sel = P[p1];
28 if (random.nextDouble() <= this.cr) { // crossover!

29 do { // find a second, different record

30 p2 = random.nextInt(this.mu);
31 } while (p2 == p1); // repeat until p1 != p2

32 // perform recombination of the two selected records

33 this.binary.apply(sel.x, P[p2].x, dest.x, random);
34 } else {
35 // create modified copy of parent using unary operator

36 this.unary.apply(sel.x, dest.x, random);
37 }
38 // map to solution/schedule and evaluate quality

39 dest.quality = process.evaluate(dest.x);
40 } // the end of the offspring generation

41 } // the end of the main loop

42 }
43 }
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3.4.4 Ingredient: Diversity Preservation

In Section 3.4.1.4, we asked why a population is helpful for optimization. Our answer was that there

are two opposing goals in metaheuristic optimization: On the one hand, we want to get results quickly

and, hence, want that the algorithms quickly trace down to the bottom of the basins around optima.

On the other hand, we want to get good results, i.e., better local optima, preferably global optima. A

smaller population is good for the former and forsters exploitation. A larger population is good for the

latter, as it invests more time on exploration.

Well. Not necessarily. Imaginewe discover a good local optimum, a solution better than everything else

we have in the population. Great. It will survive selection and we will derive offspring solutions from it.

Since it is a local optimum, these will probably be worse. They might also encode the same solution as

the parent, which is entirely possible in our JSSP scenario. But even if they are worse, they maybe just

good enough to survive the next round of selection. Then, their (better) parent will also survive. Wewill

thus get more offspring from this parent. But also offsprings from its surviving offsprings. And some

of these may again be the same as the parent. If this process keeps continuing, the populationmay

slowly be filling with copies of that very good local optimum. The larger our population, the longer

it will take, of course. But unless we somehow encounter a different, similarly good or even better

solution, it will probably happen eventually.

What does this mean? Recombination of two identical points in the search space should yield the very

same point as output, i.e., the binary operator will become useless. This would leave only the unary

operator as possible source of randomness. We then practical have one point in the search space to

which only the unary operator is applied. Our EA has become a weird hill climber.

If we would want that, then we would have implemented a hill climber, i.e., a local search, instead. In

order to enable global exploration and to allow for the binary search operators to work, it makes sense

to try to preserve the diversity in the population [193].

Now there exist quite a few ideas how to do that [48,184,189] and we also discuss some concepts later

in Section 5.1.2.4. Many of them are focused on penalizing candidate solutions which are too similar to

others in the selection step. Similarity could bemeasured via computing the distance in the search

space, the distance in the solution space, the difference of the objective values. The penalty could be

achieved by using a so-called fitness as basis for selection instead of the objective value. In our original

EA, the fitness would be the same as the objective value. In a diversity-preserving EA, we could add a

penalty value to this base fitness for each solution based on the distance to the other solutions.

3.4.5 Evolutionary Algorithmwith Clearing in the Objective Space

Let us now test whether a diversity preserving strategy can be helpful in an EA. We will only investigate

one very simple approach: Avoiding objective value duplicates [78,184]. In the rest of this section, we
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will call thismethod clearing, as it canbeviewedas the strictestpossible variantof the clearing [161,162]

applied in the objective space.

Put simply, wewill ensure that all records that “survive” selection have different objective values. If two

good solutions have the same objective value, we will discard one of them. This way, we will ensure

that our population remains diverse. No single candidate solution can take over the population.

3.4.5.1 The Algorithm (with Recombination and Clearing)

We can easily extend our (µ + λ) EA with recombination from Section 3.4.3.1 to remove duplicates of

the objective value. We need to consider that a full population of µ + λ records may contain less than

µ different objective values. Thus, in the selection step, wemay obtain 1 ≤ u ≤ µ elements, where u

can be different in each generation. If u = 1, we cannot apply the binary operator regardless of the

crossover rate cr.

1. I ∈ X × R be a data structure that can store one point x in the search space and one objective

value z.

2. Allocate an array P of length µ + λ of instances of I .

3. For index i ranging from 0 to µ + λ − 1 do

a. Create a random point from the search space using the nullary search operator and store it

in Pi.x.

b. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate solu-

tion y.

c. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z = f(y).

4. Repeat until the termination criterion is met:

d. Sort the array P in ascending order according to the objective values, i.e., such that the

records r with better associated objective value r.z are located at smaller indices.

e. Iterate over P from front to end and delete all records with an objective value already seen

in this iteration. The number of remaining records be w. Set the number u of selected

records to u = min{w, µ}.

f. Shuffle the first u elements of P randomly.

g. Set the first source index p1 = −1.

h. For index i ranging from u to µ + λ − 1 do

i. Set the first source index p1 to p = (p1 + 1) mod u.

ii. Draw a random number c uniformly distributed in [0, 1).
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iii. If u > 1 and c < cr, then we apply the binary operator: A. Randomly choose an-

other index p2 from 0 . . . (u − 1) such that p2 6= p1. B. Apply binary search operator

to the points stored at index p1 and p2 and store result at index i, i.e., set Pi.x =

searchOp2(Pp1.x, Pp2.x).

iv. otherwise to *step 4h.iii, i.e., if c ≥ cr or u = 1, we apply the unary search op-

erator to the point stored at index p1 and store result at index i, i.e., set Pi.x =

searchOp1(Pp1.x).

v. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate

solution y.

vi. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z =

f(y).

5. Return the candidate solution corresponding to the best record in P to the user.

This algorithm, implemented in Listing 3.16 and using the routine given in Listing 3.17 differs from the

variant in Section 3.4.3.1mainly in step 4e. There, the sorted populationP is processed from beginning

to end. Whenever an objective value is found in a record which has already been encountered during

this processing step, the record is removed. SinceP is sorted, thismeans that the record at (zero-based)

index k is deleted if and only if k > 0 and Pk.z = Pk−1.z. As a result, the number u of selected records

with unique objective valuemay be less thanµ (while always being greater or equal to 1). Therefore, we

need to adjust the parts of the algorithmwhere parent solutions are selected for generating offsprings.

Also, we generate µ + λ − u offspring, to again obtain a total of µ + λ elements.

In the actual implementation in Listing 3.16, we do not delete the records but move them to the end of

the list, so we can re-use them later. We also stop processing P as soon as we have µ unique records,

as it does not really matter whether un-selected records are unique. This is slightly more efficient, but

would be harder to write in pseudo-code.

We will name setups of this algorithm in the samemanner as those of the original EA, except that we

start the names with the prefix eac_ instead of ea_.

3.4.5.2 The Right Setup

With the simple diversity-preservation mechanism in place, wemay wonder which population sizes

are good. It is easy to see that findings from Section 3.4.1.2, where we found that µ = λ = 16′384 is

reasonable, may longer hold: We know from Section 2.5.3 of the makespan for any solution on the

JSSP instance abz7 is 656. It can be doubted whether it is even possible to generate 16′384 schedules

with different makespans. If not, then the number u of selected records would always be less than µ,

which would make choosing a large µ useless.
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Figure 3.20: Themedian result quality of the ea[c]_mu_5%_nswap algorithm, divided by the lower

bound lb(f)⋆ from Table 2.2 over different values of the population size parameter µ = λ, with and

without clearing. The best values of µ for each operator and instance are marked with bold symbols.

Since this time smaller population sizes may be interesting, we investigate all powers of 2 for µ = λ

from 4 to 65’536. In Figure 3.20, we find that the eac_mu_5%_nswap behave entirely different from

those of ea_mu_5%_nswap. If clearing is applied, the smallest investigated setting, µ = λ = 4,

seems to be the right choice. This setup has the best performance on abz7 and swv15, while being

only a tiny bit worse than the best choices on la24 and yn4. Larger populations lead to worse results

at the end of the computational budget of three minutes.

Why could this be? One possible reason could be that maybe not very many different candidate

solutions are required. If only few are needed and we can maintain sufficiently many in a small

population, then the advantage of the small population is that we can domany more iterations within

the same computational budget.

This very small population size means that an EA with clearing in the objective space should be

configured quite similar to a hill climber!

3.4.5.3 Results on the JSSP

We can now investigate whether our results have somewhat improved.
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Table 3.11: The results of the Evolutionary Algorithm eac_4_5%_nswap in comparison to

ea_8192_5%_nswap. The columns present the problem instance, lower bound, the algorithm, the

best, mean, andmedian result quality, the standard deviation sd of the result quality, as well as the

median timemed(t) and FEsmed(FEs) until the best solution of a run was discovered. The better

values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 ea_8192_5%_nswap 684 703 702 8 54s 10’688’314

eac_4_5%_nswap 672 690 690 9 68s 12’474’571

la24 935 ea_8192_5%_nswap 943 967 967 11 18s 4’990’002

eac_4_5%_nswap 935 963 961 16 30s 9’175’579

swv15 2885 ea_8192_5%_nswap 3498 3631 3632 65 178s 17’747’983

eac_4_5%_nswap 3102 3220 3224 65 168s 18’245’534

yn4 929 ea_8192_5%_nswap 1026 1056 1053 17 114s 13’206’552

eac_4_5%_nswap 1000 1038 1037 18 118s 15’382’072

Table 3.11 shows that our EA with recombination and clearing in the objective space outperforms

the EA without clearing on every single instance in terms of best, mean, and median result quality.

Especially on instance swv15, the new algorithm performs much better than ea_8192_5%_nswap.

Most remarkable is that we can even solve instance la24 to optimality once. The median solutions of

our new algorithm variant are illustrated in Figure 3.21. Compared to Figure 3.15, the result on swv15

has improved: especially the upper-le� and lower-right corners of the Gantt chart, where only few jobs

are scheduled, have visibly become smaller.
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Figure 3.21: The Gantt charts of the median solutions obtained by the eac_4_5%_nswap setup.

The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each

diagram denote the instance name andmakespan.
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Figure 3.22: Themedian of the progress of the eac_4_5%_nswap in comparison to the

ea_8192_5%_nswap and hcr_65536_nswap over time, i.e., the current best solution found by

each of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the

areas is more intense if more runs fall in a given area.
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We plot the discovered optimal solution forla24 in Figure 3.23. Comparing it with themedian solution

for la24 in Figure 3.21, time was saved, e.g., by arranging the jobs in the top-le� corner in a tighter

pattern.

Figure 3.23: One optimal Gantt charts for instance la24, discovered by the eac_4_5%_nswap

setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of

each diagram denote the instance name andmakespan.

From the progress charts plotted in Figure 3.22, we can confirm that eac_4_5%_nswap

indeed behaves more similar to the hill climber hcr_65536_nswap than to the other EA

ea_8192_5%_nswap. This is due to its small population size. However, unlike the hill climber, its

progress curve keeps going down for a longer time. A�er only 0.1 seconds, it keeps producing better

results in median.

We can confirm that even the simple and rather crude pruning in the objective space can significantly

improve the performance of our EA. We did not test any sophisticated diversity preservation method.

We also did not re-evaluate which crossover rate cr and which unary operator (1swap or nswap)

works best in this scenario. This means that wemight be able to squeeze out more performance, but

we will leave it at this. The small populations working so well make us curious, however.
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Listing 3.16 An excerpt of the implementation of the Evolutionary Algorithm algorithm with and
clearing. (src)

1 public class EAWithClearing<X, Y>
2 extends Metaheuristic2<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // Omitted: Initialize local variables random, searchSpace, set

5 // arrays P of length mu+lambda, and array T to null. Fill P with

6 // random solutions + evaluate.

7 for (int i = P.length; (--i) >= 0;) {
8 X x = searchSpace.create();
9 this.nullary.apply(x, random);

10 P[i] = new Record<>(x, process.evaluate(x));
11 if (process.shouldTerminate()) { // we return

12 return; // best solution is stored in process

13 }
14 }
15

16 while (!process.shouldTerminate()) { // main loop

17 RandomUtils.shuffle(random, P, 0, P.length); // make fair

18 int u = Utils.qualityBasedClearing(P, this.mu);
19 // Now we have 1 <= u <= mu unique solutions.

20 RandomUtils.shuffle(random, P, 0, u); // for fairness

21 int p1 = -1; // index to iterate over first parent

22 // Overwrite the worse (mu + lambda - u) solutions.

23 for (int index = P.length; (--index) >= u;) {
24 // Omitted: Quit loop if process.shouldTerminate()

25 Record<X> dest = P[index]; // offspring

26 p1 = (p1 + 1) % u; // parent 1 index

27 Record<X> sel = P[p1]; // parent 1

28 if ((u >= 2) && (random.nextDouble() <= this.cr)) {
29 do { // find a second, different record

30 p2 = random.nextInt(u);
31 } while (p2 == p1); // Of course, can't be p1.

32 this.binary.apply(sel.x, P[p2].x, dest.x, random);
33 } else { // Otherwise: Mutation.

34 this.unary.apply(sel.x, dest.x, random);
35 }
36 dest.quality = process.evaluate(dest.x);
37 } // the end of the offspring generation

38 } // the end of the main loop

39 }
40 }
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Listing 3.17 The implementation of the objective-value based clearing routine. (src)

1 public static int qualityBasedClearing(Record<?>[] array,
2 int max) {
3

4 Arrays.sort(array, Record.BY_QUALITY);// best -> first

5

6 int unique = 0;
7 double lastQuality = Double.NEGATIVE_INFINITY; // impossible

8

9 for (int index = 0; index < array.length; index++) {
10 Record<?> current = array[index];
11 double currentQuality = current.quality;
12 if (currentQuality > lastQuality) { // unique so-far

13 if (index > unique) { // need to move forward?

14 Record<?> other = array[unique];
15 array[unique] = current; // swap with first non-unique

16 array[index] = other;
17 }
18 lastQuality = currentQuality; // update new quality

19 if ((++unique) >= max) { // are we finished?

20 return unique; // then quit: unique == max

21 }
22 }
23 }
24

25 return unique; // return number of unique: 1<=unique<=max

26 }
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3.4.6 (1 + 1) EA

The (1 + 1) EA is a special case of the (µ + λ) EA with µ = 1 and λ = 1. Since the number of

parents is µ = 1, it does not apply the binary recombination operator. We explicitly discuss it here

because it is usually defined slightly differently fromwhat we did in Section 3.4.1.1 and implemented

as Listing 3.13.

3.4.6.1 The Algorithm

The (1 + 1) EA works like a hill climber (see Section 3.3), with the difference that the new solution

replaces the current one if it is better or equally good, instead of just replacing it if it is better.

1. Create one random point x in the search spaceX using the nullary search operator.

2. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

3. Compute the objective value by invoking the objective function z = f(y).

4. Repeat until the termination criterion is met:

a. Apply the unary search operator to x to get a slightly modified copy x′ of it.

b. Map the point x′ to a candidate solution y′ by applying the representation mapping y′ =

γ(x′).

c. Compute the objective value z′ by invoking the objective function z′ = f(y′).

d. If z′ ≤ z, then store x′ in x, store y′ in y, and store z′ in z.

5. Return the best encountered objective value z and the best encountered solution y to the user.

This algorithm is implemented in Listing 3.18. The only difference to the hill climber in Section 3.3.2.1

and Listing 3.10 is the z′ ≤ z in point 4.d instead of z′ < z: the new solution does not need to be strictly

better to win over the old one, it is sufficient if it is not worse. In the (µ + λ) EA implementation that

we had before, we could also set µ = 1 and λ = 1. The algorithmwould be slightly different from the

(1 + 1) EA: In the (1 + 1) EA as defined here, the new solution y′ will always win against the current

solution y if z′ = z, whereas in our shuffle-and-sort method of the population as implemented in

Listing 3.13, either one could win with probability 0.5.

3.4.6.2 Results on the JSSP

We can now apply our (1 + 1) EA to the four JSSP instances either using the 1swap operator

(ea_1+1_1swap) or the nswap operator (ea_1+1_nswap). Astonishingly, Table 3.12 reveals that

it performs better than our best EA so far, namely eac_4_5%_nswap. Both (1 + 1) EA setups also

performmuch better than our hill climber. The log-scaled Figure 3.25 shows that the two EAs without
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Listing 3.18 An excerpt of the implementation of the (1 + 1) EA. (src)

1 public class EA1p1<X, Y> extends Metaheuristic1<X, Y> {
2 public void solve(IBlackBoxProcess<X, Y> process) {
3 // initialize local variables xCur, xBest, random

4 X xCur = process.getSearchSpace().create();
5 X xBest = process.getSearchSpace().create();
6 Random random = process.getRandom();// get random gen

7

8 // create starting point: a random point in the search space

9 this.nullary.apply(xBest, random); // xBest=random point

10 double fBest = process.evaluate(xBest); // map & evaluate

11

12 while (!process.shouldTerminate()) {
13 // create a slightly modified copy of xBest and store in xCur

14 this.unary.apply(xBest, xCur, random);
15 // map xCur from X to Y and evaluate candidate solution

16 double fCur = process.evaluate(xCur);
17 if (fCur <= fBest) { // we found a not-worse solution

18 // remember best objective value and copy xCur to xBest

19 fBest = fCur;
20 process.getSearchSpace().copy(xCur, xBest);
21 } // otherwise, i.e., fCur > fBest: just forget xCur

22 } // until time is up

23 } // process will have remembered the best candidate solution

24 }

population have better median solution almost always during the runs. And the Gantt charts of the

median solutions of ea_1+1_1swap, illustrated in Figure 3.24, again appear denser.

Table 3.12: The results of the (1 + 1) EA with the nswap and the 1swap operator, in comparison to

eac_4_5%_nswap. The columns present the problem instance, lower bound, the algorithm, the

best, mean, andmedian result quality, the standard deviation sd of the result quality, as well as the

median timemed(t) and FEsmed(FEs) until the best solution of a run was discovered. The better

values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 ea_1+1_1swap 664 678 677 7 35s 7’727’896

ea_1+1_nswap 664 677 677 7 40s 15’323’407

eac_4_5%_nswap 672 690 690 9 68s 12’474’571

la24 935 ea_1+1_1swap 941 957 955 14 4s 1’701’938
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I lbf setup best mean med sd med(t) med(FEs)

ea_1+1_nswap 938 956 951 14 4s 1’650’810

eac_4_5%_nswap 935 963 961 16 30s 9’175’579

swv15 2885 ea_1+1_1swap 2958 3041 3039 35 130s 16’644’658

ea_1+1_nswap 2954 3045 3047 39 132s 29’179’630

eac_4_5%_nswap 3102 3220 3224 65 168s 18’245’534

yn4 929 ea_1+1_1swap 981 1005 1003 12 48s 15’040’152

ea_1+1_nswap 973 1006 1005 11 61s 24’500’204

eac_4_5%_nswap 1000 1038 1037 18 118s 15’382’072
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Figure 3.24: The Gantt charts of the median solutions obtained by the ea_1+1_1swap setup. The

x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each

diagram denote the instance name andmakespan.
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Figure 3.25: Themedian of the progress of the ea_1+1_1swap and ea_1+1_nswap compared to

eac_4_5%_nswap and the two hill climbers hcr_16384_nswap and hcr_65536_nswap over

time, i.e., the current best solution found by each of the 101 runs at each point of time (over a

logarithmically scaled time axis). The color of the areas is more intense if more runs fall in a given area.
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3.4.6.3 Discussion

The big advantage of EAs is that their population guards against premature convergence. This can

bring better end results, but comes at a trade-off of slower convergence [214]. The fact that the EA

without population performs best in our experimental setup is annoying for the author. It does not

mean that this is always the case, though. But why is it the case here:

The answer consists, most likely, of two parts: First, as we know, our search spaceX is much larger

than the solution space Y, i.e., |X| ≫ |Y. If we have an integer string x1 ∈ X representing a Gantt

charty1 = γ(x1), thenwecanswap two jobsandgetanewstringx2 ∈ Xwithx2 6= x2, but thisdoesnot

necessarily mean that this new string maps to a different solution. It could well be that γ(x1) = γ(x2).

Then, we have made a neutral move. Of course, our move could also be neutral if γ(x1) 6= γ(x2)

but f(γ(x1)) = f(γ(x2)) Our (1 + 1) EA can dri� along a network of points in the search space which

all map to solutions with the samemakespan. This means that the (1 + 1) EA can explore far beyond

the neighborhood visible to the hill climber. By dri�ing over the network, it may eventually reach a

point which maps to a better solution. This reasoning is supported by the fact that our (1 + 1) EA

performmuch better than the hill climbers. You can find amore detailed discussion on neutrality in

Section 5.4.1.

The second reason is probably that the three minutes of runtime are simply not enough for the EAs

with the really big populations to reap the benefit of being resilient against premature convergence.

3.4.7 Summary

In this chapter, we have introduced Evolutionary Algorithms as methods for global optimization. We

have learned the two key concepts that distinguish them from local search: the use of a population of

solutions and of a binary search operator. We found that even the former alone can already outperform

the simple hill climber with restarts. While wewere a bit unlucky with our choice of the binary operator,

our idea did work at least a bit.

We then noticed that populations are only useful if they are diverse. If all the elements in the popu-

lation are very similar, then the binary operator stops working and the EA has converged. From our

experiments with the hill climber, we already know premature convergence to a local optimum as

something that should be avoided.

It therefore makes sense to try adding a method for enforcing diversity as another ingredient into the

algorithm. Our experiments with a very crude diversity enhancingmethod – only allowing one solution

per unique objective value in the population – confirmed that this can lead to better results.

We also found that the strict criterion to only accept solutions which are strictly better than the current

one, as practiced in our hill climbers Section 3.3 may not be a good idea. Accepting solutions which are

not worse than the current one allows for dri� in the search space, which can yield better results.
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3.5 Simulated Annealing

So far, wehave only discussed two variants of local search: the hill climbing algorithmand the (1+1)EA.

A hill climbing algorithm is likely to get stuck at local optima, which may vary in quality. We found that

we can utilize this variance of the result quality by restarting the optimization process when it could

not improve any more in Section 3.3.3. Such a restart is costly, as it forces the local search to start

completely from scratch (while we, of course, remember the best-ever solution in a variable hidden

from the algorithm). The (1 + 1) EAmay additionally utilize dri� over solutions of the same quality,

but there is no reason to assume that it cannot get stuck in local optima as well.

Another way to look at this is the following: A schedule which is a local optimum probably is somewhat

similar to what the globally optimal schedule would look like. It must, obviously, also be somewhat

different. This difference is shaped such that it cannot be conquered by the unary search operator

that we use, because otherwise, the basic hill climber could already move from the local to the global

optimum. If we do a restart, we also dispose of the similarities to the global optimum that we have

already discovered. We will subsequently spend time to re-discover them in the hope that this will

happen in a way that allows us to eventually reach the global optimum itself. But maybe there is a

less-costly way? Maybe we can escape from a local optimum without discarding the entirety good

solution characteristics we already have discovered?

3.5.1 Idea: Accepting Worse Solutions with Decreasing Probability

Simulated Annealing (SA) [47,116,125,164] is a local searchwhich provides another approach to escape

local optima [188,205]. The algorithm is inspired by the idea of simulating the thermodynamic process

of annealing using statistical mechanics, hence the naming [144]. Instead of restarting the algorithm

when reaching a local optimum, it tries topreserve theparts of the current solutionbypermitting search

steps towards worsening objective values. This algorithm therefore introduces three principles:

1. Worse candidate solutions are sometimes accepted, too.

2. TheprobabilityP of accepting them isdecreaseswith increasingdifferences∆E of their objective

values to the current solution.

3. The probability also decreases with the number of performed search steps.

These three principles are “injected” into themain loop of the hill climber. This is realized as follows.

Let us assume that x ∈ X is the “current” point that our local search maintains. x′ ∈ X is the “newly

sampled” point, i.e., the result of the application of the unary search operator to x. Then, ∆E be

the difference between the objective value corresponding to x′ and x. In other words, if γ is the
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representation mapping and f the objective function, then:

∆E = f(γ(x′)) − f(γ(x)) (3.1)

Clearly, if we try to minimize the objective function f , then∆E < 0means that x′ is better than x

since f(γ(x′)) < f(γ(x)). If∆E > 0, on the other hand, the new solution is worse. The probability P

to overwrite xwith x′ then be

P =























1 if∆E ≤ 0

e− ∆E
T if∆E > 0 ∧ T > 0

0 otherwise (∆E > 0 ∧ T = 0)

(3.2)

In other words, if the new point x′ is actually better (or, at least, not worse) than the current point x,

i.e., ∆E ≤ 0, then we will definitely accept it. (This is exactly the acceptance criterion used in the

(1 + 1) EA.) However, the new solution is not necessarily rejected otherwise: If the new point x′ is worse

(∆E > 0), then the acceptance probability

1. gets smaller the larger∆E is and

2. gets smaller the smaller the so-called “temperature” T ≥ 0 is.

Both the temperature T > 0 and the objective value difference∆E > 0 enter Equation (3.2) in the

exponential term and the two above points follow from e−a < e−b∀a > b. We also have e−a ∈

(0, 1)∀a > 0, so it can be used as probability value.

The temperaturewill be changed automatically such that it decreases and approaches zerowith a rising

number τ of algorithm iterations, i.e., the performed objective function evaluations. The optimization

process is initially “hot” and T is high. Then, even significantly worse solutions may be accepted Over

time, the process “cools” down and T decreases. The search slowly accepts fewer and fewer worse

solutions and more likely such which are only a bit worse. Eventually, at temperature T = 0, the

algorithm only accepts better solutions. In other words, T is actually a monotonously decreasing

function T (τ) called the “temperature schedule.” It holds that limτ→+∞ T (τ) = 0.

3.5.2 Ingredient: Temperature Schedule

The temperature schedule T (τ) determines how the temperature changes over time (where time is

measured in algorithm steps τ ). It begins with an start temperature Ts at τ = 1. This temperature

is the highest, which means that the algorithm is more likely to accept worse solutions. It will then
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behave a bit similar to a randomwalk and put more emphasis on exploring the search space than on

improving the objective value. As time goes by and τ increases, T (τ) decreases andmay even reach 0

eventually. Once T gets small enough, then Simulated Annealing will behave exactly like a hill climber

and only accepts a new solution if it is better than the current solution. This means the algorithm tunes

itself from an initial exploration phase to strict exploitation.

