

Optimization Algorithms 1. Introduction

Thomas Weise · 汤卫思 tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn/5

Institute of Applied Optimization (IAO) 应用优化研究所 School of Artificial Intelligence and Big Data 人工智能与大数据学院 Hefei University 合肥学院 Hefei, Anhui, China 中国安徽省合肥市

Outline

- 1. Transportation Planning Example
- 2. Optimization Problems
- 3. Example Framework Scenario: Smart Manufacturing
- 4. Exact vs. Heuristic Algorithms
- 5. Summary and Outlook

• In this unit, we want to get a rough feeling about what optimization is.

- In this unit, we want to get a rough feeling about what optimization is.
- So let us start by looking at some examples for optimization problems.

Transportation Planning Example

• Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
- What does this mean?

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders and the total distance for

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders and the total distance for. . .
 - 2. multiple depots

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders and the total distance for. . .
 - 2. multiple depots and pickup and delivery locations

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders and the total distance for. . .
 - 2. multiple depots and pickup and delivery locations, while considering that
 - 3. vehicles (trucks and trains) have capacity limits

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders and the total distance for. . .
 - 2. multiple depots and pickup and delivery locations, while considering that
 - 3. vehicles (trucks and trains) have capacity limits and that there are
 - 4. time windows for pickup and delivery

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders and the total distance for. . .
 - 2. multiple depots and pickup and delivery locations, while considering that
 - 3. vehicles (trucks and trains) have capacity limits and that there are
 - 4. time windows for pickup and delivery
 - 5. and constraints and laws.

- Build a system which tells a logistics company what it needs to do to fulfill all transportation orders at minimum costs.³⁻⁷
 - 1. Find routes on the map and assignments of orders to containers and containers to trucks/trains which minimize the undelivered orders and the total distance for. . .
 - 2. multiple depots and pickup and delivery locations, while considering that
 - 3. vehicles (trucks and trains) have capacity limits and that there are
 - 4. time windows for pickup and delivery
 - 5. and constraints and laws.
 - 6. Time limit for optimization: 1 day

• This problem is complicated.

- This problem is complicated.
- No algorithm or existing solution is available.

- This problem is complicated.
- No algorithm or existing solution is available.
- Problems like this one are also often $\mathcal{NP}\text{-hard}$

- This problem is complicated.
- No algorithm or existing solution is available.
- Problems like this one are also often \mathcal{NP} -hard \Rightarrow worst-case runtime needed to find the best possible solution grows like 2^n with number n of orders/cars

- This problem is complicated.
- No algorithm or existing solution is available.
- Problems like this one are also often NP-hard ⇒ worst-case runtime needed to find the best possible solution grows like 2ⁿ with number n of orders/cars ⇒ probably not possible to develop a useful "exact" algorithm

- This problem is complicated.
- No algorithm or existing solution is available.
- Problems like this one are also often NP-hard ⇒ worst-case runtime needed to find the best possible solution grows like 2ⁿ with number n of orders/cars ⇒ probably not possible to develop a useful "exact" algorithm
- Programming experience, data structure classes, concrete Mathematics... \Rightarrow these alone cannot solve this issue (since \mathcal{NP} -hard).

- This problem is complicated.
- No algorithm or existing solution is available.
- Problems like this one are also often NP-hard ⇒ worst-case runtime needed to find the best possible solution grows like 2ⁿ with number n of orders/cars ⇒ probably not possible to develop a useful "exact" algorithm
- Programming experience, data structure classes, concrete Mathematics... \Rightarrow these alone cannot solve this issue (since \mathcal{NP} -hard).
- Solution: adapt optimization algorithm (in our case: an Evolutionary Algorithm) to the problem³⁻⁷.

- This problem is complicated.
- No algorithm or existing solution is available.
- Problems like this one are also often NP-hard ⇒ worst-case runtime needed to find the best possible solution grows like 2ⁿ with number n of orders/cars ⇒ probably not possible to develop a useful "exact" algorithm
- Programming experience, data structure classes, concrete Mathematics... \Rightarrow these alone cannot solve this issue (since \mathcal{NP} -hard).
- Solution: adapt optimization algorithm (in our case: an Evolutionary Algorithm) to the problem³⁻⁷.
- Before the problem was solved by hand, by manual planning with Excel sheets...

