Aje 2)

HEFEI UNIVERSITY 1AQ2

Optimization Algorithms
2. Structure

Thomas Weise - % £ .%&
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn/5

Institute of Applied Optimization (IAQ) | & Atk Ae#t AT
School of Artificial Intelligence and Big Data | AL#H it 5 KR&EF X
Hefei University | &2 # 1%
Hefei, Anhui, China | F B=#4 &

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn/5

QOutline

Introduction

Example Problem: Job Shop Scheduling
Problem Instance

Solution Space

Objective Function

From Solution Space to Search Space
Number of Possible Solutions

Search Operators

© 0o N o a0 ko=

Termination

10. Summary

Introduction

The Structure of Optimization

® So we know roughly what an optimization problem is and that
metaheuristics’™ are algorithms to solve them.

The Structure of Optimization

® So we know roughly what an optimization problem is and that
metaheuristics’™ are algorithms to solve them.

® But we do not really know yet how that works.

The Structure of Optimization

® So we know roughly what an optimization problem is and that
metaheuristics’™ are algorithms to solve them.

® But we do not really know yet how that works.

® We will approach this topic based on an example from the field of
Smart Manufacturing.

The Structure of Optimization

® So we know roughly what an optimization problem is and that
metaheuristics’™ are algorithms to solve them.

® But we do not really know yet how that works.

® We will approach this topic based on an example from the field of
Smart Manufacturing.

® We will first learn about the basic ingredients that make up an
optimization task.

The Structure of Optimization

® So we know roughly what an optimization problem is and that
metaheuristics’™ are algorithms to solve them.

® But we do not really know yet how that works.

® We will approach this topic based on an example from the field of
Smart Manufacturing.

® We will first learn about the basic ingredients that make up an
optimization task.

® Then we will step-by-step work our way from stupid to good
metaheuristics for solving it.

Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

® We will learn key ideas and concepts that apply to many different
scenarios.

Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

® We will learn key ideas and concepts that apply to many different
scenarios.

® We could look at them from an abstract point of view, similar to an
abstract Maths class.

Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

® We will learn key ideas and concepts that apply to many different
scenarios.

® We could look at them from an abstract point of view, similar to an
abstract Maths class.

® Then this lesson would be short. ..

Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

® We will learn key ideas and concepts that apply to many different
scenarios.

® We could look at them from an abstract point of view, similar to an
abstract Maths class.

® Then this lesson would be short... ...but maybe you won't get a
very good feeling for the topic.

Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

® We will learn key ideas and concepts that apply to many different
scenarios.

® We could look at them from an abstract point of view, similar to an
abstract Maths class.

® Then this lesson would be short... ...but maybe you won't get a
very good feeling for the topic.

® |nstead, we will directly take the abstract concepts and look how they
are implemented on one concrete problem.

Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

® We will learn key ideas and concepts that apply to many different
scenarios.

® We could look at them from an abstract point of view, similar to an
abstract Maths class.

® Then this lesson would be short... ...but maybe you won't get a
very good feeling for the topic.

® |nstead, we will directly take the abstract concepts and look how they
are implemented on one concrete problem.

® This makes the lesson longer, but | hope it will provide for a better
understanding.

Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

® We will learn key ideas and concepts that apply to many different
scenarios.

® We could look at them from an abstract point of view, similar to an
abstract Maths class.

® Then this lesson would be short... ...but maybe you won't get a
very good feeling for the topic.

® |nstead, we will directly take the abstract concepts and look how they
are implemented on one concrete problem.

® This makes the lesson longer, but | hope it will provide for a better
understanding.

® The example we will use is just an example — the concepts can be
implemented differently for almost all optimization problems.

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance Z to be solved

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved —
we develop software for solving a class of problems, but this software is
applied to specific problem instances, the actual scenarios

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f : Y — R, which rates "how good” a candidate
solution y € Y is.

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
4. a search space X, i.e., a simpler data structure for internal use, which
can more efficiently be processed by an optimization algorithm than Y

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
4. a search space X,
5. a representation mapping v : X — Y, which translates “points” z € X
to candidate solutions y € Y

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
4. a search space X,
5. a representation mapping v : X +— Y,
6. search operators searchOp : X" — X, which allow for the iterative
exploration of the search space X

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
4. a search space X,
5. a representation mapping v : X +— Y,
6. search operators searchOp : X" — X, and
7. a termination criterion, which tells the optimization process when to
stop.

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
4. a search space X,
5. a representation mapping v : X +— Y,
6. search operators searchOp : X" — X, and
7. a termination criterion.

® | ooks complicated..

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
4. a search space X,
5. a representation mapping v : X +— Y,
6. search operators searchOp : X" — X, and
7. a termination criterion.

® | ooks complicated, but don't worry..

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
4. a search space X,
5. a representation mapping v : X +— Y,
6. search operators searchOp : X" — X, and
7. a termination criterion.

® | ooks complicated, but don't worry. We will do this one-by-one.

Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,

5. a representation mapping v : X +— Y,

6. search operators searchOp : X" — X, and
7. a termination criterion.

® | ooks complicated, but don't worry. We will do this one-by-one.

® We want to get an understanding of the structure of optimization
problems from the metaheuristic perspective by looking at one
concrete problem from production planning.

Example Problem: Job Shop Scheduling

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

i
iseToetse
® [

A % P

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Scheduling Problem

® The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

Job Shop Scheduling Problem

® The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

® We have a factory with m machines.

Job Shop Scheduling Problem

® The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

We have a factory with m machines.
We need to fulfill n production requests, the jobs.

Each job will need to be processed by some or all of the machines in a
job-specific order.

Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

We have a factory with m machines.

We need to fulfill n production requests, the jobs.

Each job will need to be processed by some or all of the machines in a
job-specific order.

Also, each job will require a job-specific time at a given machine.

Job Shop Scheduling Problem

® The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Fach job will need to be processed by some or all of the machines in a
job-specific order.

® Also, each job will require a job-specific time at a given machine.

® The goal is to fulfill all tasks as quickly as possible.

Job Shop Scheduling Problem

® The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Fach job will need to be processed by some or all of the machines in a
job-specific order.

® Also, each job will require a job-specific time at a given machine.
® The goal is to fulfill all tasks as quickly as possible.

® This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

Job Shop Scheduling Problem

® The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Fach job will need to be processed by some or all of the machines in a
job-specific order.

® Also, each job will require a job-specific time at a given machine.
® The goal is to fulfill all tasks as quickly as possible.

® This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

® This problem is N'P-hard.1%!

What we will do

® |n this course, we will use the JSSP as example domain.

What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply
them to this problem.

What we will do

In this course, we will use the JSSP as example domain.

[]

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply

them to this problem.
® But

What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply
them to this problem.

® But we will do this from an educational perspective

® We will not focus on the best possible data structures or highest
possible efficiency.

What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply
them to this problem.

® But we will do this from an educational perspective

® We will not focus on the best possible data structures or highest
possible efficiency.

® |t needs years of research to get there. ..

What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply
them to this problem.

® But we will do this from an educational perspective

® We will not focus on the best possible data structures or highest
possible efficiency.

® |t needs years of research to get there. ..

® We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain

What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply
them to this problem.

® But we will do this from an educational perspective

® We will not focus on the best possible data structures or highest
possible efficiency.

® |t needs years of research to get there. ..

® We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach

What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply
them to this problem.

® But we will do this from an educational perspective

® We will not focus on the best possible data structures or highest
possible efficiency.

® |t needs years of research to get there. ..

® We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach, test and compare different working approaches

What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply
them to this problem.

® But we will do this from an educational perspective

® We will not focus on the best possible data structures or highest
possible efficiency.

® |t needs years of research to get there. ..

® We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach, test and compare different working approaches, (normally
you would then improve them further, but we will skip this)

Problem Instance

The Input: Problem Instances

® The JSSP is a type of problem.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance 7.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance 7.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance 7.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

® Beasley? manages the OR Library of benchmark datasets from
different fields of operations research (OR)

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance 7.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

® Beasley? manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at http://
people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance 7.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

® Beasley? manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at http://
people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

® More information about these instances has been collected by
van Hoorn®*' at http://jobshop.jjvh.nl.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance 7.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

® Beasley? manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at http://
people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

® More information about these instances has been collected by
van Hoorn®*' at http://jobshop.jjvh.nl.

® \What do such JSSP instances look like?

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

Demo Instance

(+++++++++++++++++++++++)
A simple demo

45

010 120 220 340 4 10

120 010 330 250 4 30

230 120 412 340 010

450 330 215 020 115
(+++++++++++++++++++++++

Demo Instance

. (+++++++++++++++++++++++)
number n of jobs

A simple demo
\—-4 5
010 120 220 340 410
120 010 330 250 4 30
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

A simple demo
~— 115

010 120 220 340 410
120 010 330 250 4 30
230 120 412 340 010

450 330 215 020 115
| +++++++++++++++++++++++

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

A simple demo
\\\‘_"45
job0 {0 10 1 20 2 20 3 40 4 10|
120 010 330 250 4 30
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

A simple demo
\\\‘_"45
010 120 220 340 4 10
job1 /120 010 3 30 2 50 4 30|
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

A simple demo
\—-45
010 120 220 340 4 10
120 010 330 250 4 30
job2 1230 120 4 12 3 40 0 10|
450 330 215 020 115
0 e 2 b . . e £ e o o

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

A simple demo
~—1{15

010 120 220 340 410
120 010 330 250 4 30
230 120 412 340 010

job3 1450 330 215 0 20 1 15|
(+++++++++++++++++++++++

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

A simple demo
\\\‘_"45
job0 {0 10 1 20 2 20 3 40 4 10|
120 010 330 250 4 30
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

A simple demo
\—-45
job 0]l0O 10 1 20 2 20 3 40 4 10|
120 010 330 250 4 30
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Job 0 first needs to be processed by machine 0 for 10 time units

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo
L4 5

job0|fo 10 1 20 2 20 3 40 4 10|
120 010 330 250 4 30
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo
L4 5

job0 |fo 10 1 20 2 20 3 40 4 10|
120 010 330 250 4 30
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo
L4 5

jobo Jlo 10 1 20 2 20 3 40 4 10|
120 010 330 250 4 30
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units, it then goes to machine 3 for 40 time units

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo
L4 5

jobo Jlo 10 1 20 2 20 3 40 4 10|
120 010 330 250 4 30
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 4 for 10 time units.

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

A simple demo
\—-4 5
010 120 220 340 4 10
job1 /120 010 3 30 2 50 4 30|
230 120 412 340 010
450 330 215 020 115
(+++++++++++++++++++++++

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo
-4 5
010 120 220 340 4 10
job1]{1 20 0 10 3 30 2 50 4 30|
230 120 412 340 0 10
450 330 215 020 115
\++++++++++++++++++++H+H++

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo
-4 5
010 120 220 340 4 10
job1]{1 20 0 10 3 30 2 50 4 30|
230 120 412 340 0 10
450 330 215 020 115
\++++++++++++++++++++H+H++

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo

L4 5

010 120 220 340 4 10

job1 |[1 20 0 10 3 30 2 50 4 30|
230 120 412 340 010

450 330 215 020 115
(+++++++++++++++++++++++

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo

L4 5

010 120 220 340 4 10
job1|[1 20 0 10 3 30 2 50 4 30|
230 120 412 340 010

450 330 215 020 115
(+++++++++++++++++++++++

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units, and finally it
goes to machine 4 for 30 time units.

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo

L4 5

010 120 220 340 410
120 010 330 250 4 30
job2 1230 120 4 12 3 40 0 10|
450 330 215 020 115
(+++++++++++++++++++++++

Job 2 first needs to be processed by machine 2 for 30 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 4 for 12 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 0 for 10 time units.

Demo Instance

number m of machines
. [(+++++++++++++++++++++++ ‘/
number n of jobs

_Asimpledemo

L4 5

010 120 220 340 410

120 010 330 250 4 30

230 120 412 340 010

job3 |4 50 330 215 0 20 1 15|
(+++++++++++++++++++++++

And Job 3 first needs to be processed by machine 4 for 50 time units, it
then goes to machine 3 for 30 time units, it then goes to machine 2 for 15
time units, it then goes to machine 0 for 20 time units, and finally it goes
to machine 1 for 15 time units.

Demo Instance

number m of machines
[(+++++++++++++++++++++++ ‘/

number n of jobs

_

A simple demo

L4 5

Each of the n jobs

jobolo 10 120 220 3 40 A0 has m ,
jobl]1 20 010 3 30 250 4 30 each consisting of
j0b2 230 120 412 340 0 10 a machine index and
job31450 330 215 020 115

| +++++++++++++++++++++++

a time requirement.

Instance abz7

Instance abz7 by Adams et al.”®

20 jobs Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 7)

15 machines

2 24 2 17 27 021 625 827 726 130 53111
6 30 3151220 11 19 1 24 13 156 10 28 236 526 7 15 0
635 0221323 732 220 3121219 1023 917 1 14 5
920 629 119 7 14 1233 430 032 521 11 29 10 24 14
11 23 13 20 128 632 7 16 518 824 923 324 10 34 2
8241119 1421 133 734 635 5401036 323 226 4
1327 330 621 819 1212 427 239 9 13 14 12 5 36 10
527 419 629 920 321 10 40 8 14 14 39 13 39 227 1
133211 29 824 327 540 421 926 027 1427 616 2
1235 111 539 14 18 7 23 034 32413 11 830 11 31 4
10 28 537 1229 131 725 813 14 14 4 20 3 27 9 25 13
0221125 5281335 431 821 9201419 229 7 32 10
1239 532 236 814 3281337 038 620 7 19 11 12 14
828 129 14 40 12 23 4 34 533 627 10 17 020 7 28 11
92114 3¢ 3301238 011 1116 214 514 134 8 33 4
913 14 40 736 417 013 533 82513 24 10 23 3 36 2
325 515 2281240 739 131 835 6311136 4 12 10
12 22 10 14 012 220 512 118 11 17 839 14 31 3 31 7
518 10 30 7 38 14 22 13 15 11 20 9 16 3 17 1 12 2 13 12
931 8391227 114 533 33111221336 016 7 11 14

-

e

-

-

-
NBEPWONOONNONNONNOP OO

- =
OCOMONTNWONONHONO B

-

Instance 1a24

Instance 1a24 by Lawrence®.