Consider the following perspective: An Evolutionary Algorithm allows us to pick a behavior in between

a hill climber and a random sampling algorithm by choosing a small or large population size. The

Simulated Annealing algorithm allows for a smooth transition of a random search behavior towards a

hill climbing behavior over time.

Listing 3.19 An excerpt of the abstract base class for temperature schedules. (src)

1 public abstract class TemperatureSchedule
2 implements ISetupPrintable {
3 public double startTemperature;
4

5 public abstract double temperature(long tau);
6 }

The ingredient needed for this tuning, the temperature schedule, can be expressed as a class imple-

menting exactly one simple function that translates an iteration index τ to a temperature T (τ), as

defined in Listing 3.19.

The twomost common temperature schedule implementations may be the exponential and the loga-

rithmic schedule.

3.5.2.1 Exponential Temperature Schedule

In an exponential temperature schedule, the temperature decreases exponentially with time (as

the name implies). It follows Equation (3.3) and is implemented in Listing 3.20. Besides the start

temperature Ts, it has a parameter ǫ ∈ (0, 1) which tunes the speed of the temperature decrease.

Higher values of ǫ lead to a faster temperature decline.

T (τ) = Ts ∗ (1 − ǫ)τ−1 (3.3)
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Listing 3.20 An excerpt of the exponential temperature schedules. (src)

1 public static class Exponential
2 extends TemperatureSchedule {
3 public double epsilon;
4

5 public double temperature(long tau) {
6 return (this.startTemperature
7 * Math.pow((1d - this.epsilon), (tau - 1L)));
8 }
9 }

3.5.2.2 Logarithmic Temperature Schedule

The logarithmic temperature schedule will prevent the temperature from becoming very small for a

longer time. Compared to the exponential schedule, it will thus longer retain a higher probability to

accept worse solutions. It obeys Equation (3.4) and is implemented in Listing 3.21.. It, too, has the

parameters ǫ ∈ (0, ∞) and Ts. Larger values of ǫ again lead to a faster temperature decline.

T (τ) =
Ts

ln (ǫ(τ − 1) + e)
(3.4)

Listing 3.21 An excerpt of the logarithmic temperature schedules. (src)

1 public static class Logarithmic
2 extends TemperatureSchedule {
3 public double epsilon;
4 public double temperature(long tau) {
5 if (tau >= Long.MAX_VALUE) {
6 return 0d;
7 }
8 return (this.startTemperature
9 / Math.log(((tau - 1L) * this.epsilon) + Math.E));

10 }
11 }

3.5.3 The Algorithm

Now thatwe have the blueprints for temperature schedules, we can completely define our SA algorithm

and implement it in Listing 3.22.
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1. Create random point x in the search spaceX by using the nullary search operator.

2. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

3. Compute the objective value by invoking the objective function z = f(y).

4. Store y in yb and z in zb, which we will use to preserve the best-so-far results.

5. Set the iteration counter τ to τ = 1.

6. Repeat until the termination criterion is met:

a. Set τ = τ + 1.

b. Apply the unary search operator to x to get the slightly modified copy x′ of it.

c. Map the point x′ to a candidate solution y′ by applying the representation mapping y′ =

γ(x′).

d. Compute the objective value z′ by invoking the objective function z′ = f(y′).

e. If z′ ≤ z, then

i. Store x′ in x and store z′ in z.

ii. If z′ ≤ zb, then store y′ in yb and store z′ in zb.

iii. Perform next iteration by going to step 6.

f. Compute the temperature T according to the temperature schedule, i.e., set T = T (τ).

g. If T ≤ 0 the perform next iteration by going to step 6.

h. Set∆E = z′ − z (see Equation (3.1)).

i. Compute P = e− ∆E
T (see Equation (3.2)).

j. Draw a random number r uniformly distributed in [0, 1).

k. If r ≤ P , then store x′ in x, store z′ in z, and perform next iteration by going to step 6.

7. Return best encountered objective value zb and the best encountered solution zb to the user.

There exist a several proofs [89,156] showing that, with a slow-enough cooling schedule, the probability

that Simulated Annealing will find the globally optimal solution approaches 1. However, the runtime

one would need to invest to actually “cash in” on this promise exceeds the time needed to enumerate

all possible solutions [156]. In Section 1.2.1 we discussed that we are using metaheuristics because

for many problems, we can only guarantee to find the global optimum if we invest a runtime growing

exponentially with the problem scale (i.e., proportional to the size of the solution space). So while we

have a proof that SA will eventually find a globally optimal solution, this proof is not applicable in any

practical scenario and we instead use SA as what it is: a metaheuristic that will hopefully give us good

approximate solutions in reasonable time.
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Listing 3.22 An excerpt of the implementation of the Simulated Annealing algorithm. (src)

1 public class SimulatedAnnealing<X, Y>
2 extends Metaheuristic1<X, Y> {
3 public TemperatureSchedule schedule;
4

5 public void solve(IBlackBoxProcess<X, Y> process) {
6 // init local variables xNew, xCur, random

7 // create starting point: a random point in the search space

8 this.nullary.apply(xCur, random); // put random point in xCur

9 double fCur = process.evaluate(xCur); // map & evaluate

10 long tau = 1L; // initialize step counter to 1

11

12 do { // repeat until budget exhausted

13 // create a slightly modified copy of xCur and store in xNew

14 this.unary.apply(xCur, xNew, random);
15 ++tau; // increase step counter

16 // map xNew from X to Y and evaluate candidate solution

17 double fNew = process.evaluate(xNew);
18 if ((fNew <= fCur) || // accept if better solution OR

19 (random.nextDouble() < // probability is eˆ(-dE/T)

20 Math.exp((fCur - fNew) / // -dE == -(fNew-fCur)

21 this.schedule.temperature(tau)))) {
22 // accepted: remember objective value and copy xNew to xCur

23 fCur = fNew;
24 process.getSearchSpace().copy(xNew, xCur);
25 } // otherwise fNew > fCur and not accepted

26 } while (!process.shouldTerminate()); // until time is up

27 } // process will have remembered the best candidate solution

28 }

3.5.4 The Right Setup

Our algorithm has four parameters:

• the start temperature Ts,

• the parameter ǫ,

• the type of temperature schedule to use (here, logarithmic or exponential), and

• the unary search operator (in our case, we could use 1swap or nswap).

Wewill only consider1swap as choice for the unary operator and focus on the exponential temperature

schedule. We have twomore parameters to set: Ts and ǫ and thus refer to the settings of this algorithm

with the naming scheme sa_exp_Ts_epsilon_1swap.

At first glance, it seems entirely unclear howwhat to do with these parameters. However, wemay get

some ideas about their rough ranges if we consider Simulated Annealing as an improved hill climber.
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Then, we can get some leads from our prior experiments with that algorithm.

Table 3.13: Themedian of total performed function evaluations and the standard deviation sd of the

final result qualities of the hill climber hc_1swap.

I med(total FEs) sd

abz7 35’648’639 28

la24 70’952’285 56

swv15 21’662’286 137

yn4 27’090’511 48

median 31’369’575 52

In Table 3.13, we print the standard deviation sd of the final result qualities that our hc_1swap

algorithm achieved on our four JSSP instances. This tells us something about how far the different

local optima at which hc_1swap can get stuck are apart in terms of objective value. The value of sd

ranges from 28 on abz7 to 137 on swv15. The median standard deviation over all four instances is

about 50. Thus, accepting a solution which is worse by 50 units of makespan, i.e., with ∆E ≈ 50,

should be possible at the beginning of the optimization process.

How likely should accepting such a value be? Unfortunately, we are again stuck at making an arbitrary

choice – but at least we can make a choice from within a well-defined region: Probabilities must

be in [0, 1] and can be understood relatively intuitively, whereas it was completely unclear in what

range reasonable “temperatures” would be located. Let us choose that the probability P50 to accept a

candidate solution that is 50 makespan units worse than the current one, i.e., has∆E = 50, should

be P50 = 0.1 at the beginning of the search. In other words, there should be a 10% chance to accept

such a solution at τ = 1. At τ = 1, T (τ) = Ts for both temperature schedules. Of course, at τ = 1we

do not really use the probability formula to decide whether or not to accept a solution, but we can

expect that the temperature at τ = 2 would still be very similar to Ts and we are using rough and

rounded approximations anyway, so let’s not make our life unnecessarily complicated here. We can

now solve Equation (3.2) for Ts:
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P50 = e
− ∆E

T (τ)

0.1 = e− 50
Ts

ln 0.1 = − 50
Ts

Ts = − 50
ln 0.1

Ts ≈ 21.7

A starting temperature Ts of approximately Ts = 20 seems to be suitable in our scenario. Of course,

we just got there using very simplified and coarse estimates. If we would have chosen P50 = 0.5, we

would have gotten Ts ≈ 70 and if we additionally went with the maximum standard deviation 137

instead of themedian one, we would obtain Ts ≈ 200. But at least we have a first understanding of the

range where we will probably find good values for Ts.

But what about the ǫ parameters? In order to get an idea for how to set it, we first need to know a

proper end temperature Te, i.e., the temperature which should be reached by the end of the run. It

cannot be 0, because while both temperature schedules do approach zero for τ → ∞, they will not

actually become 0 for any finite number τ of iterations.

Soweare stuckwith the task to pick a suitably small value forTe. Maybehere our previous findings from

back when we tried to restart the hill climber can come in handy. In Section 3.3.3.2, we learned that it

makes sense to restart the hill climber a�erL = 16′384 unsuccessful search steps. Somaybe a terminal

state for our Simulated Annealing could be a scenariowhere the probabilityPe of accepting a candidate

solution which is∆E = 1makespan unit worse than the current one should be Pe = 1/16′384? This

would mean that the chance to accept a candidate solution being marginally worse than the current

one would be about as large as making a complete restart in hcr_16384_1swap. Of course, this is

again an almost arbitrary choice, but it at least looks like a reasonable terminal state for our Simulated

Annealing algorithm. We can now solve Equation (3.2) again to get the end temperature Te:

Pe = e
− ∆E

T (τ)

1/16′384 = e− 1
Te

ln (1/16′384) = − 1
Te

Te = − 1
ln (1/16′384)

Te ≈ 0.103

We choose a final temperature of Te = 0.1. But when should it be reached? In Table 3.13, we print the

total number of function evaluations (FEs) that our hc_1swap algorithm performed on the different

problem instances. Wefind that it generatedandevaluatedbetween22milliononswv15and71million
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on la24 candidate solutions.2 The overall median is at about 30 million FEs within the 3 minute

computational budget. From this, we can conclude that a�er about 30 million FEs, we should reach

approximately Te = 0.1. We can solve Equation (3.3) for ǫ to configure the exponential schedule:

T (τ) = Ts ∗ (1 − ǫ)τ−1

T (30′000′000) = 20 ∗ (1 − ǫ)30′000′000−1

0.1 = 20 ∗ (1 − ǫ)29′999′999

0.1/20 = (1 − ǫ)29′999′999

0.0051/29′999′999 = 1 − ǫ

ǫ = 1 − 0.0051/29′999′999

ǫ ≈ 1.776 ∗ 10−7

We can conclude, for an exponential temperature schedule, settings for ǫ somewhat between 1! ·10−7

and 2·10−7 seem to be a reasonable choice if the start temperature Ts is set to 20.

In Figure 3.26, we illustrate the behavior of the exponential temperature schedule for starting tempera-

ture Ts = 20 and the six values 5·10−8, 1·10−7, 1.5·10−7, 2·10−7, 4·10−7, and 8·10−7. The sub-figure

on top shows how the temperature declines over the performed objective value evaluations. Starting

at Ts = 20 it reaches close to zero for ǫ ≥ 1.5·10−7 a�er about τ = 30′000′000 FEs. For the smaller ǫ

values, the temperature would need longer to decline, while for larger values, it declines quicklier. The

next three sub-figures show how the probability to accept candidate solutions which are worse by∆E

units of the objective value decreases with τ for∆E ∈ {1, 3, 10}. This decrease is, of course, the direct

result of the temperature decrease. Solutions with larger∆E clearly have a lower probability of being

accepted. The larger ǫ, the earlier and faster does the acceptance probability decrease.

2Notice that back in Table 3.3, we printed the median number FEs until the best solution was discovered, not until the
algorithm has terminated.
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Figure 3.26: The temperature progress of six exponential temperature schedules (top) plus their

probabilities to accept solutions with objective values worse by 1, 3, or 10 than the current solution.
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Figure 3.27: Themedian result quality of the sa_exp_20_epsilon_1swap algorithm, divided by

the lower bound lb(f)⋆ from Table 2.2 over different values of the parameter ǫ. The best values ofL on

each instance are marked with bold symbols.

In Figure 3.27, we illustrate the normalizedmedian result quality that can be obtained by Simulated

Annealing with starting temperature Ts = 20, exponential schedule, and 1swap operator for different

values of the parameter ǫ, including those from Figure 3.26. Interestingly, it turns out that ǫ = 2 is the

best choice for the instances abz7, swv15, and yn4, which is quite close to what we could expect

from our calculation. Smaller values will make the temperature decrease more slowly and lead to

too much exploration and too little exploitation, as we already know from Figure 3.26. They work

better on instance la24, which is no surprise: From Table 3.13, we know that on this instance, we

can conduct more than twice as many objective value evaluations than on the others within the three

minute budget: On la24, we can do enough steps to let the temperature decrease sufficiently even

for smaller ǫ.

3.5.5 Results on the JSSP

Wecannowevaluate theperformanceof our SimulatedAnnealing approachon the JSSP.We choose the

setup with exponential temperature schedule, the 1swap operator, the starting temperature Ts = 20,

and the parameter ǫ = 2·10−7. For simplicity, we refer to it as sa_exp_20_2_1swap.
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Table 3.14: The results of the Simulated Annealing setup sa_exp_20_2_1swap in comparison with

the best EA, eac_4_5%_nswap, and the hill climber with restarts hcr_16384_1swap. The

columns present the problem instance, lower bound, the algorithm, the best, mean, andmedian

result quality, the standard deviation sd of the result quality, as well as the median timemed(t) and

FEsmed(FEs) until the best solution of a run was discovered. The better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hcr_16384_1swap 714 732 733 6 91s 18’423’530

eac_4_5%_nswap 672 690 690 9 68s 12’474’571

sa_exp_20_2_1swap 663 673 673 5 112s 21’803’600

la24 935 hcr_16384_1swap 953 976 976 7 80s 34’437’999

eac_4_5%_nswap 935 963 961 16 30s 9’175’579

sa_exp_20_2_1swap 938 949 946 8 33s 12’358’941

swv15 2885 hcr_16384_1swap 3752 3859 3861 42 92s 11’756’497

eac_4_5%_nswap 3102 3220 3224 65 168s 18’245’534

sa_exp_20_2_1swap 2936 2994 2994 28 157s 20’045’507

yn4 929 hcr_16384_1swap 1081 1115 1115 11 91s 14’804’358

eac_4_5%_nswap 1000 1038 1037 18 118s 15’382’072

sa_exp_20_2_1swap 973 985 985 5 130s 20’407’559

In Table 3.14, we compare results of the Simulated Annealing setup sa_exp_20_2_1swap to those

of our best EA,eac_4_5%_nswap, and the hill climberwith restartshcr_16384_1swap. Simulated

Annealing is better than these three algorithms in terms of the best, mean, andmedian result on almost

all instances. Only on la24, eac_4_5%_nswap can win in terms of the best discovered solution,

which already was the optimum. Our SA setup also is more reliable than the other algorithms, its

standard deviation and only on la24, the standard deviation sd of its final result quality is not the

lowest.

We know that on la24, ǫ = 2·10−7 is not the best choice for SA and smaller values would perform

better there. Interestingly, in the experiment, the settings ǫ = 4·10−7 and ǫ = 8·10−7 (not listed in the

table) also each discovered a globally optimal solution on that instance. In Figure 3.29, we illustrate

the one found by sa_exp_20_8_1swap.
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Figure 3.28: The Gantt charts of the median solutions obtained by the sa_exp_20_2_1swap

algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom

of each diagram denote the instance name andmakespan.
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Figure 3.29: The Gantt chart of the best solution obtained by the sa_exp_20_8_1swap algorithm

on la24, which happens to be optimal. The x-axes are the time units, the y-axes the machines, and

the labels at the center-bottom of the diagram denotes the makespan.
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Figure 3.30: Themedian of the progress of the algorithms sa_exp_20_2_1swap,

ea_8192_5%_nswap, eac_4_5%_nswap, and hcr_16384_1swap over time, i.e., the current

best solution found by each of the 101 runs at each point of time (over a logarithmically scaled time

axis). The color of the areas is more intense if more runs fall in a given area.
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If we compare our sa_exp_20_2_1swapwith the related work, we find its best andmean solution

quality on abz7 surpass those of the original Fast Simulated Annealing algorithm and its improved

version HFSAQ from [4]. Its mean and best results of sa_exp_20_2_1swap onla24 outperform the

algorithms proposed in [2,10,118,122,157,158]. On yn4, it outperforms all four AntGenSA algorithms

(complex hybrids of three algorithms including SA and EAs) from [107] in mean and best result quality.

Since this is an educational book, we are not really aiming for solving the JSSP outstandingly well and

only use a very small set of instances. Our algorithms are not very complicated, but these comparisons

indicate that they are at least somewhat working.

We plot the Gantt charts of the median result of sa_exp_20_2_1swap in Figure 3.28. Especially on

instance swv15, changes are visible in comparison to the results produced by eac_4_5%_nswap

and illustrated in Figure 3.21.

In Figure 3.30, we plot the progress of sa_exp_20_2_1swap over time in comparison to

ea_8192_5%_nswap, eac_4_5%_nswap, and hcr_16384_1swap. Especially for swv15 and

yn4, we find that sa_exp_20_2_1swap converges towards end results that are very visibly better

than the other algorithms.

We also notice that themedian solution quality obtained bysa_exp_20_2_1swap looks very similar

to the shape of the temperature curve in Figure 3.26. Under the exponential schedule that we use,

both the temperature and acceptance probability remain high for some time until they suddenly drop.

Interestingly, the objective value of the best-so-far solution in SA seems to follow that pattern. Its , it

first declines slowly, then there is a sudden transition wheremany improvements are made, before the

curve finally becomes flat. This relationship between the temperature and the obtained result quality

shows us that configuring the SA algorithm correctly is very important. Had we chosen ǫ too small or

the start temperature Ts too high, then the quick decline could have shi�ed beyond our three minute

budget, i.e., would not take place. Then the results of Simulated Annealing would have been worse

than those of the other three algorithms. This also explains the worse results for smaller ǫ shown in

Figure 3.27.

The behavior of SA is different from the hill climber and small-population EA, which do not exhibit such

a transition region. The EA ea_8192_5%_nswapwith the larger population also shows a transition

from slow to faster decline, but there it takes longer and is much less steep.

3.5.6 Summary

Simulated Annealing is an optimization algorithm which tunes from exploration to exploitation during

the optimization process. Its structure is similar to the hill climber, but different from that simple local

search, it also sometimes moves to solutions which are worse than the one it currently holds. While it

will always accept better solutions, the probability to move towards a worse solution depends on how
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much worse that solution is (via∆E) and on the number of search steps already performed. This later

relationship is implemented by a so-called “temperature schedule”: At any step τ , the algorithm has

a current temperature T (τ). The acceptance probability of a worse solution is computed based on

how bad its objective value is in comparison and based on T (τ). Two temperature schedules are most

common: letting T (τ) decline either logarithmically or exponentially. Both have two parameters, the

start temperature Ts and ǫ.

In our experiments, we only considered the exponential schedule. We then faced the problem of how

to set the values of these obscure parameters Ts and ǫ. We did this by using the experience we already

gained from our experiments with the simple hill climber: We already know something about how

different good solutions can be from each other. This provides us with the knowledge of how “deep” a

local optimummay be, i.e., what kind of values we may expect for∆E. We also know roughly how

many algorithm steps we can perform in our computational budget, i.e., have a rough idea of how

large τ can become. Finally, we also know roughly the numberL of function evaluations a�er which it

made sense to restart the hill climber. By setting the probability to accept a solution with∆E = 1 to

1/L, we got a rough idea of temperature that may be good at the end of the runs. The word “rough”

appeared quite o�en in the above text. It is simply not really possible to “compute” the perfect values

for Ts and ǫ (and we could not compute the right values for µ, λ, nor cr for the Evolutionary Algorithm

either). But the roughly computed values gave us a good idea of suitable settings andwe could confirm

them in a small experiments. Using them, our Simulated Annealing algorithm performed quite well.

The very crude calculations in Section 3.5.4 may serve as rule-of-thumb in other scenarios, too.

3.6 Hill Climbing Revisited

Until now, we have entirely relied on randomness to produce new points in the search space. Our

nullary, unary, and binary operators are all randomized. In case of the unary and binary operator, they

of course depend on the input points in the search space fed to the operators, but still, the results

are unpredictable and random. This is, in general, not a bad property. In the absence of knowledge

about what is best, doing an arbitrary thing might have a better expected outcome than doing a fixed,

pre-determined thing.

However, it also has some drawbacks. For example, there is no guarantee to not test the same 1swap

move several times in the hc_1swap algorithm. Also, in our hill climber, we cannot know whether or

when we have tested the complete neighborhood around the current best point x in the search space.

Thus, we also never know whether x is a (local) optimum or not. We instead need to guess this and in

Section 3.3.3 we therefore design an algorithm that restarts if it did not encounter an improvement for

a certain numberL of steps. Thus, the restart might be too early, as there may still be undiscovered
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solutions in the neighborhood of x. It also might happen too late: Wemay have already investigated

the complete neighborhood several times.

Let us take one step back, to the simple hill climber and the original unary search operator 1swap for

the JSSP from Section 3.3.1. This operator tries to perform a single swap, i.e., exchange the order of

two job IDs in a point from the search space. We already discussed in Section 3.3.4 that the size of this

neighborhood is 0.5 ∗ m2 ∗ n ∗ (n − 1) for each point in the search space.

3.6.1 Idea: Enumerating Neighborhoods

Instead of randomly sampling elements from this neighborhood, we could enumerate over them

completely. As soon as we encounter an improvement, we can stop the enumeration and accept the

newly discovered better point. If we have finished enumerating all possible 1swap neighbors and

none of them corresponds to a candidate solution with better objective value (e.g., a Gantt chart with

shorter makespan), we know that we have arrived in a local optimum. This way, we do no longer need

to guess if we have converged or not, we can know it directly. Also, as detailed in Section 6.1.2, we

might even find the improving moves faster in average, because we would never try the samemove

twice when investigating the neighborhood of the current best solution.

Implementing this concept is a little bit more complicated than creating the simple unary operator

that just returns one single new point in the search space as a result. Instead, such an enumerating

unary operator for a black-box metaheuristic may create any number of points. Moreover, if one of the

new points already maps to a candidate solutions which can improve upon the current best solution,

thenmaybe we wish to terminate the enumeration process at that point.

Such behavior can be realized by following a visitor design pattern. An enumerating unary operator

will receive a point x in the search space and a call-back function from the optimization process. Every

time it creates a neighbor x′ of x, it will invoke the call-back function and pass x′ to it. If the function

returns true, then the enumeration will be terminated. If false is returned, it will continue if there

are more points in the neighborhood.

The call-back function provided by the optimization process could internally apply the representation

mapping γ to x′ and compute the objective value f(y′) of the resulting candidate solution y′ = γ(x′).

If that solution is better than what we get for x, the call-back function could store it and return true.

This would stop the enumeration process and would return the control back to themain loop of the

optimization algorithm. Otherwise, the call-back function would return false and be fed with the

next neighbor, until the neighborhood was exhaustively enumerated.

This idea can be implemented by extending our original interface IUnarySearchOperator for

unary search operations given in Listing 2.9.
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Listing 3.23 A the generic interface for unary search operators, now able to enumerate neighborhoods.
(src)

1 public interface IUnarySearchOperator<X>
2 extends ISetupPrintable {
3 void apply(X x, X dest, Random random);
4 default boolean enumerate(Random random, X x,
5 X dest, Predicate<X> visitor) {
6 throw new UnsupportedOperationException("The operator " +
7 this.getClass().getName() +
8 " does not support exhaustive enumeration of neighborhoods.");
9 }

10 }

The extension, presented in Listing 3.23, is a single new function, enumerate, which should realize

the neighborhood enumeration. This function receives an existing point xin the search space as

input, as well as a destination data structure dest where, iteratively, the neighboring points of x

should be stored. Additionally, a call-back function visitor is provided as implementation of the

Java 8-interface Predicate. The test function of this interface will, upon each call, receive the next

neighbor of x (stored in dest). It returns true when the enumeration should be stopped (maybe

because a better solutionwas discovered) andfalse to continue. enumerate itself will returntrue

if and only if test ever returned true and false otherwise.

Of course, we cannot implement a neighborhood enumeration for all possible unary operators in a

reasonable way: In the case of the nswap, operator, for instance, all other points in the search space

could potentially be reached from the current one (just with different probabilities). Enumerating

this neighborhood would include the complete search space and would take way too long. Hence,

the default implementation of the new method should just create an error. It should only be

overwrittenbyoperators that spanneighborhoodswhichare sufficiently small for efficient enumeration.

A reasonable limit is neighborhood whose size grows quadratically with the problem scale or at most

with the third power of the problem scale.

3.6.2 Ingredient: Neighborhood Enumerating 1swapOperators for the JSSP

Let us now consider how such an exhaustive enumeration of the neighborhood spanned by the 1swap

operator can be implemented.
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3.6.2.1 Enumerating in Deterministic Order

The easiest idea is to just enumerate all index pairs (i, j). If the jobs at two indices i and j are different,

we swap them, invoke the call-back function, then swap themback to theoriginal order. Since swapping

jobs at indices i = j makes no sense and swapping the jobs at indices (i, j) is the same as swapping at

indices (j, i), we only need to investigatem ∗ n ∗ (m ∗ n − 1)/2 pairs.