- This problem is complicated.
- No algorithm or existing solution is available.
- Problems like this one are also often NP-hard ⇒ worst-case runtime needed to find the best possible solution grows like 2ⁿ with number n of orders/cars ⇒ probably not possible to develop a useful "exact" algorithm
- Programming experience, data structure classes, concrete Mathematics... \Rightarrow these alone cannot solve this issue (since \mathcal{NP} -hard).
- Solution: adapt optimization algorithm (in our case: an Evolutionary Algorithm) to the problem³⁻⁷.
- Before the problem was solved by hand, by manual planning with Excel sheets...
- With an optimization algorithm, we can get better solutions than that.

- This problem is complicated.
- No algorithm or existing solution is available.
- Problems like this one are also often NP-hard ⇒ worst-case runtime needed to find the best possible solution grows like 2ⁿ with number n of orders/cars ⇒ probably not possible to develop a useful "exact" algorithm
- Programming experience, data structure classes, concrete Mathematics... \Rightarrow these alone cannot solve this issue (since \mathcal{NP} -hard).
- Solution: adapt optimization algorithm (in our case: an Evolutionary Algorithm) to the problem³⁻⁷.
- Before the problem was solved by hand, by manual planning with Excel sheets...
- With an optimization algorithm, we can get better solutions than that.
- In this course, you will learn how we can do such a thing.

Optimization Problems

So what actually is optimization?¹²⁸

So what actually is optimization?¹²⁸

biggest ... with the least energy, ...best trade-offs betweenhighest quality ...longest possible duration most efficient ... most precise ... cheapest ... fastest... most similar towith the highest score ... on the smallest possible area most robustshortest delay

So what actually is optimization?¹²⁸

biggest ... with the least energy.best trade-offs betweenhighest quality ...longest possible duration most efficient ... most precise ... cheapest ... fastest... most similar towith the highest score ... on the smallest possible area most robustshortest delay

What is the cheapest way to get from Hefei to Beijing?

So what actually is optimization?¹²⁸

biggest ... with the least energy.best trade-offs betweenhighest quality ...longest possible duration most efficient ... most precise ... cheapest ... fastest... most similar towith the highest score ... on the smallest possible area most robustshortest delay

What is the fastest way for our team to finish all the work?

So what actually is optimization?¹²⁸

biggest ... with the least energy.best trade-offs betweenhighest quality ...longest possible duration most efficient ... most precise ... cheapest ... fastest... most similar towith the highest score ... on the smallest possible area most robustshortest delay

How can I package these products using the fewest boxes?

So what actually is optimization?¹²⁸

biggest ... with the least energy.best trade-offs betweenhighest quality ...longest possible duration most efficient ... most precise ... cheapest ... fastest... most similar towith the highest score ... on the smallest possible area most robustshortest delay

How do I arrange the components on a circuit board so I need the shortest electrical cable length?
What is optimization?

So what actually is optimization?¹²⁸

Definition (Optimization Problem: Economical View)

An optimization problem is a situation which requires deciding for one choice from a set of possible alternatives in order to reach a predefined/required benefit at minimal costs.

What is optimization?

So what actually is optimization?¹²⁸

Definition (Optimization Problem: Economical View)

An optimization problem is a situation which requires deciding for one choice from a set of possible alternatives in order to reach a predefined/required benefit at minimal costs.

Definition (Optimization Problem: Simplified Mathematical View)

Solving an optimization problem requires finding an input value $y^* \in \mathbb{Y}$ from a set \mathbb{Y} of allowed values for which a mathematical function $f: \mathbb{Y} \mapsto \mathbb{R}$ takes on the smallest possible value.

• Many questions in the real world are optimization problems

- Many questions in the real world are optimization problems, e.g.,
 - Find the shortest tour for a salesman to visit a certain set of cities in China and return to Hefei!