I

DO ONODMMNDNON OO0 < 00
~— N~ ~— < 00 O — M

ONMNNMAFANAMOANOS O

ONANTDAINEANMO O O LW
NOFAOANNMMMOFTO0 AN

AN MULOOFHFHAOL O

VONOMLOLOO v FLW 00 O Mmoo
OANMNO < < I~ ANANM—00N

LAV MOWOHOLWO O I~

ONN—NDONMO H NN WO N~
NEHADA—AOON~NOONNN~ N~

ADOONMNMIOIANNOONMM

NDHAF D000 NO L WOWNN +
MO O 35231877H
OFNOOAFIFIMOOLO MO +

OOV OMWOW—ENOVOVOOON +
MNOOOMOOOOOF O I +

(Table 7, instance 4)

+

4
1
0
5
1
9
9
2
7
1
2
8
2
8
0
++

FTOMNOMANO AN O HOLW
M~ A © MOOMOANWOAAOH

QOFOOLOAMLO LN

NMNODDONDLOOFOMMNOM
MO IFLOINMMMNSWLAN

OCMULFOFOLOMETANMLO

LMD HONDNDHOON
MM MNFOOM DO O

DOMNMMANOANANMNOOMM—N

THO OO WFO AN OO
AL OOOMNMOMWOOON

AN O AAN0OOIFAINOO

10 machines

awrence 15x10 instance

22452994985
e

15 jobs

Instance swv15

Instance swv15 by Storer et al."”

++

AR

50 jobs Storer, Wu, and Vaccari hard 50x10

~~J50] [t0}—10 machines
2 93 4 40 1

+
0 W R ON O KON OO RN COWON A ORON O POWOONWOR W R EO

0 3
92 4 80 1 76 3 59
44 2 92 3 96 4 77
60 2 19 3 76 0 73
2 0 24 3 41 1 2
41 2 35 1 32 4 18
59 0 45 4 53 3 44
30 4 51 3 25 0 51
47 3 18 2 40 4 62
33 1 68 0 41 4 72
28 1100 4 20 0 35
65 2 12 4 53 3 93
58 1 60 4 97 3 31
64 0 58 1 49 2 45
10 4 8 3 72 2 37
93 0 87 1 87 2 18
72 0 56 3 57 2 15
36 3 63 4 79 2 32
83 4 20 0 9 1 38
100 3 29 2 60 4 63
81 0 60 3 62 4 48
40 4 80 1 41 2 10
3 2 12 0 35 3 17
36 2 41 3 27 4 36
65 3 27 4 T4 0 32
48 1 8 2 92 4 95
84 2 50 0 70 4 24
95 4 41 2 11 3 98
84 2 49 1 17 3 69
48 0 29 4 1 1 64
81 4 25 3 33 0 22
62 4 25 0 21 2 20
43 0 16 2 91 3 96
91 2 20 4 44 0 42
33 3 95 4 68 2 22
15 3 47 1 24 2 31
95 0 42 4 5 1 57
54 0 15 1 20 3 64
22 4 27 1 77 3 25
68 1 82 2 16 0 83
64 0 76 2 8 3 71
94 1 45 2 94 4 84
23 1 10 0 82 3 93
75 2 27 4 97 3 9
42 3 41 2 35 0 75
72 1 63 0 33 2 27

1 0 4

1 0 4

1 0 3

1 4

9 4 3 2
S

MRS 0 G0 8 8 0 N G0 0 G0 (R 1 GO O B 09 1 G0 N R G R R R O O N

instance (Table 2, instance

5 16 9 74 8 11 6 51
5 8 9 17 6 78 7 30
9 10 7 49 5 84 8 59
7 13 8 93 5 68 9 50
9 44 7 79 8 81 5 16
8 98 6 29 5 19 7 14
5 84 6 23 7 45 8§ 39
6 60 5 45 7 89 8§ 25
5 36 7 93 8 77 9 90
6 69 7 47 5 22 9 47
5 24 9 41 6 42 7 100
8 18 7 23 5 60 6 89
9 8 5 64 7 38 6 85
8 49 6 22 5 99 9 15
5 70 7 45 9 8 6 83
8 78 5 67 9 20 6 17
6 41 5 40 9 8 8 32
6 25 7 86 9 91 5 21
7 5 9 99 5 18 8§ 29
8 71 6 35 5 26 9 9
7 28 5 69 8 92 6 79
8 28 9 51 7 33 6 82
9 29 7 18 8 93 6 94
7 64 6 88 5 25 9 92
5 8 8 73 6 92 7 83
8 72 9 76 5 58 7 11
9 55 5100 6 70 7 4
5 64 6 8 7 26 8 6
8 75 6 45 9 38 7 59
5 23 7 64 9 31 6 56
5 74 9 56 8 33 7 85
6 3 9 9 5 91 8 90
5 11 9 91 7 41 8§ 35
9 57 6 15 5 38 8§ 42
7 53 8 13 9 70 5 22
8 14 9 28 7 59 5 52
6 3 9 21 8 70 5 9
9 40 7 6 5 8 6 91
8 72 9 61 6 75 7 4

7 10 8 8 5 41 9 21
5 97 7 8 6 40 8 70
8 41 5 30 7 47 6 19
8 67 7 9 9 18 5 22
9 14 5 50 7 31 8 62
9 65 7 38 6 38 8 51
5 52 7 42 9 10 6 14
6 49 5 22 8 31 9 69
6 8 7 25 8 99 5 67
7 96 8 79 9 68 5 76
7 12 9 45 6 52 8 49

NPEIRNPPROORNDNRA VR VRRNORAODNNONAD VNN VRODBROOORAAD~ &

Instance yn4

Instance yn4 by Yamada and Nakano®

20 jobs Yamada and Nakano 20x20 instance (Table 4, instance 4)

[20——20 machines
1 41738 021 6

6 3 1 15 156 42 8 17 7 41 18 10 10 26 11 24 1 31 19 25 14 31 13 33 4 35 9
541 11 33 6 15 16 38 040 14 38 3 37 1201322 434 7 16 17 39 9 15 2 19 10 36 12
1734 112 16 10 7 47 13 28 16 27 0 19 6 34 19 33 1240 9 37 14 24 8 15 10 34 244 3
548 7 46 16 47 10 45 14 16 8 25 034 3 24 12 35 18 156 2 48 13 19 11 10 1 48 17 16 15
12 .47 323 948 16 45 14 39 6 42 832 15 11 13 16 5 14 11 19 1 46 19 10 10 17 7 41 2
18 14 16 20 1 18 12 14 13 10 6 16 524 4 18 0 24 11 18 15 42 19 13 3 23 14 40 9 48 8
027 12 15 4 26 13 19 17 14 549 7 16 18 28 16 16 8 20 9 36 221 14 30 3 36 1 17 15
03216 156 17 12 7 46 3 37 18 43 11 40 13 43 948 4 36 15624 825 133 1432 526 6
10 34 6 33 1525 846 020 18 33 4 19 13 45 247 132 3 12 11 29 16 29 5 46 12 17 7
1326 347 544 649 12217 12 10 28 19 36 9 27 4 25 14 48 7 11 16 49 12 24 11 48 2
13 23 18 48 14 15 042 336 8 15 632 10 18 1 45 15 23 11 45 2 13 17 21 1232 7 44 5
17 37 749 15645 228 915 8351229 1344 126 425 530 339 015 14 28 18 23 6
010 637 31513 13 10 11 249 1 28 14 28 15 13 8 29 12 21 16 32 11 21 4 48 5 11 17
18 38 041 4301343 6 11 243 14 27 326 9 30 15 19 16 36 1 31 17 47 5 41 10 34 8
624 530 710 10 35 828 16 43 19 12 944 156 15 3 16 23518 43 038 4 16 1 29 17
348 6351343 237 17 18 527 927 7 41 1221528 16 18 10 37 18 48 4 10 8 14 11
013 1338 734 642 136 545 18 24 8 35 14 26 19 30 12 47 16 24 11 47 4 40 10 43 3
16 30 13 47 19 49 8 20 4 40 3 46 17 21 14 33 6 44 7 23 924 048 10 43 1541 232 5
13 10 5 36 12 18 16 48 0 27 14 43 10 46 6 27 7 46 19 35 11 31 2 18 8 24 3 23 17 29 18
9 45 16 44 0 43 17 31 14 35 13 17 12 42 3 14 18 37 10 39 6 48 7 38 15626 4 49 2 28 11

-

e
~NOWWONONOOR GG

11
12
12

12
15
8

Problem Instance Data in Java

® How can we represent such data in Java program code?

Problem Instance Data in Java

® How can we represent such data in Java program code?

package aitoa.examples. jssp;
public class JSSPInstance {
public final int m;
public final int n;

public final int[1[] jobs;

Solution Space

Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
input we get.
® But what output should we produce?

Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
input we get.
® But what output should we produce?

® |n other words, what is a solution for an instance of the JSSP?

Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

® But what output should we produce?

® |n other words, what is a solution for an instance of the JSSP?
® Basically, a Gantt Chart®?.

Output: Candidate Solutions and Solution Space Y

one possible solution for the demo instance, illustrated as Gantt chart

—

Output: Candidate Solutions and Solution Space Y

one possible solution for the 1a24 instance, illustrated as Gantt chart

O -« G 6 11 2 13

o o RN - N o e B
. off - DN BN RO - e

‘N T TR I O

Rows om0 o EEEEE e W
o 11 s 2 la24 | 13 6—_
T

0 200 400 600 800

Output: Candidate Solutions and Solution Space Y

one possible solution for the yn4 instance, illustrated as Gantt chart

17 CN |
D 13 A 8 EEme [
11 2 EOMZ MEI569 17
17 NS EECI I EEE2l 1561040
8 11 1 m 15 2 N 1319 4 17 B 6 [[| 9
| 21 MoNs EEN 17 W13 9 [4umel 6 15 11 2 8 NS NN
1 9NN 17 15 HEN6 W |13 8 2 11 B1 7 4 | 0 |
6 18} 11 H 9 2 smem wm 13 KIAE 17
| | 8 BEENI5S 9 |4 o) mmem 11 6 17 218
| ESNErY 0 9 EEEENONNN 15 17 w4 2 13 N 6 E
15 4w 9o N7 6 13M21 Wz 2 | < 0 5 13 N [B
8 17021 EE3SNg 1 6 el 20 W13 EHmem 9
I 11 7 Emel 2 15 6O 17EEEEONONNDN M2 8 am
W20 8 15EAE 9 [EDENGE H 17 EEWem 2 an B 11 6 |
R 9 KB 15 6 B meE N 11 8 4Em C13017HS WA KN 2
6 17 13 8 HY9 H2E 11 NENoN I E e Hom4 2 m
15 B 9 Hol 7w 17 4w Bl 13 el 11 6 B 2
12 15 11 8 HEN 6 [EEEE Hommo 17 2 0]
8“__136_ EER 17
yn4 15 BEE 9 : “
0 200 400 600 800

Output: Candidate Solutions and Solution Space Y

one possible solution for the swv15 instance, illustrated as Gantt chart

o BN I PR e TE= I 1T W]
. || W (ol =] IS e s -l
. 5B 1~ - MEEREE - 8 | Bl IiE

o BN < SO Xl KN 1 0 <

off 2 - |) KON <l O~ (R o I |

22 W WX - - 255 QR g~ il E
il Ol M~0 OEEDE 10 -E=0e I
o B B I I~ K~ o v+« S

Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

® But what output should we produce?
® |n other words, what is a solution for an instance of the JSSP?
® Basically, a Gantt Chart®?.

® A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
Input we get.

® But what output should we produce?

® |n other words, what is a solution for an instance of the JSSP?

® Basically, a Gantt Chart®?.

® A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

® The solution space Y is the set of all possible feasible solutions for
one JSSP instance.

Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
Input we get.

® But what output should we produce?

® |n other words, what is a solution for an instance of the JSSP?

® Basically, a Gantt Chart®?.

® A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

® The solution space Y is the set of all possible feasible solutions for
one JSSP instance.

® QOne possible solution is called candidate solution and it can be
illustrated as Gantt chart.

As Java Class

® We now need to represent this information as a Java class.

As Java Class

® We now need to represent this information as a Java class.

package aitoa.examples. jssp;
public class JSSPCandidateSolution {

public int [J[] schedule;

As Java Class

® We now need to represent this information as a Java class.

® Each of the m lists in holds n operations for

each machine as three values jobID, start time, end time, i.e., has
length 3n.

package aitoa.examples. jssp;
public class JSSPCandidateSolution {

public int [J[] schedule;

As Java Class

new int[]1[] {
{06, 0, 10,

1, 20, 30,

{1, 0, 20, 2, 30, 50,
{2, 0, 30, 0, 70, 90,
{1, 30, 60, 3, 60, 90,
{3, 0, 50, 2, 50, 62,

3, 155, 175, 2, 175, 185},
0, 50, 70, 3, 175, 190},
1, 90, 140, 3, 140, 155},
0, 90, 130, 2, 130, 170},
0, 130, 140, 1, 140, 170}

}
4 0 1 I
3 1 3 0
2 0 L &
1 2 N
0 | , ER2 |
0 50 100 150

As Java Class

new int[]1[] {

MO{GI 0;
mM14{1, O,
M2{2, 01
M3 {1, 30,
M4 {3, O,
}

4

3

2

1

0

10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

1 3 0

0 1 3

2 KN

50 100 150

As Java Class

new int[]1[] {

o, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{3, 0o, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{4, 0o, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3 0o, 50, 2, 50, 62, 6, 130, 140, 1, 140, 170}

100 150

As Java Class

new int[]1[] {

{0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{2, P, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 3p, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, o, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}
}

1 Dl

3 3 0]

2 0 1 3

1 2 N

0 | 3 i

0 50 100 150

As Java Class

new int[][] {
{6, O,
{1, 0,
{2, o,
{1, 30,
{3,

~ N~ 0~ 0~ 3

NWONK
HNWWN

175,
175,
140,
130,
140,

As Java Class

new int[]1[] {
{06, 0, 10, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o0, 20, p, 30, 50, 0, 50, 70, 3, 175, 190},
{2, 0, 30, O, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60,3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, 0, 50,/2, 50, 62, 0, 130, 140, 1, 140, 170}

0 50 100 150

As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

1, , 30, 3, 155, 175, 2, 175, 185},
2, jo, 50, 0, 50, 70, 3, 175, 190},
o, yo, 90, 1, 90, 140, 3, 140, 155},
3,/60, 90, 0, 90, 130, 2, 130, 170},
2,/50, 62, 0, 130, 140, 1, 140, 170}

50 100 150

As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

1, 20, , 3, 155, 175, 2, 175, 185},
2, 30, 30, 0, 50, 70, 3, 175, 190},
0, 70, pQo, 1, 90, 140, 3, 140, 155},
3, 60,/90, 0, 90, 130, 2, 130, 170},
2, 50/ 62, 0, 130, 140, 1, 140, 170}

50 100 150

As Java Class

new int[]1[] {

{01 0; 10;
{1, o, 20,
{2, 0, 30,
{1, 30, 60,
{3r 0; 50;
}
4
3
2

0 50 100 150

As Java Class

new int[][] {

{06, 0, 10, 175, 185},
{1, o0, 20, 175, 190},
{2, 0, 30, 140, 155},
{1, 30, 60, 130, 170},
{3, 0, 50, 170}
}
4
3
2
1
0