1. Make a copy x′ of the input point x from the search space.

2. For index i from 1 tom ∗ n − 1 do:

a. Store the job at index i in x′ in variable jobi.

b. For index j from 0 to i − 1 do:

i. Store the job at index j in x′ in variable jobj .

ii. If jobi 6= jobj then: A. Store jobi at index j in x′. B. Store jobj at index i in x′. C. Pass

x′ to a call-back function of the optimization process. If the function indicates that

it wishes to terminate the enumeration, then quit. Otherwise continue with the next

step. D. Store jobi at index i in x′. E. Store jobj at index j in x′.

This simple algorithm is implemented in Listing 3.24, which only shows the new function that was

added to our class JSSPUnaryOperator1Swap that we had already back in Section 3.3.1.

3.6.2.2 Random Enumeration Order

Our enumerating 1swap operator has one drawback: The order in which it processes the indices is

always the same. We always check swapping jobs at the lower indices first. Swapmoves involving two

jobs near the end of the arrays x are only checked if all other moves closer to the beginning have been

checked. This introduces a bias in the way we search.

We again remember the concept mentioned right at the beginning of this chapter: If you do not know

the best choice out of several options, pick a random one. While we can generate all neighbors, the

order in which we generate themmay be random! In other words, we now design an operator 1swapU

which enumerates the same neighborhood as 1swap, but does so in a random order.

0. Let S be the list of all index pairs (i, j)with 0 < i < m ∗ n and 0 ≤ j < i. It has the length |S| =

(m ∗ n)(m ∗ n − 1)/2.

1. Make a copy x′ of the input point x from the search space.

2. For index u from 0 to |S| − 1 do:

a. Choose an index v from u . . . |S| − 1 uniform at random.

b. Swap the index pairs at indices u and v in S.

c. Pick index pair (i, j) = S[u].
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Listing 3.24 An excerpt of the 1swap operator for the JSSP, namely the implementation of the enu-
merate function from the interface IUnarySearchOpertor (Listing 3.23). (src)

1 public boolean enumerate(Random random, int[] x,
2 int[] dest, Predicate<int[]> visitor) {
3 int i = x.length; // get the length

4 System.arraycopy(x, 0, dest, 0, i); // copy x to dest

5 for (; (--i) > 0;) { // iterate over all indices 1..(n-1)

6 int jobI = dest[i]; // remember job id at index i

7 for (int j = i; (--j) >= 0;) { // iterate over 0..(i-1)

8 int jobJ = dest[j]; // remember job at index j

9 if (jobI != jobJ) { // both jobs are different

10 dest[i] = jobJ; // then we swap the values

11 dest[j] = jobI; // and will then call the visitor

12 if (visitor.test(dest)) {
13 return true; // visitor says: stop -> return true

14 } // visitor did not say stop, so we need to

15 dest[i] = jobI; // revert the change

16 dest[j] = jobJ; // and continue

17 } // end of creation of different neighbor

18 } // end of iteration via index j

19 } // end of iteration via index i

20 return false; // we have enumerated the complete neighborhood

21 }

d. Store the job at index i in x′ in variable jobi.

e. Store the job at index j in x′ in variable jobj .

f. If jobi 6= jobj then:

i. Store jobi at index j in x′.

ii. Store jobj at index i in x′.

iii. Pass x′ to a call-back function of the optimization process. If the function indicates

that it wishes to terminate the enumeration, then quit. Otherwise continue with the

next step.

iv. Store jobi at index i in x′.

v. Store jobj at index j in x′.

If this routine completes, then the lines 2a and 2b together will have performed a Fisher-Yates shuf-

fle [76,129]. By always randomly choosing an index pair (i, j) from the not-yet-chosen ones, it will

enumerate the complete 1swap neighborhood in a uniformly random fashion. This might incur some

small performance loss due to not being very cache-friendly. However, we will see that it can ac-

tually increase the search efficiency. We will refer to this algorithm as 1swapU and implement it

in Listing 3.25.
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Listing 3.25 An excerpt of the 1swapU operator for the JSSP, namely the random-order implementa-
tion of the enumerate function from the interface IUnarySearchOpertor (Listing 3.23). (src)

1 public boolean enumerate(Random random, int[] x,
2 int[] dest, Predicate<int[]> visitor) {
3 // indexes be the flattened list of unique index pairs and

4 // pairCount their number.

5 System.arraycopy(x, 0, dest, 0, dest.length); // copy x

6

7 // We move along the index-pair array and shuffle the indices on

8 // the way with an iterative version of the Fisher-Yates shuffle.

9 for (int i = 0, start = -1; i < pairCount; i++) {
10 // Get "a" and "b": the next, randomly chosen index pair.

11 int swapWith = (i + random.nextInt(pairCount - i)) << 1;
12 int a = indexes[swapWith];
13 indexes[swapWith] = indexes[++start];
14 indexes[start] = a;
15 int b = indexes[++swapWith];
16 indexes[swapWith] = indexes[++start];
17 indexes[start] = b;
18

19 int jobI = dest[a];// the job at first index

20 int jobJ = dest[b];// the job at second index

21

22 if (jobI != jobJ) {
23 dest[a] = jobJ; // then we swap the values

24 dest[b] = jobI; // and will then call the visitor

25 if (visitor.test(dest)) {
26 return true; // visitor says: stop -> return true

27 } // visitor did not say stop, so we need to

28 dest[a] = jobI; // revert the change

29 dest[b] = jobJ; // and continue

30 }
31 }
32 return false; // we have enumerated the complete neighborhood

33 }
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3.6.3 The Algorithm (with Restarts)

We can now design a new variant of the hill climber which enumerates the neighborhood of the current

best point zb from the search space spanned by a unary operator. As soon as it discovers an improve-

ment with respect to the objective function, the new, better point replaces zb. The neighborhood

enumeration then starts again from there, until the termination criterion is met. Of course, it could also

happen that the enumeration of the neighborhood is completed without discovering a better solution.

In this case, we know that zb is a local optimum. Then, we can simply restart at a new, random point.

The general pattern of this algorithm is given below:

1. Set the best-so-far objective value zb to+∞ and the best-so-far candidate solution yb to NULL.

2. Create a random point x in the search spaceX using the nullary search operator.

3. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

4. Compute the objective value by invoking the objective function z = f(y).

5. If z < zb, then store z in zb and store y in yb.

6. Repeat until the termination criterion is met:

a. For each point x′ ∈ X neighboring to x according to the unary search operator do:

i. Map thepointx′ toacandidate solutiony′ byapplying the representationmappingy′ =

γ(x′).

ii. Compute the objective value z′ by invoking the objective function z′ = f(y′).

iii. If z′ < z, then A. Store x′ in x and store z′ in z. B. If z′ < zb, then store y′ in yb and

store z′ in zb.

C. Stop the enumeration and go back to step 6a.

b. If we arrive here, the neighborhood of x did not contain any better solution. Hence, we

perform a restart by going back to step 2.

7. Return best encountered objective value zb and the best encountered solution solspelb to the

user.

If we want to implement this algorithm for black-box optimization, we face the situation that the

algorithmdoes not know the nature of the search space nor the neighborhood spanned by the operator.

Therefore, we rely on the design introduced in Listing 3.23, which allows us to realize this implicitly

unknown looping behavior (point a above) in form of the visiting pattern. The idea is that, while our

hill climber does not know how to enumerate the neighborhood, the unary operator does, since it

defines the neighborhood. The resulting code is given in Listing 3.26.

Different from our original hill climber with restarts introduced in Section 3.3.3, this new algorithm

does not need to count steps to knowwhen to restart. It therefore also does not need a parameterL

determining the number of non-improving FEs a�er which a restart should be performed. Its imple-

mentation in Listing 3.26 is therefore also shorter and simpler than the implementation of the original
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algorithm variant in Listing 3.11. It should be noted that the new hill climber can only be applied in

scenarios where we actually can enumerate the neighborhoods of the current best solutions efficiently.

In other words, we pay for a potential gain of search efficiency by a reduction of the types of problems

we can process.
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Listing 3.26 An excerpt of the implementation of the Hill Climbing algorithmwith restarts based on
neighborhood enumeration. (src)

1 public class HillClimber2WithRestarts<X, Y>
2 extends Metaheuristic1<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // initialization of local variables xCur, xBest, random omitted

5 // for brevity

6 while (!process.shouldTerminate()) { // main loop

7 // create starting point: a random point in the search space

8 // put random point in xBest

9 this.nullary.apply(xBest, random);
10 fBest[0] = process.evaluate(xBest); // evaluate

11

12 do { // repeat until budget exhausted or no improving move

13 // enumerate all neighboring solutions of xBest and receive them

14 // one-by-one in parameter x (for which xCur is used)

15 improved = this.unary.enumerate(random, xBest, xCur,
16 x -> {
17 // map x from X to Y and evaluate candidate solution

18 double fCur = process.evaluate(x);
19 if (fCur < fBest[0]) { // found better solution

20 // remember best objective value and copy x to xBest

21 fBest[0] = fCur;
22 process.getSearchSpace().copy(x, xBest);
23 return true; // quit enumerating neighborhood

24 }
25 // no improvement: continue enumeration unless time is up

26 return process.shouldTerminate();
27 });
28 // repeat until time is up or no further improvement possible

29 if (process.shouldTerminate()) {
30 return; // ok, we should exit

31 } // otherwise: continue inner loop as long as we

32 } while (improved); // can find improvements

33 } // outer loop: if we get here, we need to restart

34 } // process will have remembered the best candidate solution

35 }
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3.6.4 Results on the JSSP

Table 3.15: The results of the new hill climbers hc2r_1swap and hc2r_1swapU in comparison

with hcr_16384_1swap. The columns present the problem instance, lower bound, the algorithm,

the best, mean, andmedian result quality, the standard deviation sd of the result quality, as well as

the median timemed(t) and FEsmed(FEs) until the best solution of a run was discovered. The better

values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hcr_16384_1swap 714 732 733 6 91s 18’423’530

hc2r_1swap 705 736 737 9 95s 17’631’217

hc2r_1swapU 708 731 731 6 79s 16’413’522

la24 935 hcr_16384_1swap 953 976 976 7 80s 34’437’999

hc2r_1swap 959 978 978 8 93s 41’131’198

hc2r_1swapU 952 973 974 7 78s 32’552’884

swv15 2885 hcr_16384_1swap 3752 3859 3861 42 92s 11’756’497

hc2r_1swap 3628 3810 3807 74 99s 13’949’301

hc2r_1swapU 3731 3829 3831 42 89s 11’380’041

yn4 929 hcr_16384_1swap 1081 1115 1115 11 91s 14’804’358

hc2r_1swap 1093 1131 1132 19 92s 12’816’913

hc2r_1swapU 1076 1114 1116 13 88s 13’349’708

In Table 3.15, we list the results of new neighborhood-enumerating hill climbers with restarts (prefix

hc2r). We compare the version using the deterministic neighborhood enumeration hc2r_1swap

to hc2r_1swapUwhich enumerates the neighborhood in a random order. We further also list the

results of hcr_16384_1swap, the stochastic hill climber which restarts a�er 16’384 unsuccessful

steps. This setup was found to perform well in Section 3.3.3.2.

We find that hc2r_1swapU tends to have the edge over hc2r_1swap, except for instance swv15,

where it does perform worse. Also, hc2r_1swapU and hcr_16384_1swap deliver very similar

results, which also means that it performs worse than our Evolutionary Algorithms or Simulated

Annealing.

In Figure 3.31, we plot the progress of the hc2r_1swap, hc2r_1swapU, and hcr_16384_1swap
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algorithms over time. It is very surprising to see that the median of best-so-far solution qualities of

hc2r_1swapU and hcr_16384_1swap are almost identical during the whole three minute com-

putational budget and on all four JSSP instances. Both hc2r_1swapU and hcr_16384_1swap

perform random job swaps in each step. hc2r_1swapU avoids trying the samemove twice and will

restart when it has arrived in a local optimum. hcr_16384_1swapmay try the samemovemultiple

times and performs a restart a�er L = 16′384 unsuccessfuly steps. The fact that both algorithms

perform so very similar probablymeans that the restart setting ofL = 16′384 forhcr_16384_1swap

is probably a rather good choice.

It is also clearly visible that hc2r_1swap is initially slower than the other two algorithms, although

its end result is still similar. This shows that enumerating the neighborhood of a solution in a random

fashion is better than doing it always in the same deterministic way. This supports the idea of doing

things in a randomized way if no clear advantage of a deterministic approach is visible.

The question arises why we would bother with the hc2r-type hill climbers if we seemingly can get the

exact same behavior from a stochastic hill climber with restarts. One answer is the fact that we found a

method to actually knowwhether a solution is an optimum instead of having to guess. Another answer

is that we need one parameter less. We retain the black-box ability of the algorithm but have zero

parameters (except the choice of the unary search operator), as opposed to the EA and SA algorithms

which each have three (µ, λ, cr and temperature schedule, Ts, ǫ, respectively).
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Figure 3.31: Themedian of the progress of the algorithms hc2r_1swap, hc2r_1swapU, and

hcr_16384_1swap over time, i.e., the current best solution found by each of the 101 runs at each

point of time (over a logarithmically scaled time axis). The color of the areas is more intense if more

runs fall in a given area.
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3.7 Memetic Algorithms: Hybrids of Global and Local Search

Let remember two of the algorithms we have already seen:

1. The hill climbers are local search methods, which can refine and improve one solution quickly

but may get stuck at local optima.

2. Evolutionary Algorithms are global optimizationmethods, which try to preserve a diverse set

of solutions and are less likely to end up in local optima, but pay for it by slower optimization

speed.

It is a natural idea to combine both types of algorithms, to obtain a hybrid algorithmwhich unites the

best from both worlds. Such algorithms are today o�en calledMemetic Algorithms (MAs) [103,148,155]

(sometimes also Lamarkian Evolution [220]).

3.7.1 Idea: Combining Local Search and Global Search

The idea is as follows: In an Evolutionary Algorithm, the population guards against premature conver-

gence to a local optimum. In each generation of the EA, new points in the search space are derived from

the ones that have been selected in the previous step. From the perspective of a single point in the

population, each generation of the EA is somewhat similar to one iteration of a hill climber. However,

there are µ points in the surviving population, not just one. As a result, the overall progress made

towards a good solution is much slower compared to the hill climber.

Also, we introduced a binary search operator which combines traits from two points in the population

to form a new, hopefully better solution. The idea is that the points that have survived selection should

be good, hence they should include good components, and we hope to combine these. However,

during the early stages of the search, the population contains first random and then slightly refined

points (see above). They will not contain many good components yet.

Memetic Algorithms try to mitigate both issues with one simple idea: Let each new point, before it

enters the population, become the starting point of a local search. The result of this local search then

enters the population instead.

3.7.2 Algorithm: EA Hybridized with Neighborhood-Enumerating Hill Climber

We could choose any type of local search for this purpose, but here we will use the iterative neighbor-

hood enumeration as done by our revisited hill climber in Section 3.6.3. As a result, the first generation

of the MA behaves exactly the same as our neighborhood-iterating hill climber with restarts (until it

has done µ + λ restarts). The inputs of the binary search operator will then not just be selected points,

they will be local optima (with respect to the neighborhood spanned by the unary operator).
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In the reproduction phase, an Evolutionary Algorithm applies either a unary or a binary operator. In an

MA, it obviously makes no sense to use the same unary operator as in the local search here. We could

therefore either use an unary operator that alwaysmakes differentmoves or only use the binary search

operator. Here, we will follow the latter choice, simply to spare us the necessity to define yet another

operator here (nswapwould not be suitable, as it most o�en does single swaps like 1swap.)

The basic (µ + λ)Memetic Algorithm is given below and implemented in Listing 3.27.

1. I ∈ X × R be a data structure that can store one point x in the search space and one objective

value z.

2. Allocate an array P of length µ + λ of instances of I .

3. For index i ranging from 0 to µ + λ − 1 do

a. Create a random point from the search space using the nullary search operator and store it

in Pi.x.

4. Repeat until the termination criterion is met:

b. For index i ranging from 0 to µ + λ − 1 do

i. If Pi is already a fully-evaluated solution and a local optimum, continue with the next

iteration value of the loop 4b.

ii. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate

solution y. ii Compute the objective objective value of y and store it at index i as well,

i.e., Pi.z = f(y).

iii. Local Search: For each point x′ in the search space neighboring to Pi.x according

to the unary search operator do: A. Map the point x′ to a candidate solution y′ by

applying the representation mapping y′ = γ(x′). B. Compute the objective value z′ by

invoking the objective function z′ = f(y′). C. If the termination criterion has been

met, jump directly to step 5. D. If z′ < zb, then store x′ in Pi.x, store z′ in Pi.z, stop

the enumeration, and go back to step 4b.iii.

c. Sort the array P in ascending order according to the objective values, i.e., such that the

records r with better associated objective value r.z are located at smaller indices.

d. Shuffle the first µ elements of P randomly.

e. Set the first source index p1 = −1.

f. For index i ranging from µ to µ + λ − 1 do

iv. Set the first source index p1 to p1 = (p1 + 1) mod µ.

v. Randomly choose another index p2 from 0 . . . (µ − 1) such that p2 6= p.
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vi. Apply binary search operator to the points stored at index p1 and p2 and store result

at index i, i.e., set Pi.x = searchOp2(Pp1.x, Pp2.x).

5. Return the candidate solution corresponding to the best record in P to the user.

The condition in step 4b.i allows that in the first iteration, all members of the population are refined

by local search, whereas in the latter steps, only the λ new offsprings are refined. This makes sense

because the µ parents have already been subject to local search and are local optima. Trying to refine

them again would just lead to one useless enumeration of the entire neighborhood during which no

improvement could be found.
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Listing 3.27 An excerpt of the implementation of the Memetic Algorithm algorithm. (src)

1 public class MA<X, Y> extends Metaheuristic2<X, Y> {
2 public void solve(IBlackBoxProcess<X, Y> process) {
3 // the initialization of local variables is omitted for brevity

4 // first generation: fill population with random solutions

5 for (int i = P.length; (--i) >= 0;) {
6 // set P[i] = random solution (code omitted)

7 }
8

9 while (!process.shouldTerminate()) { // main loop

10 for (LSRecord<X> ind : P) {
11 // If ind is not known to be local optimum, refine it with local

12 // search a la HillClimber2 for a given number of maximum steps

13 // (code omitted for brevity).

14 } // end of 1 ls iteration: we have refined 1 solution

15 // sort the population: mu best records at front are selected

16 Arrays.sort(P, Record.BY_QUALITY);
17 // shuffle the first mu solutions to ensure fairness

18 RandomUtils.shuffle(random, P, 0, this.mu);
19 int p1 = -1; // index to iterate over first parent

20

21 // override the worse lambda solutions with new offsprings

22 for (int index = P.length; (--index) >= this.mu;) {
23 LSRecord<X> dest = P[index];
24 LSRecord<X> sel = P[(++p1) % this.mu];
25

26 do { // find a second, different record

27 p2 = random.nextInt(this.mu);
28 } while (p2 == p1);
29 // perform recombination of the two selected solutions

30 this.binary.apply(sel.x, P[p2].x, dest.x, random);
31 dest.quality = process.evaluate(dest.x);
32 } // the end of the offspring generation

33 } // the end of the main loop

34 }
35 }

166 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/MA.java


An Introduction to Optimization Algorithms 2020-12-26

3.7.3 The Right Setup

We can now evaluate the performance of our Memetic Algorithm variant. As unary operator with

enumerable neighborhood, we use the 1swapU operator. As binary search operator, we apply the

sequence crossover operator defined in Section 3.4.2 for the EA.

Sincewe always apply this operator in the reproduction step of our MA (i.e., cr = 1), the only parameter

we need to worry about is the population size. While a large population size was good for EAs, we need

to remember that our budget is limited to 180 seconds and that every individual in the population

will be refined using the hc2r_1swapU-style local search. This means that the limit for the total

population size µ + λwould be the number of restarts that hc2r_1swapU can make within three

minutes. Any larger size would mean that the first generation would not be completed.

Table 3.16: Themedian runtime that the neighborhood-enumerating hill climber would consume

without restarts, i.e., the median time until arriving in a local optimum, as well as howmany restarts

we could do within our three-minute budget.

I med(total time) w/o restarts med(restarts)

abz7 313 ms 575

la24 47 ms 3’830

swv15 1’729 ms 104

yn4 726 ms 248

median 520 ms 412

In Table 3.16, we apply hc2r_1swapU, but instead of restarting, we terminate the algorithmwhen it

has arrived in a local optimum. Wefind that it needsbetween47ms (onla24) and1’729ms (onswv15)

to do so. This means that within the 180 s, we can refine between 3’830 and 104 individuals with the

local search. If we want to be able to do several generations of the MA, then µ + λ ≪ 104.

I did some small, preliminary experiments where I found that a population size of µ = λ = 8works

well for our threeminute budget on all instances except swv15. We will call this setup ma_8_1swapU

and investigate it in the following text.

3.7.4 Results on the JSSP
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Table 3.17: The results of the Memetic Algorithm ma_8_1swapU in comparison to the two EAs

ea_8192_5%_nswap and eac_4_5%_nswap as well as the hill climber hc2r_1swapU. The

columns present the problem instance, lower bound, the algorithm, the best, mean, andmedian

result quality, the standard deviation sd of the result quality, as well as the median timemed(t) and

FEsmed(FEs) until the best solution of a run was discovered. The better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 eac_4_5%_nswap 672 690 690 9 68s 12’474’571

ea_8192_5%_nswap 684 703 702 8 54s 10’688’314

hc2r_1swapU 708 731 731 6 79s 16’413’522

ma_8_1swapU 671 689 689 7 115s 23’304’852

la24 935 eac_4_5%_nswap 935 963 961 16 30s 9’175’579

ea_8192_5%_nswap 943 967 967 11 18s 4’990’002

hc2r_1swapU 952 973 974 7 78s 32’552’884

ma_8_1swapU 939 958 956 11 10s 3’832’439

swv15 2885 eac_4_5%_nswap 3102 3220 3224 65 168s 18’245’534

ea_8192_5%_nswap 3498 3631 3632 65 178s 17’747’983

hc2r_1swapU 3731 3829 3831 42 89s 11’380’041

ma_8_1swapU 3405 3602 3599 64 167s 22’837’065

yn4 929 eac_4_5%_nswap 1000 1038 1037 18 118s 15’382’072

ea_8192_5%_nswap 1026 1056 1053 17 114s 13’206’552

hc2r_1swapU 1076 1114 1116 13 88s 13’349’708

ma_8_1swapU 1005 1036 1035 15 159s 25’517’707
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Table 3.18: A statistical comparison of the end results of ma_8_1swapU, ea_8192_5%_nswap,

and hc2r_1swapU, using the Mann-Whitney U test with Bonferroni correction and significance

level α = 0.02 on the four JSSP instances. The columns indicate the p-values and the verdict (? for

insignificant).

Mann-Whitney U

α′ = 3.03·10−4 abz7 la24 swv15 yn4

ea_8192_5%_nswap

vs.hc2r_1swapU

2.62·10−33 < 2.59·10−6 < 7.85·10−34 < 3.65·10−34 <

ea_8192_5%_nswap

vs.ma_8_1swapU

4.52·10−22 > 4.54·10−7 > 3.39·10−3 ? 1.31·10−13 >

hc2r_1swapU

vs.ma_8_1swapU

1.16·10−34 > 4.88·10−19 > 1.20·10−34 > 1.18·10−34 >

In Table 3.17, we find thatma_8_1swapU performs clearly better than the plain EA and the hill climber

on all four instances, which is confirmed by a statistical test in Table 3.18. Except on swv15, it also

always has the best mean andmedian result quality. The differences to eac_4_5%_nswap are very

small and therefore not interesting – except on swv15, where the Memetic Algorithm clearly loses.

This must be the result of the very low number of individuals that can be refined on swv15 using the

local search within the three minute budget.

From Figure 3.32, we can see that the ma_8_1swapU behaves almost identical to hc2r_1swapU

during the first approximately ten seconds of the runs. This must be the time when the first µ +

λ individuals undergo the local search. From then on, the algorithm makes better progress than

hc2r_1swapU. It seems that our binary sequence operator can combine different good traits of

candidate solutions a�er all! The fact that the ma_8_1swapU can improve beyond the hill climber

means that sequence is able to combine two local optima to a new point in the search space, which

then can be refined by local search to another local optimum.
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Figure 3.32: Themedian of the progress of the ma_8_1swapU, eac_4_5%_nswap, and

hc2r_1swapU algorithms over time, i.e., the current best solution found by each of the 101 runs at

each point of time (over a logarithmically scaled time axis). The color of the areas is more intense if

more runs fall in a given area.
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3.7.5 Summary

With Memetic Algorithms, we learned about a family of hybrid optimization methods that combine

local and global search. Of course, here we just scratched the surface of this concept.

For example, we again only considered one simple implementation of this idea. Instead of hc2r-style

local search, we could as well have used our stochastic hill climber or even Simulated Annealing for a

fixed number of iterations as refinement procedure. Indeed, instead of doing a full local search until

reaching a local optimum, we could also limit it to only a fixed number S of steps (and indeed the Java

implementation Listing 3.27 has this feature).

Our MA did neither outperformed the EA with clearing nor Simulated Annealing.

Regarding the former, we could also apply clearing in the MA. I actually tried that, but it did not really

lead to a big improvement in my preliminary experiments, so I did not discuss it here. The reason is

most likely that the MA performs too few generations for it to really kick in.

The computational budget of only three minutes may have prevented us from finding better results. If

we had a larger budget, we could have used a larger population. In a different application scenario,

the comparison of an MA with the EA with clearing and SA algorithms might have turned out more

favorable. On the plus side, the MA did perform significantly better than a pure EA with recombination

and than the neighborhood-enumerating hill climber the two algorithms it is composed of!