- Many questions in the real world are optimization problems, e.g.,
 - Find the shortest tour for a salesman to visit a certain set of cities
 - I need to transport *n* items from here to another city but they are too big to transport them all at once. How can I load them best into my car so that I have to travel back and forth the least times?

- Many questions in the real world are optimization problems, e.g.,
 - Find the shortest tour for a salesman to visit a certain set of cities
 - I need to transport \boldsymbol{n} items from here to another city
 - How can I construct a truss which can hold a certain weight with at most a certain amount of iron?

- Many questions in the real world are optimization problems, e.g.,
 - Find the shortest tour for a salesman to visit a certain set of cities
 - I need to transport \boldsymbol{n} items from here to another city
 - Construct a truss which can hold a certain weight
 - I want to build a large factory with *n* workshops. I know the flow of material between each two workshops and now need to choose the locations of the workshops such that the overall running cost incurred by material transportation is minimized.

- Many questions in the real world are optimization problems, e.g.,
 - Find the shortest tour for a salesman to visit a certain set of cities
 - I need to transport \boldsymbol{n} items from here to another city
 - · Construct a truss which can hold a certain weight
 - Assign workshops to locations
 - Which setting of x_1 , x_2 , x_3 , and x_4 can make

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$ become true?

- Many questions in the real world are optimization problems, e.g.,
 - Find the shortest tour for a salesman to visit a certain set of cities
 - I need to transport \boldsymbol{n} items from here to another city
 - · Construct a truss which can hold a certain weight
 - Assign workshops to locations
 - Which setting of x_1 , x_2 , x_3 , and x_4 can make $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$ become true (or, at least, as many of its terms as possible)?

- Many questions in the real world are optimization problems, e.g.,
 - Find the shortest tour for a salesman to visit a certain set of cities
 - I need to transport \boldsymbol{n} items from here to another city
 - Construct a truss which can hold a certain weight
 - Assign workshops to locations
 - Satisfy Boolean formula
 - · Find the minima of complex, multi-dimensional mathematical formulas

Example Framework Scenario: Smart Manufacturing

Smart Manufacturing⁹...

• has the goal of optimizing development, production, and logistics.

- has the goal of optimizing development, production, and logistics.
- employs computer control and high levels of adaptability in the multi-phase process of creating a product from raw material.

- has the goal of optimizing development, production, and logistics.
- employs computer control and high levels of adaptability in the multi-phase process of creating a product from raw material.
- utilizes advanced information and manufacturing technologies to enable flexibility in production processes to address a dynamic market.

- has the goal of optimizing development, production, and logistics.
- employs computer control and high levels of adaptability in the multi-phase process of creating a product from raw material.
- utilizes advanced information and manufacturing technologies to enable flexibility in production processes to address a dynamic market.
- requires increased workforce training for flexibility and use of the technology instead of simple repetitive tasks as in traditional manufacturing.

Industry 4.0¹⁰

mechanization water power steam power waving loom mass production assembly line electricity automation computer electronics

intelligent production networks cyber physical systems internet of things

• Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹

- Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹
- Internet of Things: network enabling physical things to exchange data or being controlled, allowing a computer system to directly interact with the physical world.¹²

- Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹
- Internet of Things: network enabling physical things to exchange data or being controlled, allowing a computer system to directly interact with the physical world.¹²
- Cloud Computing: move data and computation into the cloud (not just storage, but also computational resources, applications).¹³

- Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹
- Internet of Things: network enabling physical things to exchange data or being controlled, allowing a computer system to directly interact with the physical world.¹²
- Cloud Computing: move data and computation into the cloud (not just storage, but also computational resources, applications).¹³
- Big Data: Collection, processing, and evaluation of huge amounts of data.¹⁴

- Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹
- Internet of Things: network enabling physical things to exchange data or being controlled, allowing a computer system to directly interact with the physical world.¹²
- Cloud Computing: move data and computation into the cloud (not just storage, but also computational resources, applications).¹³
- Big Data: Collection, processing, and evaluation of huge amounts of data.¹⁴
- These are some of the ingredients.

- Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹
- Internet of Things: network enabling physical things to exchange data or being controlled, allowing a computer system to directly interact with the physical world.¹²
- Cloud Computing: move data and computation into the cloud (not just storage, but also computational resources, applications).¹³
- Big Data: Collection, processing, and evaluation of huge amounts of data.¹⁴
- These are some of the ingredients. They do not make the production intelligent yet.

- Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹
- Internet of Things: network enabling physical things to exchange data or being controlled, allowing a computer system to directly interact with the physical world.¹²
- Cloud Computing: move data and computation into the cloud (not just storage, but also computational resources, applications).¹³
- Big Data: Collection, processing, and evaluation of huge amounts of data.¹⁴
- These are some of the ingredients. They do not make the production intelligent yet. They are technological enablers.

- Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹
- Internet of Things: network enabling physical things to exchange data or being controlled, allowing a computer system to directly interact with the physical world.¹²
- Cloud Computing: move data and computation into the cloud (not just storage, but also computational resources, applications).¹³
- Big Data: Collection, processing, and evaluation of huge amounts of data.¹⁴
- These are some of the ingredients. They do not make the production intelligent yet. They are technological enablers.
- Computational Intelligence and Optimization^{1 2 15}: automatic intelligent decisions, automated planning, scheduling, design, management, ...

- Cyber-Physical Systems: deep connection between physical and software systems, often networks of interacting elements.¹¹
- Internet of Things: network enabling physical things to exchange data or being controlled, allowing a computer system to directly interact with the physical world.¹²
- Cloud Computing: move data and computation into the cloud (not just storage, but also computational resources, applications).¹³
- Big Data: Collection, processing, and evaluation of huge amounts of data.¹⁴
- These are some of the ingredients. They do not make the production intelligent yet. They are technological enablers.
- Computational Intelligence and Optimization^{1 2 15}: automatic intelligent decisions, automated planning, scheduling, design, management, can make systems intelligent

• So how is all of this related to smart manufacturing?

- So how is all of this related to smart manufacturing?
- No enterprise can waste money

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.
- An enterprise must strive to improve its processes and products.

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.
- An enterprise must strive to improve its processes and products.
- An enterprise should want to have tools that can automatically make good suggestions

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.
- An enterprise must strive to improve its processes and products.
- An enterprise should want to have tools that can automatically make good suggestions, which can save costs and resources for the daily operations
- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.
- An enterprise must strive to improve its processes and products.
- An enterprise should want to have tools that can automatically make good suggestions, which can save costs and resources for the daily operations, the long term planning

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.
- An enterprise must strive to improve its processes and products.
- An enterprise should want to have tools that can automatically make good suggestions, which can save costs and resources for the daily operations, the long term planning, and/or even its product/organizational development.

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.
- An enterprise must strive to improve its processes and products.
- An enterprise should want to have software that can automatically make good suggestions, which can save costs and resources for the daily operations, the long term planning, and/or even its product/organizational development.

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.
- An enterprise must strive to improve its processes and products.
- An enterprise should want to have software that can automatically make good suggestions, which can save costs and resources for the daily operations, the long term planning, and/or even its product/organizational development.
- All kinds of the previously mentioned problems can occur in manufacturing.

- So how is all of this related to smart manufacturing?
- No enterprise can waste money or time or material or energy or any other resource.
- An enterprise must try to make decisions which are optimial from the perspective of cost and resource consumption.
- An enterprise must strive to improve its processes and products.
- An enterprise should want to have software that can automatically make good suggestions, which can save costs and resources for the daily operations, the long term planning, and/or even its product/organizational development.
- All kinds of the previously mentioned problems can occur in manufacturing.
- For example, logistics exist inside and outside a company, and even on the factory floor!

• Our factory receives a set of customer orders and we need to assign them to workers/machines in order to complete them in time.

- Our factory receives a set of customer orders and we need to assign them to workers/machines in order to complete them in time.
- We need to plan which worker works on which machine or task based on preferences, regulations, and efficiency.

- Our factory receives a set of customer orders and we need to assign them to workers/machines in order to complete them in time.
- We need to plan which worker works on which machine or task based on preferences, regulations, and efficiency.
- We need to plan the purchase of raw material based on expected production orders.