0 50 100 150

As Java Class

new int[]1[] {

1, 20, 30, 3, 155, , 2, 175, 185},
2, 30, 50, 0, 50, 7%, 3, 175, 190},
0, 70, 90, 1, 90, 144, 3, 140, 155},
3, 60, 90, 0, 90, 1306\ 2, 130, 170},
2, 50, 62, 0, 130, 140, 1, 140, 170}

{0, 0, 10,
{1, 0o, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,
}

4

3

2

1

0

0

50 100 150

As Java Class

new int[]1[] {

20, 30, 3, 155, 175, @&, 175, 185},
30, 50, 0, 50, 70, 3, 175, 190},
70, 90, 1, 90, 140, 3} 140, 155},
60, 90, 0, 90, 130, 2) 130, 170},
50, 62, 0, 130, 140, 1,\ 140, 170}

NWONK

{0, 0, 10,
{1, 0o, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,
}

4

3

2

1

0

0

50 100 150

As Java Class

new int[]1[] {

{0, 0, 10, 1, 20, 30, 3, 155, 175, 2, , 185},
{1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}
}

4

3 1 3 0]

2 0 1 3

1 2 A

0

0 50 100 150

As Java Class

new int[]1[] {
{6, 0, 10, 1, 20, 30, 3, 155, 175, 2,
{1, o0, 20, 2, 30, 50, 0, 50, 70, 3,
{2, 0, 30, 0, 70, 90, 1, 90, 140, 3,
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2,
{3, 0, 50, 2, 50, 62, 0, 130, 140, 1,

3 1 3 0]

2 0] 1 3
1 2

0

175,
175,
140,
130,
140,

oo

155},
170},
170}

As Java Class

new int[][] {
{6, 0, 10, 1, 20,
, 0, 20, 2, 30,
{2, 0, 30, 0, 70,
{1, 30, 60, 3, 60,
{3y 0, 50, 2, 50,

30, 3, 155, 175,
50, 0, 50, 70,
90, 1, 90, 140,
90, 0, 90, 130,
62, 0, 130, 140,
0
1

175, 185},
175, 190},
140, 155},
130, 170},
140, 170}

HNWWN

~ 0~ 0~ 0~ 0~

100

As Java Class

new int[]1[] {

{0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, @ 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{2, P, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, [o, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}
}

1 Dl

3 3 0]

2 0 1 3

1 2 N

0 | 3 i

0 50 100 150

As Java Class

new int[]1[] {

{0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o, B@, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{2, 0o, B0, o, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, b0, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, , 2, 50, 62, 0, 130, 140, 1, 140, 170}
}

4 Dl

3 3 0]

2 0 1 3

1 2 N

0 | 3 i

0 50 100 150

As Java Class

new int[]1[] {

{0, o, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

{1, 0, 20, 30, 50, 0, 50, 70, 3, 175, 190},

{2, o, 30, ¢, 70, 90, 1, 90, 140, 3, 140, 155},

{1, 30, 60, B, 60, 90, 0, 90, 130, 2, 130, 170},

{3, 0, 50, p, 50, 62, 0, 130, 140, 1, 140, 170}
}

0 50 100 150

As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

1, 20, 30, 3, 155, 175, 2, 175, 185},
2, , 50, 0, 50, 70, 3, 175, 190},
o, /70, 90, 1, 90, 140, 3, 140, 155},
3,/60, 90, 0, 90, 130, 2, 130, 170},
2,/50, 62, 0, 130, 140, 1, 140, 170}

50 100 150

As Java Class

new int[]1[] {

{0, 0, 10,

{1, 0, 20,

{2, 0, 30,

{1, 30, 60,

{3, 0, 50,
}

1, 20, 30, 3, 155, 175, 2, 175, 185},
2, 30, , 0, 50, 70, 3, 175, 190},
o0, 70, 90, 1, 90, 140, 3, 140, 155},
3, 60, po, 0, 90, 130, 2, 130, 170},
2, 50, /62, 0, 130, 140, 1, 140, 170}

50 100 150

As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

155,
50,
90,
90,

130,

175,

70,
140,
130,
140,

HNWWN

~ 0~ 0~ 0~ 0~

175,
175,
140,
130,
140,

185},
190},
155},
170},
170}

As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

NWONK

20,
30,
70,
60,

30,
50,
90,
90,

155, 175, 2, 175,
, 70, 3, 175,
140, 3, 140,
2,
1,

~ 0~ 0~ 0~

, 130, 130,
140,

oo OoW

185},
190},
155},
170},
170}

As Java Class

new int[]1[] {

{0, o,

{1, o,

{2, 0,

{1, 30,

{3, 0,
}

N

w

N

'y

10,
20,
30,
60,
50,

175,
175,
140,
130,
140,

185},
190},
155},
170},
170}

As Java Class

new int[]1[] {

1, 20, 30, 3, 155, 175, 2, 175, 185},
2, 30, 50, 0, 50, 70,8, 175, 190},
0, 70, 90, 1, 90, 140, 3}, 140, 155},
3, 60, 90, 0, 90, 130, 2\ 130, 170},
2, 50, 62, 0, 130, 140, 1)\ 140, 170}

{0, 0, 10,
{1, 0o, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,
}

4

3

2

1

0

0

50 100 150

As Java Class

new int[]1[] {

{0, o, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o0, 20, 2, 30, 50, 0, 50, 70, 3, , 190},
{2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

As Java Class

new int[]1[] {
{6, 0, 10, 1, 20, 30, 3, 155, 175, 2,
{1, o0, 20, 2, 30, 50, 0, 50, 70, 3,
{2, 0, 30, 0, 70, 90, 1, 90, 140, 3,
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2,
{3, 0, 50, 2, 50, 62, 0, 130, 140, 1,

175, 185},

175,

140, 155},

130, 1
140, 17

Objective Function

Solution Quality

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

Solution Quality

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

Solution Quality

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

Solution Quality

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan

Solution Quality

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed

Solution Quality

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

150

Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

2 E
| demo/l 190 |
0 50 100 150

Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

14
: 8 Ml 2 11 [WEEN oM N s oM 17 IEEEN CEE 1 el
24 17 W o NEOHSNEEEN s NN 2 NGH SN 13 MEEN 4w B1 s EES

W osE W EEA 7 o [NOND SN WEREEMTE 3 6 2 15
171 . e pan o ENE s e 1 EN o ol N S
SEZAS] @ @ s WO 2 17 o 6 NEN IZN WS 13
EE WON s oMt mm 7 o NN NEIEZEEDN W 2
15 BN 2 W% oNGH ENENEEEE 7 v N 0 Wuem o EE s
: T Wm oSN 0 EEE B2 i EEN O EN o v WeIEE 5 1
1o W8 M s SN ‘s (NS 1o EONNW 6 2
W KN o e ¢ NN e EOEN-ESSEDEN 2 @
O 6 NENUNINNA © WZN: EON o Evemien 7 B s B
-1726l_11 9-8-1513—

o o W W O W SRR S
2 EI_L -.,.__L-_l_,_l_-:_m
T T

0 100

Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

: 8 Ml 2 11 [WEEN oM N s oM 17 IEEEN CEE 1 el
24 17 W o NEOHSNEEEN s NN 2 NGH SN 13 MEEN 4w B1 s E

W osE W Il v o NHOND NEN WESHINNTN 3 6 2 15
17IEl T a0 15 NSN3 1 EEH 6 s M2 S
1 KSR 0 s mo 2 17 o 6 NG WEZH WS 13
o1 WNOM o Ko MW NAl 7 o NN NEEEIENEN W 2
15 NEN 2 EEW o NEH ENENEEE v 1 N miem s KO
: NN R oSN $BGE f2 off EeN oM o v EAEA 5)
1 o 8 M s MESN 15 [NEGENSE 3 EONNW 6 2
W EEs v Ee s EEE o013 eTs s s DO
0 ¢ NENUEZENA ¢ W2i: WO o EamEN v s 3
-1726l_11 9-8-1513—
13 -9-—17- z—n 15

o o n -abz7/671|- 19 '— Ehes
T T T
200

0 100

makespan

Solution Quality

The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

'+ BE 6 11 2

Solution Quality

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

o
| B - R < B K 2 v e [

" N R A MR IR Eooe 7 o <o st LRUE o BR[|

. -1 B 1 [< EEEE=1 - 28 14| B IiE
. o Qo] N KRN 6 <
o 2« = |] KNI <) e~ e o RN |

21 W+ B 1 Rl - ~ 26 = I S -l 2
-l O W0 DR N A-A=as i

Solution Quality

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

o 4 12|B
{ @ auzs-zo--w-lu
A1 M (vl wl| eZ0EEED ZsE s
o 2@ 1~ 1 MR 4! DRl

g N o o NN s O <O

21 -+ 6 < |] KNI <Y e) (e |
21 W+ B 1 Rl - ~ 26 = I S -l 2
-l O W0 DR N A-A=as i

Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

17 R | 1Bl
o 13 7N 8 WMeNe6 [BmE 15 2 EEmn W 2 9]
11 2 R §oI1569 17 o 12 s 13 a3 8 EEN
17 ONSNEEFNCFIErE2l 1560040 9 8 (13 1610 11
8 110 H0i15 2N 1309 % 17 NSEA 6 HE 1 9
[H2l moNs EEN 17 W13 9 [4nmel 6 15 11N 2 8 NN AN
9NN 17 15 Hele MW 13 § 8 2 11 B 7 4 0|
6 E 11 sl H 9 2 gmeE m 13 M am 17
| || NON2EN 8 BEENIS 9 4 MoN mmem 11 6 17 213
[| ESEErY 0 © EEENoNEN 15 17 HE4 2 13 HeN 6 @A
15 4w 9 IEEM17 6 13M21 7 2 [< J 0 5 18 BN L]
8 1702 EENSE0 11 6 Bl 2id W13 FmeE 9
E 11 7 EEel 2 15 6O 17EEEMOMONNDN M2 8 4w
W28 8 1S5EEM 9 [NDENGE H 17 EEeoN 2 4w B 116 |
9 KA 156 H meE N 11 8 4mm 13 179 I 2
17 138 8§ H9 H2E 11 NNoN i = e Hom4 2
150 9 HE NE 17 2E Bl 13 sl 116 2 W
12 15 11 13 8 NSl 6 [EEEN Womm 9 17 2 0]
9 0N 15W60 5 “__-13 6 4 onErANTN EEE 17
2 v 15 W 9 , W
0 200 400 600 800

Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

17 R | 18 SIPN O 15 3
e 13 N 8 mEN6I[Y HENE 15 02 I | B 2 9 L)
1 2 O HoI1569 17 m 2 s 13 EF 8 EEE A
17 OSSN N2l 15604 9 8 13 1610 1
8 AN B O | W15 2HEEGE 139 4 17 NSEWA 6 mE 1 EER
[H2l moNs EEN 17 W13 9 [4nmel 6 15 11N 2 8 NN AN
9NN 17 15 Hele MW 13 § 8 2 11 B 7 4 0|
6 iE 11ESE WO 9 2 gHEeN W 131 AN 17
|| W78 EOERZEN 8 BEENS 9 4IMoN WeW 11 6 17 213 EAY
[| ESEEYY 10 9 EEERNSNI 15 17 EE4 2 13 HEE 6 W
15 40 9 EEN17 6 132 7 2 NS ISR meE s
8 17HE2 EZMSEY 11 6 mel 2Nl W13 EmeE 9
S 11 7 el 2 15 60N 17EEENONONNDE mM2 8 am
W28 8 15 9 [EONNSE H 17 EEESN 2 w4m B 116 |
9 EA 15 6 H mBE § 11 8 4mm 137 17 HQI HE
17 13 8 H9 H2E 11 NENON NN S NG Hom4 2
15 0 9 WO B 17 4 BEmim 13 sl 116 2 HN
mE2m 15 1 13 8 _6 [ENEE HoNl 9 17 2 ¢
9 H DN 15H61 _‘136_ EER 17
yn4/979 15 EEW 9

T
0 200 400 600 800

Solution Quality

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

® This objective function is subject to minimization: smaller values are
better.

Solution Quality

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

® This objective function is subject to minimization: smaller values are
better.

® A Gantt chart y; € Y is a better solution to our problem than another
chart y2 € Y if f(y1) < f(y2).

Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).

tof 15 ENOIE SN 176 AT WONTHN 2
13618 W2 N2 15 17K 6 |
12 12l o MAEDeIS e EE 4 7 8@
141 sE 0 M o [N WS 6 2
ol

28
17111 WisE 8 @e
| iE ERE | RS

=671

>
®

|Smakespan

abz7/ 671
0 a0 1000 1200
1. 15 maE o 17 sl NN el 2
1376 | B S 112 7 (14185 Lol]
12- 9@ Lo [0 s] 2 X35 0]
1t WeE B Wil (]] o 620 [
10 M is /] 62 s B o &
[] L] £l cm N mim2
135881 86l LR ol | +SKEKEM 9 |2
- E Mz 4 W @ 7 11130 8
L E L T W7o
0 2 EEoEs LI of 5] 6 2
o] Hs 11l 6l T 185 [B
mie el E B e 9 1 15 1@

1286 2 L 6
LLICERI o) 14

abz7/ 1290

Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).

CET TR (| RECRE 4[5 o W]
2 o EEleio HeIsl EE 4 7 s[@
nsH H M o NS HEIONA (6 2
EE: @E B EedAmmn
W3 1907 B4 s 2 96lH 2 i3
13 Holslel 417 o[h-HGEZEE W 28
7 s 2049 BN 1711] [i13E s Be
2 4@ E N csEigcigo 7igl 15
11 94 8 {915 ENE 13 6 2
4 B @ 1Nes Motz WEN NHSKE 24|
3 U6 6T 22 oW4Hs 17 H15 g 13
2 2 [{elsn ¢ |74 11 o He Holis| BN
13 4 o HE E 1 SR 6 8
abz7/ 6
200 400 600 800 1000 1200

=671

kespan

ma

N
—_

Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another

chart yo € Y if f(y1) < f(y2).

e EE B L b
o K4 o COEEN 1 s |
8
B O CEEE
M B .
["
R e 2 o |
B n@ o R | B

=TT DO I
KRS - e B
1 . e
: EEER (EE (5

=946

C
o o e O DS
o 2 EEEO]om &
e.g

|a24 / 946

Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).