3.8 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [131,137,150,152] follow a completely different paradigm

than the methods that we have discussed up to here. So far, we have directly focused on the points x

inside the search space X. We tried to somehow “navigate” from one or multiple such points to

better points, by investigating their neighbors via the unary operator or by trying to good find locations

“between” twopoints via the binary operator. EDAs instead look at the bigger picture and try to discover

and exploit the structure of the spaceX itself. The ask the questions “Can we somehow learn which

areas inX are promising? Can we learn how good solutions look like?”

3.8.1 The Algorithm

How do good solutions look like? It is unlikely that good (or even optimal) solutions are uniformly

distributed over the search space. If the optimization problem that we are trying to solve is reasonable,

then it should have some structure and there will be areas in the search spaceX that are more likely to

contain good solutions than others. Distribution here is already an important keyword: There should

be some kind of (non-uniform) probability distribution of good solutions over the search space. If we
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can somehow learn this distribution, we obtain amodel of how good solutions look like. Thenwe could

sample this distribution/model. Sampling a distribution just means to create random points according

to it: If we sample λ points from a distributionM , then more points will be created in areas whereM

has a high probability density and fewer points from places where it has a low probability density.

A basic EDA works roughly as follows:

1. Set the best-so-far objective value zb to+∞ and the best-so-far candidate solution yb to NULL.

2. Initialize the modelM0, e.g., to approximate a uniform distribution.

3. Create λ > 2 random points x in the search spaceX, either by sampling the model or by using a

nullary search operator.

4. Repeat until termination criterion is met (where i be the iteration index):

a. Map theλpoints to candidate solutionsy ∈ Yusing the representationmappingγ : X 7→ Y

and evaluate their objective value z = f(y).

b. y′ be the best of the λ new candidate solutions and z′ be its objective value. If z′ < zb, then

store y′ in yb and z′ in zb.

c. Select the µ best points from the set of λ points (with 1 < µ < λ).

d. Use the set Pµ of these µ points to build the newmodelMi. This step can also be imple-

mented as model updateU andmake use of the information in the old modelMi−1 as well

as the problem instance I, i.e.,Mi = U(Pµ, Mi−1, I).

e. Sample λ points fromMi.

5. Return the candidate solution yb and its objective value zb to the user.

This structure looksdifferent fromwhatwehadbefore, butwe can recognize some familiar components.

The algorithm starts by creating a set of λ random points in the search space. We can use the nullary

search operator for this. So this step is very similar to what EAs do (see Section 3.4). From these

λ points, the set Pµ of the µ best ones are selected – again, very similar to EAs. However, EDAs do not

apply unary or binary search operations to these points to obtain an offspring generation. Instead,

they condense the information from the selected points into a modelM , which usually is a stochastic

distribution. This can be done by estimating the parameters of a stochastic distribution from all points

in Pµ. We then can create λ new points by sampling them from this parameterized distributionM .

3.8.1.1 An Example

Maybe it is easier to understand how this algorithmworks if we look at the simple example illustrated

in Figure 3.33. Imagine you are supposed to find the minimum of an objective function f defined over

a two-dimensional sub-space space of the real numbers, i.e.,Y ⊂ R
2. For the sake of simplicity, let’s

assume the search and solution space are the same (X = Y) and its two decision variables be x1

172 Thomas Weise



An Introduction to Optimization Algorithms 2020-12-26

and x2. The objective function is illustrated in the top-le� corner of Figure 3.33. It has a nice basin with

good solutions, but also is a bit rugged.

Figure 3.33: An example of how we could apply an EDA to an objective function f defined over a

two-dimensional search/solution space. In each iteration i > 1, 101 points are sampled and the best

41 are used to derive a modelM , which is defined as a normal distribution parameterized by the

arithmetic means and standard devisions of the selected points along the two axes.

At the beginning of our EDA, we just generate λ = 101 points uniformly distributed in the search

space (step 3 of our algorithm). This is illustrated in the top-right sub-figure of Figure 3.33, where we

only show two dimensions but put the contour of the objective function in the background. From the

λ points, we keep the µ = 41 ones with the best objective values (colored green) and discarded the

other 101 − 41 = 60 points (colored red). We can now compute the mean and standard deviation

of the µ selected points along each axis, i.e., get four parameters. In the figures, these models are

illustrated in blue. In their center, i.e., at the two mean coordinates, you can find a little blue cross.

From the blue cross, one line along each axis, with the length of the corresponding standard deviation,

forming the two axes of an ellipse. We can see that the ellipse is located nicely in the center of the area,

where we indeed can find solutions which tend to have smaller (better) objective values.

But what can we do with this model? We can use it to generate λ new points. Since we are in the

continuous space, a normal distribution lends itself for this purpose. A one-dimensional normal
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distribution has the feature that it gives high probability to values close to its mean. The probability of

encountering points farther away from themean decreases quickly. If we sample a normal distribution

with a givenmean and standard deviation, thenmost points will located within one standard deviation

distance from themean. Since we have twomeans and two standard deviations, we could just use one

independent normal distribution for each coordinate, i.e., each of the two decision variables.

In the second sub-figure from the top on the right hand side of Figure 3.33, we did exactly that. As

can be seen, the points are locatedmore closely to the center of the figure. We again select the best

µ = 41 points of the λ = 101 samples obtained this way and build newmodel based on them. The

standard deviations of the model are smaller now. We repeat this process for twomore steps and tend

to get pointsmore closely to the optimumof f andmodels which better represent this characteristic.

Of course, this was just an example. We could have chosen different probability distributions as model

instead of the normal distribution. We could have updated the model in a different way, e.g., combine

the previous model with the new parameters. Also we treated the two dimensions of our search space

as independent, which may not be the case in many scenarios. And of course, for each search space,

wemay need to use a completely different type of model.

3.8.2 The Implementation

What we first need in order to implement EDAs is an interface to represent the new structural compo-

nent: a model.

Listing 3.28 An excerpt of the interface of models that can be used in Estimation of Distribution
Algorithms. (src)

1 public interface IModel<X> extends INullarySearchOperator<X> {
2 void initialize();
3 void update(Iterable<Record<X>> selected);
4 void apply(X dest, Random random);
5 default int minimumSamplesNeededForUpdate() {
6 return 1;
7 }
8

9 }

Listing 3.28 gives an idea how a very general interface for the required new functionality could look

like. The search spaceX is represented by the generic parameter X. In our previous example, it could

be equivalent the double[2]. The model used in our example would internally store four double

values, namely the means and standard deviations along both dimensions.
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We can update the model by passing µ samples from the search space X to the update method

in form of the Record<X> records we already used in our implementation of EAs. The source for

these samples can be any Java collection (all of which implement Iterable). In our example in the

previous section, the updatemethod could iterate over the double[2] values provided to it and

compute, for both of their dimensions, the means and standard deviations.

Then, we can call apply λ times to sample the model and generate a new points in the search space.3

This could be implemented for our example by generating the two normally distributed random

numbers, one for each dimension, based on the means and standard deviations stored in the model.

It can be seen that this interface is rather general. Wemake very few assumptions about the nature

of the model and how the update and sampling process will work. In order to cover models that are

continuously updated andmight need a certain (potentially changing) minimum number of unique

samples for an update, we add two more methods: Before beginning an optimization run, the EDA

should call themethodinitialize of themodel. Themodel should then in an unbiased, initial state.

Before updating the model, a call to minimumSamplesNeededForUpdate returns the minimum

number of samples required for a meaningful update. If the number of selected individuals falls below

this threshold, the algorithm could terminate or restart.

A basic EDA can now be implemented as shown in Listing 3.29. In this implementation excerpt, we

have omitted the checks to minimumSamplesNeededForUpdate some calls to the termination

criterion as well as the initialization of variables, to provide more concise and readable code.

3We call this method apply and it has the same structure as the applymethod of the INullarySearchOperator
interface which it overrides. This trick will come in handy later on, as it allows us to also use biased models as nullary
search operator. For now, please ignore it.
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Listing 3.29 An excerpt of the implementation of the Estimation of Distribution Algorithm. (src)

1 public class EDA<X, Y> extends Metaheuristic0<X, Y> {
2 public void solve(IBlackBoxProcess<X, Y> process) {
3 // local variable initialization omitted for brevity

4 M.initialize(); // initialize to uniform distribution

5

6 // first generation: fill population with random solutions

7 for (int i = P.length; (--i) >= 0;) {
8 X x = searchSpace.create();
9 this.nullary.apply(x, random);

10 P[i] = new Record<>(x, process.evaluate(x));
11 }
12

13 for (;;) { // each iteration: update model, sample model

14 Arrays.sort(P, Record.BY_QUALITY);
15 // update model with mu<lambda best solutions

16 M.update(IModel.use(P, 0, this.mu));
17

18 // sample new population

19 for (Record<X> dest : P) {
20 M.apply(dest.x, random); // create new solution

21 dest.quality = process.evaluate(dest.x);
22 if (process.shouldTerminate()) { // we return

23 return; // best solution is stored in process

24 }
25 } // the end of the solution generation

26 } // the end of the main loop

27 }
28 }

3.8.3 Ingredient: A Stochastic Model for the JSSP Search Space

We now want to apply the EDA to our Job Shop Scheduling Problem. Our search space represents

solutions for the JSSP as a permutation of a multi-set, where each of the n jobs occurs exactlym times,

once for each machine. Unfortunately, this representation does not lend itself for stochastic modeling

at all – we need a probability distribution over such permutations. It should be said that there exist

clever solutions [35] for this problem, but for our introductory book, they may be too complicated.

3.8.3.1 A First and Naïve Idea

Wewill follow a very naïve approach to apply the EDA idea to the JSSP. The points in the search space

are permutations with repetitions, integer vectors of length n ∗ m. At each index, there could be any of

the n jobs. We want to build a model by using µ such vectors. For each index k ∈ 0 . . . (n ∗ m − 1),
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we could simply store how o�en each of the jobs i occurred there in the µ permutations inMk,i. This

means ourmodelM consists of n ∗ m vectors, each holding n numbers ranging from 0 to µ. A 0 atMk,i

means that job i never occurred at index k in any of the µ selected points, whereas a value of µwould

mean that all solutions had job i at index k.

When we sample a new point x from this model, we would process all the indices k ∈ 0 . . . (n ∗ m − 1).

The probability of putting a job i ∈ 0 . . . (n − 1) at index k into x should be roughly proportional

toMk,i. In other words, if a job i occurs o�en at index k in the µ selected solutions, which we used to

build themodelM , then it should also o�en occur there in λ new points we sample fromM . Of course,

we will need to adher to the constraint that no job can occur more thenm times. While this indeed a

naïve method with several shortcomings (which we will discuss later), it should work “in principle”.

3.8.3.2 An Example of the Naïve Idea

We illustrate the idea of this model update and sampling process by using our demo instance from

Section 2.2.2.3 in Figures 3.34 and 3.35.

The demo instance has n = 4 jobs that are processed onm = 5machines. The points in the search

space thus havem ∗ n = 20 decision variables. We can build the model by considering each of the

20 decision variables separately. Their indices k range from 0 to 19.

Assume that µ = 10 such points have been selected. In the upper part of Figure 3.34, we illustrate

these ten points, marking the occurrences of job 0 red, of job 1 blue, of ob 2 green, and leaving those

of job 3 black for clarity. The model derived from the selected points is illustrated in the middle part.

It has one row for each job and one column for each decision variable index. When looking at the

first decision variable (index 0), we find that job 0 occurred twice in the selected points, job 1 seven

times, job 3 once, and job 2 never. This is shown in the first column of the model. The second column

of the model stands for the jobs seen at index 1. Here, job 0 was never encountered, job 1 and job 2

four times, and job 3 twice. These values are obtained by simply counting how o�en a given job ID

appears at the same index in the µ = 10 selected solutions. The model can be built iteratively in about

O(µ ∗ m ∗ n) steps.
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Figure 3.34: An example of how the model update and sampling in our naïve EDA could look like on

the demo instance from Section 2.2.2.3; we set µ = 10 and 1 new point x is sampled. See also

Figure 3.35.

178 Thomas Weise



An Introduction to Optimization Algorithms 2020-12-26

Figure 3.35: A clearer illustration of the example for sampling the model in our naïve EDA one time

given in Figure 3.34.

An example for sampling one new point in the search space from this model is given in the lower

part of Figure 3.34 and illustrated in complete detail in Figure 3.35. From themodel which holds the

frequencies of each job for each index k, we nowwant to sample the points of lengthm ∗ n. In other

words, based on themodel, we need to decide which job to put at each index. Themore o�en a job

occurred at a given index in the µ selected points, the more likely we should place it there as well.

Naturally, we could iterate over all indices from k = 0 to k = (n ∗ m − 1) from beginning to end.

However, to increase the randomness, we process the indices in a random order.

Initially, the new point is empty. In each step of the sampling process, one index k is chosen uniformly

at random from the not-yet-processed ones. In our example, we first randomly picked k = 11. In the

modelM , we haveM11,0 = 0, because job 0 never occurred at index 11 in any of the µ = 10 solutions

used for building themodel. Because job 1 was found at k = 11 exactly once,M111 = 1. Since job 2

was found at k = 11 5 times,M112 = 5. AndM113 = 4 because job 3 was found four times at index 11

in the selected individuals. We find that (
∑3

i=0 M11i) = 10 = µ. We want that the chance to sample

job 0 at the here should be 0%, the chance to choose job 1 should be 10%, the chance to pick job 2
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should be 50%, and, finally, job 3 should be picked with 40% probability. This can be done by drawing

a random numberR uniformly distributed in 0 . . . 9. If it happens to be 0, we pick job 1, if it is in 1 . . . 5,

we pick job 2, and if it happens to be in 6 . . . 9, we pick job 3. In our example,R happened to be 3, so

we set x11 = 2.

This can be implemented by writing a cumulative sum of the n frequencies into an arrayQ of length n.

We would getQ = (0, 1, 6, 10). A�er drawingR, we can apply binary search to find the index of the

smallest number r ∈ Qwhich is larger thanR. Here, sinceR = 3, r = 6 and its zero-based index is 2,

i.e., we chose job 2.

In the next step, we randomly choose k from 0 . . . 19\11. We happen to obtain k = 0. We findM0,0 = 2,

M0,1 = 7,M0,2 = 0, andM0,3 = 1. We again draw a random numberR from 0 . . . 9, which this time

happens to be 6. A valueR ∈ {0, 1}would have led to choosing job 0, butR ∈ 2 . . . 8 leads us to pick

job 1 for index k = 1 and we set x0 = 1.

The process is repeated an in step 3, we randomly choose k from 0 . . . 19 \ {11, 0}. We happen to

pick k = 7. Only two different jobs were found in the selected individuals, namely nine times job 0 and

once job 2. We draw a random numberR from 0 . . . 9 again and obtainedR = 6, which leads us to

set x7 = 0.

We repeat this again and again. At step 9, we this way chose job 2 for the fi�h time. Since there

arem = 5machines, this means that job 2, placed at indices 11, 2, 12, 3, and now 2, is completed

and cannot be chosen anymore – regardless what the model suggests. For instance, in step 11 (see

Figure 3.35), we chose k = 4. Job 2 did occur four times at index 4 in the selected individuals! But

since we already assigned it five times, it cannot be chosen here anymore. Thus, we cannot use the

probabilities 30%, 40%, and 30% for jobs 1, 2, and 3 as suggested by themodel. We have to deduce

the already completed job and raise the probabilities of jobs 1 and 3 to 50% each accordingly. We

can still pick the job exactly as before, but instead using a random numberR from 0 . . . 9, we use one

from 0 . . . 5 (because 3 + 3 = 6). As it turned out randomly to beR = 2, it falls in the interval 0 . . . 2

where we would choose job 1. Hence, we set x4 = 1.

We continue this process and complete assigning job 0 in step 17, a�er which only either job 1 or

job 3 remain as choices. Job 3 is assigned for the fi�h time in step 18, a�er which only job 1 remains.

A�er twenty steps, the sampling is complete. The resulting point x ∈ X is shown at the bottom of

Figure 3.34.

Of course, this was just one concrete example. Every time we sample a new point x in the search

spaceX using our modelM , the indices k and numbersRwould be drawn randomly and probably

would be very different. But each time, we could hope to obtain results at least somewhat similar but

yet slightly different from the µ points that we have selected.

The complexity of the model sampling isO(n ∗ m ∗ (n + ln n)): For each of the n ∗ m∗ indices k into

the new point x, we need to add up the n frequencies stored in the model and then draw the random
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numberR (which can be done inO(1)) and find the corresponding job index via binary search (which

takesO(ln n)).

3.8.3.3 Shortcomings of the Naïve Idea

At first glance, it looks as if our approachmight be a viable method to build and sample amodel for

our JSSP scenario. But we are unlucky: There is are twomajor shortcomings.

First, we might get into a situation where we have to pick a job which should have probability 0 in

our model, because all other jobs have already been assigned! Let’s take a look at index k = 5 in

Figure 3.34. Here,M5,1 = 10, whereas the measured frequency of all other jobs is zero. In other words,

our model prescribes that job 1 must be placed at index 5 into the new point x, regardless of whatever

other choice wemade during the sampling process. However, since we proceed randomly, it is entirely

possible, however, that index k = 5 is drawn later during the sampling process and job 1 has already

been assigned five times.

This situation can always occur if one of the values inM for a given index k is 0. Wemay always end up

in a situation where we cannot finish sampling the new point because of it.

Getting a 0 at an index k for a job i in the modelM also would mean that we never place job i again

at this index in any future iterations of our algorithm. The EDA concept prescribes and alternation

between building the model from the µ selected solutions, then sampling a new set of λ solutions

and choosing the µ < λ best of them, and then building the model again from these. If job i is not

placed at index k during the sampling process (for whatever reason), then it cannot have a non-zero

probability in the next model. Thus, it would again not be placed at index k – and this option would

have disappeared forever in the optimization process.

We can combat this problem by changing our model building process a bit. When counting, the

frequencies of the jobs for a given index k in the µ selected points, we do not start at 0 but at 1. This

way, each job will always have non-zero probability. Of course, for a small value of µ, this would skew

our distributions quite a bit towards randomness. The solution is to not add 1 for each encounter of a

job, but a very large number, say 1’000’000.

At index k = 5, we would then haveM5,1 = 10 ∗ 1′000′000 andM5,i = 1 for i ∈ {0, 2, 3}. In other

words, all jobs have non-zero probability, but if we can place job 1 at index k = 5, then we will most

likely do so.

The model sampling does not need to be changed in any way: For each index k, we first sum up all the

n numbers in the model and obtain a number Z. For index k = 5, we would obtain Z = 1′000′003.

Then we sample a random numberR uniformly distributed from 0 . . . Z − 1. At index 5, ifR = 0, we

would pick job 0. IfR ∈ 1 . . . 1′000′000, we would pick job 1. IfR = 1′000′001, we pick job 2 and if
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R = 1′000′002, we pick job 3. The binary search does not take any longer if the numbers we search are

larger, so the problem is solved without causing any harm.

The situation remains that we cannot perfectly faithfully model and sample the selected points. When

approaching the end of the sampling of one new point, we are always likely to deviate from the

observed job probabilities. By randomizing the order in which we visit the indices k, which we already

do, we try to at least distribute this “unfaithfulness” evenly over the whole length of the solutions in

average.

The second big problem with this naïve idea is that it does not distinguish between, e.g., the first

and the second occurrence of a job in the solutions we use to update the model from. For instance,

in Figure 3.34, we have two solutions that contain the first occurrence of job 0 at index 0 (namely

solutions 1 and 3) and two solutions (2 and 6) that contain it at index 3. There is no solution that

contains the second occurrence of job 0 at index 3. Yet, if we sample the model, we might well choose

index 0 for the first and index 3 for the second occurrence of job 0. In other words, even if we could

faithfully sample our model, we might still arrive at solutions that are completely different from those

that we used to build it. Darn.

The reader will understand that this chapter is already somewhat complex and we will have to leave it

at this naïve approach. As stated before, better models andmethods exists, e.g., in [35]. The focus of

the book, however, is to learn about different algorithms by attacking a problemwith them in a more

or less ad-hoc way, i.e., by doing what seems to be a reasonable first approach. The idea proposed

here, to me, seems to be something like that.

3.8.3.4 Implementation of the Naïve Idea

We can now implement our model and we do this in the class JSSPUMDAModel. We call it UMDA

model because it the probability of choosing one value for a given decision variable assigned by

the model only depends on the values of only that variable in the solutions used for building the

model – and the first EDA doing something like that was the Univariate Marginal Distribution Algorithm

(UMDA) [151,152]. Themodel can be stored in a two-dimensional array of type long[n*m][n]. Here,

we discuss the code for model building andmodel sampling in Listings 3.30 and 3.31, respectively.

We realize the model building by implementing the routine IModel.update (see Listing 3.28) in

Listing 3.30. We first initialize the complete model matrixM to all 1 values. We then process each

selected point in the search space from beginning to end. If a job is encountered at an index k, we

add a value this.m_base to the corresponding cell of the matrix. While allowing this.base to

be set as a configuration parameter, we use Integer.MAX_VALUE by default. This means that jobs

not encountered at a certain index k in the selected individuals will only be placed there during the

sampling process if all other jobs have already been scheduledm times.
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Listing 3.30 The building process of our naïve model for the JSSP in EDAs. (src)

1 public void update(Iterable<Record<int[]>> selected) {
2 int l = this.mModel.length; // == m*n

3

4 // Make sure that all values are >= 1

5 for (long[] a : this.mModel) {
6 Arrays.fill(a, 1L);
7 }
8

9 // For each encountered job, add the large value this.base

10 for (Record<int[]> ind : selected) { // selected

11 int[] sel = ind.x;
12 for (int k = l; (--k) >= 0;) { // valid indices

13 this.mModel[k][sel[k]] += this.base;
14 }
15 }
16 }

The routine IModel.apply is implemented in Listing 3.31. It starts by picking the full set of jobs and

permittingm occurrences for each. It then shuffles the array of indices. Processing this array from front

to end thenmeans picking all values for k in a randomorder. For each index k, it fills an arrayNwith the

cumulative sum of the (modified) encounter frequencies of the jobs that are not finished. The random

numberR is then drawn and its location in N is determined. From this, we know the selected job. The

job is placed into the new solution and the number of remaining times it can be placed is reduced. If

the number reaches 0, the job is removed from the set of selectable jobs. This is repeated until the

destination point is completed. This implements the process discussed in the previous section.
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Listing 3.31 The sampling process of our naïve model for the JSSP in EDAs. (src)

1 public void apply(int[] dest,
2 Random random) {
3 int[] perm = this.mPerm; // all indices

4 // each job occurs m times

5 int[] jobRemainingTimes = this.mJobRemainingTimes;
6 Arrays.fill(jobRemainingTimes, this.mMachines);
7 // the jobs we can choose from:

8 int[] jobChooseFrom = this.mJobChoseFrom;
9 long[] prob = this.mProb; // used for cumulative sum

10 long[][] model = this.mModel; // the model

11 // we can choose from n jobs

12 int jobChooseLength = jobChooseFrom.length; // = n

13

14 // permute the indexes for which we pick jobs

15 RandomUtils.shuffle(random, perm, 0, perm.length);
16

17 // iterate over the indices into the array (in random order)

18 for (int k : perm) {
19 long N = 0L;
20

21 // build the cumulative frequency vector, N be the overall sum

22 for (int j = 0; j < jobChooseLength; ++j) {
23 N += model[k][jobChooseFrom[j]];
24 prob[j] = N;
25 }
26

27 // pick index with probability proportional to cumulative sum via

28 // modified binary search.

29 int select = JSSPUMDAModel.find(
30 RandomUtils.uniformFrom0ToNminus1(random, N), prob,
31 jobChooseLength);
32

33 int job = jobChooseFrom[select]; // get selected job

34 dest[k] = job; // store job in result

35 if ((--jobRemainingTimes[job]) == 0) { // job completed?

36 jobChooseFrom[select] = jobChooseFrom[--jobChooseLength];
37 jobChooseFrom[jobChooseLength] = job;
38 }
39 } // end iteration over array indices

40 }
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3.8.4 The Right Setup

We again do a similar setup experiment as we did for the EA in Section 3.4.1.2 to configure our EDA.

The setup umda_3_32768, which, in each iteration, samples λ = 32768 new solutions and uses the

µ = 3 best of them to update the model, seems to yield the best performance in average. We also try

apply clearing in the objective space discussed in Section 3.4.5 in the EDA. Clearing removes candidate

solutions with duplicatemakespan value before themodel update. This is done by simply applying the

routine specified in Listing 3.17 before the selection step into our algorithm. The implementation of

the EDAWithClearing thus is almost the same as the basic EDA implementation in Listing 3.29 and

both are given in the online repository. A�er another setup experiment, we identify the best setup of

our UMDA-EDA with clearing for the JSSP. In each iteration, it samples λ = 64 new candidate solutions

and keeps the µ = 2 unique best of them. We will call this setup umdac_2+64.

3.8.5 Results on the JSSP

In Table 3.19, we compare the performance on the JSSP of both EDA variants to the best stochastic hill

climber with restarts, namely hcr_65536_nswap. We can find that the UMDA without clearing is

generally worse than the hill climber, while the umdac_2+64with clearing can perform somewhat

better on abz7 and yn4. On swv15, both algorithms perform particularly badly. The performance of

our adaptation of the EDA concept towards the JSSP is not very satisfying.