- Our factory receives a set of customer orders and we need to assign them to workers/machines in order to complete them in time.
- We need to plan which worker works on which machine or task based on preferences, regulations, and efficiency.
- We need to plan the purchase of raw material based on expected production orders.
- We need to store items in the warehouse efficiently for fast access.

- Our factory receives a set of customer orders and we need to assign them to workers/machines in order to complete them in time.
- We need to plan which worker works on which machine or task based on preferences, regulations, and efficiency.
- We need to plan the purchase of raw material based on expected production orders.
- We need to store items in the warehouse efficiently for fast access.
- We need to cut a large piece of cloth into smaller pieces for clothing production while minimizing waste.

- Our factory receives a set of customer orders and we need to assign them to workers/machines in order to complete them in time.
- We need to plan which worker works on which machine or task based on preferences, regulations, and efficiency.
- We need to plan the purchase of raw material based on expected production orders.
- We need to store items in the warehouse efficiently for fast access.
- We need to cut a large piece of cloth into smaller pieces for clothing production while minimizing waste.
- We need to route inter-workshop or inter-workstation material transportation.

- Our factory receives a set of customer orders and we need to assign them to workers/machines in order to complete them in time.
- We need to plan which worker works on which machine or task based on preferences, regulations, and efficiency.
- We need to plan the purchase of raw material based on expected production orders.
- We need to store items in the warehouse efficiently for fast access.
- We need to cut a large piece of cloth into smaller pieces for clothing production while minimizing waste.
- We need to route inter-workshop or inter-workstation material transportation.
- We need to plan maintenance of machinery.

- Our factory receives a set of customer orders and we need to assign them to workers/machines in order to complete them in time.
- We need to plan which worker works on which machine or task based on preferences, regulations, and efficiency.
- We need to plan the purchase of raw material based on expected production orders.
- We need to store items in the warehouse efficiently for fast access.
- We need to cut a large piece of cloth into smaller pieces for clothing production while minimizing waste.
- We need to route inter-workshop or inter-workstation material transportation.
- We need to plan maintenance of machinery.

• . . .

optimized logistics (business-to-customer) planning and scheduling of maintenance visits planning and scheduling of supply visits

> production planning and scheduling optimized assignment of jobs/orders to machines optimization of production processes optimization of stock-keeping optimization of intra-enterprise logistics optimization of supply chains optimization of factory layouts and -logistics

scheduling of employee work optimal assignment of employees to tasks/customers optimized locations for new branch offices (based on current or predicted future customers)

optimization of product design optimization of product feature configuration optimization of service offers improved tailoring of products/services to customers

optimization of pricing and offers mining of customer data for targeted offers

• When developing a real-world application of optimization, there are two issues

- When developing a real-world application of optimization, there are two issues:
 - 1. Developing and implementing a good algorithm that can solve the problem at hand

- When developing a real-world application of optimization, there are two issues:
 - 1. Developing and implementing a good algorithm that can solve the problem at hand and
 - 2. integrating this implementation into the existing software ecosystem.

- When developing a real-world application of optimization, there are two issues:
 - 1. Developing and implementing a good algorithm that can solve the problem at hand and
 - 2. integrating this implementation into the existing software ecosystem.
- We focus only on the first of the two issues: optimization algorithms and their implementation.

• In optimization, there exist exact and heuristic algorithms.

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Clearly, there is (at least) one shortest tour.

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Clearly, there is (at least) one shortest tour.

getting the optimal solution for a TSP

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Clearly, there is (at least) one shortest tour.
 - Theory proofs that the time to find this tour may grow exponentially with the number of cities we want to visit in the worst case.¹⁶⁻²⁰

getting the optimal solution for a TSP

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Finding the best tour (what exact algorithms do) may take too long.

getting the optimal solution for a TSP may take too long

consumed runtime: very mucl

very much / too (?) long

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Finding the best tour (what exact algorithms do) may take too long.
 - But we can find just some tour very quickly.

getting the optimal solution for a TSP may take too long

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - But we can find just some tour very quickly.
 - Of course the quality of that tour will be lower.

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Of course the quality of that tour will be lower: the tour will be longer than the best one.