15
-8-6|-15 IE 1In 219 1
1741121 W EN FNSH sl &
164 M98 m 1
8 Ml N 2H9 'mi7Eme WIIE 9
1 HNE W 9 4me 15 [2 8E M
oli1715M66 131 8 211 Bl I [14}

1 | ol H N 92 e m 1m7 o
1 | A ISl 24mEE 6 20 W M~
1048 1 ISIE NOEBMRN5 17 Im2mmEeE B OO

ol 6 W w2
8 [N = 6l 4m
BN 2 150 [Bisl@W 8 4
W 9 N6 117019 2 4 e M
90 & EEI 8sHW B E@OE
170 8 192 NNS i mE w2l
1509 M @A1741 B 1 1165 2l
I 15 13 slglc HENIS 22483 N
9I-I 8 NSl “iemE [E7
3 217 15(E9 yn4/ 979

500 1000 1500

makespan

Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another

chart yo € Y if f(y1) < f(y2).

I TIT W TeaNE R
1 MEIN CEmODEEHINL 0
[e N G w
1 I I DEE (|| R
WOl BRI SEEN W
N | 0 DEED WEmEE W !
1 I N = |
i nmE mEEE oo
GLL_LUBEL BUIE BB N L [L N B
|

swv15/ 6563

- e ol

10| NI EE N
110 | FINNNGE =]
BE | (oI 2 %
Q.

0

(]

e

©

£

Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).

q)

INEEENDT INEND
1N -SRI L R o]
IR0 N IEN ElEN

[0 " P2
| BE | [N 2 me |-

N1 =N

LU i ig |

Iy e pomn

¢ P
3023

&

makespan

=
[6)]
~
W
Q
N
w

Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).

=979

makespan

Y4/ 979
:

19t
18131
17112
16+ OBE
1 8

0
s

61309 W 08

Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).

15
-8-6|-15 IE 1In 219 1
1741121 W EN FNSH sl &
164 M98 m 1
8 Ml N 2H9 'mi7Eme WIIE 9
1 HNE W 9 4me 15 [2 8E M
oli1715M66 131 8 211 Bl I [14}

1 | ol H N 92 e m 1m7 o
1 | A ISl 24mEE 6 20 W M~
1048 1 ISIE NOEBMRN5 17 Im2mmEeE B OO

ol 6 W w2
8 [N = 6l 4m
BN 2 150 [Bisl@W 8 4
W 9 N6 117019 2 4 e M
90 & EEI 8sHW B E@OE
170 8 192 NNS i mE w2l
1509 M @A1741 B 1 1165 2l
I 15 13 slglc HENIS 22483 N
9I-I 8 NSl “iemE [E7
3 217 15(E9 yn4/ 979

500 1000 1500

makespan

An Interface for Objective Functions in Java

package aitoa.structure;
public interface IObjectiveFunction<Y¥> {

double evaluate(Y y);

The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction {

The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

public double evaluate(final JSSPCandidateSolution y) {

The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

public double evaluate(final JSSPCandidateSolution y) {
int makespan = 0;

The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

public double evaluate(final JSSPCandidateSolution y) {
int makespan = 0;

return makespan;
}
}

The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

public double evaluate(final JSSPCandidateSolution y) {
int makespan = 0;
for (int[] machine : y.schedule) {

}
return makespan;
}
}

The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0;
for (int[] machine : y.schedule) {

int end = machine[machine.length - 1];
}

return makespan;
}
}

The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

public double evaluate(final JSSPCandidateSolution y) {
int makespan = 0;
for (int[] machine : y.schedule) {
int end = machine[machine.length - 1];
if (end > makespan) {
makespan = end;
}
}
return makespan;
}
}

The Global Optimum y* in Y

® There must be at least one globally optimal solution y*.

The Global Optimum y* in Y

® There must be at least one globally optimal solution y* for which
f(y*) < f(y) ¥y € Y holds.

The Global Optimum y* in Y

® There must be at least one globally optimal solution y* for which
f(y*) < f(y) Yy € Y holds.
® How do we find such a solution?

The Global Optimum y* in Y

® There must be at least one globally optimal solution y* for which
f(y*) < f(y) Yy € Y holds.
® How do we find such a solution?

e We know the problem is N'P-hard®!, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

The Global Optimum y* in Y

—S — —aS _~S
10 - f(s)=s f(;)/—s! f(s)ie r—f(s)—Z
10% 1 I ! [_—f(s)=s10
107 - / ,/ I / - picoseconds
/’ /’ !] s since the big bang
- =8
107 - /] ./ // /// ;s _——f(s)=s
20 / ./ oy - T
107 /] '/ /// ///
-
10° frotffte e)
illion - /[L e f(s)=s
1 trillion e ms per da
. > =7 7 e— per day
1 billion 4 ///Z/// 7 e
. —~ REV3 o I N
1 million 1 /;ﬁ;/////,//,—-—’ ____________ f(s)=s
— T Lt e
1000756+ = s
1 2 4 8 16 32 64 128 256 512 1024 2048

The Global Optimum y* in Y

® There must be at least one globally optimal solution y* for which
f(y*) < f(y) Vy € Y holds.

® How do we find such a solution?

e We know the problem is N'P-hard®!, so any algorithm that

guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

® So we cannot guarantee to always find the best possible solution for a
normal-sized JSSP in reasonable time.

The Global Optimum y* in Y

® There must be at least one globally optimal solution y* for which
f(y*) < f(y) Yy € Y holds.
® How do we find such a solution?

e We know the problem is N'P-hard®!, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

® So we cannot guarantee to always find the best possible solution for a
normal-sized JSSP in reasonable time.

® \What we can always do is search in Y and hope to get as close to y*
within reasonable time as possible.

The Global Optimum y* in Y

® There must be at least one globally optimal solution y* for which
f(y*) < f(y) Yy € Y holds.
® How do we find such a solution?

e We know the problem is N'P-hard®!, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

® So we cannot guarantee to always find the best possible solution for a
normal-sized JSSP in reasonable time.

® \What we can always do is search in Y and hope to get as close to y*
within reasonable time as possible.

® |f we can find a solution with a slightly larger makespan than the best
possible solution, but we can get it within a few minutes, that would
also be nice. ..

From Solution Space to Search Space

Feasibility of Solutions

® So what do we need to consider when searching in Y?

Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

Feasibility of Solutions

® So what do we need to consider when searching in Y?
® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts

Feasibility of Solutions

® So what do we need to consider when searching in Y?
® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:
1. all operations of all jobs must be assigned to their respective machines
and properly be completed

Feasibility of Solutions

O - N W &

0 50 100 150

Feasibility of Solutions

O 1

-ﬂ cannot omit
operation

[[|
0 50 100 150

O = N W &

Feasibility of Solutions

O - N W &

V-
£21
50

Feasibility of Solutions

O - N W &

0 50 100 150

Feasibility of Solutions

3

[0 [N
operation

O - N W &

0 50 100 150

Feasibility of Solutions

O - N W &

Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:

1.

all operations of all jobs must be assigned to their respective machines
and properly be completed,

. only the jobs and machines specified by the problem instance must

occur in the chart

Feasibility of Solutions

4 0 1 |
3 1 3 0

2 0 1 13

1 2 01
0

0 50 100 150

Feasibility of Solutions

5 ~| Machines

4
3 3 0

2 L0]3]

1 ‘2 N

0

Feasibility of Solutions

can’t add
machines

O = N W &~ WU

Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt

charts:
1. all operations of all jobs must be assigned to their respective machines
and properly be completed,
2. only the jobs and machines specified by the problem instance must
occur in the chart,
3. an operations must be assigned a time window on its corresponding

machine which is exactly as long as the operation needs on that
machine

Feasibility of Solutions

O - N W &

0 50 100 150

Feasibility of Solutions

O = N W &

cannot shorten jobs

[[| 3
0 50 100 150

Feasibility of Solutions

O - N W &

Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time

Feasibility of Solutions

O - N W &

0 50 100 150

Feasibility of Solutions

operations
must not
overlap!

O - N W &

0 50 100 150

Feasibility of Solutions

O = N W &

Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time, and

5. the precedence constraints of the operations must be honored.

Feasibility of Solutions

O - N W &

0 50 100 150

Feasibility of Solutions

CEE |
L0
- h [:r]der of operations
I must Ibe ppreservedI
0 o0 100 150

O - N W &

Feasibility of Solutions

4 0 1 |
3 N\

2

1
0 |

100 150

Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time, and

5. the precedence constraints of the operations must be honored.

® Only a Gantt chart obeying all of these constraints is feasible, i.e.,
can be implemented in practice.

Hardships when Searching in Y

® So how do we search in the space of Gantt charts?

Hardships when Searching in Y

® So how do we search in the space of Gantt charts?

® \We need to create Gantt charts that fulfill all the constraints.

Hardships when Searching in Y

® So how do we search in the space of Gantt charts?
® \We need to create Gantt charts that fulfill all the constraints.

® [For different instances, different solutions are feasiblel!

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

22
010 1 20
010 1 20

++++++++

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

22
010 1 20
010 1 20

++++++++

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

22
010 1 20
010 1 20

++++++++

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines
22

1 20

1 20
++++++++++++H

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines
2 2
job 0

1 20
++++++++++++H

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

2 2
job 0
job 1 | [CNEXE

R o o S S

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

job 0
job 1 |[CNENY
++++++++++H++

Job 0, Job 1

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

job 0
job 1 |[CNENY
++++++++++H++

Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

job 0
job 1 |[CNENY
++++++++++H++

Job 0, Job 1; M1: Job 0, Job 1

M1+

t
T T T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

job 0
job 1 |[CNENY
+4++++++++++++H+

Job 0, Job 1; M1: Job 0, Job 1

M1+

| t

T T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

job 0
job 1 |[CNENY
++++++++++H++

Job 0, Job 1; M1: Job 0, Job 1

M1+

L t

T T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 |[CNENY

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

T

10 20 30 40 50 60

}

o

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

T

10 20 30 40 50 60

?

o

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

T

10 20 30 40 50 60
Job 0, Job 1

?

o

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

?

o

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1

- -?_
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1+
t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1

- -?_
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1+
| t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1

- -?_
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1+
I t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H
instance A with 2 jobs and 2 machines

job 0
job 1

R o o S S

Job 0, Job 1; M1: Job 0, Job 1

l

20 30 40
Job 0, Job 1; M1: Job 1, Job O

M1 i_
___ t

10 20 30 40 50 60

o-

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1

- -?_
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1+
t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job 0

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0
- -?_
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1+
t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

job O
job 1

+++++++++++++H
instance A with 2 jobs and 2 machines

22
0 10

R o o S S

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

?

T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

t

0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

Hardships when Searching in Y

job O
job 1

+++++++++++++H
instance A with 2 jobs and 2 machines

22
0 10

R o o S S

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

?

T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

t

0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1+

t

10

20

30

40

50 60

Hardships when Searching in Y

job O
job 1

+++++++++++++H
instance A with 2 jobs and 2 machines

22
0 10

R o o S S

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

?

T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

t

0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1+

t

0 10

20

30

40

50 60

Hardships when Searching in Y

job O
job 1

+++++++++++++H
instance A with 2 jobs and 2 machines

22
0 10

R o o S S

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

?

T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

t

0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1+

t

0 10 20

30

40

50 60

Hardships when Searching in Y

job O
job 1

+++++++++++++H
instance A with 2 jobs and 2 machines

22
0 10

R o o S S

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

?

T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

t

0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1+

—

t

0 10 20 30 40

50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job O | CEEIEENNSEN

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
- -?_ - -i’-/
T T T T T T It t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1
t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job O | CEEIEENNSEN

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job O, Job 1 Job 1, Job 0; M1: Job 0, Job 1
e - -i’-/
T T T T T T lt t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O Job 1,Job 0
M1-
t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job O | CEEIEENNSEN

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job O, Job 1 Job 1, Job 0; M1: Job 0, Job 1
e - -i’-/
T T T T T T T t t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O Job 1, Job 0; M1: Job 1, Job 0
M1+
t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job O | CEEIEENNSEN

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1+ ?_ M1- ’-/
T T T T T T T t t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job 0 Job 1, Job 0; M1: Job 1, Job 0
M1+ M1-
t t

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job O | CEEIEENNSEN

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1+ ?_ M1- ’-/
T T T T T T T t t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job 0 Job 1, Job 0; M1: Job 1, Job 0
M1+ M1-
t I t

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job O | CEEIEENNSEN

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1+ ?_ M1- ’-/
T T T T T T T t t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job 0 Job 1, Job 0; M1: Job 1, Job 0
M1+ M1-
t R t

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job O | CEEIEENNSEN

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job O, Job 1 Job 1, Job 0; M1: Job 0, Job 1
e - -i’-/
T T T T T T T t t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O Job 1, Job 0; M1: Job 1, Job 0
- o -r
t t

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++H

instance A with 2 jobs and 2 machines
2 2

job O | CEEIEENNSEN

job 1 | CNENY)

++++++++++++H

Job 0, Job 1; M1: Job O, Job 1 Job 1, Job 0; M1: Job 0, Job 1
e - -i’-/
T T T T T T T t t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O Job 1, Job 0; M1: Job 1, Job 0
T t t

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Hardships when Searching in Y

+++++++++++++++
instance B with 2 jobs and 2 machines

22
010 1 20
120 0 10

++++++++ A+

Hardships when Searching in Y

+++++++++++++++
instance B with 2 jobs and 2 machines

22
010 1 20
120 010

++++++++ A+

Hardships when Searching in Y

+++++++++++++++
instance B with 2 jobs and 2 machines

22
010 1 20
120 010

+++++++++ A+

Hardships when Searching in Y

+++++++++++++++
instance B with 2 jobs and 2 machines
22

1 20
1 20
+++++++++++++

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0

1 20
+++++++++++

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0

job 1

+H+++++++H++ R+

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0

job 1

B e s

Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0

job 1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+
t

T T T

0 10 20 30 40 50 60

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0

job 1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

| t

T T

0 10 20 30 40 50 60

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines

22
job O
job1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

T

10 20 30 40 50 60

|

o

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0

job 1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1 -__
t

T T

0 10 20 30 40 50 60

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines

22
job O
job1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

T

10 20 30 40 50 60

|

o

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines

22
job O
job1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

|

o

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines

22
job O
job1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1- -_
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1+
t
T

0 10 20 30 40 50 60

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines

22
job O
job1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1+
I t
T

10 20 30 40 50 60

o

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines

22
job O
job1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1- IIII!!IIIIII
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
v
I t
T T T

10 20 30 40 50 60

o

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines

22
job O
job1

B e s

Job 0, Job 1; M1: Job 0, Job 1

M1- IIII!!IIIIII
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M1- IIIII!!IIII
I t
T T

10 20 30 40 50 60

o

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0
job 1 0 10
+++++++++++

o
=
(=}

Job 0, Job 1; M1: Job 0, Job 1

M1- IIII!!IIIIII
t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M17 ﬂ
t
T

10 20 30 40 50 60

o

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

|

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Job 1, Job 0; M1: Job O, Job 1

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

|

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Job 1, Job 0; M1: Job O, Job 1

M1+

t

10

20

30

40

50 60

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

|

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Job 1, Job 0; M1: Job O, Job 1

M1+

0 10 20

30

40

50

T
60

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

|

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Job 1, Job 0; M1: Job O, Job 1

M1+

-

0 10 20 30

40

50

T
60

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

|

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Job 1, Job 0; M1: Job O, Job 1

M1+

-

0 10 20 30 40

50

T
60

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0
job 1 0 10
+++++++++++

o
=
(=}

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1 IIII!!IIIIII M1+ IIIIII!!IIIIIIIIE!IIIIII
T T T T T T It t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M17 ﬂ
t
T

10 20 30 40 50 60

o

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0
job 1 0 10
+++++++++++

o
=
(=}

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1 -_ m1 -n
T T T T T T lt t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M17 ﬂ
t
T

10 20 30 40 50 60

o

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

|

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Job 1, Job 0; M1: Job 0, Job 1

M1+

T
0

10 20 30 40 5

B .
0 60

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines
2 2

job 0
job 1 0 10
+++++++++++

o
=
(=}

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1 -_ M1 —ﬁ-
T T T T T T It t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
M17 ﬂ
t
T

10 20 30 40 50 60

o

Hardships when Searching in Y

++++++++++++
instance B with 2 jobs and 2 machines

job 0
job 1 0 10
++++++++++++ A+

N
N

Job 0, Job 1; M1: Job O, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1+

M1+

t t

T T T T

10 20 30 40 50 60 d 10 20 30 40 50 €0
Job 0, Job 1; M1: Job 1, Job O

|

o

M1+

|

t
T 1 T

10 20 30 40 50 60

o

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

B e s

0 10

Job 0, Job 1; M1: Job 0, Job 1

M1- -_

t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M17 ﬂ
T T T T T T It
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

" gead ®

t

0 10 20 30 40 50 60

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

0 10
B e s

o
=
(=}

Job 0, Job 1; M1: Job 0, Job 1

M1+

|

t

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Machine 0 should begin by doing job 1.