Table 3.19: The results of the EDAs umda_3_32768 (without clearing) and umdac_2+64 (with

clearing) in comparison to hcr_65536_nswap. The columns present the problem instance, lower

bound, the algorithm, the best, mean, andmedian result quality, the standard deviation sd of the

result quality, as well as the median timemed(t) and FEsmed(FEs) until the best solution of a run was

discovered. The better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hcr_65536_nswap 712 731 732 6 96s 21’189’358

umda_3_32768 713 742 742 14 93s 1’901’332

umdac_2+64 701 727 726 15 141s 2’860’265

la24 935 hcr_65536_nswap 942 973 974 8 71s 31’466’420

umda_3_32768 982 1020 1018 20 15s 659’470

umdac_2+64 956 996 991 23 70s 3’021’933

swv15 2885 hcr_65536_nswap 3740 3818 3826 35 89s 10’783’296
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I lbf setup best mean med sd med(t) med(FEs)

umda_3_32768 4117 4306 4318 62 156s 1’481’110

umdac_2+64 4480 4606 4609 35 94s 859’250

yn4 929 hcr_65536_nswap 1068 1109 1110 12 78s 18’756’636

umda_3_32768 1071 1148 1151 37 158s 2’488’518

umdac_2+64 1044 1096 1092 26 152s 2’143’989

In Table 3.19 wemake an interesting observation: It seems that the EDAs have amuch lower median

number of FEsmed(FEs) until discovering their end result compared to the hill climber, while the time

med(t) they need for these FEs does not tend to be lower at all. The time that our EDA needs to create

and evaluate one candidate solution, to perform one objective function evaluation (one FE), is higher

compared to the hill climber. For instance the 1’901’332 FEs within 93 seconds of umda_3_32768

on abz7 equal roughly 20’450 FEs/s, whereas the hill climber hcr_65536_nswap can generate

21’189’358 candidate solutions within 96 seconds, i.e., achieves 220’700 FEs/s on the same problem,

which is roughly ten times as much. On swv15, the hill climber converges to its final result within

89 seconds, duringwhich it performs 10’783’296 FEs, i.e., 12’1000 FEs/s. Here,umdac_2+64 is 13 times

slower and performs 859’250 FEs in 94 seconds, i.e., 9140 FEs/s.

Let us therefore compare two perspectives on the progress that EDAs make with what our EAs are

doing. In Figure 3.36, we plot the progress over (log-scaled) time in milliseconds as we did before.

This perspective fits to our goal, to obtain good solutions for the JSSP within three minutes. The

umda_32768 behaves somewhat similar to the ea_32768_nswap, which also creates λ = 32768

new solutions in each generations, but is generally slower and finishes at worse results. The gap

between umdac_2+64 and eac_4+5%_nswap, which both apply clearing, is much wider.
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Figure 3.36: Themedian of the progress of the ea_32768_nswap, eac_4+5%_nswap,

umda_32768, and umdac_2+64 algorithms over time, i.e., the current best solution found by each

of the 101 runs at each point of time (over a logarithmically scaled time axis). The color of the areas is

more intense if more runs fall in a given area.
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Figure 3.37: Themedian of the progress of the ea_32768_nswap, eac_4+5%_nswap,

umda_32768, and umdac_2+64 algorithms over the consumed FEs, i.e., the current best solution

found by each of the 101 runs at each point of FE (over a logarithmically scaled time FE). The color of

the areas is more intense if more runs fall in a given area.
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Nowwe take a look at the same diagrams, but instead of the actual consumed clock time, we use the

number of generated solutions as horizontal time axis. This basically shows us the progress that the

algorithmsmake per call to the objective function, i.e., per FE. This perspective is very useful in many

theoretical scenarios and also justified in scenarios where the FEs take a very long time (see later in

Section 4.2.2).

Figure 3.37 shows a very different picture. umda_32768 actually has a better median solution quality

than ea_32768_nswap, but it stops much earlier and then is overtaken. Only on la24, the plain EA

overtakes the plain EDA before the EDA stops. With the exception of instance swv15, the gap between

umdac_2+64 and eac_4+5%_nswap also becomes smaller.

Of course we cannot really knowwhether the EDA would eventually reach better solutions than the

EA if it perform the same number of FEs. We could find this out with more experiments, maybe with

runtime limits of 30 minutes instead of three. We will not do this here, as our scenario has a hard time

limit.

What we found out is still interesting: Even the trivial, naïve model for the JSSP seems to “work,”

despite its shortcomings. The biggest problem here seems to be the algorithmic time complexity of

the model sampling process. The 1swap or nswap operators in the EA copy the original point in the

search spaceX and then swap one or multiple jobs. To generate a new point inX, they thus require a

number of algorithm steps roughly proportional to n ∗ m. As discussed at the end of Section 3.8.3.2,

our UMDAmodel needsO(n ∗ m ∗ (n + ln n)) steps for this. The higher complexity of sampling the

search space here clearly shows.

3.8.6 Summary

In this chapter, we have discussed the concept of Estimation of Distribution Algorithms (EDAs): the

idea of learning statistical models of good solutions. Models can be probability distributions, which

assign higher probability densities to areas where good previously observed solutions were located. In

each “generation”, we can sample λ points in the search space using this model/distribution and then

use the best µ of these samples to update themodel. What we hopefully gain are two things: better

solutions, but also a better model, i.e., an abstract representation of what good solutions look like in

general.

This concept lends itself to many domains. Already in high school we learned probability distributions

over real numbers. It is very straightforward to adapt the idea of EDAs to subsets of the n-dimensional

Euclidean space, which we did as introductory example in Figure 3.33. The concept also sends itself if

the our search space are vectors of bits, which is the domain where the original Univariate Marginal

Distribution Algorithm (UMDA) [151,152] was applied.
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Unfortunately for the author of the book, probability distributions over permutations are a much

harder nut to crack. As mentioned before, we tried a very naïve approach to this with several flaws –

but we got it to work. Some of the flaws of our approach could also be fixed: The fact that the model

does not distinguish between the first and second occurrence of a job ID can be fixed by using unique

operation IDs instead of job IDs, i.e., usingm ∗ n unique values for each location in the model instead

of only n ones. I tried this out, but it does not lead to tangibly better results within our three minute

budget. Most likely because it makes the sampling of new solutions even slower and thus decreases

the total number of search steps we can do in total evenmore. . .

And this brings us two unexpected lessons to learn from this section: First, algorithmic time complexity

does matter. Well, every computer scientist knows this. Professors do not bother undergraduate

students with this topic for fun. But here we are reminded that efficiently implementing algorithms is

important, also in thefieldof randomizedmetaheuristics. Ifwewere to invent a very strongoptimization

approach but would not be able to implement it with low complexity, then it could be infeasible in

practice.

The second lesson is that comparing algorithm performance using FEs could yield different results

from comparing them based on clock time. Both have different advantages which we discuss in detail

in Section 4.2.2, but we need to always be clear which one is more important in our scenario. In our

scenario here, clock time is more important.

So was this all what is to say about EDAs? No. The EDAs we discussed here are very simple. There are

at least two aspects that we did not cover here:

One aspect that we did not discuss here is that our modelM is actually not updated but overwritten

in each generation. Instead, we could also combine the new information Mnew with the current

model Mold the model M in. The UMDA implementation in [152] and the equivalent Population-

based Incremental Learning Algorithm (PBIL) [13,14], for instance, do this by simply setting M =

δMnew + (1 − δ)Mold, where δ ∈ (0, 1] is a learning rate. Another interesting approach to such iterative

learning is the Compact Genetic Algorithm (cGA) [102].

The second aspect is that we treated all decision variables as if they were independent in our model.

This is where the univariate in UMDA comes from. However, variables are hardly independent in

practical problems (see also Section 5.5). For instance, the decision whether I should next put job 1 on

machine 2 or job 3 in the JSSP will likely depend on which job I assigned to which machine just now.

Such inter-dependencies between decision variables can be represented bymultivariate distributions.

Examples for algorithms trying to construct such models are the Bayesian Optimization Algorithm

(BOA) [159,160] for bit strings. TheCovarianceMatrix Adaptation Evolutionary Strategy (CMA-ES) [11,99]

learns the relationship between pairs of variables for continuous problems in the Euclidean space. It is

basically the state-of-the-art for complicated numerical optimization problems.
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3.9 Ant Colony Optimization

Ant Colony Optimization (ACO) [62–65] is a family of metaheuristics, which can be considered EDAs

with two special characteristics:

1. They are designed for problems whose solutions can be expressed as paths x in graphsG.

2. During the model sampling (i.e., the creation of a path x), they make use of additional heuristic

information obtained from the problem instance.

You can imagine a graph as a mathematical abstraction that can represent a street map, a computer

network, a power network, a network of water pipes, and such and such. More formally, graphG =

(V, E) is a structure described by a set V of v vertices, which we will here identify by integers IDs, i.e.,

V = 0 . . . v − 1}. E ⊆ V × V is the set of edges connecting the vertices. A path x through the graphG

is a sequence (x0, x1, . . . , xl) such that xi ∈ V for ∀i ∈ 0 . . . (l − 1). The vertexes at index i and i + 1

in x for i ∈ 0 . . . l − 2 form the edges of the path, i.e., (xi, xi+1) are elements ofE. The search spaceX

of ACO corresponds to the set of all paths x ∈ X admissible by the problem instance. If we represent a

street map as a graphG, then a path x throughG corresponds to a route on the map from a starting

point to an end point.

3.9.1 The Algorithm

If we recall the structure of EDAs from Section 3.8.1, then ACO adds

1. a special model structure,

2. a special sampling method, and

3. a special model update method.

We do not require a new overall algorithm structure or new implementation – Listing 3.29 will do just

fine – all we need is to understand these new concepts.

3.9.1.1 Model and Model Sampling

The model sampling in ACO works by iteratively building a path through a graph. In each step, a

vertex is added to the path until no nodes can be added anymore and the path x is completed. The

choice which vertex to add is probabilistic. It depends on two factors: the modelM and the heuristic

informationH .

Definition 30. ThemodelM used in ACO is a two-dimensional table called pheromonematrix and the

values stored in it are called pheromones.

Thomas Weise 191



2020-12-26 An Introduction to Optimization Algorithms

Each row i ∈ 0 . . . (v − 1) stands for one of the vertices and holds a valueMi,j for each other vertex j ∈

0 . . . (v − 1)with j 6= i. The higher the valueMi,j , the more likely should it be that the edge (i, j) is

added to the path, i.e., that vertex j follows a�er vertex i.

Besides the modelM , ACO also uses one heuristic valueHi,j for each such edge. This value reflects

a “gain” that can be obtained by adding the edge. As in the case ofMi,j , larger values ofHi,j make

adding the edge (i, j) to the path more likely.

The first vertex at which the path x is started at iteration index i = 0 is either chosen completely

randomly, fixed, or based on some policy. In each following step i > 0 of the model sampling, the

algorithm first determines the setN of vertices that can be added. O�en, these are all the vertices not

yet present in x, i.e., V \ x. In this case, we can initially setN = V \ x0 and iteratively remove every

vertex added to x fromN . But there may also be other scenarios, for instance, if we navigate through a

graph where not all vertexes are directly connected.

Either way, onceN has been determined, the choice about which edge to add to x in iteration i > 0

is made probabilistically. Assume thatN contains v′ vertices, then the probability P (addNj) to add

vertexNj to x is:

P (addNj) =

(

Mxi−1,Nj

)α
∗
(

Hxi−1,Nj

)β

∑v′−1
k=0

(

Mxi−1,Nk

)α ∗
(

Hxi−1,Nk

)β
(3.5)

Here, α > 0 and β > 0 are two configuration parameters which weight the impact of the modelM

and the heuristic informationH , respectively. The higher the model and heuristic values for the edge

from the last-added vertex xi to a potential next vertexNj , the more likely it is selected. Themodel

sampling then works as follows:

1. The point to sample xwill be an array of vertexes which represents the path. It is initially empty.

2. Allocate an array p of real numbers of length v − 1.

3. Set an index variable i = 0.

4. Choose a first vertex and store it in xi.

5. Repeat:

a. Set i = i + 1.

b. ObtainN ⊂ V as the set of vertices that can potentially be added to x in this round. (N is

usually equivalent to V minus all vertices already added.)

c. The number of vertices inN be v′.

d. If v′ = 0, exit the loop, because the path construction is complete.

e. If v′ = 1, set k = 0, because there is only one vertex to choose from.

f. else, i.e., if v′ > 1, do:
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i. Set a real variable ps to 0.

ii. For j from 0 to v′ − 1 do: A. Set ps = ps +
(

Mxi−1,Nj

)α
∗
(

Hxi−1,Nj

)β
. B. Set pj = ps.

iii. Draw a random number r uniformly distributed in [0, ps).

iv. Determine k to be the index of the smallest value in pwhich is greater than r. It can be

found via binary search (wemay need to check for smaller values le�-wards if model

or heuristic values can be 0).

g. Set xi = Nk, i.e., append the vertex to x.

6. Return the completed path x.

Definition 31. A completed path x sampled from themodel in ACO is called an ant.

We implement Equation (3.5) in lines 5.e and 5.f. Obviously, if there is only v′ = 1 node that could be

added, then it will have probability 1 and we do not need to actually compute the equation. If v′ > 1,

then we need to compute the product Pj of the model valueMα
xi−1,Nj

and heuristic valueHβ
xi−1,Nj

for

each vertex. The probability for each vertex to be chosen would then be their corresponding result

divided by the overall sumof all of these values. Lines 5.f.i to 5.f.iv showhow this can be done efficiently:

Instead of assigning the results directly to the vertices, we use a running sum ps instead. Thus, the

value p0 is P0, p1 = P0 + P1, p2 = P0 + P1 + P2, and so on. Finally, we just need to draw a random

number r from [0, ps). If it is less than p0 = P0, then we choose vertex N0. Otherwise, if it is less

than p1 = P0 + P1, we pickN1. Otherwise, if it is less than p2 = P0 + P1 + P2, we pickN2, and so on.

We can speed up finding the right node by doing a binary search. (In the case that model or heuristic

values can be zero, we need to be careful because we then could have some pκ = pκ+1 and thus would

need to check that we really have the lowest index k$ for which pk > r.)

If we need to add all vertexes in V , then it is relatively easy to see that this model sampling routine has

quadratic complexity: For each current vertex we need to look at all other (not-yet-chosen) vertices

due to line 5.f.ii.

3.9.1.2 Model Update

In the traditional ACOapproach, themodelwill be sampledλ > 0 times in each iteration and 0 < µ ≤ λ

of the solutions are used in the model update step. Here, we discuss the model update procedure for

the first ACO algorithm, the Ant System (AS) [62,64] and its improved version, theMax-Min Ant System

(MMAS) [192].

Let X be the list of the µ selected paths. Then, the model values in the matrix M are updated as

follows:

Mi,j = min{U, max{L, (1 − ρ)Mi,j +
∑

∀x∈X

τx
i,j}} (3.6)
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All model values are limited to the real interval [L, U ] and L and U are its upper and lower bound,

respectively. If the pheromoneMi,j on an edge (i, j)would become 0, then its probability to be added

will also be zero and j will never be added again to any x directly a�er i. Since we want to preserve a

certain minimum probability, setting a lower limitL > 0makes sense. IfMi,j gets too large, this can

have the opposite effect and then j will always be chosen directly a�er i. Thus, the upper limitU > L

is introduced.

The current model value is reduced by multiplying it with (1 − ρ), where ρ ∈ [0, 1] is called the

“evaporation rate.” This concept has already beenmentioned in our summary on EDAs (Section 3.8.6)

and is used in the PBIL [13,14] algorithm.

The amount τx
i,j added to the model values for each x ∈ X is:

τx
i,j =











Q/f(γ(x)) if edge (i, j) appears in x

0 otherwise

whereQ is a constant. In other words, the pheromoneMi,j of an edge (i, j) increasesmore if it appears

in selected solutions with small objective values.

In the AS, µ = λ and now bounds for the pheromones are given, i.e.,L = 0 andU = +∞. In the MMAS

in [192], the matrixM is initialized with the valueU , α = 1, β = 2, λ = v (i.e., the number of vertices),

µ = 1,Q = 1. There, values of ρ ∈ [0.7, 0.99] are investigated and the smaller values lead to slower

convergence andmore exploration whereas the high ρ values increase the search speed but also the

chance of premature convergence.

Either way, from Equation (3.6), we know that the model update will need at least a quadratic number

of algorithm steps and the model itself is also requires quadratic amount of memory, i.e., both are

at least inO(()v2). Both of these can be problematic for large numbers v of vertices or short time

budgets.

The actual “size” of themodelM and the heuristic informationH depends onwhether the edges in the

graph are directed or not: Normally, the size is v(v − 1). If going from i to j always has exactly the same

cost and is equivalent to going from j to i, then it is sufficient to maintain one single pheromone for

both edges, i.e., v(v − 1)/2 in total. A quadratic data structure size begins to become problematic for

v ≥ 10′000 on today’s machines. In our JSSP scenario, we are far from that, but have already learned

in Section 3.8.5 that the quadratic runtime of the model sampling is indeed a bottleneck.
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4 Evaluating and Comparing Optimization

Algorithms

Wehave now learned quite a fewdifferent approaches for solving optimization problems. Wheneverwe

have introduced a new algorithm, we have compared it with some of the methods we have discussed

before.

Clearly, when approaching an optimization problem, our goal is to solve it in the best possible way.

What the best possible way is will depend on the problem itself as well as the framework conditions

applying to us, say, the computational budget we have available.

It is important that performance is almost always relative. If we have only a single method that can be

applied to an optimization problem, then it is neither good nor bad, because we can either take it or

leave it. Instead, we o�en start by first developing one idea and then try to improve it. Of course, we

need to compare each new approach with the ones we already have. Alternatively, especially if we

work in a research scenario, maybe we have a new idea which then needs to be compared to a set of

existing state-of-the-art algorithms. Let us now discuss here how such comparisons can be conducted

in a rigorous, reliable, and reproducible way.

4.1 Testing and Reproducibility as Important Elements of So�ware

Development

The very first andmaybe one of themost important issues when evaluating an optimization algorithms

is that you never evaluate an optimization algorithm. You always evaluate an implementation of an

optimization algorithm. You always compare implementations of different algorithms.

Before we even begin to think about running experiments, we need to be assert whether our algorithm

implementations are correct. In almost all cases, it is not possible to proof whether a so�ware is

implemented correctly or not. However, we can apply several measures to find potential errors.
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4.1.1 Unit Testing

A very important tool that should be applied when developing a new optimization method is unit

testing. Here, the code is divided into units, each of which can be tested separately.

In this book, we try to approach optimization in a structured way and have defined several interfaces

for the components of an optimization and the representation in chapter 2. An implementation of

such an interface can be considered as a unit. The interfaces definemethods with input and output

values. We now can write additional code that tests whether the methods behave as expected, i.e., do

not violate their contract. Such unit tests can be executed automatically. Whenever we compile our

so�ware a�er changing code, we can also run all the tests again. This way, we are very likely to spot a

lot of errors before they mess up our experiments.

In the Java programming language, the so�ware framework JUnit provides an infrastructure for such

testing. In the example codes of our book, in the folder src/test/java, we provide JUnit tests for general

implementations of our interfaces as well as for the classes we use in our JSSP experiment.

Here, the encapsulation of different aspects of black-box optimization comes in handy. If we can ensure

that the implementations of all search operations, the representation mapping, and the objective

function are correct, then our implemented black-box algorithms will – at least – not return any invalid

candidate solutions. The reason is that they use exactly only these components (along with utility

methods in the ISpace interface which we can also test) to produce solutions. A lot of pathological

errors can therefore be detected early.

Always develop the tests either before or at least along with your algorithm implementation. Never say

“I will do them later.” Because you won’t. And if you actually would, you will find errors and then repeat

your experiments.

4.1.2 Reproducibility

A very important aspect of rigorous research is that experiments are reproducible. It is extremely

important to consider reproduciblity before running the experiments. From personal experiments, I

can say that sometimes, even just two or three years a�er running the experiments, I have looked at

the collected data and did no longer know, e.g., the settings of the algorithms. Hence, the data became

useless. The following measures can be taken to ensure that your experimental results are meaningful

to yourself and others in the years to come:

1. Always use self-explaining formats like plain text files to store your results.

2. Create one file for each run of your experiment and automatically store at least the following

information [206,209]:
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i. the algorithm name and all parameter settings of the algorithm,

ii. the relevant measurements, i.e., the logged data,

iii. the seed of the pseudo-random number generator used,

iv. information about the problem instance on which the algorithmwas applied,

v. short comments on how the above is to be interpreted,

vi. maybe information about the computer system your code runs on, maybe the Java version,

etc., and

vii. maybe even your contact information. This way, you or someone else can, next year, or in

ten years from now, read your results and get a clear understanding of “what is what.” Ask

yourself: If I put my data onmy website and someone else downloads it, does every single

file contain sufficient information to understand its content?

3. Store the files and the compiled binaries of your code in a self-explaining directory struc-

ture [206,209]. I prefer having a base folder with the binaries that also contains a folder

results. results then contains one folder with a short descriptive name for each algorithm

setup, which, in turn, contain one folder with the name of each problem instance. The problem

instance folders then contain one text file per run. A�er you are done with all experiments

and evaluation, such folders lend them self for compression, say in the tar.xz format, for

long-term archiving.

4. Write your code such that you can specify the random seeds. This allows to easily repeat selected

runs or whole experiments. All randomdecisions of an algorithm depend on the randomnumber

generator (RNG). The “seed” (seepoint 2.iii above) is an initialization value of the RNG. If I initialize

the (same) RNG with the same seed, it will produce the same sequence of random numbers. If I

know the randomseed used for an experiment, then I can start the same algorithmagainwith the

same initialization of the RNG. Even if my optimization method is randomized, it will then make

the same “random” decisions. In other words, you should be able to repeat the experiments

in this book and get more or less identical results. There might be differences if Java changes

the implementation of their RNG or if your computer is significantly faster or slower thanmine,

though.

5. Ensure that all random seeds in your experiments are generated in a deterministic way in your

code. This can be a proof that you did not perform cherry picking during your experiments, i.e.,

that you did not conduct 1000 runs and picked only the 101 where your newly-invented method

works best. In other words, the seeds should come from a reproducible sequence, say the same

randomnumber generator, but seededwith theMD5 checksumof the instance name. This would

also mean that two algorithms applied to the same instance have the same random seed and

may therefore start at the same random point.

6. Clearly document and comment your code. In particular, comment the contracts of eachmethod

such that you can properly verify them in unit tests. Never say “I document the code when I am
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finished with my work.” Because you won’t.

7. Prepare your code from the very beginning as if you would like to put it on your website. Prepare

it with the same care and diligence you want to see your name associated with.

8. If you are conducting research work, consider to publish both your code and data online:

a. For code, several free platforms such as GitHub or bitbucket exist. These platforms o�en

integrate with free continuous integration platforms, which can automatically compile your

code and run your unit tests when youmake a change.

b. For results, there, too, are free platforms such as zenodo. Using such online repositories

also protects us from losing data. This is also a great way to showwhat you are capable of

to potential employers. . .

9. If your code depends on external libraries or frameworks, consider using an automated depen-

dency management and build tool. For the code associated with this book, I use Apache Maven,

which ensures that my code is compiled using the correct dependencies (e.g., the right JUnit

version) and that the unit tests are executed on each built. If I or someone else wants to use the

code later again, the chances are good that the build tool can find the same, right versions of all

required libraries.

From the above, I think it should have become clear that reproducibility is nothing that we can consider

a�er we have done the experiments. Hence, like the search for bugs, it is a problemwe need to think

about beforehand. Several of the above are basic suggestions which I found useful in my own work.

Some of them are important points that are necessary for good research and which sadly are never

mentioned in any course.

4.2 Measuring Time

Let us investigate the question: “What does good optimization algorithm performance mean?” As

a first approximation, we could state that an optimization algorithm performs well if it can solve

the optimization problem to optimality. If two optimization algorithms can solve the problem, then

we prefer the faster one. This brings us to the question what faster means. If we want to compare

algorithms, we need a concept of time.

4.2.1 Clock Time

Of course, we already know a very well-understood concept of time. We use it every day: the clock

time. In our experiments with the JSSP, we havemeasured the runtimemainly in terms of milliseconds

that have passed on the clock as well.
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Definition 32. The consumed clock time is the time that has passed since the optimization process

was started.

This has several advantages:

• Clock time is a quantity which makes physical sense and which is intuitive clear to us.

• In applications, we o�en have well-defined computational budgets and thus need to know how

much time our processes really need.

• Many research works report the consumed runtime, so there is a wide basis for comparisons.

• If you want to publish your own work, you should report the runtime that your implementation

of your algorithm needs as well.

• If we measure the runtime of your algorithm implementation, it will include everything that

the code you are executing does. If your code loads files, allocates data structures, or does

complicated calculations – everything will be included in the measurement.

• If we can parallelize or even distribute our algorithms, clock timemeasurements still make sense.

But reporting the clock time consumed by an algorithm implementation also has disadvantages:

• Themeasured time strongly depends on your computer and system configuration. Runtimes

measured on different machines or on different system setups are therefore inherently incompa-

rable or, at least, it is easy to make mistakes here. Measured runtimes reported twenty years ago

are basically useless now, unless they differ from current measurements very significantly, by

orders of magnitudes.

• Runtimemeasurements also aremeasurements based on a given implementation, not algorithm.

An algorithm implemented in theCprogramming languagemayperformvery different compared

to the very same algorithm implemented in Java. An algorithm implementation using a hash

map to store and retrieve certain objectsmay perform entirely different from the same algorithm

implementedusinga sorted list. Hence, effort shouldbe invested to create good implementations

before measuring their consumed runtime and, very important, the same effort should be

invested into all compared algorithms. . .

• Runtime measurements are not always very accurate. There may be many effects which can

mess up our measurements, ranging from other processes being executed on the same system

and slowing down our process, delays caused by swapping or paging, to shi�s of CPU speeds

due to dynamic CPU clocking.

• Runtimemeasurements are not very precise. O�en, clocks have resolutions only down to a few

milliseconds, and within even amillisecondmany action can happen on today’s CPUs.