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Of course the quality of that tour will be lower.
 - Is there something inbetween?

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Is there something inbetween?
 - (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible as fast as possible.

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible as fast as possible.
 - Optimization often means to make a trade-off between solution quality and runtime.

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Optimization often means to make a trade-off between solution quality and runtime and development time (the time from the definition of the problem until we have a software for producing solutions).

- In optimization, there exist exact and heuristic algorithms.
- Let's again look at the classical Traveling Salesman Problem (TSP).
 - Optimization often means to make a trade-off between solution quality and runtime and development time (the time from the definition of the problem until we have a software for producing solutions).

Metaheuristics

• Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.

Metaheuristics

- Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.
- However, there are many different optimization problems.
- Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.
- However, there are many different optimization problems and often we won't see a "pure" TSP in practice.

- Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.
- However, there are many different optimization problems and often we won't see a "pure" TSP in practice, there usually will be additional constraints and restrictions or multiple cars etc.

- Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.
- However, there are many different optimization problems.
- Should we develop a completely new method for each problem?

- Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.
- However, there are many different optimization problems.
- Should we develop a completely new method for each problem?
- No. We want general algorithms that can be adapted to different problems.

- Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.
- However, there are many different optimization problems.
- Should we develop a completely new method for each problem?
- No. We want general algorithms that can be adapted to different problems.

Definition (Metaheuristic)

A metaheuristic is a method for solving a general class of problems. It combines objective functions or heuristics in an abstract and hopefully efficient way, usually by treating them as black box-procedures.^{1 2 21 22}

- Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.
- However, there are many different optimization problems.
- Should we develop a completely new method for each problem?
- No. We want general algorithms that can be adapted to different problems. (also to reduce the development time)

Definition (Metaheuristic)

A metaheuristic is a method for solving a general class of problems. It combines objective functions or heuristics in an abstract and hopefully efficient way, usually by treating them as black box-procedures.^{1 2 21 22}

- Heuristics are often simple, specialized algorithms that create an approximate solution for a very specific, narrow class of problems, say a TSP with cities in the Euclidean plane.
- However, there are many different optimization problems.
- Should we develop a completely new method for each problem?
- No. We want general algorithms that can be adapted to different problems. (also to reduce the development time ... we often want a prototype quickly and can add more complex logic later)

Definition (Metaheuristic)

A metaheuristic is a method for solving a general class of problems. It combines objective functions or heuristics in an abstract and hopefully efficient way, usually by treating them as black box-procedures.^{1 2 21 22}

• There is a wide variety of optimization problems in Smart Manufacturing.

- There is a wide variety of optimization problems in Smart Manufacturing.
- There also exists a wide variety of optimization algorithms.

- There is a wide variety of optimization problems in Smart Manufacturing.
- There also exists a wide variety of optimization algorithms.
- There are many different applications and almost all have specific requirements.

- There is a wide variety of optimization problems in Smart Manufacturing.
- There also exists a wide variety of optimization algorithms.
- There are many different applications and almost all have specific requirements.
- There is no (and can never be a) single, perfect algorithm to solve all of them.²³⁻²⁶

- There is a wide variety of optimization problems in Smart Manufacturing.
- There also exists a wide variety of optimization algorithms.
- There are many different applications and almost all have specific requirements.
- There is no (and can never be a) single, perfect algorithm to solve all of them.²³⁻²⁶
- Experience is needed: How do I recognize an optimization problem? How can I quickly make a software that can solve it?

- There is a wide variety of optimization problems in Smart Manufacturing.
- There also exists a wide variety of optimization algorithms.
- There are many different applications and almost all have specific requirements.
- There is no (and can never be a) single, perfect algorithm to solve all of them.²³⁻²⁶
- Experience is needed: How do I recognize an optimization problem? How can I quickly make a software that can solve it?
- We will try to get a good perspective and understanding of the very basics needed to navigate in the domain of optimization.

