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• In this unit, we want to get a rough feeling about what optimization
is.

• So let us start by looking at some examples for optimization problems.
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Transportation Planning: Task

• Build a system which tells a logistics company what it needs to do to
fulfill all transportation orders at minimum costs.3–7

1. Find routes on the map and assignments of orders to containers and
containers to trucks/trains which minimize the undelivered orders and
the total distance for. . .

2. multiple depots and pickup and delivery locations,
while considering that

3. vehicles (trucks and trains) have capacity
limits and that there are

4. time windows for pickup and delivery
5. and constraints and laws.
6. Time limit for optimization: 1 day
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Transportation Planning: Problem

• This problem is complicated.

• No algorithm or existing solution is available.

• Problems like this one are also often NP-hard ⇒ worst-case runtime
needed to find the best possible solution grows like 2n with number n
of orders/cars ⇒ probably not possible to develop a useful “exact”
algorithm

• Programming experience, data structure classes, concrete
Mathematics. . . ⇒ these alone cannot solve this issue (since
NP-hard).

• Solution: adapt optimization algorithm (in our case: an Evolutionary
Algorithm) to the problem3–7.

• Before the problem was solved by hand, by manual planning with
Excel sheets. . .

• With an optimization algorithm, we can get better solutions than
that.

• In this course, you will learn how we can do such a thing.
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How do I arrange the components on a circuit board so I need
the shortest electrical cable length?
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What is optimization?

So what actually is optimization?1 2 8

Definition (Optimization Problem: Economical View)

An optimization problem is a situation which requires deciding for one
choice from a set of possible alternatives in order to reach a
predefined/required benefit at minimal costs.

Definition (Optimization Problem: Simplified Mathematical View)

Solving an optimization problem requires finding an input value y⋆ ∈ Y

from a set Y of allowed values for which a mathematical function
f : Y 7→ R takes on the smallest possible value.
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More Examples

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities
• I need to transport n items from here to another city
• Construct a truss which can hold a certain weight
• I want to build a large factory with n workshops. I know the flow of

material between each two workshops and now need to choose the
locations of the workshops such that the overall running cost incurred
by material transportation is minimized.

road

L4

L3

L5

the land with 5 locations

L2

L1

the 5 workshops which need to be assigned to the 5

locations and the different material flows between them
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More Examples

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities
• I need to transport n items from here to another city
• Construct a truss which can hold a certain weight
• Assign workshops to locations
• Satisfy Boolean formula
• Find the minima of complex, multi-dimensional mathematical formulas
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What is Smart Manufacturing?

Smart Manufacturing9. . .

• has the goal of optimizing development, production, and logistics.

• employs computer control and high levels of adaptability in the
multi-phase process of creating a product from raw material.

• utilizes advanced information and manufacturing technologies to
enable flexibility in production processes to address a dynamic market.

• requires increased workforce training for flexibility and use of the
technology instead of simple repetitive tasks as in traditional
manufacturing.
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• Cyber-Physical Systems: deep connection between physical and
software systems, often networks of interacting elements.11

• Internet of Things: network enabling physical things to exchange data
or being controlled, allowing a computer system to directly interact
with the physical world.12

• Cloud Computing: move data and computation into the cloud (not
just storage, but also computational resources, applications).13

• Big Data: Collection, processing, and evaluation of huge amounts of
data.14

• These are some of the ingredients. They do not make the production
intelligent yet. They are technological enablers.

• Computational Intelligence and Optimization1 2 15: automatic
intelligent decisions, automated planning, scheduling, design,
management, . . . . . . can make systems intelligent
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• So how is all of this related to smart manufacturing?

• No enterprise can waste money or time or material or energy or any
other resource.

• An enterprise must try to make decisions which are optimial from the
perspective of cost and resource consumption.

• An enterprise must strive to improve its processes and products.

• An enterprise should want to have software that can automatically
make good suggestions, which can save costs and resources for the
daily operations, the long term planning, and/or even its
product/organizational development.

• All kinds of the previously mentioned problems can occur in
manufacturing.

• For example, logistics exist inside and outside a company, and even on
the factory floor!
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• Our factory receives a set of customer orders and we need to assign
them to workers/machines in order to complete them in time.

• We need to plan which worker works on which machine or task based
on preferences, regulations, and efficiency.

• We need to plan the purchase of raw material based on expected
production orders.

• We need to store items in the warehouse efficiently for fast access.

• We need to cut a large piece of cloth into smaller pieces for clothing
production while minimizing waste.

• We need to route inter-workshop or inter-workstation material
transportation.

• We need to plan maintenance of machinery.

• . . .
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Examples from Smart Manufacturing

• When developing a real-world application of optimization, there are
two issues:

1. Developing and implementing a good algorithm that can solve the
problem at hand and

2. integrating this implementation into the existing software ecosystem.

• We focus only on the first of the two issues: optimization algorithms
and their implementation.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).

• Clearly, there is (at least) one shortest tour.
• Theory proofs that the time to find this tour may grow exponentially

with the number of cities we want to visit in the worst case.16–20
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• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).
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• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).

• But we can find just some tour very quickly.
• Of course the quality of that tour will be lower.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).

• Of course the quality of that tour will be lower: the tour will be longer
than the best one.

very little / fast consumed runtime very much / too (?) long
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• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).

• Of course the quality of that tour will be lower.
• Is there something inbetween?
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).

• Is there something inbetween?
• (Meta-)Heuristic optimization algorithms try to find solutions which are

as good as possible as fast as possible.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).

• (Meta-)Heuristic optimization algorithms try to find solutions which are
as good as possible as fast as possible.

• Optimization often means to make a trade-off between solution quality
and runtime.

Different algorithms offer different

trade-offs between runtime and

solution quality. Good algorithms

resulting from research push the

frontier of what can be achieved

towards the bottom-left corner.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).

• Optimization often means to make a trade-off between solution quality
and runtime and development time (the time from the definition of the
problem until we have a software for producing solutions).

Different algorithms offer different

trade-offs between runtime and

solution quality. Good algorithms

resulting from research push the

frontier of what can be achieved

towards the bottom-left corner.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical Traveling Salesman Problem (TSP).

• Optimization often means to make a trade-off between solution quality
and runtime and development time (the time from the definition of the
problem until we have a software for producing solutions).

Different algorithms offer different

trade-offs between runtime and

solution quality. Good algorithms

resulting from research push the

frontier of what can be achieved

towards the bottom-left corner.
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Metaheuristics

• Heuristics are often simple, specialized algorithms that create an
approximate solution for a very specific, narrow class of problems, say
a TSP with cities in the Euclidean plane.

• However, there are many different optimization problems.

• Should we develop a completely new method for each problem?

• No. We want general algorithms that can be adapted to different
problems. (also to reduce the development time . . . we often want a
prototype quickly and can add more complex logic later)

Definition (Metaheuristic)

A metaheuristic is a method for solving a general class of problems. It
combines objective functions or heuristics in an abstract and hopefully
efficient way, usually by treating them as black box-procedures.1 2 21 22
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Summary and Outlook

• There is a wide variety of optimization problems in Smart
Manufacturing.

• There also exists a wide variety of optimization algorithms.

• There are many different applications and almost all have specific
requirements.

• There is no (and can never be a) single, perfect algorithm to solve all
of them.23–26

• Experience is needed: How do I recognize an optimization problem?
How can I quickly make a software that can solve it?

• We will try to get a good perspective and understanding of the very
basics needed to navigate in the domain of optimization.

• The goal is to be able to recognize and identify optimization problems
as they occur in many fields, especially in Intelligent Manufacturing
scenarios, and to develop basic algorithms to solve them.
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