There exist ideas to mitigate the drawback that clock times are hard to compare [120,209]. For a

specific optimization problem, one can clearly specify a simple standardized algorithm B, which

always terminates in a relatively short time, say a simple heuristic. Before applying the algorithmA
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that we actually want to investigate to an instance I of the problem, we first applyB to I andmeasure

the time T [B|I] it takes on our machine. We then can divide the runtime T [A|I] needed by A|I

by T [B|I]. We can then hope that the resulting, normalized runtime is somewhat comparable across

machines. Of course, this is a problem-specific approach, it does not solve the other problems with

measuring runtime directly, and it likely will still not generalize over different computer architectures

or programming languages.

4.2.2 Consumed Function Evaluations

Instead of measuring how many milliseconds our algorithm needs, we o�en want a more abstract

measure. Another idea is to count the so-called (objective) function evaluations or FEs for short.

Definition 33. The consumed function evaluations (FEs) are the number of calls to the objective func-

tion issued since the beginning of the optimization process.

Performing one function evaluation means to take one point from the search space x ∈ X, map it to a

candidate solution y ∈ Y by applying the representation mapping y = γ(x) and then computing the

quality of y by evaluating the objective function f(y). Usually, the number of FEs is also equal to the

number of search operations applied, which means that each FE includes one application of either a

nullary, unary, or binary search operator. Counting the FEs instead of measuring time directly has the

following advantages:

• FEs are completely machine- and implementation-independent and therefore canmore easily

be compared. If we re-implement an algorithm published 50 years ago, it should still consume

the same number of FEs.

• Counting FEs is always accurate and precise, as there cannot be any outside effect or process

influencing the measurement (because that would mean that an internal counter variable inside

of our process is somehow altered artificially).

• Results in many works are reported based on FEs or in a format fromwhich we can deduce the

consumed FEs.

• If you want to publish your research work, you should probably report the consumed FEs as well.

• In many optimization processes, the steps included in an FE are the most time consuming ones.

Then, the actual consumed runtime is proportional to the consumed FEs and “performing more

FEs” roughly equals to “needing more runtime.”

• Measured FEs are something like an empirical, simplified version of algorithmic time complexity.

FEs are inherently close to theoretical computer science, roughly equivalent to “algorithm steps,”

which are the basis for theoretical runtime analysis. For example, researchers who are good at

Mathematics can go an derive things like bounds for the “expected number of FEs” to solve a

problem for certain problems and certain algorithms. Doing this with clock time would neither
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be possible normake sense. But with FEs, it can sometimes be possible to compare experimental

with theoretical results.

But measuring time in function evaluations also has some disadvantages, namely:

• There is no guaranteed relationship between FEs and real time.

• An algorithmmay have hidden complexities which are not “appearing” in the FEs. For instance,

an algorithm could necessitate a lengthy pre-processing procedure before sampling even the

first point from the search space. This would not be visible in the FE counter, because, well, it is

not an FE. The same holds for the selection step in an Evolutionary Algorithm (realized as sorting

in Section 3.4.1.1). Although this is probably a very fast procedure, it will be outside of what we

canmeasure with FEs.

• A big problem is that one function evaluation can have extremely different actual time require-

ments and algorithmic complexity in different algorithms. For instance, it is known that in a

Traveling Salesman Problem (TSP) [8,94] with n cities, some algorithms can create an evaluate

a new candidate solution from an existing one within a constant number of steps, i.e., inO(1),

while others need a number of steps growing quadratically with n, i.e., are inO(n2) [209]. We ob-

served this problem in the experiment with our EDA implementation for the JSSP in Section 3.8.5.

FEs are fair timemeasures only if the algorithms that we compare have roughly the same time

complexity per FE.

• Timemeasured in FEs is harder to comprehend in the context of parallelization and distribution

of algorithms.

There exists an idea tomitigate the problemwith the different per-FE complexities: counting algorithm

steps in a problem-specific method with a higher resolution. In [209], for example, it was proposed to

count the number of distance evaluations on the TSP and in [97], bit flips are counted on the MAX-SAT

problem.

4.2.3 Do not count generations!

As discussed in Definition 24 in Section 3.4.1, a generation is one iteration of a population-based

optimization method. At first glance, generations seem to be amachine-independent timemeasure

much like FEs. However, measuring runtime in “generations” is a very bad thing to do.

In one such generation, multiple candidate solutions are generated and evaluated. Howmany? This

depends on the population size settings, e.g., µ and λ. So generations are not comparable across

different population sizes.

Evenmore: if we use algorithm enhancements like clearing (see Section 3.4.5), then the number of new

points sampled from the search spacemay be different in each generation. In other words, the number
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of consumed generations does not necessarily have a relationship to FEs (and neither to the actual

consumed runtime). Therefore, counting FEs should always be preferred over counting generations.

4.2.4 Summary

Both ways of measuring time have advantages and disadvantages. If we are working on a practical

application, then we would maybe prefer to evaluate our algorithm implementations based on the

clock time they consume. When implementing a solution for scheduling jobs in an actual factory or for

routing vehicles in an actual logistics scenario, what matters is the real, actual time that the operator

needs to wait for the results. Whether these time measurements are valuable ten years from now

or not plays no role. It also does not matter too much howmuch time our processes would need if

executed on a hardware fromwhat we have or if they were re-implemented in a different programming

language.

If we are trying to develop a new algorithm in a research scenario, thenmay counting FEs is slightly

more important. Here we aim tomake our results comparable in the long term and we very likely need

to compare with results published based on FEs. Another important point is that a black-box algorithm

(or metaheuristic) usually makes very few assumptions about the actual problem to which it will be

applied later. While we tried to solve the JSSP with our algorithms, you probably have seen that we

could plug almost arbitrary other search and solution spaces, representation mappings, or objective

functions into them. Thus, we o�en use artificial problems where FEs can be done very quickly as test

problems for our algorithms, because then we can domany experiments. Measuring the runtime of

algorithms solving artificial problems does not make that much sense, unless we are working on some

algorithms that consume an unusual amount of time.

That being said, I personally prefer tomeasure both FEs and clock time. This way, we are on the safe

side.

4.3 Performance Indicators

Unfortunately, many optimization problems are computationally hard. If we want to guarantee that

we can solve them to optimality, this would o�en incur an unacceptably long runtime. Assume that

an algorithmA can solve a problem instance in tenmillion years while algorithmB only needs one

million. In a practical scenario, usually neither is useful nor acceptable and the fact thatB is better

thanAwould not matter.1

1From a research perspective, it does matter, though.
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As mentioned in Section 1.2.1, heuristic andmetaheuristic optimization algorithms offer a trade-off

between runtime and solution quality. This means we have twomeasurable performance dimensions,

namely:

1. the time, possibly measured in different ways (see Section 4.2), and

2. the solution quality, measured in terms of the best objective value achieved.

If we want to break down performance to single-valued performance indicators, this leads us to two

possible choices [73,98], which are:

1. the solution quality we can get within a pre-defined time and

2. the time we need to reach a pre-defined solution quality.

We illustrate these two options, which corresponds to define vertical and horizontal cuts through the

progress diagrams, respectively, in Figure 4.1.

f

time in ms

vertical cut:

solution quality achieved

within given time

horizontal cut:

time required to achieve given solution quality

Figure 4.1: Illustration of the two basic forms to measure performance from raw data, based on a

fraction of the actual experimental results illustrated in Figure 3.7 and inspired by [73,98].

4.3.1 Vertical Cuts: Best Solution Quality Reachedwithin Given Time

What we did in our simple experiments so far was mainly to focus on the quality that we could achieve

within a certain time, i.e., to proceed according to the “vertical cut” scenario.

In a practical application, we have a limited computational budget and what counts is the quality of

the solutions that we can produce within this budget. The vertical cuts correspond directly to this goal.

When creating the final version of an actual implementation of an optimization method, we will have

to focus on this measure. Since we then will also have to measure time in clock time, this means that

our results will depend on the applied hardware and so�ware configuration as well as on the way we

implemented our algorithm, down to the choice of the programming language or even compiler. Of

course, budgets based consumed clock time are hard to compare or reproduce [119].
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The advantage of the vertical cut approach is that it can capture all of these issues, as well as perfor-

mance gains from parallelization or distribution of the algorithms. Our results obtained with vertical

cuts will, however not necessarily carry over to other system configurations or problems.

The “vertical cuts” approach is applied in quite a few competitions and research publications, including,

for instance, [195].

4.3.2 Horizontal Cuts: Runtime Needed until Reaching a Solution of a Given Quality

The idea horizontal cuts corresponds to defining fixed goal qualities andmeasuring the runtimeneeded

to get there. For a given problem instance, we would define the target solution quality at which we

would consider the problem as solved. This could be a globally optimal quality or a threshold at

which the user considers the solution quality as satisfying. This approach is preferred in [73,98] for

benchmarking algorithms.

It has the advantage that the number of algorithm steps or seconds needed to solve the problem is

a meaningful and interpretable quantity. We can thenmake statements such as “AlgorithmB is ten

times faster than algorithmA [in solving this problem].” An improvement in the objective value, as

we could measure in the vertical cut approach, has no such interpretable meaning, since we do not

know whether it is hard or easy to, for instance, squeeze out 10 more time units of makespan in a JSSP

instance.

The “horizontal cuts” idea is applied, for instance, in the COCO Framework for benchmarking numerical

optimization algorithms [73,98].

One disadvantage of this method is that we cannot guarantee that a run will reach the specified goal

quality. Maybe sometimes the algorithm will get trapped in a local optimum before that. This is

also visible in Figure 4.1, where one of the runs did not reach the horizontal cut. How to interpret

such a situation is harder.2 In the vertical cut scenario, all runs will always reach the pre-defined

maximum runtimes, as long as we do not artificially abort them earlier, so we always have a full set of

measurements.

4.3.3 Determining Goal Values

Regardless of whether we choose vertical or horizontal cuts through the progress diagrams as per-

formance indicators, we will need to define corresponding target values. In some cases, e.g., in a

practical application with fixed budgets and/or upper bounds for the acceptable solution quality, we

may trivially know them as parts of the specified requirements. In other cases, wemay:

2This can be done by assuming that the algorithmswould be restarted a�er consuming certain FEs, but this will be subject
to another section (not yet written).
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• first conduct a set of smaller experiments and get an understand of time requirements or obtain-

able solution qualities,

• know reasonable defaults from experience,

• set goal objective values based on known lower bounds or even known global optima (e.g., from

literature), or

• set them based on what is used in current literature.

Especially in a research setup, the latter is advised. Here, we need to run experiments that produce

outputs which are comparable to what we can find in literature, so we need to have the same goal

thresholds.

4.3.4 Summary

Despite its major use in research scenarios, the horizontal cut method can also make sense in practical

applications. Remember that it is our goal to develop algorithms that can solve the optimization

problems within the computational budget, where “solve” again means “reaching a solution of a

quality that the user can accept”. If we fail to do so, then our so�ware will probably be rejected. If we

succeed, then the vertical view would allow us to distinguish algorithms which can over-achieve the

user requirements. The horizontal view would allow us to distinguish algorithms which can achieve

the user requirements earlier.

In my opinion, it makes sense to use both indicators. In [209,210,213], for example, we voted for

defining a couple of horizontal and vertical cuts to describe the performance of algorithms solving the

Traveling Salesman Problem. By using both horizontal and vertical cuts andmeasure runtime both

in FEs andmilliseconds, we can get a better understanding of the performance and behavior of our

algorithms.

Finally, it should be noted that the goal thresholds for horizontal or vertical cuts can directly lead us to

defining termination criteria (see Section 2.8).

4.4 Statistical Measures

Most of the optimization algorithms that we have discussed so far are randomized (Section 3.1.3). A

randomized algorithmmakes at least one random decision which is not a priori known or fixed. Such

an algorithm can behave differently every time it is executed.

Definition 34. One independent application of one optimization algorithm to one instance of an

optimization problem is called a run.
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Each run is considered as independent andmay thus lead to a different result. This also means that

the measurements of the basic performance indicators discussed in Section 4.3 can take on different

values as well. We maymeasure k different result solution qualities at the end of k times applications

of the same algorithm to the same problem instance (which was also visible in Figure 4.1). In order to

get a handy overview about what is going on, we o�en want to reduce this potentially large amount of

information to a few,meaningful and easy-to-interpret values. These values are statisticalmeasures. Of

course, this here is neither a book about statistics nor probability, so we can only scratch on the surface

of these topics. For better discussions, please refer to text books such as [127,172,186,194,196].

4.4.1 Statistical Samples vs. Probability Distributions

One issues we need to clarify first is that there is a difference between a probability distribution and

data sample.

Definition 35. A probability distribution F is an assignment of probabilities of occurrence to different

possible outcomes in an experiment.

Definition36.A randomsampleof lengthk ≥ 1 is a setofk independentobservationsof anexperiment

following a random distribution F .

Definition 37. An observation is a measured outcome of an experiment or random variable.

The specification of an optimization algorithm together with its input data, i.e., the problem instance

to which it is applied, defines a probability distribution over the possible values a basic performance

indicator takes on. If I would possess sufficient mathematical wisdom, I could develop a mathematical

formula for the probability of every possiblemakespan that the 1-swap hill climberhc_1swapwithout

restarts could produce on the swv15 JSSP instance within 100’000 FEs. I could say something like:

“With 4% probability, we will find a Gantt chart with a makespan of 2885 time units within 100’000 FEs

(by applyinghc_1swap toswv15.” With sufficientmathematical skills, I could define such probability

distributions for all algorithms. Then, I would know absolutely which algorithm will be the best for

which problem.

However, I do not possess such skill and, so far, nobody seems to possess. Despite significant advances

in modeling and deriving statistical properties of algorithms for various optimization problems, we are

not yet at a point where we can get deep and complete information for most of the relevant problems

and algorithms.

We cannot obtain the actual probability distributions describing the results. We can, however, try

to estimate their parameters by running experiments and measuring results, i.e., by sampling the

results.
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Table 4.1: The results of one possible outcome of an experiment with several simulated dice throws.

The number # throws and the thrown number are given in the first two columns, whereas the relative

frequency of occurrence of number i is given in the columns fi.

# throws number f1 f2 f3 f4 f5 f6

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000

3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000

4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000

5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000

6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000

7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000

8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000

9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000

11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909

12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833

100 . . . 0.1900 0.2100 0.1500 0.1600 0.1200 0.1700

1’000 . . . 0.1700 0.1670 0.1620 0.1670 0.1570 0.1770

10’000 . . . 0.1682 0.1699 0.1680 0.1661 0.1655 0.1623

100’000 . . . 0.1671 0.1649 0.1664 0.1676 0.1668 0.1672

1’000’000 . . . 0.1673 0.1663 0.1662 0.1673 0.1666 0.1664

10’000’000 . . . 0.1667 0.1667 0.1666 0.1668 0.1667 0.1665

100’000’000 . . . 0.1667 0.1666 0.1666 0.1667 0.1667 0.1667

1’000’000’000 . . . 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

Think about throwing an ideal dice. Each number from one to six has the same probability to occur,

i.e., the probability 1
6 = 0.1666. If we throw a dice a single time, we will get one number. If we throw it

twice, we see two numbers. Let fi be the relative frequency of each number in k = # throws of the

dice, i.e., fi = number of times we got i
k . Themore o�en we throw the dice, the more similar should fi get
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to 1
6 , as illustrated in Table 4.1 for a simulated experiments with of many dice throws.

As can be seen in Table 4.1, the first ten or so dice throws tell us very little about the actual probability

of each result. However, when we throw the dice many times, the observed relative frequencies

becomemore similar to what we expect. This is called the Law of Large Numbers – and it holds for the

application of optimization algorithms too.

There are two take-awaymessages from this section:

1. It is never enough to just apply an optimization algorithm once or twice to a problem instance to

get a good impression of a performance indicator. It is a good rule of thumb to always perform

at least 20 independent runs. In our experiments on the JSSP, for instance, we did 101 runs per

problem instance.

2. We can estimate the performance indicators of our algorithms or their implementations via

experiments, but we do not know their true value.

4.4.2 Averages: Arithmetic Mean vs. Median

Assume that we have obtained a sampleA = (a0, a1, . . . , an−1) of n observations from an experiment,

e.g., we have measured the quality of the best discovered solutions of 101 independent runs of an

optimization algorithm. We usually want to get reduce this set of numbers to a single value which can

give us an impression of what the “average outcome” (or result quality) is. Two of the most common

options for doing so, for estimating the “center” of a distribution, are to either compute the arithmetic

mean or themedian.

4.4.2.1 Mean andMedian

Definition 38. The arithmetic meanmean(A) is an estimate of the expected value of a data sample

A = (a0, a1, . . . , an−1). It is computed as the sum of all n elements ai in the sample dataA divided by

the total number n of values.

mean(A) =
1

n

n−1
∑

i=0

ai

Definition 39. Themedianmed(A) is the value separating the bigger half from the lower half of a data

sample or distribution. It is the value right in themiddle of a sorted data sampleA = (a0, a1, . . . , an−1)
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where ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1).

med(A) =











a n−1
2

if n is odd

1
2

(

a n
2

−1 + a n
2

)

otherwise
if ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1) (4.1)

Notice the zero-based indices in our formula, i.e., the data samplesA start with a0. Of course, any data

sample can be transformed to a sorted data sample fulfilling the above constraints by, well, sorting

it.

Wemay now ask: Why are we considering twomeasures of the average, the arithmetic mean and the

median? Which one is better? Which one should I take?

This question is actually hard to answer. It very much depends on your application. In particular, it

depends very much on the question of whether or not your data might contain outliers and - very

important – what could cause these outliers?

4.4.2.2 Outliers and Skewed Distributions

Let us consider two example data setsA andB, both with nA = nB = 19 values, only differing in their

largest observation:

• A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

• B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

We find that:

• mean(A) = 1
19

∑18
i=0 ai = 133

19 = 7 and

• mean(B) = 1
19

∑18
i=0 bi = 10127

19 = 553, while

• med(A) = a9 = 6 and

• med(B) = b9 = 6.

The value b18 = 10′008 is an unusual value inB. It is about three orders of magnitude larger than all

other measurements. Its appearance has led to a complete change in the average computed based on

the arithmetic mean in comparison to datasetA, while it had no impact on the median.
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outliers in terms of the time needed for the first

function evaluation (FE): Normally, the first FE

completes in less than 1ms, but in very few of

the runs it needs more than 2ms, sometimes even

10ms! This may be because of scheduling or other

OS issues and does not reflect the normal behavior

of the algorithm implementation.

Figure 4.2: Illustrative example for outliers in our JSSP experiment: sometimes the first function

evaluation takes unusually long, although this did not have an impact on the end result (clipping from

Figure 3.4).

We o�en call such odd values outliers [93,139]. They sometimes may represent measurement errors or

observations which have been been disturbed by unusual effects. In our experiments on the JSSP, for

instance, some runs may perform unexpectedly few function evaluations, maybe due to scheduling

issues. In Figure 4.2, this becomes visible in some cases where the first FE was delayed for some reason

– while it would not be visible if somewhere during the run an unusual delay would occur. As a result,

some runs might perform worse, because they receive fewer FEs.

So outliers have a big impact on the arithmetic mean and no influence on the median. What does that

mean? Do we want our measure of average to be influenced by outliers or not?

This very much depends on the source of outliers. Let’s say you are a biologist and want to count

ants per square meters of a lawn. There can be lots of totally uncontrollable factors that influence the

outcome. Maybe an ant eater has passed through and ate all the ants of one the lawn cells and then

le�. Such factors are probably not what you are a�er. You would probably want a representative value

and do not care about outliers very much. Then, you prefer statistical measures, which do not suffer

too much from anomalies in the data. You would prefer the median.

For example, in [170] we find that the annual average income of all families in US grew by 1.2% per

year from 1976 to 2007. This mean growth, however, is not distributed evenly, as the top-1% of income

recipients had a 4.4% per-year growth while the bottom 99% could only improve by 0.6% per year. The

arithmetic mean does not necessarily give an indicator of the range of the most likely observations

to encounter. The median would show us that, for normal people, the income did not really grow

significantly.

But there are also scenarioswhereoutliers contain important information, e.g., represent someunusual

side-effect in a clinical trial of a newmedicine. Actually, in our domain – optimization – outlierswill

very o�en give us very important information! Think about it: When wemeasure the performance

of an algorithm implementation, there are few possible sources of “measurement errors” apart from
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unusual scheduling delays and even these cannot occur if we measure runtime in FEs. If there are

unusually behaving runs, then the most likely source is a bug in the algorithm implementation! If

the cause is not a bug, then the secondmost likely source is that our algorithm has a bad worst case

behavior. We do want to know this. Thus, wemust check the arithmetic mean.

Let us take the MAX-SAT problem, anN P-hard problem. If we apply a local search algorithm to a set

of different MAX-SAT instances, it may well be that the algorithm requires exponential runtime on 25%

of themwhile solving the others in polynomial time [111]! This would mean that if we consider only

the median runtime, it would appear that we could solve anN P-hard problem in polynomial time, as

the median is not influenced by the worst 25% of the runs. . . In other words, our conclusion would be

quite spectacular, but also quite wrong. The arithmetic mean is muchmore likely to be influenced by

the long runs. From it, we could see that our algorithm, in average, still needs exponential time.

In optimization, the quality of good results is limited by the quality of the global optimum. Most

reasonable algorithms will give us solutions not too far from it (but obviously never anything better).

In such a case, the objective function appears almost “unbounded” towards worse solutions. The real

upper bound of the objective function, i.e., the worst possible objective value, will normally be very far

away fromwhat the algorithm tends to deliver. This means that wemay likely encounter algorithms

that o�en give us very good results (close to the lower bound) but rarely also bad results, which can be

far from the bound. Thus, the distribution of the final result quality might be skewed, too. Thinking

that we will most o�en get results similar to the arithmetic meanmight then be wrong.

4.4.2.3 Summary

Both the arithmetic mean and median carry useful information. The median tells us about values

we are likely to encounter if we perform an experiment once and it is robust against outliers and

unusual behaviors. Themean tells us about the average performance if we perform the experiment

many times. If we try to solve 1000 problem instances, the overall time we will need will probably

be similar to 1000 times the average time we observed in previous experiments. It also incorporates

information about odd, rarely occurring situations while the median may “ignore” phenomena even if

they occur in one third of the samples. If the outcome in such situations is bad, then it is good to have

this information.

Today, the median is o�en preferred over the mean because it is a robust statistic. Actually, I myself

o�en preferred it in the past. The fact that skewed distributions and outliers have little impact on it

makes it very attractive to report average result qualities. There is no guarantee whatsoever that a

solution of mean quality exists in an experiment.

However, the weakness of the arithmetic mean, i.e., the fact that every single measured value does

have an impact on it, can also be its strength: If we have a bug in our algorithm implementation that
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only very rarely has an impact on the algorithm behavior and that only in these very few cases leads

unexpectedly bad results, this will show up in the mean but not in the median. If our algorithm on a

few problem instances needs particularly long to converge, we will see it in themean but not in the

median. For this reason, I now find the mean to be the more important metric.

But we do not need to decide which is better. I think there is no reason for us to limit ourselves to only

onemeasure of the average. I suggest to report both, themedian and themean, to be on the safe side –

as we did in our JSSP experiments. Indeed, the maybe best idea would be to consider both the mean

andmedian value and then take the worst of the two. This should always provide a conservative and

robust outlook on algorithm performance.

4.4.3 Spread: Standard Deviation vs. Quantiles

The average gives us a good impression about the central value or location of a distribution. It does

not tell us much about the range of the data. We do not knowwhether the data we have measured is

very similar to themedian or whether it may differ verymuch from themean. For this, we can compute

a measure of dispersion, i.e., a value that tells us whether the observations are stretched and spread

far or squeezed tight around the center.

4.4.3.1 Variance, Standard Deviation, and Quantiles

Definition 40. The variance is the expectation of the squared deviation of a random variable from

its mean. The variance var(A) of a data sampleA = (a0, a1, . . . , an−1) with n observations can be

estimated as:

var(A) =
1

n − 1

n−1
∑

i=0

(ai − mean(A))2

Definition 41. The statistical estimate sd(A) of the standard deviation of a data sample A =

(a0, a1, . . . , an−1)with n observations is the square root of the estimated variance var(A).

sd(A) =
√

var(A)

Bigger standard deviations mean that the data tends to be spread farther from the mean. Smaller

standard deviations mean that the data tends to be similar to the mean.

Small standard deviations of the result quality and runtimes are good features of optimization algo-

rithms, as they indicate reliable performance. A big standard deviation of the result quality may be
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exploited by restarting the algorithm, if the algorithms converge early enough so sufficient compu-

tational budget is le� over to run them a couple of times. Wemade use of this in Section 3.3.3 when

developing the hill climber with restarts. Big standard deviations of the result quality together with

long runtimes are bad, as they mean that the algorithms perform unreliable.

A problemwith using standard deviations as measure of dispersion becomes visible when we notice

that they are derived from and thus depend on the arithmetic mean. We already found that the mean

is not a robust statistic and themedian should be prefered over it whenever possible. Hence, we would

like to see robust measures of dispersion as well.

Definition 42. The q-quantiles are the cut points that divide a sorted data sample A =

(a0, a1, . . . , an−1)where ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1) into q-equally sized parts.

quantilek
q be the kth q-quantile, with k ∈ 1 . . . (q − n), i.e., there are q − 1 of the q-quantiles. The

probabilityP
[

z < quantilek
q

]

tomake an observation zwhich is smaller than the kth q-quantile should

be less or equal than k/q. The probability to encounter a sample which is less or equal to the quantile

should be greater or equal to k/q:

P
[

z < quantilek
q

]

≤
k

q
≤ P

[

z ≤ quantilek
q

]

Quantiles are a generalization of the concept of themedian, in that quantile1
2 = med = quantilei

2i∀i >

0. There are actually several approaches to estimate quantiles fromdata. TheR programming language

widely used in statistics applies Equation (4.2) as default [19,115]. In an ideally-sized data sample, the

number of elements minus 1, i.e., n − 1, would be a multiple of q. In this case, the kth cut point would

directly be located at index h = (n − 1)k
q . Both in Equation (4.2) and in the formula for the median

Equation (4.1), this is included the first of the two alternative options. Otherwise, both Equation (4.1)

and Equation (4.2) interpolate linearly between the elements at the two closest indices, namely ⌊h⌋

and ⌊h⌋ + 1.

h = (n − 1)k
q

quantilek
q (A) =











ah if h is integer

a⌊h⌋ + (h − ⌊h⌋) ∗
(

a⌊h⌋+1 − a⌊h⌋

)

otherwise

(4.2)

Quantiles are more robust against skewed distributions and outliers.