- There is a wide variety of optimization problems in Smart Manufacturing.
- There also exists a wide variety of optimization algorithms.
- There are many different applications and almost all have specific requirements.
- There is no (and can never be a) single, perfect algorithm to solve all of them.²³⁻²⁶
- Experience is needed: How do I recognize an optimization problem? How can I quickly make a software that can solve it?
- We will try to get a good perspective and understanding of the very basics needed to navigate in the domain of optimization.
- The goal is to be able to recognize and identify optimization problems as they occur in many fields, especially in Intelligent Manufacturing scenarios, and to develop basic algorithms to solve them.

References I

- Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO) [应用优化研究所] of the School OrArtificial Intelligence and Big Data [人工智能与大数据学院] of Hefei University [合肥学院], Hefei [合肥市], Anhui [安徽省], China [中国], 2018-2020. URL http://thomasweise.github.io/aitoa/.
- Thomas Weise. Global Optimization Algorithms Theory and Application. it-weise.de (self-published), Germany, 2009. URL http://www.it-weise.de/projects/book.pdf.
- Thomas Weise, Alexander Podlich, and Christian Gorldt. Solving real-world vehicle routing problems with evolutionary algorithms. In Raymond Chiong and Sandeep Dhakal, editors, *Natural Intelligence for Scheduling, Planning and Packing Problems*, volume 250 of *Studies in Computational Intelligence (SCI)*, chapter 2, pages 29–53. Springer-Verlag, Berlin/Heidelberg, October 2009. doi:10.1007/978-3-642-04039-9_2.
- 4. Thomas Weise, Alexander Podlich, Kai Reinhard, Christian Gorldt, and Kurt Geihs. Evolutionary freight transportation planning. In Mario Giacobini, Penousal Machado, Anthony Brabazon, Jon McCormack, Stefano Cagnoni, Michael O'Neill, Gianni A. Di Caro, Ferrante Neri, Anikó Ekárt, Mike Preuß, Anna Isabel Esparcia-Alcázar, Franz Rothlauf, Muddassar Farooq, Ernesto Tarantino, Andreas Fink, and Shengxiang Yang, editors, Applications of Evolutionary Computing Proceedings of EvoWorkshops 2009: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG, April 15–17, 2009, Tübingen, Germany, volume 5484/2009 of Lecture Notes in Computer Science (LNCS), pages 768–777, Berlin, Germany, 2009. Springer-Verlag GmbH. doi:10.1007/978-3-642-01129-0.87.
- Thomas Weise, Alexander Podlich, Manfred Menze, and Christian Gorldt. Optimierte Güterverkehrsplanung mit Evolutionären Algorithmen. Industrie Management – Zeitschrift für industrielle Geschäftsprozesse, 10(3):37–40, June 2009.
- Alexander Podlich. Intelligente Planung und Optimierung des Güterverkehrs auf Straße und Schiene mit Evolutionären Algorithmen. Master's thesis, University of Kassel, Fachbereich 16: Elektrotechnik/Informatik, Distributed Systems Group, Kassel, Hesse, Germany, February 2009.
- Manfred Menze. Evolutionäre Algorithmen zur Ad-hoc-Tourenplanung: InWeSt Intelligente Wechselbrückensteuerung. Technical report, Micromata GmbH, Kassel, Hesse, Germany, November 2010.
- Alexander M. Bronstein and Michael M. Bronstein. Numerical optimization. In Project TOSCA Tools for Non-Rigid Shape Comparison and Analysis. Technion – Israel Institute of Technology, Computer Science Department, Haifa, Israel, 2008. URL http://tosca.cs.technion.ac.il/book/slides/Milano08_optimization.ppt. Slides related to the book Numerical Geometry of Non-Rigid Shapes by Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel, published by Springer Verlage in 2008, ISBN: 978-0-387-73300-5.
- Jim Davis, Thomas F. Edgar, James Porter, John Bernaden, and Michael Sarli. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. *Computers & Chemical Engineering*, 47:145–156, December 2012. doi:10.1016/j.compchemeng.2012.06.037.