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\ Q

t

0 10 20 30 40 50 60

Hardships when Searching in Y

job O
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

0 10
B e s

o
=
(=}

Job 0, Job 1; M1: Job 0, Job 1

M1+

|

t

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Machine 0 should begin by doing job 1.
Job 1 can only start on machine 0 after
it has been finished on machine 1.

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\ Q

t

0 10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

0 10
B e s

[S)
=
(=}

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

0 10 20

30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

|

M1+

t

30 40 50 60

|

10 20

o

Machine 0 should begin by doing job 1.
Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.

Job 1, Job 0; M1: Job O, Job 1

M1+

®

0

10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

T

0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

|

M1+

t

|

10 20 30 40 50 60

o

Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.
Before job 0 can be put on machine 1,
it must go through machine 0.

Job 1, Job 0; M1: Job O, Job 1

(I) t

10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

|

t

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

So job 1 cannot go to machine 0 until
it has passed through machine 1, but
in order to be executed on machine 1,
job 0 needs to be finished there first.

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\ Q

t

0 10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

|

t

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

Job 0 cannot begin on machine 1 until
it has been passed through machine 0,
but it cannot be executed there, be-
cause job 1 needs to be finished there

first.

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\

@

t

T
0

10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

B e s

0 10

Job 0, Job 1; M1: Job 0, Job 1

M1+

|

t

o

T

10

Job 0, Job 1; M1: Job 1, Job O

20

30 40

50

T

60

M1+

|

t

o

10

20

30 40

50

60

A cyclic blockage has appeared: no job
can be executed on any machine if we
follow this schedule.

Job 1, Job 0; M1: Job O, Job 1

Mliiegﬁs\ (::’

t

0 10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

[S)
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

0 10 20 30 40 50 60

T

|

Job 0, Job 1; M1: Job 1, Job O

M1+

t

10 20 30 40 50 60

|

o

A cyclic blockage has appeared: no job
can be executed on any machine if we
follow this schedule. This is called a
deadlock.

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\ Q

t

0 10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

0 10
B e s

Job 0, Job 1; M1: Job 0, Job 1

M1+

|

t

T T

10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

o

M1+

|

t

10 20 30 40 50 60

o

This is called a deadlock. The sched-
ule is infeasible, because it cannot
be executed or written down without
breaking the precedence constraint.

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\ Q

t

0 10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

B e s

0 10

Job 0, Job 1; M1: Job 0, Job 1

M1- ll.!lllll

t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M17 ﬂ
T T T T T T It
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\ Q

t

0 10 20 30 40 50 60
Job 1, job 0; M1: Job 1, job 0

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

B e s

0 10

Job 0, Job 1; M1: Job 0, Job 1

M1- -_

t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M17 ﬂ
T T T T T T It
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\

@

t

0 10

20

30

40

50 60

Job 1, Job 0; M1: Job 1, Job 0

M1+

t

0 10

20

30

40

50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

B e s

0 10

Job 0, Job 1; M1: Job 0, Job 1

M1- -_

t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M17 ﬂ
T T T T T T It
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1 \
3ead Q
T T T T T T T t
0 10 20 30 40 50 60
Job 1, Job 0; M1: Job 1, Job 0

vi+
T T T T T T T t
0 10 20 30 40 50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

B e s

0 10

Job 0, Job 1; M1: Job 0, Job 1

M1- -_

t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M17 ﬂ
T T T T T T It
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\

@

t

0 10

20

30

40

50 60

Job 1, Job 0; M1: Job 1, Job 0

t

30

40

50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

B e s

0 10

Job 0, Job 1; M1: Job 0, Job 1

M1- -_

t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M17 ﬂ
T T T T T T It
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1+

e

®

ge
0

10 20 30

40

50 60

Job 1, Job 0; M1: Job 1, Job 0

M1+

=

t

T
0

10 20 30

40

50 60

Hardships when Searching in Y

job 0
job 1

++++++++++++
instance B with 2 jobs and 2 machines
2 2

o
=
(=}

B e s

0 10

Job 0, Job 1; M1: Job 0, Job 1

M1- -_

t
T T T T T T T
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M17 ﬂ
T T T T T T It
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1 3 ead\

@

t

0 10

20

30

40

50 60

Job 1, Job 0; M1: Job 1, Job 0

t

0 10

20

30

40

50 60

Hardships when Searching in Y

So how do we search in the space of Gantt charts?

® \We need to create Gantt charts that fulfill all the constraints.

For different instances, different solutions are feasible!

Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

Hardships when Searching in Y

® So how do we search in the space of Gantt charts?
® \We need to create Gantt charts that fulfill all the constraints.
® [For different instances, different solutions are feasiblel!

® Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

® Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

Hardships when Searching in Y

® So how do we search in the space of Gantt charts?
® \We need to create Gantt charts that fulfill all the constraints.
® [For different instances, different solutions are feasiblel!

® Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

® Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

® \We would like to have a handy representation for Gantt charts.

Hardships when Searching in Y

® So how do we search in the space of Gantt charts?
® \We need to create Gantt charts that fulfill all the constraints.
® [For different instances, different solutions are feasiblel!

® Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

® Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

® \We would like to have a handy representation for Gantt charts.

® The representation should allow us to easy create and modify the
candidate solutions.

Hardships when Searching in Y

® So how do we search in the space of Gantt charts?
® \We need to create Gantt charts that fulfill all the constraints.
® [For different instances, different solutions are feasiblel!

® Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

® Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

® \We would like to have a handy representation for Gantt charts.

® The representation should allow us to easy create and modify the
candidate solutions.

® Solution: We develop a data structure X which we can handle easily
and which can always be translated to feasible Gantt charts by a
mapping v : X — Y.

The Search Space X

® The solution space Y is complicated and constrained.

The Search Space X

® The solution space Y is complicated and constrained.

® In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. ..

The Search Space X

® The solution space Y is complicated and constrained.

® In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. ..

® |f we would have a valid Gantt chart y € Y, then trying to improve it
would be quite complicated.

The Search Space X

® The solution space Y is complicated and constrained.

® In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. ..

® |f we would have a valid Gantt chart y € Y, then trying to improve it
would be quite complicated.

® |f we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

The Search Space X

® The solution space Y is complicated and constrained.

® In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. ..

® |f we would have a valid Gantt chart y € Y, then trying to improve it
would be quite complicated.

® |f we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

® We want to search in a simpler space that we can easily understand.

The Search Space X

® The solution space Y is complicated and constrained.

® In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. ..

® |f we would have a valid Gantt chart y € Y, then trying to improve it
would be quite complicated.

® |f we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

® We want to search in a simpler space that we can easily understand,
where we do not need to worry about the constraints and feasibility.

® This space is therefore called the search space X.

The Search Space X

® The solution space Y is complicated and constrained.

® In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. ..

® |f we would have a valid Gantt chart y € Y, then trying to improve it
would be quite complicated.

® |f we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

® We want to search in a simpler space that we can easily understand,
where we do not need to worry about the constraints and feasibility.

® This space is therefore called the search space X.

® Of course, X must somehow be related to Y.

The Search Space X

® The solution space Y is complicated and constrained.

® In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. ..

® |f we would have a valid Gantt chart y € Y, then trying to improve it
would be quite complicated.

® |f we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

® We want to search in a simpler space that we can easily understand,
where we do not need to worry about the constraints and feasibility.

® This space is therefore called the search space X.

® Of course, X must somehow be related to Y: We need a
representation mapping v : X — Y which translates from X to Y.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?
® | et us revisit the demo problem instance.

One Search Space X for the JSSP

number m of machines

number n of jobs

(+++++++++++++++++++++++
A simple demo

/

L4 5
job0 |0 10
job1 |1 20
job2 12 30
job3 14 50

120
0 10
120
3 30

2
g}
4

2

20 3 40 4 10
30 2 50 4 30
12 3 40 0 10
15 020 115

/

Each of the n jobs
has m ,
each consisting of
a machine index and
a time requirement.

(+++++++++++++++++++++++

This is information that we have, which does not need
to be stored in the elements z € X.

One Search Space X for the JSSP

—

: deme 3 7

0 50 100 150

The instance data Z and the data from one point z € X
should, together, encode such a Gantt chart y € Y.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?
® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in
something very simple.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

In the demo, we have m = 5 machines and n = 4 jobs.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

In the demo, we have m = 5 machines and n = 4 jobs.

We could give each of the m x n = 20 operation one ID, a number in
0...19.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the operations.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the operations.

® We could easily translate such strings to Gantt charts.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the operations.

® We could easily translate such strings to Gantt charts, but we could
end up with infeasible solutions and deadlocks or a string telling us to
do the second operation of a job before the first one. ..

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?
® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® How can we use a linear encoding without deadlocks?

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?
® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® How can we use a linear encoding without deadlocks?

® Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?
® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® How can we use a linear encoding without deadlocks?

® Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

® We know the order of the operations per job.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® How can we use a linear encoding without deadlocks?

® Fach job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

® We know the order of the operations per job = we do not need to
encode it.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® How can we use a linear encoding without deadlocks?

® Fach job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

® We know the order of the operations per job = we do not need to
encode it.

® We just include each job id m times in the string.?**

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® How can we use a linear encoding without deadlocks?

® Fach job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

® We know the order of the operations per job = we do not need to
encode it.

® We just include each job id m times in the string.?**

® The first occurrence of a job's ID stands for its first operation, the
second occurrence for the second operation, and so on.

One Search Space X for the JSSP

® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® How can we use a linear encoding without deadlocks?

® Fach job has m = 5 operations that must be distributed to the

machines in the sequence prescribed in the problem instance data.

® We know the order of the operations per job = we do not need to
encode it.

® We just include each job id m times in the string.?**

® The first occurrence of a job's ID stands for its first operation, the
second occurrence for the second operation, and so on.

® This way, we will always have the operations in the right order.

Demo Example for the Search Space

reX

{1, 2,90,1,2,3,1, 2,0, 3,60, 6,1,0, 3,3, 2 2 3,1}

Demo Example for the Search Space

Demo Example for the Search Space

reX

{1, 2, 0, 1, 2, 3, 1, 2, ,
0’ 0' 1’ 0' 3’ 3’ 2' 2’ ’ }

" yeY

0 50 100 150

Demo Example for the Search Space

reX

i, 2,9,1,2 3,1, 2,0, 3, +++++++t+ttH A+
0! 0! 1! 0: 3r 3r 2! 2! 3: 1} Asimpledemo I
45

010 120 220 340 410

.X Y = | 120 010 330 250 430
'7. |_) 230 120 412 340 010
450 330 215 020 115
R

—_
L

yeY

0 50 100 150

Demo Example for the Search Space

reX

i, 2,0,1,23,1,20, 3, ++++++++H A+
0! 0! 1! 0: 3r 3r 2! 2! 3: 1} Asimpledemo I
45
010 120 220 340 410
.X Y 120 010 330 250 430
'7. |—) mEmmEmmmmm230 120 412 340 010
450 330 215 020 115
++++++++++ 4
4<
3<
2<
" yeY
OA

0 50 100 150

Demo Example for the Search Space

reX

i, 2,0,1,23,1,20, 3, ++++++++H A+
0! 0! 1! 0: 3r 3r 2! 2! 3: 1} Asimpledemo I
45
010 120 220 340 410
.X Y 120 010 330 250 430
'7. |—) mEmmEmmmmm230 120 412 340 010
450 330 215 020 115
++++++++++ 4
4<
3<
2<
N yeY
OA

0 50 100 150

Demo Example for the Search Space

reX

{,2,0,1,2 3,1, 2,0, 3, +++++++t+ttH A+
0! 0! 1! 01 3r 3r 2! 2! 3: 1} Asimpledemo I
45

010 120 220 340 410

'X Y 120 010 330 250 4 30
'7. |—) W NN WmEmEmEmEmEmEml 230 120 412 340 010
450 330 215 020 115
++++++++++ 4

' yeY

0 50 100 150

Demo Example for the Search Space

B

’

} A simple demo I

45
010 120 220 340 410
,X Y 120 010 330 250 4 30
'7. |_) EmmEmEmTEmEI 230 120 412 340 010
450 330 215 020 115
+4+++++++++++

' yeY

0 50 100 150

Demo Example for the Search Space

reX

B

’

} A simple demo I

45
010 120 220 340 410
,X Y 120 010 330 250 4 30
’y. |_) EmmEmEmTEmEI 230 120 412 340 010
450 330 215 020 115
+4+++++++++++

—_

yeY

0 50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 410
.X Y - - - 120 010 330 250 4 30
’y. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

—_

yeY

0 50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 410
,X Y - = = 120 010 330 250 4 30
'7. |—) 230 120 412 340 010
450 330 215 020 115
B o e