If we do not assume that the data sample is distributed symmetrically, it makes sense to describe the

spreads both le� and right from themedian. A good impression can be obtained by using quantile1
4

and quantile3
4, which are usually called the first and third quartile (whilemed = quantile2

4).
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4.4.3.2 Outliers

Let us look again at our previous example with the two data samples

• A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

• B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10008)

We find that:

• var(A) = 1
19−1

∑n−1
i=0 (ai − 7)2 = 198

18 = 11 and

• var(B) = 1
19−1

∑n−1
i=0 (bi − 533)2 = 94763306

18 ≈ 5264628.1, meaning

• sd(A) =
√

var(A) ≈ 3.317 and

• sd(B) =
√

var(B) ≈ 2294.5, while on the other hand

• quantile1
4(A) = quantile1

4(B) = 4.5 and

• quantile3
4(A) = quantile3

4(B) = 9.

4.4.3.3 Summary

There again two take-awaymessages from this section:

1. An average measure without a measure of dispersion does not give us much information, as we

do not knowwhether we can rely on getting results similar to the average or not.

2. We can use quantiles to get a good understanding of the range of observations which is most

likely to occur, as quantiles are more robust than standard deviations.

Many research works report standard deviations, though, so it makes sense to also report them –

especially since there are probably more people who know what a standard deviation than who know

the meaning of quantiles.

Nevertheless, there is one important issue: I o�ensee reportsof ranges in the formof [mean−sd, mean+

sd]. Handle these with extreme caution. In particular, before writing such ranges anywhere, it should

be verified first whether the observations actually contain values less than or equal tomean − sd and

greater than or equal tomean + sd. If we have a good optimization method which o�en finds globally

optimal solutions, then distribution of discovered solution qualities is probably skewed towards the

optimumwith a heavy tail towards worse solutions. The mean of the returned objective values minus

their standard deviation could be a value smaller than the optimal one, i.e., an invalid, non-existing

objective value. . .
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4.5 Testing for Significance

We can now e.g., perform 20 runs each with two different optimization algorithmsA andB on one

problem instance and compute the median of one of the two performancemeasures for each set of

runs. Likely, they will be different. Actually, most the performance indicators in the result tables we

looked at in our experiments on the JSSP were different. Almost always, one of the two algorithms will

have better results. What does this mean?

Itmeans that one of the two algorithms is better –with a certain probability. We could get the results we

get either becauseA is really better thanB or – as mentioned in Section 3.3.5.2 – by pure coincidence,

as artifact from the randomness of our algorithms.

If we say “A is better than B” because this is what we saw in our experiments, we have a certain

probability p to be wrong. Strictly speaking, the statement “A is better thanB” makes only sense if we

can give an upper bound α for the error probability.

Assume that we compare two data samplesA = (a0, a1, . . . , anA−1) andB = (b0, b1, . . . , bnB−1). We

observe that the elements inA tend to be bigger than those inB, for instance,med(A) > med(B).

Of course, just claiming that the algorithmA fromwhich the data sampleA stems tends to produce

bigger results thanBwhich has given us the observations inB, we would run the risk of being wrong.

Instead of doing this directly, we try to compute the probability p that our conclusion is wrong. If p

is lower than a small threshold α, say, α = 0.02, then we can accept the conclusion. Otherwise, the

differences are not significant and we do not make the claim.

4.5.1 Example for the Underlying Idea (Binomial Test)

Let’s say I invited you to play a game of coin tossing. We flip a coin. If it shows up as heads, then youwin

1 RMB and if it is tails, you give me 1 RMB instead. We play 160 times and I win 128 times, as illustrated

in Figure 4.3.
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heads tails

Figure 4.3: The results of our coin tossing game, where I win 128 times (red) and you only 32 times

(green).

This situation makes you suspicious, as it seems unlikely to you that I would win four times as o�en as

youwith a fair coin. Youwonder if I cheated on you, i.e., if used a “fixed” coin with a winning probability

different from 0.5. So your hypothesisH1 is that I cheated. Unfortunately, it is impossible to make any

useful statement about my winning probability if I cheated apart from that it should be bigger than

0.5.

What you can do is use make the opposite hypothesisH0: I did not cheat, the coin is fair and both of

us have winning probability q = 0.5. Under this assumption you can compute the probability that I

would win at leastm = 128 times out of n = 160 coin tosses. Flipping a coin n times is a Bernoulli

process. The probability P [k|n] to win exactly k times in n coin tosses is then:

P [k|n] =

(

n

k

)

qk(1 − q)n−k =

(

n

k

)

0.5k0.5n−k =

(

n

k

)

0.5n =

(

n

k

)

1

2n

where
(n

k

)

= n!
k!(n−k)! is the binomial coefficient “n over k”. Of course, if winning 128 times would be

an indication of cheating, winning even more o�en would have been, too. Hence we compute the

probability P [k ≥ m|n] for me to win at leastm times if we had played with a fair coin, which is:
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P [k ≥ m|n] =
n
∑

k=m

(

n

k

)

1

2n
=

1

2n

n
∑

k=m

(

n

k

)

In our case, we get

P [k ≥ 128|160] = 1
2160

∑160
k=128

(n
k

)

= 1′538′590′628′148′134′280′316′221′828′039′113
365′375′409′332′725′729′550′921′208′179′070′754′913′983′135′744

≈ 1.539∗1033

3.654∗1047

≈ 0.00000000000000421098571

≈ 4.211 ∗ 10−15

In other words, the chance that I would win that o�en in a fair game is very, very small. If you reject the

hypothesisH0, your probability p = P [k ≥ 128|160] to be wrong is, thus, very small as well. If you

rejectH0 and acceptH1, pwould be your probability to be wrong. Normally, you would set yourself

beforehand a limit α, say α = 0.01 and if p is less than that, you will risk accusing me. Since p ≪ α,

you therefore can be confident to assume that the coin was fixed. The calculation that we performed

here, actually, is called the binomial test.

4.5.2 The Concept of Many Statistical Tests

This is, roughly, how statistical tests work. We make a set of observations, for instance, we run ex-

periments with two algorithmsA andB on one problem instance and get two corresponding lists

(A and B) of measurements of a performance indicator. The mean or median values of these lists

will probably differ, i.e., one of the twomethods will have performed better in average. Then again,

it would be very unlikely to, say, apply two randomized algorithms to a problem instance, 100 times

each, and get the same results. Matter of fact, it would be very unlikely to apply the same randomized

algorithm to a problem instance 100 times and then again for another 100 times and get the same

results again.

Still, our hypothesisH1 could be “AlgorithmA is better than algorithmB.” Unfortunately, if that is

indeed true, we cannot really knowhow likely it would have been to get exactly the experimental results

that we got. Instead, we define the null hypothesisH0 that “The performance of the two algorithms is

the same,” i.e.,A ≡ B. If that would have been the case, the the data samplesA andB would stem

from the same algorithm, would be observations of the same random variable, i.e., elements from the

same population. If we combineA andB to a setO, we can then wonder how likely it would be to

draw two sets fromO that show the same characteristics asA andB. If the probability is high, then
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we cannot rule out thatA ≡ B. If the probability is low, say below α = 0.02, then we can rejectH0

and confidently assume thatH1 is true and our observation was significant.

4.5.3 Second Example (Randomization Test)

Let us now consider a more concrete example. We want to compare two algorithmsA andB on a

given problem instance. We have conducted a small experiment and measured objective values of

their final runs in a few runs in form of the two data setsA andB, respectively:

• A = (2, 5, 6, 7, 9, 10) and

• B = (1, 3, 4, 8)

From this, we can estimate the arithmetic means:

• mean(A) = 39
6 = 6.5 and

• mean(B) = 16
4 = 4.

It looks like algorithmBmay produce the smaller objective values. But is this assumption justified

based on the datawe have? Is the difference betweenmean(A) andmean(B) significant at a threshold

of α = 2?

If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything. Let us

therefore assume as null hypothesisH0 the observed difference did just happen by chance and, well,

A ≡ B. Then, this would mean that the data samples A and B stem from the same algorithm (as

A ≡ B). The division into the two sets would only be artificial, an artifact of our experimental design.

Instead of having two data samples, we only have one, namely the union setO with 10 elements:

• O = A ∪ B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Moreover, any divisionC ofO into two setsA′ andB′ of sizes 6 and 4, respectively, would have had the

same probability of occurrence. Maybe I had first taken all the measurements inA and then those inB

a�erwards. If I had first taken the measurements inB and then those forA, then I would have gotten

B′ = (2, 5, 6, 7) andA′ = (9, 10, 1, 3, 4, 8). Since I could have taken the measurements in any possible

way, ifH0 is true, any division ofO intoA andB could have happened – and I happened to get one

particular division just by pure chance. IfH0 is true, then the outcome that we observed should not be

very unlikely, not very surprising. If the observation thatmean(A) − mean(B) ≥ 2.5would, however,

have a very low probability to occur underH0, then we can probably reject it.

From high school combinatorics, we know that there are
(10

4

)

= 210 different ways of drawing 4 el-

ements from O. Whenever we draw 4 elements from O to form a potential set B′. This leaves the

remaining 6 elements for a potential setA′, meaning
(10

6

)

= 210 as well. Any of these 210 possible

divisions ofO would have had the same probability to occur in our experiment – ifH0 holds.
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Ifweenumerateall possibledivisionswith the small programListing4.1,wefind that thereareexactly 27

of them which lead to a set B′ with mean(B′) ≤ 4. This, of course, means that in exactly these

27 divisions,mean(A′) ≥ 6.5, becauseA′ contains the numbers which are not inB′.

Listing 4.1 An excerpt of a simple program enumerating all different four-element subsets ofO and
counting howmany have a mean at last as extreme as 6.5. (src)

1 // how often did we find a mean <= 4?

2 int meanLowerOrEqualTo4 = 0;
3 // total number of tested combinations

4 int totalCombinations = 0;
5 // enumerate all sets of four different numbers from 1..10

6 for (int i = 10; i > 0; i--) { // as O = numbers from 1 to 10

7 for (int j = (i - 1); j > 0; j--) { // we can iterate over

8 for (int k = (j - 1); k > 0; k--) { // the sets of size 4

9 for (int l = (k - 1); l > 0; l--) { // with 4 loops

10 if (((i + j + k + l) / 4.0) <= 4) {
11 meanLowerOrEqualTo4++;// yes, found an extreme case

12 } // count the extreme case

13 totalCombinations++; // add up combos, to verify

14 }
15 }
16 }
17 }
18 // print the result: 27 210

19 System.out.println(
20 meanLowerOrEqualTo4 + " " + totalCombinations);

If H0 holds, there would have been a probability of p = 27
210 = 9

70 ≈ 0.1286 that we would see

arithmetic mean performances as extreme as we did. If we would rejectH0 and instead claim thatH1

is true, i.e., algorithmB is better thanA, then we have a 13% chance of being wrong. Since this is

more than our pre-defined significance threshold of α = 0.02, we cannot rejectH0. Based on the little

data we collected, we cannot be sure whether algorithmB is better or not.

Whilewe cannot rejectH0, this does notmean that itmight not be true – actually, the p-value is just 13%.

H0 may or may not be true, and the same holds forH1. We just do not have enough experimental

evidence to reach a conclusion. Thus, we need to be conservative, which here means to not rejectH0

and not acceptH1.

This here just was an example for a Randomization Test [28,69]. It exemplifies howmany statistical

(non-parametric) tests work.

The number of all possible divisions the joint setsO of measurements grows very quickly with the size

ofO. In our experiments, where we always conducted 101 runs per experiment, we would already

need to enumerate
(202

101

)

≈ 3.6 ∗ 1059 possible divisions when comparing two sets of results. This, of
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course, is not possible. Hence, practically relevant tests avoid this by applying clever mathematical

tricks.

4.5.4 Parametric vs. Non-Parametric Tests

There are two types of tests: parametric and non-parametric tests. The so-called parametric tests

assume that the data follows certain distributions. Examples for parametric tests [32] include the t-test,

which assumes normal distribution. This means that if our observations follow the normal distribution,

then we cannot apply the t-test. Since we o�en do not knowwhich distribution our results follow, we

should not apply the t-test. In general, if we are not 100% sure that our data fulfills the requirements of

the tests, we should not apply the tests. Hence, we are on the safe side if we do not use parametric

tests.

Non-Parametric tests, on the other hand, are more robust in that make very few assumptions about

the distributions behind the data. Examples include

• the Wilcoxon rank sum test with continuity correction (also called Mann-Whitney U

test [16,110,140,186],

• Fisher’s Exact Test [75],

• the Sign Test [95,186],

• the Randomization Test [28,69], and

• Wilcoxon’s Signed Rank Test [221].

They tend to work similar to the examples given above. When comparing optimizationmethods, we

should always apply non-parametric tests.

Themost suitable test in many cases is the above-mentionedMann-Whitney U test. Here, the hypoth-

esisH1 is that one of the two distributionsA andB producing the two measured data samples A

andB, which are compared by the test, tends to produce larger or smaller values than the other. The

null hypothesisH0 would be that this is not true and it can be rejected if the computed p-values are

small. Doing this test manually is quite complicated and describing it is beyond the scope of this book.

Luckily, it is implemented in many tools, e.g., as the function wilcox.test in the R programming

language, where you can simply feed it with two lists of numbers and it returns the p-value.

Good significance thresholds α are 0.02 or 0.01.

4.5.5 Performing Multiple Tests

We do not just compare two algorithms on a single problem instance. Instead, wemay have multiple

algorithms and several problem instances. In this case, we need to perform multiple comparisons
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and thus applyN > 1 statistical tests. Before we begin this procedure, we will define a significance

threshold α, say 0.01. In each single test, we check one hypothesis, e.g., “this algorithm is better than

that one” and estimate a certain probability p to err. If p < α, we can accept the hypothesis.

However, withN > 1 tests at a significance level α each, our overall probability to accept at least one

wrong hypothesis is not α. In each of theN test, the probability to err is α and the probability to be

right is 1 − α. The chance to always be right is therefore (1 − α)N and the chance to accept at least

one wrong hypothesis becomes

P [error|α] = 1 − (1 − α)N

ForN = 100 comparisons and α = 0.01we already arrive at P [error|α] ≈ 0.63, i.e., are very likely to

accept at least one conclusion. One hundred comparisons is not an unlikely situation: Many benchmark

problem sets contain at 100 instances or more. One comparison of two algorithms on each instance

means thatN = 100. Also, we o�en compare more than two algorithms. For k algorithms on a single

problem instance, we would already haveN = k(k − 1)/2 pairwise comparisons.

In all cases withN > 1, we therefore need to use an adjusted significance level α′ in order to ensure

that the overall probability to make wrong conclusions stays below α. Themost conservative – and

therefore my favorite – way to do so is to apply the Bonferroni correction [67]. It defines:

α′ = α/N

If we use α′ as significance level in each of theN tests, we can ensure that the resulting probability to

accept at least one wrong hypothesis P [error|α′] ≤ α, as illustrated in Figure 4.4.
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Figure 4.4: The probability P [error|α] of accepting at least one wrong hypothesis when applying an

unchanged significance level α inN tests (le� axis) versus similar – and almost constant – P [error|α′]

when using corrected value α′ = α/N instead (both right axis), for α = 0.01.

4.6 Comparing Algorithm Behaviors: Processes over Time

We already discussed that optimization algorithm performance has two dimensions: the required

runtime and the solution quality we can get. However, this is not all. Many optimization algorithms

are anytime algorithms. In Section 3.1.1 and in our experiments we have learned that they attempt to

improve their solutions incrementally. The performance of an algorithm on a given problem instance

is thus not a single point in the two-dimensional “time vs. quality”-space. It is a curve. We have plotted

several diagrams illustrating exactly this, the progress of algorithms over time, in our JSSP experiments

in chapter 3. However, in all of our previous discussions, we have ignored this fact and concentrated

on computing statistics and comparing “end results.”

Is this a problem? Inmy opinon, yes. In a practical application, like in our example scenario of the JSSP,

we have a clear computational budget. If this is exhausted, we have an end result.

However, in research, this is not actually true. If we develop a new algorithm or tackle a new problem

in a research setup, we do not necessarily have an industry partner who wants to directly apply our

results. This is not the job of research, the job of research is to find newmethods and concepts that are

promising, fromwhich concrete practical applications may arise later. As researchers, we therefore do

o�en not have a concrete application scenario. We therefore need to find results which should be valid

in a wide variety of scenarios defined by the people who later use our research.

Thismeanswe do not have a computational budget fixed due to constraints arising from an application.

Anytime optimization algorithms, such as metaheuristics, do usually not guarantee that they will find
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the global optimum. O�enwe cannot determine whether the current best solution is a global optimum

or not either. This means that such algorithms do not have a “natural” end point – we could let them

run forever. Instead, we define termination criteria that we deem reasonable.

4.6.1 Why reporting only end results is bad.

As a result, many publications only provide statistics about the results they havemeasured at these

self-selected termination criteria in form of tables in their papers. When doing so, the imaginary

situation illustrated in Figure 4.5 could occur.
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Figure 4.5: “End results” experiments with algorithms versus how the algorithms could actually have

performed.

Here, three imaginary researchers have applied three imaginary algorithms to an imaginary problem

instance. Independently, they have chosen three different computational budgets and report the

median “end results” of their algorithms. From the diagram on the le�-hand side, it looks as if we have

three incomparable algorithms. AlgorithmC needs a long time, but provides the best median result

quality. AlgorithmB is faster, but we pay for it by getting worse results. Finally, algorithmA is the

fastest, but has the worst median result quality. We could conclude that, if we would have much time,

we would choose algorithmCwhile for small computational budgets, algorithmA looks best.

In reality, the actual course of the optimization algorithms could have looked as illustrated in the

diagram on the right-hand side. Here, we find that algorithmC is always better than algorithmB,

which, in turn, is always better than algorithmA. However, we cannot get this information as only the

“end results” were reported.

Takeaway-message: Analyzing end results is normally not enough, you need to analyze the whole

algorithm behavior [209,213,214].

4.6.2 Progress Plots

We, too, provide tables for the average achieved result qualities in our JSSP examples. However, we

always provide diagrams that illustrate the progress of our algorithms over time, too. Visualizations of
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the algorithm behavior over runtime can provide us important information.
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Figure 4.6: Different algorithmsmay perform best at different points in time.

Figure 4.6, for instance, illustrates a scenario where the best algorithm to choose depends on the

available computational budget. Initially, an algorithmB produces the better median solution quality.

Eventually, it is overtaken by another algorithmA, which initially is slower but converges to better

results later on. Such a scenario would be invisible if only results for one of the two computational

budgets are provided.

Hence, such progress diagrams thus cannot only tell us which algorithms to choose in an actual

application scenario later on, where an exact computational budget is defined. During our research,

they can also tell us if it makes sense to, e.g., restart our algorithms. If the algorithm does not improve

early on but we have time le�, a restarting may be helpful – which is what we did for the hill climbing

algorithm in Section 3.3.3, for instance.
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5 Why is optimization difficult?

So far, wehave learnedquite a lot of optimization algorithms. These algorithmshavedifferent strengths

and weaknesses. We have gathered some experience in solving optimization problems. Some opti-

mization problems are hard to solve, some are easy. Actually, sometimes there are instances of the

same problem that are harder than others. It is natural to ask what makes an optimization problem

hard for a given algorithm. It is natural to askWhy is optimization difficult? [208,216]

5.1 Premature Convergence

Definition 43. An optimization process has converged if it cannot reach new candidate solutions

anymore or if it keeps on producing candidate solutions from a small subset of the solution spaceY.

One of the problems in global optimization is that it is o�en not possible to determine whether the

best solution currently known is situated on local or a global optimum and thus, if convergence is

acceptable. We o�en cannot even know if the current best solution is a local optimum or not. In other

words, it is usually not clear whether the optimization process can be stopped, whether it should

concentrate on refining the current best solution, or whether it should examine other parts of the

search space instead. This can, of course, only become cumbersome if there aremultiple (local) optima,

i.e., the problem ismulti-modal.

Definition 44. An optimization problem is multi-modal if it has more than one local opti-

mum [53,113,167,181].

The existence of multiple global optima (which, by definition, are also local optima) itself is not prob-

lematic and the discovery of only a subset of them can still be considered as successful in many cases.

The occurrence of numerous local optima, however, is more complicated, as the phenomenon of

premature convergence can occur.

5.1.1 The Problem: Convergence to a Local Optimum

Definition 45. Convergence to a local optimum is called premature convergence ([208,216], see also

Definition 23).
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Figure 5.1: An example for how a hill climber from Section 3.3 could get trapped in a local optimum

whenminimizing over a one-dimensional, real-valued search space.

Figure 5.1 illustrates how a simple hill climber as introduced in Section 3.3 could get trapped in a local

optimum. In the example, we assume thatwe have a sub-range of the real numbers as one-dimensional

search space and try to minimize a multi-model objective function. There are more than three optima

in the figure, but only one of them is the globalminimum. The optimization process, however, discovers

the basin of attraction of one of the local optima first.

Definition 46. As basin of attraction of a local optimum, we can loosely define the set of points in the

search space where applications of the search operator that yield improvements in objective value are

likely to guide an optimization process towards the optimum.

Once the hill climber has traced deep enough into this hole, all the new solutions it can produce are

higher on the walls around the local optimum and will thus be rejected (illustrated in gray color). The

algorithm has prematurely converged.

5.1.2 Countermeasures

What can we do to prevent premature convergence? Actually, we already learned a wide set of tech-

niques! Many of them boil down to balancing exploitation and exploration, as already discovered back

in Section 3.4.1.4.

5.1.2.1 Restarts

The first method we learned is to simple restart the algorithm if the optimization process did not

improve for a long time, as we did, for instance, with the hill climber in Section 3.3.3. This can help

us to exploit the variance in the end solution quality, but whether it can work strongly depends on

the number of local optima and the relative size of their basins of attraction. Assume that we have

226 Thomas Weise



An Introduction to Optimization Algorithms 2020-12-26

an objective function with s optima and that one of which is the global optimum. Further assume

that the basins of attraction of all optima have the same size and are uniformly distributed over the

search space. One would then expect that we need to restart an hill climber about s times in average to

discover the global optimum. Unfortunately, there are problems where the number of optima grows

exponentially with the dimension of the search space [72], so restarts alone will o�en not help us to

discover the global optimum. This is also what we found in Section 3.3.3: While restarting the hill

climber improved its solution quality, we did not discover any globally optimal schedule. Indeed, we

did not even prematurely converge to the better local optima.

5.1.2.2 Search Operator Design

To a certain degree we can also combat premature convergence by designing search operators that

induce a larger neighborhood. We introduced thenswap operator for our hill climber in Section 3.3.4.2

in such a way that it, most of the time, behaves similar to the original 1swap operator. Sometimes,

however, it can make a larger move. A hill climber using this operator will always have a non-zero

probability from escaping a local optimum. This would require that the nswap operator makes a step

large enough to leave the basin of attraction of the local optimum that it is trapped in and that the

result of this step is better than the current local optimum. However, nswap also can swap three

jobs in the job sequence, which is a relatively small change but still something that 1swap cannot do.

This happens muchmore likely andmay help in cases where the optimization process is already at a

solution which is locally optimal from the perspective of the 1swap operator but could be improved

by, say, swapping three jobs at once. This latter scenario is more likely and larger neighborhoods

take longer to be explored, which further decreases the speed of convergence. Nevertheless, a search

operator whose neighborhood spans the entire search space could still sometimes help to escape local

optima, especially during early stages of the search, where the optimization process did not yet trace

down to the bottom of a really good local optimum.

5.1.2.3 Investigating Multiple Points in the Search Space at Once

With the Evolutionary Algorithms in Section 3.4, we attempted yet another approach. The population,

i.e., the µ solutions that an (µ + λ) EA preserves, also guard against premature convergence. While a

local search might always fall into the same local optimum if it has a large-enough basin of attraction,

an EA that preserves a sufficiently large set of diverse points from the search space may find a better

solution. If we consider using a population, say in a (µ + λ) EA, we need to think about its size. Clearly,

a very small population will render the performance of the EA similar to a hill climber: it will be fast,

but might converge to a local optimum. A large population, say big µ and λ values, will increase the

chance of eventually finding a better solution. This comes at the cost that every single solution is

Thomas Weise 227



2020-12-26 An Introduction to Optimization Algorithms

investigatedmore slowly: In a (1 + 1)-EA, every single function evaluation is spent on improving the

current best solution (as it is a hill climber). In a (2 + 1)-EA, we preserve two solutions and, in average,

the neighborhood of each of them is investigated by creating amodified copy only every second FE, and

so on. We sacrifice speed for a higher chance of getting better results. Populations mark a trade-off.

5.1.2.4 Diversity Preservation

If we have already chosen to use a population of solutions, as mentioned in the previous section, we

can addmeasures to preserve the diversity of solutions in it. Of course, a population is only useful if it

consists of different elements. A population that has collapsed to only include copies of the same point

from the search space is not better than performing hill climbing and preserving only that one single

current best solution. In other words, only that part of the µ elements of the population is effective

that contains different points in the search space. Several techniques have been developed to increase

and preserve the diversity in the population [48,184,189], including:

1. Sharing and Niching [50,109,179] are techniques that decrease the fitness of a solution if it is

similar to the other solutions in the population. In other words, if solutions are similar, their

chance to survive is decreased and different solutions, which are worse from the perspective of

the objective function, can remain in the population.

2. Clearing [161,162] takes this idea one step further and only allows the best solution within a

certain radius survive. We plugged a variant of this idea with radius 0 into an Evolutionary

Algorithm in Section 3.4.4 and found that it indeed improves the performance.