References II

- Mario Hermann, Tobias Pentek, and Boris Otto. Design principles for industrie 4.0 scenarios. In Tung X. Bui and Ralph H. Sprague Jr., editors, Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), January 5–8, 2016, Koloa, HI, USA, pages 3928–3937, Los Alamitos, CA, USA, 2016. IEEE Computer Society Press. ISBN 978-0-7695-5670-3. doi:10.1109/HICSS.2016.488.
- Siddhartha Kumar Khaitan and James D. McCalley. Design techniques and applications of cyberphysical systems: A survey. IEEE Systems Journal, 9(2), June 2015. doi:10.1109/JSYST.2014.2322503.
- Mark Bartolomeo, editor. Internet of Things: Science Fiction or Business Fact? Harvard Business Review. Harvard Business School Publishing, Brighton, MA, USA, November 2014. URL http://hbr.org/resources/pdfs/commy/verizon/19806_IHBR_Verizon_IoT_Nov_14.pdf.
- Jimmy Lin. Cloud Computing Lecture #1 What is Cloud Computing? (and an intro to parallel/distributed processing). University of Maryland, The iSchool, College Park, MD, USA, September 2008. URL http://www.umiacs.umd.edu/~jimmylin/cloud-2008-Fall/Session1.ppt.
- Bernard Marr. Big data: The 5 vs everyone must know, March 2014. URL http://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know/.
- Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz. Variants of Evolutionary Algorithms for Real-World Applications. Springer-Verlag, Berlin/Heidelberg, 2012. ISBN 978-3-642-23423-1. doi:10.1007/978-3-642-23424-8.
- Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. Sequencing and scheduling: Algorithms and complexity. In Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H. Zipkin, editors, *Handbook of Operations Research and Management Science*, volume IV: Production Planning and Inventory, chapter 9, pages 445–522. North-Holland Scientific Publishers Ltd., Amsterdam, The Netherlands, 1993. doi:10.1016/S0927-0507(05)80189-6.
- Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of machine scheduling: Complexity, algorithms and approximability. In Ding-Zhu Du and Panos M. Pardalos, editors, *Handbook of Combinatorial Optimization*, pages 1493–1641. Springer-Verlag US, Boston, MA, USA, 1998. ISBN 978-1-4613-7987-4. doi:10.1007/978-1-4613-0303-9_25. also pages 21–169 in volume 3/3 by Kluwer Academic Publishers.
- Stephen Arthur Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing (STOC'71), May 3–5, 1971, Shaker Heights, OH, USA, pages 151–158, New York, NY, USA, 1971. ACM. doi:10.1145/800157.805047.
- Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, *Complexity of Computer Computations. The IBM Research Symposia Series.*, pages 85–103. Springer, Boston, MA, USA, 1972. ISBN 978-1-4684-2003-6. doi:10.1007/978-1-4684-2001-2.9.

References III

- Scott Aaronson. The limits of quantum computers. Scientific American, 298(3):62-69, March 2008. doi:10.1038/scientificamerican0308-62. URL http://www.cs.virginia.edu/~robins/The_Limits_of_Quantum_Computers.pdf.
- Fred Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management Science (ISOR). Springer Netherlands, Dordrecht, Netherlands, 2003. ISBN 0-306-48056-5. doi:10.1007/b101874.
- Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Springer-Verlag, Berlin/Heidelberg, 2nd edition, 2004. ISBN 3-540-22494-7.
- David H. Wolpert and William G. Macready. No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fé, NM, USA, February 1995. URL http://www.santafe.edu/research/oublications/workingpapers/95-02-010.pdf.
- David H. Wolpert and William G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation (TEVC), 1(1):67–82, April 1997. doi:10.1109/4235.585893. URL http://citeseerx.ist.psu.edu/vieedc/summary?doi=10.1.1.39.6926.
- 25. Anne Auger and Oliver Teytaud. Continuous lunches are free plus the design of optimal optimization algorithms. Rapports de Recherche inria-00369788, Institut National de Recherche en Informatique et en Automatique (INRIA) Saclay, TAO Team, LRI Paris-Sud University, 91405 Orsay Cedex, France, March 21 2009. URL http://hal.inria.fr/docs/00/36/97/88/PDP/ccflRevisedVersionAugerTeytaud.pdf.
- Anne Auger and Oliver Teytaud. Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica, 57(1):121–146, May 2010. doi:10.1007/s00453-008-9244-5.