—_

yeY

0 50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 410
,X Y - = = 120 010 330 250 4 30
'7. |—) 230 120 412 340 010
450 330 215 020 115
B o e

—_

yeY

0 50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 410
.X Y - - - 120 010 330 250 4 30
fy. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

—_

yeY

0 50 100 150

Demo Example for the Search Space

reX

i, 2,0,1,2, 3,1, 2,0, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2! 2! 3; 1} Asimpledemo I
45

010 120 220 340 410

.X Y 120 010 330 250 430
'7. |_) SN W wmwmwmmmowmlo 30 120 412 340 010
450 330 215 020 115
+4+++++++++++

—_

% yeY

50 100 150

Demo Example for the Search Space

reX

i, 2,0,1,2, 3,1, 2,0, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2! 2! 3; 1} Asimpledemo I
45

010 120 220 340 410

.X Y 120 010 330 250 430
'7. |_) SN W wmwmwmmmowmlo 30 120 412 340 010
450 330 215 020 115
+4+++++++++++

—_

50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 410
.X Y - - - 120 010 330 250 4 30
fy. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

—_

yeY

0 50 100 150

Demo Example for the Search Space

reX

{1, 2,0,1,2, 31,20, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2! 2! 3; 1} Asimpledemo I
45

010 120 220 340 410

'X Y 120 010 330 250 430
’y. |—) W NN EmEmEmEmEmEmEml O30 120 412 340 010
450 330 215 020 115

++++++++++ 4

—_

50 100 150

Demo Example for the Search Space

B

’

} A simple demo I

45
010 120 220 340 410
,X Y 120 010 330 250 430
’y. |—) WEmmmEmmEmE230 120 412 340 010
450 330 215 020 115
++++++++++ 4

—_

yeY

0 50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 410
.X Y - - - 120 010 330 250 4 30
fy. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

—_

yeY

0 50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 410
.X Y - - - 120 010 330 250 4 30
fy. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

—_

yeY

0 50 100 150

Demo Example for the Search Space

reX

{1, 2,0,1,23,1, 20, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2, 2! 3; 1} Asimpledemo I
45

010 120 220 340 4 10
'X Y 120 010 330 250 4 30
"y. |_) SN W wmwmowmmmowmloo 30 120 412 340 010
450 330 215 020 115

+4+++++++++++

—_

yeY

0 50 100 150

Demo Example for the Search Space

reX

i, 2,0, 1,2, 3,1,2,0, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2, 2! 3; 1} Asimpledemo I
45

010 120 220 340 4 10
'X Y 120 010 330 250 4 30
"y. |_) SN W wmwmowmmmowmloo 30 120 412 340 010
450 330 215 020 115

+4+++++++++++

—_

yeY

0 50 100 150

Demo Example for the Search Space

reX

i, 2,0,1,2,3,1, 2,0, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2, 2! 3; 1} Asimpledemo I
45

010 120 220 340 410

'X Y 120 010 330 250 4 30
"y. |_) SN W wmwmowmmmowmloo 30 120 412 340 010
450 330 215 020 115
+4+++++++++++

—_

yeY

0 50 100 150

Demo Example for the Search Space

reX

i, 2,0,1,2,3,1, 2,0, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2, 2! 3; 1} Asimpledemo I
45

010 120 220 340 410

'X Y 120 010 330 250 4 30
"y. |_) SN W wmwmowmmmowmloo 30 120 412 340 010
450 330 215 020 115
+4+++++++++++

—_

w

yeY

0 50 100 150

Demo Example for the Search Space

reX

i, 2,9,1,2 3,1, 2,0, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2! 2! 3; 1} Asimpledemo I
45

010 120 220 340 4 10
'X Y 120 010 330 250 4 30
’y. |_) SN W wmwmowmmmowmloo 30 120 412 340 010
450 330 215 020 115

+4+++++++++++

—_

w
H

yeY

0 50 100 150

Demo Example for the Search Space

reX

{1, 2,0,1,23,1,2,09, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2! 2! 3; 1} Asimpledemo I
45

010 120 220 340 410
'X Y 120 010 330 250 4 30
’y. |—) W ENEmEmEmEmEmEmEl O30 120 412 340 010
450 330 215 020 115

++++++++++ 4

—_

w
H

yeY

0 50 100 150

Demo Example for the Search Space

reX

{1, 2,0,1,23,1,2,09, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2, 2! 3; 1} Asimpledemo I
45

010 120 220 340 410
'X Y 120 010 330 250 4 30
"y. |—) W ENEmEmEmEmEmEmEl O30 120 412 340 010
450 330 215 020 115

++++++++++ 4

100 150

Demo Example for the Search Space

reX

i, 2,9,1,2 3,1, 2,080, 3, +++++++t+ttH A+
0! 0! 1! 0! 3r 3r 2, 2! 3; 1} Asimpledemo I
45

010 120 220 340 4 10
120 010 330 250 4 30
"Y:X'_)Y W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
+4+++++++++++

100 150

Demo Example for the Search Space

reX

g +4++++++++H A
, 1} A simple demo I
45
010 120 220 340 410
.X Y - - - 120 010 330 250 4 30
ﬁy. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

{1I 2l OI ll 2' 3' 1l 2[ol 3
0, 0, 1, 0, 3, 3, 2, 2, 3

100 150

Demo Example for the Search Space

reX

g +4++++++++H A
, 1} A simple demo I
45
010 120 220 340 410
.X Y - - - 120 010 330 250 4 30
ﬁy. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

{1I 2l OI ll 2' 3' 1l 2[ol 3
0, 0, 1, 0, 3, 3, 2, 2, 3

100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 410
120 010 330 250 4 30
"Y:X'_)Y W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
+4+++++++++++

Oy, 2, ®@ 1y 2p 3y Ly 2, @ &
0, 0, 1,0, 3, 3, 2,2, 3,1

100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 410
120 010 330 250 4 30
"Y:X'_)Y W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
+4+++++++++++

{1I 2l OI ll 2' 3' 1l 2[0' 3
0, 0, 1,0, 3, 3, 2,2, 3,1

100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 410
120 010 330 250 4 30
"Y:X'_)Y W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
+4+++++++++++

{1I 2l 0[ll 2' 3' 1l 2[0' 3
0, 0, 1,0, 3, 3, 2,2, 3,1

3
1 o yeY

0 50 100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 410
120 010 330 250 4 30
"Y:X'_)Y W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
+4+++++++++++

Oy, 2, @ 1y 2p 3y Ly 2, @ &
0, 0, 1,0, 3, 3, 2,2, 3,1

o EEE
1S o yeY

0 50 100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 410
.X Y - e 120 010 330 250 4 30
'7. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

Oy, 2, @ 1y 2p 3y Ly 2, @ &
@ 0,1,0, 3,3, 2,2 3,1

o EEE
1S o yeY

0 50 100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 410
.X Y - e 120 010 330 250 4 30
'7. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

Oy, 2, @ 1y 2p 3y Ly 2, @ &
@ 0,1,0, 3,3, 2,2 3,1

;
e [0]
FY o yeY

—_

0 50 100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 4 10
120 010 330 250 4 30
"Y:X'_)Y W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
+4+++++++++++

Oy, 2, @ 1y 2p 3y Ly 2, @ &
6, 0, 1,0, 3,3, 2,2, 3,1

;
z 0
FY o yeY

—_

0 50 100 150

Demo Example for the Search Space

reX

’ ++++++++++++++++++++

} A simple demo

45

010 120 220 340 4 10
.X Y - e 120 010 330 250 4 30

ﬁy. l) 230 120 412 340 010

450 330 215 020 115

++++++++++++++++++++

Oy, 2, @ 1y 2p 3y Ly 2, @ &
0, ® 1,0, 3, 3, 2,2, 3,1

;
z 0
FY o yeY

—_

0 50 100 150

Demo Example for the Search Space

’ ++++++++++++++++++++

} A simple demo

45

010 120 220 340 4 10
.X Y - e 120 010 330 250 4 30

ﬁy. l) 230 120 412 340 010

450 330 215 020 115

++++++++++++++++++++

;
z 0
FY o yeY

—_

0 50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 410
.X Y - - - 120 010 330 250 4 30
ﬁy. l) 230 120 412 340 010
450 330 215 020 115
+4++++++++++H++

;
z 0
FY o yeY

—_

0 50 100 150

Demo Example for the Search Space

B

’
} A simple demo I
45
010 120 220 340 4 10
.X Y 120 010 330 250 4 30
"y. |_) W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
B o e

;
z 0
FY o yeY

—_

0 50 100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45

010 120 220 340 410

.X Y 120 010 330 250 4 30
"y. |—) W W WmWmoEmEmmmowmloo30 120 412 340 010

Oy, 2, @ 1y 2p 3y Ly 2, @ &
0, 0,1,0,3,3,2,2, 3,1

e+ttt bbbt

—_

er

150

450 330 215 020 115
3
2
0

Demo Example for the Search Space

reX

B

’
} A simple demo I
45

010 120 220 340 410

X Y 120 010 330 250 430
"y — mEmmmmmmm- o) |) 410 340 010

Oy, 2, @ 1y 2p 3y Ly 2, @ &
0, 0, 1, 0, 3, 3, 2, 2, 3,1

e+ttt bbbt

I

er

150

450 330 215 020 115
3
2
1
0

Demo Example for the Search Space

B

’

} A simple demo I

45
010 120 220 340 410
'X Y 120 010 330 250 4 30
"y. |_) W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
+4+++++++++++

Iy, 2, 8 1y 25 @ &
6, 0, 1,80, 3, 3, 2,2, 3,1

yeY

0 50 100 150

o - N w IN
! ;
w
i
o
—

Demo Example for the Search Space

B

’

} A simple demo I

45
010 120 220 340 410
'X Y 120 010 330 250 4 30
"y. |_) W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115
+4+++++++++++

Iy, 2, 8 1y 25 @ &
6, 0, 1,80, 3, 3, 2,2, 3,1

4 (0]

3 1 3 0

2
1R o yeY

0 50 100 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 4 10
X Y 120 010 330 250 4 30
"y |_) mEmEmEmEmmmE)30 120 412 340 010
450 330 215 020 115
+4++++++++++H++

Oy, 2, @ 1y 2p 3y Ly 2, @ &
0, 0, 1, 0, 3, 3, 2, 2, 3,1

I

0]
‘ er

150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 4 10
X Y 120 010 330 250 4 30
"y |_) mEmEmEmEmmmE)30 120 412 340 010
450 330 215 020 115
+4++++++++++H++

Oy, 2, @ 1y 2p 3y Ly 2, @ &
0, 0, 1,0, 3, 3, 2, 2, 3,1

I

0]
‘ er

150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45

010 120 220 340 410

{1, 2, 0,1, 2, 3,1, 2, 0, 3
Or OI 11 0: 3' 3r 2, 21 3: 1

450 330 215 020 115
o+ttt bbbt

'X Y 120 010 330 250 4 30
"y. |—) W W WmWmoEmEmmmowmloo30 120 412 340 010
4

yeY

o = N W
! ;
(@)
i
(@)
—

Demo Example for the Search Space

reX

B

’
} A simple demo I
45

010 120 220 340 410

Oy, 2, @ 1y 2p 3y Ly 2, @ &
0, 0, 1, 0, 3, 3, 2, 2, 3,1

450 330 215 020 115
e+ttt bbbt

'X Y 120 010 330 250 4 30
"y. |—) W W WmWmoEmEmmmowmloo30 120 412 340 010
3 @

3
yeY

0 50 100 150

o = N W
! ;
(@)
(@)
(@)
—

Demo Example for the Search Space

reX

g +4++++++++H A
} A simple demo

45

010 120 220 340 410

{1, 2, 0,1, 2, 3,1, 2, 0, 3
Or OI 11 0: 3r 3' 2, 21 3: 1

450 330 215 020 115
++++++++++ 4

'X Y 120 010 330 250 4 30
"y. |—) W W WmWmoEmEmmmowmloo30 120 412 340 010
3 @

3
yeY

0 50 100 150

o = N W
\!I ;
(@)
(@)
(@)
—

Demo Example for the Search Space

reX

g +4++++++++H A
} A simple demo

45

010 120 220 340 410

{1, 2, 0,1, 2, 3,1, 2, 0, 3
Or OI 11 0: 3r 3' 2, 21 3: 1

450 330 215 020 115
++++++++++ 4

'X Y 120 010 330 250 4 30
"y. |—) W W WmWmoEmEmmmowmloo30 120 412 340 010
3 @

3
yeY

0 50 100 150

o = N W
\!I ;
(@)
(@)
(@)
—

Demo Example for the Search Space

reX

B

’
} A simple demo I
45

010 120 220 340 4 10

'X Y 120 010 330 250 4 30
"y. |_) W W WmWmoEmEmmmowmloo30 120 412 340 010
450 330 215 020 115

+4+++++++++++

{1, 2, 0, 1, 2
3

1 p 3p
0, 0, 1, 0, 3

1, 2, 0, 3
, 2, 2, 3,1

’

3
yeY

0 50 100 150

o = M w A
! ;
(@)
(@)
(@)
—

Demo Example for the Search Space

reX

B

’
} A simple demo I
45

010 120 220 340 4 10

'X Y 120 010 330 250 4 30
"y. |—) mEEmEmmmmm- 230 120 412 340 010
450 330 215 020 115

++++++++++ 4

{1, 2, 0, 1, 2
3

1, 2, 3,1, 2, 0, 3
Or OI 1! 0; 3' 2! 2! 351

’

3
yeY

0 50 100 150

o = M w A
! ;
(@)
(@)
(@)
—

Demo Example for the Search Space

reX

B

’
} A simple demo I
45

010 120 220 340 4 10

'X Y 120 010 330 250 4 30
"y. |—) mEEmEmmmmm- 230 120 412 340 010
450 330 215 020 115

++++++++++ 4

{1, 2, 0, 1, 2
3

1, 2, 3,1, 2, 0, 3
Or OI 1! 0; 3r 21 2! 311

’

4 0]

3

2

‘ yeY

0 | | E |
100

0 50 150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45

010 120 220 340 4 10
120 010 330 250 4 30

[]
"Y.X'_)Y mEmmmmmmmE 230 120 412 340 010
450 330 215 020 115
+4+++++++++++

{1, 2, 0, 1, 2
3

1 p 3p
0, 0, 1, 0, 3

1, 2, 0, 3
, 2, 2, 3,1

’

4 0
3
2

100

—_

cY
s B

150

0 50

Demo Example for the Search Space

reX

{1I 2l OI ’

1, 2 B
e, 6, 1, 0, 3,

’
} A simple demo I
45

010 120 220 340 410

p Bp dp 25 @ &
3, 2,2, 3,1

450 330 215 020 115
e+ttt bbbt

'X Y 120 010 330 250 4 30
"y. |_) mEmmEmmmEmE 230 120 412 340 010
4

0

3
2
100

—_

cY
s B

150

0 50

Demo Example for the Search Space

reX

{ll 2l 0' ’

1, 2 B
e, 6, 1, 0, 3,

’
} A simple demo
45 I

010 120 220 340 410

p Bp dp 25 @ &
3, 2,2, 3,1

450 330 215 020 115
e+ttt bbbt

'X Y 120 010 330 250 4 30
"y. |_) mEmmEmmmEmE 230 120 412 340 010
4

0

3
2
100

—_

cY
G c 1

150

0 50

Demo Example for the Search Space

reX

{ll 2l 0' ’

1, 2 B
e, 6, 1, 0, 3,

’
} A simple demo
45 I

010 120 220 340 410

p Bp dp 25 @ &
3, 2,2, 3,1

450 330 215 020 115
e+ttt bbbt

120 010 330 250 4 30
[]
"Y.X'_)Y mEmmmmmmE 230 120 412 340 010
4

0

3
2
100

—_

cY
s c 1

150

0 50

Demo Example for the Search Space

reX

{ll 2l 0' ’

1, 2 B
e, 6, 1, 0, 3,

’
} A simple demo
45 I

010 120 220 340 410

p Bp dp 25 @ &
3,2,2,3,1

450 330 215 020 118
e+ttt bbbt

120 010 330 250 4 30
[]
"Y.X'_)Y mEmmmmmmE 230 120 412 340 010
4

0

3
2
100

—_

cY
s c 1

150

0 50

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 4 10
X Y 120 010 330 250 4 30
"y |_) mEmmmmmmE 230 120 412 340 010
450 330 215 020 118
+4+++++++++++

{ll 2l 0' ’ ’ 3’
3

1, 2 1, 2, 0, 3
0, 6, 1, 0, 3, 3, 2, 2 1

0
’ 3!