5.1.2.5 Sometimes Accepting Worse Solutions

Another approach to escape from local optima is to sometimes accept worse solutions. This is a so�er

approach than performing full restarts. It allows the search to retain some information about the

optimization, whereas a “hard” restart discards all knowledge gathered so far. Examples for the idea of

sometimes moving towards worse solutions include:

1. When the Simulated Annealing algorithm (Section 3.5) creates a new solution by applying the

unary operator to its current point in the search space, it will make the new point current if it is

better. If the new point is worse, however, it may still move to this point with a certain probability.

This allows the algorithm to escape local optima.

2. Evolutionary Algorithms do not always have to apply the strict truncation selection scheme

"(µ + λ) that we introduced in Section 3.4. There exist alternative methods, such as

a. (µ, λ) population strategies, where the µ current best solutions are always disposed and

replaced by the µ best ones the λ newly sampled points in the search space.
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b. When the EAs we have discussed so far have to select some solutions from a given pop-

ulation, they always pick those with the best objective value. This is actually not neces-

sary. Actually, there exists a wide variety of different selection methods [26,85] such as

Tournament selection [26,29], Ranking Selection [12,29], or the (discouraged! [26,55,218])

fitness-proportionate selection [53,85,109] may also select worse candidate solutions with

a certain probability.

5.2 Ruggedness andWeak Causality

All the optimization algorithms we have discussed utilize memory in one form or another. The hill

climbers remember the best-so-far point in the search space. Evolutionary algorithms even remember

a set ofmultiple such points, called the population. We do this becausewe expect that the optimization

problemexhibits causality: Small changes to a candidate solutionwill lead to small changes in its utility

(see Definition 21 in Section 3.3). If this is true, than we are more likely to discover a great solution in

the neighborhood of a good solution than in the neighborhood of a solution with bad corresponding

objective value. But what if the causality isweak?

5.2.1 The Problem: Ruggedness

Figure 5.2: An illustration of problems exhibiting increasing ruggedness (from le� to right).

Figure 5.2 illustrates different problemswith increasing ruggedness of theobjective function. Obviously,

unimodal problems, which only have a single optimum, are the easiest to solve. Multi-modal problems

(Definition 44) are harder, but the difficulty steeply increases if the objective function gets rugged, i.e.,

rises and falls quickly. Ruggedness has detrimental effects on the performance because it de-values

the use of memory in optimization. Under a highly rugged objective function, there is little relationship

between the objective values of a given solution and its neighbors. Remembering and investigating

the neighborhood of the best-so-far solution will then not be more promising than remembering any

other solution or, in the worst case, simply conducting random sampling.
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Moderately rugged landscapes already pose a problem, too, because they will have many local optima.

Then, techniques like restarting local searches will become less successful, because each restarted

search will likely again end up in a local optimum.

5.2.2 Countermeasures

5.2.2.1 Hybridization with Local Search

Figure 5.3: An illustration of how the objective functions from Figure 5.2 would look like from the

perspective of a Memetic Algorithm: The local search traces down into local optima and the MA hence

only “sees” the objective values of optima [220].

It has been suggested that combining global and local search can mitigate the effects of ruggedness to

some degree [220]. There are two options for this:

Memetic Algorithms or Lamarckian Evolution (see Section 3.7): Here, the “hosting” global optimization

method, say an evolutionary algorithm, samples new points from the search space. It could create

them randomly or obtain them as result of a binary search operator. These points are then the starting

points of local searches. The result of the local search is then entered into the population. Since the

result of a local search is a local optimum, this means that the EA actually only sees the “bottoms” of

valleys of the objective functions and never the “peaks”. From its perspective, the objective function

looks more smoothly.

A similar idea is utilizing the Baldwin Effect [92,108,220]. Here, the global optimization algorithm still

works in the search spaceXwhile the local search (in this context also called “learning”) is applied

in the solution space Y. In other words, the hosting algorithm generates new points x ∈ X in the

search space andmaps them to points y = γ(x) in the solution spaceY by applying the representation

mapping γ. These points are then refined directly in the solution space, but the refinements are not

coded back by some reverse mapping. Instead, only their objective values are assigned to the original

points in the search space. The algorithmwill remember the overall best-ever candidate solution, of

course. In our context, the goal here is again to smoothen out the objective function that is seen by the

global search method. This “smoothing” is illustrated in Figure 5.3, which is inspired by [220].
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5.3 Deceptiveness

Besides causality, another very basic assumption behindmetaheuristic optimization is that if candidate

solution y1 is better than y2, it is more likely that we can find even better solutions in the neighborhood

around y1 than in the neighborhood of y2. In other words, we assume that following a trail of solutions

with improving objective values is in average our best chance of discovering the optimum or, at least,

some very good solutions.

5.3.1 The Problem: Deceptiveness

Figure 5.4: An illustration of problems exhibiting increasing deceptiveness (from le� to right).

A problem is deceptive if following such a trail of improving solutions leads us away from the actual

optimum [208,216]. Figure 5.4 illustrates different problems with increasing deceptiveness of the

objective function.

Definition 47. A objective function is deceptive (under a given representation and over a subset of

the search space) if a hill climber started at any point in this subset will move away from the global

optimum.

Definition 47 is an attempt to formalize this concept. We define a specific areaX ⊆ X of the search

spaceX. In this area,wecanapply ahill climbingalgorithmusingaunary searchoperator searchOpand

a representation mapping γ : X 7→ Y to optimize an objective function f . If this objective function f is

deceptive onX , then regardless where we start the hill climber, it will move away from the nearest

global optimum x⋆. “Move away” here means that we also need to have some way to measure the

distance between x⋆. and another point in the search space and that this distance increases while the

hill climber proceeds. OK, maybe not a very handy definition a�er all – but it describes the phenomena

shown in Figure 5.4. The bigger the subsetX over which f is deceptive, the harder the problem tends

to become for the metaheuristics, as they have an increasing chance of searching into the wrong

direction.
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5.3.2 Countermeasures

5.3.2.1 Representation Design

From the explanation of the attempted Definition 47 of deceptiveness, we can already see that the

design of the search space, representation mapping, and search operators will play a major role in

whether a problem is deceptive or not.

5.4 Neutrality and Redundancy

An optimization problem and its representation have the property of causality if small changes in a

candidate solution lead to small changes in the objective value. If the resulting changes are large,

then causality is weak and the objective function is rugged, which has negative effects on optimization

performance. However, if the resulting changes are zero, this can have a similar negative impact.

5.4.1 The Problem(?): Neutrality

Figure 5.5: An illustration of problems exhibiting increasing neutrality (from le� to right).

Neutrality means that a significant fraction of the points in neighborhood of a given point in the

search spacemap to candidate solutions with the same objective value. From the perspective of an

optimization process, exploring the neighborhood of a good solution will yield the same solution

again and again, i.e., there is no direction into which it can progress in a meaningful way. If half of the

candidate solutions have the same objective value, then every second search step cannot lead to an

improvement and, for most algorithms, does not yield useful information. This will slow down the

search.

Definition 48. The evolvability of an optimization process in its current state defines how likely the

search operationswill lead to candidate solutionswith new (and eventually, better) objectives values.
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While there are various slightly differingdefinitionsof evolvability both inoptimizationandevolutionary

biology (see [114]), they all condense to the ability to eventually produce better offspring. Researchers

in the late 1990s and early 2000s hoped that adding neutrality to the representation could increase

the evolvability in an optimization process andmay hence lead to better performance [15,183,198].

A common idea on how neutrality could be beneficial was the that neutral networks would form

connections in the search space [15,183].

Definition49.Neutral networks are sets of points in the search spacewhichmap to candidate solutions

of the same objective value and which are transitively connected by neighborhoods spanned by the

unary search operator [183].

The members of a neutral network may have neighborhoods that contain solutions with the same

objective value (forming the network), but also solutions with worse and better objective values. An

optimization process may dri� along a neutral network until eventually discovering a better candidate

solution, which then would be in a (better) neutral network of its own. It seems that the performance

of our (1 + 1) EA in Section 3.4.6.2 was much better than that of our hill climber in Section 3.3.2.2

because our search spaceX is much larger than the solution spaceY, i.e., |X| ≫ |Y and such networks

seem to “naturally” exist in this representation.

The question then arises how we can introduce such a beneficial form of neutrality into the search

space and representationmapping, i.e., howwe can create such networks intentionally and controlled.

Indeed, it was shown that random neutrality is not beneficial for optimization [128]. Actually, there is

no reason why neutral networks should provide a better method for escaping local optima than other

methods, such as well-designed search operators (remember Section 3.3.4.2), even if we could create

them [128]. Random, uniform, or non-uniform redundancy in the representation are not helpful for

optimization [128,171] and should be avoided.

Another idea [198] to achieve self-adaptation in the search is to encode the parameters of search

operators in the points in the search space. This means that, e.g., the magnitude to which a unary

search operator may modify a certain decision variable is stored in an additional variable which

undergoes optimization together with the “actual” variables. Since the search space size increases

due to the additional variables, this necessarily leads to some redundancy. (We will discuss this useful

concept when I get to writing a chapter on Evolution Strategy, which I will get to eventually, sorry for

now.)

5.4.2 Countermeasures

5.4.2.1 Representation Design

FromTable 2.3we know that in our job shop example, the search space is larger than the solution space.

Hence, we have some form of redundancy and neutrality. We did not introduce this “additionally,”
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however, but it is an artifact of our representation design with which we pay for a gain in simplicity and

avoiding infeasible solutions. Generally, when designing a representation, we should try to construct it

as compact and non-redundant as possible. A smaller search space can be searchedmore efficiently.

5.5 Epistasis: One Root of the Evil

Did you notice that we o�en said and found that optimization problems get the harder, the more

decision variables we have? Why is that? The simple answer is this: Let’s say each element y ∈ Y from

the solution space Y has n variables, each of which can take on q possible values. Then, there are

|Y| = qn points in the solution space – in other words, the size ofY grows exponentially with n. Hence,

it takes longer to find the best elements it.

But this is only partially true! It is only true if the variables depend on each other. As a counter example,

consider the following problem subject to minimization:

f(y) = (y1 − 3)2 + (y2 + 5)2 + (y3 − 1)2, y ∈ {−10 . . . 10}3

There are three decision variables. However, upon close inspection, we find that they are entirely

unrelated. Indeed, we could solve the three separateminimization problems given below one-by-one

instead, and would obtain the same values for y1, y2, and y3.

f1(y1) = (y1 − 3)2 y1 ∈ −10 . . . 10

f2(y2) = (y1 + 5)2 y2 ∈ −10 . . . 10

f3(y3) = (y1 − 1)2 y3 ∈ −10 . . . 10

Both times, the best value for y1 is 3, for y2 its -5, and for y3, it is 1. However, while the three solution

spaces of the second set of problems each contain 21 possible values, the solution space of the original

problem contains 213 = 9261 values. Obviously, we would prefer to solve the three separate problems,

because even in sum, they are much smaller. But in this example, we very lucky: our optimization

problemwas separable, i.e., we could split it into several easier, independent problems.

Definition 50. A function of n variables is separable if it can be rewritten as a sum of n functions of

just one variable [96,100].

For the JSSP problem that we use as example application domain in this book, this is not the case:

Neither can we schedule each jobs separately without considering the other jobs nor can we consider

the machines separately. There is also no way in which we could try to find the best time slot for any

operation without considering the other jobs.
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5.5.1 The Problem: Epistasis

The feature that makes optimization problems with more decision variablesmuch harder is called

epistasis.

Figure 5.6: An illustration of how genes in biology could exhibit epistatic and pleiotropic interactions

in an (entirely fictional) dinosaur.

In biology, epistasis is defined as a form of interaction between different genes [163]. The interaction

between genes is epistatic if the effect on the fitness of resulting from altering one gene depends on

the allelic state of other genes [138].

Definition 51. In optimization, epistasis is the dependency of the contribution of one decision variable

to the value of the objective functions on the value of other decision variables [6,51,154,208,216].

A representation has minimal epistasis when every decision variable is independent of every other

one. Then, the optimization problem is separable and can be solved by finding the best value for each

decision variable separately. A problem is maximally epistatic (or non-separable [100]) when no proper

subset of decision variables is independent of any other decision variable [154].
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Another related biological phenomenon is pleiotropy, which means that a single gene is responsible

for multiple phenotypical traits [114]. Like epistasis, pleiotropy can sometimes lead to unexpected

improvements but o�en is harmful. Both effects are sketched in Figure 5.6.

Figure 5.7: How epistasis creates and influences the problematic problem features discussed in the

previous sections.

As Figure 5.7 illustrates, epistasis causes or contributes to the problematic traits we have discussed

before [208,216]. First, it reduces the causality because changing the value of one decision variable

now has an impact on the meaning of other variables. In our representation for the JSSP problem, for

instance, changing the order of job IDs at the beginning of an encoded solution can have an impact on

the times at which the operations coming later will be scheduled, even if these themselves were not

changed.

If two decision variables interact epistatically, this can introduce local optima, i.e., render the problem

multi-modal. The stronger the interaction is, the more rugged the problem becomes. In a maximally-

epistatic problem, every decision variable depends on every other one, so applying a small change to

one variable can have a large impact.

It is also possible that one decision variable have such semantics that itmay turn on or off the impact of

another one. Of course, any change applied to a decision variable which has no impact on the objective

value then, well, also has no impact, i.e., is neutral. Finding rugged, deep valleys in a neutral plane

in the objective space corresponds to finding a needle-in-a-haystack, i.e., an ill-defined optimization

task.
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5.5.2 Countermeasures

Many of the countermeasures for ruggedness, deceptiveness, and neutrality are also valid for epistatic

problems. In particular, a good representation design should aim to make the decision variables in the

search space as independent as possible

5.5.2.1 Learning the Variable Interactions

O�en, a problemmay neither be fully-separable nor maximally epistasic. Sometimes, there are groups

of decision variables which depend on each others while being independent from other groups. Or, at

least, groups of variables which interact strongly and which interact only weakly with variables outside

of the group. In such a scenario, it makes sense trying to learn which variables interact during the

optimization process. We could then consider each group as a unit, e.g., make sure to pass their values

on together when applying a binary operator, or even try to optimize each group separately. Examples

for such techniques are:

• linkage learning in EAs [39,86,101,149]

• modeling of variable dependency via statistical models [34,160]

• variable interaction learning [38]

5.6 Scalability

The time required to solve a hard problem grows exponentially with the input size, e.g., the number

of jobs n or machinesm in JSSP. Many optimization problems with practically relevant size cannot

be solved to optimality in reasonable time. The purpose of metaheuristics is to deliver a reasonably

good solution within a reasonable computational budget. Nevertheless, any will take longer for a

growing number of decision variables for any (non-trivial) problems. In other words, the “curse of

dimensionality” [21,22] will also strike metaheuristics.
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5.6.1 The Problem: Lack of Scalability
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Figure 5.8: The growth of the size of the search space for our representation for the Job Shop

Scheduling Problem; compare with Table 2.3.

Figure 5.8 illustrates how the size |X| of the search spaceX grows with the number of machinesm and

jobs n in our representation for the JSSP. Since the axis for |X| is logarithmically scaled, it is easy to see

that the size grows very fast, exponentially withm and n. This means that most likely, the number of

points to be investigated by an algorithm to discover a near-optimal solution also increases quickly

with these problem parameters. In other words, if we are trying to schedule the production jobs for a

larger factory withmoremachines and customers, the time needed to find good solutions will increase

drastically.

This is also reflected in our experimental results: Simulated Annealing could discover the globally

optimal solution for instance la24 (Section 3.5.5) and in median is only 1.1% off. la24 is the instance

with the smallest search space size. For abz7, the second smallest instance, we almost reached

the optimumwith SA and in median were 3% off, while for the largest instances, the difference was

bigger.
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5.6.2 Countermeasures

5.6.2.1 Parallelization and Distribution

First, we can try to improve the performance of our algorithms by parallelization and distribution.

Parallelizationmeans thatwe utilizemultiple CPUs or CPU cores on the samemachine at the same time.

Distribution means that we use multiple computers connected by network. Using either approach

approachmakes sense if we already perform “close to acceptable.”

For example, I could try to use the four CPU cores on my laptop to solve a JSSP instance instead of

only one. I could, for instance, execute four separate runs of the hill climber of Simulated Annealing in

parallel and then just take the best result a�er the three minutes have elapsed. Matter of fact, I could

four different algorithm setups or four different algorithms at once. It makes sense to assume that this

would give me a better chance to obtain a good solution. However, it is also clear that, overall, I am

still just utilizing the variance of the results. In other words, the result I obtain this way will not really

be better than the results I could expect from the best of setups or algorithms if run alone.

One more interesting option is that I could run a metaheuristic together with an exact algorithm which

can guarantee to find the optimal solution. For the JSSP, for instance, there exists an efficient dynamic

programming algorithm which can solve several well-known benchmark instances within seconds

or minutes [90,200,202]. Of course, there can and will be instances that it cannot solve. So the idea

would be that in case the exact algorithm can find the optimal solution within the computational

budget, we take it. In case it fails, one or multiple metaheuristics running other CPUsmay give us a

good approximate solution.

Alternatively, I could take a population-basedmetaheuristic like an Evolutionary Algorithm. Instead

of executing ν independent runs on ν CPU cores, I could divide the offspring generation between

the different cores. In other words, each core could create, map, and evaluate λ/ν offsprings. Later

populations are more likely to find better solutions, but require more computational time to do so. By

parallelizing them, I thus could utilize this power without needed to wait longer.

However, there is a limit to the speed-up we can achieve with either parallelization or distribution.

Amdahl’s Law [7], in particular with the refinements by Kalfa [123] shows that we can get at most a

sub-linear speed-up. On the one hand, only a certain fraction of a program can be parallelized and

each parallel block has a minimum required execution time (e.g., a block must take at least as long as

one single CPU instruction). On the other hand, communication and synchronization between the ν

involved threads or processes is required, and the amount of it grows with their number ν. There is

a limit value for the number of parallel processes ν above which no further runtime reduction can

be achieved. In summary, when battling an exponential growth of the search space size with a sub-

linear gain in speed, we will hit certain limits, which may only be surpassed by qualitatively better

algorithms.
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5.6.2.2 Indirect Representations

In several application areas, we can try to speed up the search by reducing the size of the search space.

The idea is to define a small search spaceXwhich is mapped by a representation mapping γ : X 7→ Y

to a much larger solution spaceY, i.e., |X| ≪ |Y| [23,58].

Thefirst groupof indirect representations uses so-calledgenerativemappingsassume someunderlying

structure, usually forms of symmetry, inY [49,174]. When trying to optimize, e.g., the profile of a tire,

it makes sense to assume that it will by symmetrically repeated over the whole tire. Most houses,

bridges, trains, car frames, or even plants are symmetric, too. Many physical or chemical processes

exhibit symmetries towards the surrounding system or vessel as well. Representing both sides of a

symmetric solution separately would be a form of redundancy. If a part of a structure can be repeated,

rotated, scaled, or copied to obtain “the whole”, then we only need to represent this part. Of course,

there might be asymmetric tire profiles or oddly-shaped bridges which could perform even better and

which we would then be unable to discover. Yet, the gain in optimization speedmaymake up for this

potential loss.

If there are two decision variables x1 and x2 and, usually, x2 ≈ −x1, for example, we could reduce the

number of decision variables by one by always settingx2 = −x1. Of course, we then cannot investigate

solutions where x2 6= −x1, so wemay lose some generality.

Based on these symmetries, indirect representations create a “compressed” versionX ofY of a much

smaller size |X| ≪ |Y|. The search then takes place in this compressed search space and thus only

needs to consider much fewer possible solutions. If the assumptions about the structure of the search

space is correct, then we will lose only very little solution quality.

A second form of indirect representations is called ontogenic representation or developmental map-

pings [58,59,71]. They are similar to generative mapping in that the search space is smaller than the

solution space. However, their representational mappings are more complex and o�en iteratively

transform an initial candidate solution with feedback from simulations. Assume that we want to

optimize a metal structure composed of hundreds of beams. Instead of encoding the diameter of each

beam, we encode a neural network that tells us how the diameter of a beam should be changed based

on the stress on it. Then, some initial truss structure is simulated several times. A�er each simulation,

the diameters of the beams are updated according to the neural network, which is fed with the stress

computed in the simulation. Here, the search space encodes the weights of the neural networkXwhile

the solution spaceY represents the diameters of the beams. Notice that the size ofX is unrelated to

the size ofY, i.e., could be the same for 100 or for 1000 beam structures.
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5.6.2.3 Exploiting Separability

Sometimes, some decision variables may be unrelated to each other. If this information can be discov-

ered (see Section 5.5.2.1), the groups of independent decision variables can be optimized separately.

This will then be faster.
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6 Appendix

It is my goal to make this book easy to read and fast to understand. This goal somehow conflicts with

two other goals, namely those of following a clear, abstract, and unified structure as well as being

very comprehensive. Unfortunately, we cannot have all at once. Therefore, I choose to sometimes just

describe some issues from the surface perspective and dump the details into this appendix.

6.1 Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) is used as leading example to describe the structure of opti-

mization in chapter 2 and then serves again as application and experiment example when introducing

the different metaheuristic algorithms in chapter 3. In order to not divert too much from the most

important issues in these sections, wemoved the detailed discussions into this appendix.

6.1.1 Lower Bounds

The way to compute the lower bound from Section 2.5.3 for the JSSP is discussed by Taillard in [66].

As said there, the makespan of a JSSP schedule cannot be smaller than the total processing time of

the “longest” job. But we also know that themakespan cannot be shorter than the latest “finishing

time” Fj of anymachine j in the optimal schedule. For a machine j to finish, it will take at least the

sum bj of the runtimes of all the operations to be executed on it, where

bj =
n−1
∑

i=0

Ti,j′ withMi,j′ = j

Of course, some operations j′ cannot start right away on the machine, namely if they are not the first

operation of their job. The minimum idle time of such a sub job is then the sum of the runtimes of the

operations that come before it in the same job i. This means there may be an initial idle period aj for

the machine j, which is at least as big as the shortest possible idle time.

aj ≥ min
∀i∈0...(n−1)







j−1
∑

j′′=0

Ti,j′ withMi,j′ = j
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Vice versa, there also is a minimum time cj that the machine will stay idle a�er finishing all of its

operations.

cj ≥ min
∀i∈0...(n−1)







n−1
∑

j′′=j+1

Ti,j′ withMi,j′ = j







With this, we now have all the necessary components of Equation (2.2). We now can put everything

together in Listing 6.1.

More information about lower bounds of the JSSP can be found in [9,66,143,199,203,204].
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Listing 6.1 Excerpt from the function for computing the lower bound of the makespan of a JSSP
instance. (src)

1 // a, b: int[m] filled with MAX_VALUE, T: int[m] filled with 0

2 int lowerBound = 0; // overall lower bound

3

4 for (int n = inst.n; (--n) >= 0;) {
5 int[] job = inst.jobs[n];
6

7 // for each job, first compute the total job runtime

8 int jobTimeTotal = 0; // total time

9 for (int m = 1; m < job.length; m += 2) {
10 jobTimeTotal += job[m];
11 }
12 // lower bound of the makespan must be >= total job time

13 lowerBound = Math.max(lowerBound, jobTimeTotal);
14

15 // now compute machine values

16 int jobTimeSoFar = 0;
17 for (int m = 0; m < job.length;) {
18 int machine = job[m++];
19

20 // if the sub-job for machine m starts at jobTimeSoFar, the

21 // smallest machine start idle time cannot be bigger than that

22 a[machine] = Math.min(a[machine], jobTimeSoFar);
23

24 int time = job[m++];
25 // add the sub-job execution time to the machine total time

26 T[machine] += time;
27

28 jobTimeSoFar += time;
29 // compute the remaining time of the job and check if this is

30 // less than the smallest-so-far machine end idle time

31 b[machine] =
32 Math.min(b[machine], jobTimeTotal - jobTimeSoFar);
33 }
34 }
35

36 // For each machine, we now know the smallest possible initial

37 // idle time and the smallest possible end idle time and the

38 // total execution time. The lower bound of the makespan cannot

39 // be less than their sum.

40 for (int m = inst.m; (--m) >= 0;) {
41 lowerBound = Math.max(lowerBound, a[m] + T[m] + b[m]);
42 }
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6.1.2 Probabilities for the 1swapOperator

Every point in the search space containsm ∗ n integer values. If we swap two of them, we havem ∗

n ∗ m ∗ (n − 1) = m2n2 − n choices for the indices, half of which would be redundant (like swapping

the jobs at index (10, 5) and (5, 10)). In total, this yields T = 0.5 ∗ m2 ∗ n ∗ (n − 1) possible different

outcomes for a given point from the search space, and our 1swap operator produces each of them

with the same probability.

If 0 < k ≤ T of outcomes would be an improvement, then the numberA of times we need to apply

the operator to obtain one of these improvements would follow a geometric distribution and have

expected value EA:

EA =
1
k
T

=
T

k

We could instead enumerate all possible outcomes and stop as soon as we arrive at an improvingmove.

Again assume that we have k improvingmoves within the set of T possible outcomes. LetB be the

number of steps we need to perform until we haven an improvement. B follows the negative hyperge-

ometric distribution, with “successes” and “failures” swapped, with one trial added (for drawing the

improving move). The expected value EB becomes:

EB = 1 +
(T − k)

T − (T − k) + 1
= 1 +

T − k

k + 1
=

T − k + k + 1

k + 1
=

T + 1

k + 1

It holds that EB ≤ EA since T
k − T +1

k+1 = T (k+1)−(T +1)k
k(k+1) = T k+T −T k−k

k(k+1) = T −k
k(k+1) is positive or zero.

This makes sense, as no point would be produced twice during an exhaustive enumeration, whereas

random sampling might sample some points multiple times.

This means that enumerating all possible outcomes of the 1swap operator should also normally yield

an improving move faster than randomly sampling them!
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