0
3
_

—_

er H

150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 4 10
X Y 120 010 330 250 4 30
"y |_) mEmmmmmmE 230 120 412 340 010
450 330 215 020 115
+4+++++++++++

{1, 2, 0, 1, 2
3

1 ,3,1,21013
Oy, @y 1y O 3y 8y 2 2p 3p

0
3
_

—_

er El
il 3 i

150

Demo Example for the Search Space

reX

i, 2,0,1,23,1, 2,0, 3, +++++++t+ttH A+
Or OI 1! 0; 31 3r 21 21 3, 1} Asimpledemo I
45

010 120 220 340 410

.X Y 120 010 330 250 430
"y. |_) mEmmmmmmE 230 120 412 340 010
450 330 215 020 115
+4+++++++++++

; 0|
;
z

0

1 3

yeY
. il 3 i
100

—_

0 50 150

Demo Example for the Search Space

reX

{1I 2l OI ’

I, 2, 3;
0, 6, 1, 0, 3, 3

1, 2, 0, 3,
v 2,2, 3, 1}

’

S5 (S 'd N

L

)

Sl
=

B

A simple demo I
45

010 120 220 340 4 10
120 010 330 250 430
230 120 412 340 0 10
450 330 215 020 115
++++++++++ 4

w

—_
w
o

3

150

Demo Example for the Search Space

reX

B

’
} A simple demo I
45
010 120 220 340 4 10
X Y 120 010 330 250 4 30
"y |_) mEmEmEmmmmmI230 120 412 340 010
450 330 215 020 115
+4+++++++++++

{1, 2, 0, 1, 2
3

1 p Bp dp 25 @ &
Op Oy 1y Oy 8y 8y 2p 2p 8p o

w

—_
w
o

3

L

)

Sl
=

0 50 100 150

The Search Space X

® \We now have search space X with which we can easily represent all
reasonable Gantt charts.

The Search Space X

® \We now have search space X with which we can easily represent all
reasonable Gantt charts.

® As long as our integer strings of length m *x n contain each value in
1...n exactly m times, we will always get feasible Gantt charts by
applying our mapping v : X — Y!

The Search Space X

® \We now have search space X with which we can easily represent all
reasonable Gantt charts.

® As long as our integer strings of length m *x n contain each value in
1...n exactly m times, we will always get feasible Gantt charts by
applying our mapping v : X — Y!

® We call this the representation.

The Search Space X

® \We now have search space X with which we can easily represent all
reasonable Gantt charts.

® As long as our integer strings of length m *x n contain each value in
1...n exactly m times, we will always get feasible Gantt charts by
applying our mapping v : X — Y!

® We call this the representation.

® |f necessary, we could also easily add more constraints, such as
job-order specific machine setup times, or job/machine specific
transport times — they would all go into the mapping ~.

An Interface for Representation Mappings in Java

package aitoa.structure;
public interface IRepresentationMapping<X, Y> {

void map(X x, Y y);

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping {

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<intl[],

public void map(int[] x, JSSPCandidateSolution y) {

JSSPCandidateSolution> {

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {
int [] machineState = new int[this.instance.m];
int [] machineTime = new int[this.instance.m];

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping

int [] machineState = new int[this.
int [] machineTime = new int[this.
int [] jobState = new int[this.
int[] jobTime = new int[this.

instance
instance
instance
instance

implements IRepresentationMapping<int[],

public void map(int[] x, JSSPCandidateSolution y) {
.m];
.m];
.nl;
.nl;

JSSPCandidateSolution> {

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping

int [] machineState = new int[this.
int [] machineTime = new int[this.
int [] jobState = new int[this.
int[] jobTime = new int[this.

for (int nextJob : x) {

instance
instance
instance
instance

implements IRepresentationMapping<int[],

public void map(int[] x, JSSPCandidateSolution y) {
.m];
.m];
.nl;
.nl;

JSSPCandidateSolution> {

The JSSP Representation Mapping in Java

int [] machineState
int [] machineTime
int [] jobState
int [] jobTime

for (int nextJob
int [] jobSteps =

package aitoa.examples.

public void map(int[] x,

jssp;

x) {

public class JSSPRepresentationMapping
implements IRepresentationMapping<intl[],

instance
instance
instance
instance

JSSPCandidateSolution y) {
int [this.
int [this.
int [this.
int [this.

.m];
.m];
.nl;
.nl;

this.instance.jobs [nextJob];

JSSPCandidateSolution> {

The JSSP Representation Mapping in Java

int [] machineState
int [] machineTime
int [] jobState
int [] jobTime

for (int nextJob
int [] jobSteps =
int jobStep =

package aitoa.examples.

public void map(int[] x,

jssp;

x) {

public class JSSPRepresentationMapping
implements IRepresentationMapping<intl[],

instance
instance
instance
instance

JSSPCandidateSolution y) {
int [this.
int [this.
int [this.
int [this.

.m];
.m];
.nl;
.nl;

this.instance.jobs [nextJob];
(jobState [nextJobl++) << 1;

JSSPCandidateSolution> {

The JSSP Representation Mapping in Java

int []
int []
int []
int []

int
int

package aitoa.examples. jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping<int[],

machineStat
machineTime
jobState
jobTime

for (int nextJob
int [] jobSteps

jobStep
machine

public void map(int[] x,

e

x) {

instance
instance
instance
instance

JSSPCandidateSolution y) {
= new int[this.
= new int[this.
= new int[this.
= new int[this.

.m];
.m];
.nl;
.nl;

this.instance.jobs [nextJob];
(jobState [nextJobl++) << 1;
jobSteps [jobStep];

JSSPCandidateSolution> {

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping

int [] machineState = new int[this.instance
int [] machineTime = new int[this.instance
int [] jobState = new int[this.instance
int[] jobTime = new int[this.instance

for (int nextJob : x) {

implements IRepresentationMapping<int[],

public void map(int[] x, JSSPCandidateSolution y) {
.m];
.m];
.nl;
.nl;

int [] jobSteps = this.instance.jobs[nextJobl];

int jobStep = (jobStatel[nextJobl++) << 1;
int machine = jobSteps[jobStepl;
int start = Math.max(machineTime [machinel,

JSSPCandidateSolution> {

jobTime [nextJobl);

The JSSP Representation Mapping in Java

int [] machineState
int [] machineTime
int [] jobState
int [] jobTime

for (int nextJob

package aitoa.examples.

int [] jobSteps =
int jobStep =

int machine =
int start
int end

jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<intl[],

public void map(int[] x, JSSPCandidateSolution y) {

= new int[this.instance.m];
= new int[this.instance.m];
= new int[this.instance.n];

new int[this.instance.n];

x) {

this.instance.jobs [nextJob];
(jobState [nextJobl++) << 1;
jobSteps [jobStep];

= Math.max(machineTime [machine],
= start + jobSteps[jobStep + 1];

JSSPCandidateSolution> {

jobTime [nextJobl);

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = new int[this.instance.m];
int [] machineTime = new int[this.instance.m];
int [] jobState = new int[this.instance.n];
int[] jobTime = new int[this.instance.n];

for (int nextJob : x) {
int [] jobSteps = this.instance.jobs[nextJobl];

int jobStep = (jobState[nextJobl++) << 1;

int machine = jobSteps[jobStepl;

int start = Math.max(machineTime [machine], jobTime[nextJobl);
int end = start + jobSteps[jobStep + 1];

jobTime [nextJob] = machineTime [machine] = end;

The JSSP Representation Mapping in Java

int [] machineState =
int [] machineTime =
int [] jobState =
int [] jobTime =

int end =
jobTime [nextJob] =

int [] schedule = y.

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<intl[],

public void map(int[] x, JSSPCandidateSolution y) {

new int[this.instance.m];
new int[this.instance.m];
new int[this.instance.n];
new int[this.instance.n];

for (int nextJob : x) {
int [] jobSteps = this.instance.jobs[nextJobl];

int jobStep = (jobStatel[nextJobl++) << 1;
int machine = jobSteps[jobStepl;
int start = Math.max(machineTime [machinel,

start + jobSteps[jobStep + 1];
machineTime [machine] = end;

schedule [machine];

JSSPCandidateSolution> {

jobTime [nextJobl);

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = new int[this.instance.m];
int [] machineTime = new int[this.instance.m];
int [] jobState = new int[this.instance.n];
int[] jobTime = new int[this.instance.n];

for (int nextJob : x) {
int [] jobSteps = this.instance.jobs[nextJobl];

int jobStep = (jobState[nextJobl++) << 1;

int machine = jobSteps[jobStepl;

int start = Math.max(machineTime [machine], jobTime[nextJobl);
int end = start + jobSteps[jobStep + 1];

jobTime [nextJob] = machineTime [machine] = end;

int [] schedule = y.schedule[machinel;
schedule [machineState [machine]l++] = nextJob;

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = new int[this.instance.m];
int [] machineTime = new int[this.instance.m];
int [] jobState = new int[this.instance.n];
int[] jobTime = new int[this.instance.n];

for (int nextJob : x) {
int [] jobSteps = this.instance.jobs[nextJobl];

int jobStep = (jobState[nextJobl++) << 1;

int machine = jobSteps[jobStepl;

int start = Math.max(machineTime [machine], jobTime[nextJobl);
int end = start + jobSteps[jobStep + 1];

jobTime [nextJob] = machineTime [machine] = end;

int [] schedule = y.schedule[machinel;

schedule [machineState [machine]l++] = nextJob;

schedule [machineState [machine]++] = start;

The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = new int[this.instance.m];
int [] machineTime = new int[this.instance.m];
int [] jobState = new int[this.instance.n];
int[] jobTime = new int[this.instance.n];

for (int nextJob : x) {
int [] jobSteps = this.instance.jobs[nextJobl];

int jobStep = (jobState[nextJobl++) << 1;

int machine = jobSteps[jobStepl;

int start = Math.max(machineTime [machine], jobTime[nextJobl);
int end = start + jobSteps[jobStep + 1];

jobTime [nextJob] = machineTime [machine] = end;

int [] schedule = y.schedule[machinel;

schedule [machineState [machine]l++] = nextJob;

schedule [machineState [machine]++] = start;

schedule [machineState [machine]++] = end;

Number of Possible Solutions

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance

® How many possible candidate solutions are there?

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.

® If there are 2 machines, this gives us (n!) (n!) = (n!)? choices.

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.
® If there are 2 machines, this gives us (n!) (n!) = (n!)? choices.

® For three machines, we are at (n!)3.

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.

® If there are 2 machines, this gives us (n!) (n!) = (n!)? choices.

® For m machines, we are at (n!)™ possible solutions.

Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.

® If there are 2 machines, this gives us (n!) (n!) = (n!)? choices.
® For m machines, we are at (n!)™ possible solutions.

® But some may be wrong, i.e., contain deadlocks!

Number of Solutions: Size of Y

name n m min(#feasible) Y|

2 2 3 4

Number of Solutions: Size of Y

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8

Number of Solutions: Size of Y

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16

Number of Solutions: Size of Y

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32

Number of Solutions: Size of Y

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1'296
3 5 317 7776
4 2 244 576
4 3 1'630 13'824
4 4 7'451 331’776

Number of Solutions: Size of Y

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1296
3 5 317 7776
4 2 244 576
4 3 1'630 13'824
4 4 7'451 331'776
demo 4 5 7'962'624
la24 15 10 ~ 1.462*%101%!
abz7 20 15 ~ 6.193*10%7
ynd 20 20 ~ 5.278%103¢7
swvis 50 10 A 6.772%1064

Size of Search Space X

® Qur search space X is not the same as the solution space Y.

Size of Search Space X

® Qur search space X is not the same as the solution space Y.

® How many points are in our representations of the solution space?

Size of Search Space X

name n m [Y] IX]
3 2 36 90
3 3 216 1'680
3 4 1'296 34'650
3 5 7776 756'756
4 2 576 2'520
4 3 13'824 369'600
4 4 331'776 63'063'000
5 2 14'400 113'400
5 3 1'728'000 168'168'000
5 4 207'360°000 305'540'235'000
5 5 24'883'200'000 623'360'743'125'120
demo 4 5 7'962'624 11'732'745'024
la24 15 10 =~ 1.462*%10'%! A~ 2.203%10164
abz7 20 15 ~ 6.193*¥10%7® ~ 1.432%103%72
yn4d 20 20 ~ 5.278*10%¢7 ~ 1.213*10%0!
swvls 50 10 ~ 6.772%1004 A 1.254%10806

Size of Search Space X

10250

10200

10150

15

Size of Search Space X

® Qur search space X is not the same as the solution space Y.
® How many points are in our representations of the solution space?

® Both X and Y are very big for any relevant problem size.

Size of Search Space X

Our search space X is not the same as the solution space Y.

® How many points are in our representations of the solution space?

Both X and Y are very big for any relevant problem size.

X is bigger, we pay with size for the simplicity and the avoidance of
infeasible solutions.

Search Operators

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:
® nullary operators (k = 0) generate one (random) point in X.

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : X¥ — X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;
public interface INullarySearchOperator<X> {

void apply(X dest, Random random);

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:
® nullary operators (k = 0) generate one (random) point in X.
® unary operators (k = 1) take one point from X as input and return
another (similar) point.

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : X¥ — X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;
public interface IUnarySearchOperator<X> {

void apply(X x, X dest, Random random);

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:
® nullary operators (k = 0) generate one (random) point in X.
® unary operators (k = 1) take one point from X as input and return
another (similar) point.
® binary operators (k = 2) take two points from X as input and return
another point which should be similar to both.

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : X¥ — X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;
public interface IBinarySearchOperator<X> {

void apply(X x0, X x1, X dest, Random random) ;

Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:
® nullary operators (k = 0) generate one (random) point in X.
® unary operators (k = 1) take one point from X as input and return
another (similar) point.
® binary operators (k = 2) take two points from X as input and return
another point which should be similar to both.

® We will discuss concrete implementations of the operators later.

Termination

Searching and Stopping

® Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

Searching and Stopping

® Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good

solutions in Y.
® How long should it run?

Searching and Stopping

® Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

® How long should it run?

® When can it stop?

Searching and Stopping

Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

® How long should it run?
® When can it stop?

This is called the termination criterion.

When to stop?

® \We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

When to stop?

® \We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

® Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

When to stop?

® \We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

® Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.

When to stop?

® \We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

® Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.

® The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.°%

When to stop?

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.
® The best algorithms guaranteeing to find the optimal solution for our

JSSPs may need a runtime growing exponential with m and n.°%

Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer...) cannot faster
on the JSSP in the worst case!*2®

When to stop?

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.
® The best algorithms guaranteeing to find the optimal solution for our

JSSPs may need a runtime growing exponential with m and n.°%
Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer...) cannot faster
on the JSSP in the worst case!*2®

So?

When to stop?

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.
® The best algorithms guaranteeing to find the optimal solution for our

JSSPs may need a runtime growing exponential with m and n.°%
Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer...) cannot faster
on the JSSP in the worst case!*2®

So? ... The operator drinks a coffee.

When to stop?

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.
® The best algorithms guaranteeing to find the optimal solution for our

JSSPs may need a runtime growing exponential with m and n.°%

Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer...) cannot faster
on the JSSP in the worst case!*2®

So? ... The operator drinks a coffee. ... We have a about three
minutes.

When to stop?

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.
® The best algorithms guaranteeing to find the optimal solution for our

JSSPs may need a runtime growing exponential with m and n.°%

Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer...) cannot faster
on the JSSP in the worst case!*2®

So? ... The operator drinks a coffee. ... We have a about three
minutes. ... Let's look for the algorithm implementation that can
give us the best solution quality within that time window.

When to stop?

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.
® The best algorithms guaranteeing to find the optimal solution for our

JSSPs may need a runtime growing exponential with m and n.°%

Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer...) cannot faster
on the JSSP in the worst case!*2®

So? ... The operator drinks a coffee. ... We have a about three
minutes. ... Let's look for the algorithm implementation that can
give us the best solution quality within that time window.

This is the termination criterion we will use on our JSSP example
problem in this lecture.

When to stop?

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.
® The best algorithms guaranteeing to find the optimal solution for our

JSSPs may need a runtime growing exponential with m and n.°%

Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer...) cannot faster
on the JSSP in the worst case!*2®

So? ... The operator drinks a coffee. ... We have a about three
minutes. ... Let's look for the algorithm implementation that can
give us the best solution quality within that time window.

This is the termination criterion we will use on our JSSP example
problem in this lecture.

Obviously, in other scenarios, there might be vastly different

criteria. . .

Summary

Summary

® This was the most complicated lesson in this course!

Summary

® This was the most complicated lesson in this course!

® Thank you for sticking with me during this.

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem!

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.
® What we have learned is the most basic process when attacking any
optimization problem:
1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

2. Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f, which rates how good a solution is!

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

2. Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

Define the objective function f, which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm?

@

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

2. Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

Define the objective function f, which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm? If yes: cool.

@

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

2. Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

Define the objective function f, which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!

@

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

2. Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

Define the objective function f, which rates how good a solution is!

4. Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!

5. Understand when we need to stop the search!

@

Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

2. Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f, which rates how good a solution is!

4. Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!

5. Understand when we need to stop the search!

® |f we have this, we can directly use most of the algorithms in the rest
of the lecture (almost) as-is.

Summary

® \We now have the basic tools to search and find solutions for the JSSP.

Summary

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

Summary

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v: X +— Y.

Summary

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v: X +— Y.

® |f | can do that, then from now on | do not need to worry about Y

and its rules any more — | only need to work with X, which is easier to
understand and to program.

Summary

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v: X +— Y.

® |f | can do that, then from now on | do not need to worry about Y
and its rules any more — | only need to work with X, which is easier to
understand and to program.

® | et us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y).

Summary

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v: X +— Y.

® |f | can do that, then from now on | do not need to worry about Y
and its rules any more — | only need to work with X, which is easier to
understand and to program.

® | et us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y within 3 minutes).

LI

Thank you

References |

10.

11.

Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO) [A £ L5} ZAT] of
the School of Atrtificial Intelligence and Big Data [A L% fit 5 K 4% 4 %] of Hefei University [& 2% K], Hefei [&/27],
Anhui [##4], China [E], 2018-2020. URL http://thomasweise.github.io/aitoa/.

Thomas Weise. Global Optimization Algorithms — Theory and Application. it-weise.de (self-published), Germany, 2009.
URL http://www.it-weise.de/projects/book.pdf.

Fred Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics, volume 57 of International Series in
Operations Research & Management Science (ISOR). Springer Netherlands, Dordrecht, Netherlands, 2003. ISBN
0-306-48056-5. doi:10.1007/b101874.

Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Springer-Verlag, Berlin/Heidelberg, 2nd
edition, 2004. ISBN 3-540-22494-7.

Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and Alexander Hendrik George Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:
287-326, 1979. doi:10.1016,/50167-5060(08)70356-X.

Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H.
Zipkin, editors, Handbook of Operations Research and Management Science, volume IV: Production Planning and
Inventory, chapter 9, pages 445-522. North-Holland Scientific Publishers Ltd., Amsterdam, The Netherlands, 1993.
doi:10.1016/50927-0507(05)80189-6.

Eugene Leighton Lawler. Recent results in the theory of machine scheduling. In AAchim Bachem, Bernhard Korte, and
Martin Grotschel, editors, Math Programming: The State of the Art, chapter 8, pages 202-234. Springer-Verlag,
Bonn/New York, 1982. ISBN 978-3-642-68876-8. doi:10.1007/978-3-642-68874-4_9.

Eric D. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research (EJOR), 64(2):
278-285, January 1993. doi:10.1016/0377-2217(93)90182-M.

Jacek Btazewicz, Wolfgang Domschke, and Erwin Pesch. The job shop scheduling problem: Conventional and new solution
techniques. European Journal of Operational Research (EJOR), 93:1-33, August 1996. doi:10.1016/0377-2217(95)00362-2.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1650&type=pdf.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors,
Complexity of Computer Computations. The IBM Research Symposia Series., pages 85-103. Springer, Boston, MA, USA,
1972. ISBN 978-1-4684-2003-6. doi:10.1007/978-1-4684-2001-2.9.

Stephen Arthur Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing (STOC'71), May 3-5, 1971, Shaker Heights, OH, USA, pages 151-158, New York,
NY, USA, 1971. ACM. doi:10.1145/800157.805047.

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf
https://doi.org/10.1007/b101874
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1007/978-3-642-68874-4_9
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(95)00362-2
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1650&type=pdf
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/800157.805047

References 1|

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

John Edward Beasley. Or-library: Distributing test problems by electronic mail. The Journal of the Operational Research
Society (JORS), 41:1069-1072, November 1990. doi:10.1057/jors.1990.166.

Jelke Jeroen van Hoorn. Job shop instances and solutions, 2015. URL http://jobshop.jjvh.nl.

Jelke Jeroen van Hoorn. The current state of bounds on benchmark instances of the job-shop scheduling problem. Journal
of Scheduling, 21:127-128, feb 2018. doi:10.1007/s10951-017-0547-8.

Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop scheduling. Management
Science, 34(3):391-401, 1988. doi:10.1287 /mnsc.34.3.391.

Stephen R. Lawrence. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling
Techniques (Supplement). PhD thesis, Graduate School of Industrial Administration (GSIA), Carnegie-Mellon University,
Pittsburgh, PA, USA, 1984.

Robert H. Storer, S. David Wu, and Renzo Vaccari. New search spaces for sequencing problems with application to job
shop scheduling. Management Science, 38(10):1495-1509, 1992. doi:10.1287 /mnsc.38.10.1495.

Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale job-shop instances. In Reinhard Manner
and Bernard Manderick, editors, Proceedings of Parallel Problem Solving from Nature 2 (PPSN Il), September 28-30,
1992, Brussels, Belgium, pages 281-290, Amsterdam, The Netherlands, 1992. Elsevier.

James M. Wilson. Gantt charts: A centenary appreciation. European Journal of Operational Research (EJOR), 149:
430-437, September 2003. doi:10.1016,/S0377-2217(02)00769-5. URL
http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Wilson03.pdf.

Robert Klein. Scheduling of Resource-Constrained Projects, volume 10 of Operations Research/Computer Science
Interfaces Series. Springer US, New York, NY, USA, 2000. ISBN 978-0-7923-8637-7. doi:10.1007/978-1-4615-4629-0.
Mitsuo Gen, Yasuhiro Tsujimura, and Erika Kubota. Solving job-shop scheduling problems by genetic algorithm. In
Humans, Information and Technology: Proceedings of the 1994 IEEE International Conference on Systems, Man and
Cybernetics, October 2-5, 1994, San Antonio, TX, USA, volume 2. |IEEE, 1994. ISBN 0-7803-2129-4.
doi:10.1109/1CSMC.1994.400072. URL http://read.pudn.com/downloads151/doc/658565/00400072. pdf.

Christian Bierwirth. A generalized permutation approach to job shop scheduling with genetic algorithms.
Operations-Research-Spektrum (OR Spectrum), 17:87-92, June 1995. doi:10.1007/BF01719250. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf.

https://doi.org/10.1057/jors.1990.166
http://jobshop.jjvh.nl
https://doi.org/10.1007/s10951-017-0547-8
https://doi.org/10.1287/mnsc.34.3.391
https://doi.org/10.1287/mnsc.38.10.1495
https://doi.org/10.1016/S0377-2217(02)00769-5
http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Wilson03.pdf
https://doi.org/10.1007/978-1-4615-4629-0
https://doi.org/10.1109/ICSMC.1994.400072
http://read.pudn.com/downloads151/doc/658565/00400072.pdf
https://doi.org/10.1007/BF01719250
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf

References Ill

23.

24.

25.

26.

27.

28.

Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. On permutation representations for scheduling problems. In
Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature (PPSN 1V), September 22-24, 1996, Berlin, Germany,
volume 1141/1996 of Lecture Notes in Computer Science (LNCS), pages 310-318, Berlin, Germany, 1996. Springer-Verlag
GmbH. ISBN 3-540-61723-X. doi:10.1007/3-540-61723-X_995. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.8377&type=pdf.

Guoyong Shi, Hitoshi lima, and Nobuo Sannomiya. New encoding scheme for solving job shop problems by genetic
algorithm. In Proceedings of the 35th IEEE Conference on Decision and Control (CDC'96), December 11-13, 1996, Kobe,
Japan, volume 4, pages 4395-4400. IEEE, 1997. ISBN 0-7803-3590-2. doi:10.1109/CDC.1996.577484.

Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of machine scheduling: Complexity, algorithms and
approximability. In Ding-Zhu Du and Panos M. Pardalos, editors, Handbook of Combinatorial Optimization, pages
1493-1641. Springer-Verlag US, Boston, MA, USA, 1998. ISBN 978-1-4613-7987-4. doi:10.1007/978-1-4613-0303-9_25.
also pages 21-169 in volume 3/3 by Kluwer Academic Publishers.

David Paul Williamson, Leslie A. Hall, J. A. Hoogeveen, Cor A. J. Hurkens, Jan Karel Lenstra, Sergey Vasil'evich
Sevast'janov, and David B. Shmoys. Short shop schedules. Operations Research, 45(2):288-294, March—April 1997.
doi:10.1287 /opre.45.2.288.

Klaus Jansen, Monaldo Mastrolilli, and Roberto Solis-Oba. Approximation schemes for job shop scheduling problems with
controllable processing times. European Journal of Operational Research (EJOR), 167(2):297-319, December 2005.
doi:10.1016/j.ejor.2004.03.025. URL http://people.idsia.ch/~monaldo/papers/EJOR-varJsp-05.pdf.

Monaldo Mastrolilli and Ola Svensson. Hardness of approximating flow and job shop scheduling problems. Journal of the
ACM (JACM), 58(5):20:1-20:32, October 2011. doi:10.1145/2027216.2027218. URL
http://theory.epfl.ch/osven/0la%20Svensson_publications/JACM11.pdf.

https://doi.org/10.1007/3-540-61723-X_995
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.8377&type=pdf
https://doi.org/10.1109/CDC.1996.577484
https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1287/opre.45.2.288
https://doi.org/10.1016/j.ejor.2004.03.025
http://people.idsia.ch/~monaldo/papers/EJOR-varJsp-05.pdf
https://doi.org/10.1145/2027216.2027218
http://theory.epfl.ch/osven/Ola%20Svensson_publications/JACM11.pdf

	Outline
	Introduction
	The Structure of Optimization
	Warnings
	Components of an Optimization Problem

	Example Problem: Job Shop Scheduling
	Job Shop Problem
	Job Shop Scheduling Problem
	What we will do

	Problem Instance
	The Input: Problem Instances
	Demo Instance
	Instance abz7
	Instance la24
	Instance swv15
	Instance yn4
	Problem Instance Data in Java

	Solution Space
	Output: Candidate Solutions and Solution Space Y
	As Java Class

	Objective Function
	Solution Quality
	An Interface for Objective Functions in Java
	The JSSP Objective Function in Java
	The Global Optimum y in Y

	From Solution Space to Search Space
	Feasibility of Solutions
	Hardships when Searching in Y
	The Search Space X
	One Search Space X for the JSSP
	Demo Example for the Search Space
	The Search Space X
	An Interface for Representation Mappings in Java
	The JSSP Representation Mapping in Java

	Number of Possible Solutions
	Number of Solutions: Size of Y
	Size of Search Space X

	Search Operators
	Search Operators

	Termination
	Searching and Stopping
	When to stop?

	Summary
	Summary
	Summary

	Presentation End
	References

