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The Structure of Optimization

® So we know roughly what an optimization problem is and that
metaheuristics’™ are algorithms to solve them.

® But we do not really know yet how that works.

® We will approach this topic based on an example from the field of
Smart Manufacturing.

® We will first learn about the basic ingredients that make up an
optimization task.

® Then we will step-by-step work our way from stupid to good
metaheuristics for solving it.
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Warnings

® This will be one of the tougher and probably the longest lesson in this
lecture.

® We will learn key ideas and concepts that apply to many different
scenarios.

® We could look at them from an abstract point of view, similar to an
abstract Maths class.

® Then this lesson would be short... ...but maybe you won't get a
very good feeling for the topic.

® |nstead, we will directly take the abstract concepts and look how they
are implemented on one concrete problem.

® This makes the lesson longer, but | hope it will provide for a better
understanding.

® The example we will use is just an example — the concepts can be
implemented differently for almost all optimization problems.
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Components of an Optimization Problem

® From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance Z to be solved
2. a data type Y for the candidate solutions y € Y, and
3. an objective function f:Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,

5. a representation mapping v : X +— Y,

6. search operators searchOp : X" — X, and
7. a termination criterion.

® | ooks complicated, but don't worry. We will do this one-by-one.

® We want to get an understanding of the structure of optimization
problems from the metaheuristic perspective by looking at one
concrete problem from production planning.
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Job Shop Scheduling Problem

® The Job Shop Scheduling Problem (JSSP)> is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Fach job will need to be processed by some or all of the machines in a
job-specific order.

® Also, each job will require a job-specific time at a given machine.
® The goal is to fulfill all tasks as quickly as possible.

® This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

® This problem is N'P-hard.1%!
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What we will do

® |n this course, we will use the JSSP as example domain.

® We will discuss all components of an optimization problem based on
this example.

® We will discuss several different optimization algorithms — and apply
them to this problem.

® But we will do this from an educational perspective

® We will not focus on the best possible data structures or highest
possible efficiency.

® |t needs years of research to get there. ..

® We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach, test and compare different working approaches, (normally
you would then improve them further, but we will skip this)
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(+++++++++++++++++++++++

And Job 3 first needs to be processed by machine 4 for 50 time units, it
then goes to machine 3 for 30 time units, it then goes to machine 2 for 15
time units, it then goes to machine 0 for 20 time units, and finally it goes
to machine 1 for 15 time units.



Demo Instance

number m of machines
[(+++++++++++++++++++++++ ‘/

number n of jobs

\_

A simple demo

L4 5

Each of the n jobs

jobolo 10 120 220 3 40 A0 has m ,
jobl]1 20 010 3 30 250 4 30 each consisting of
j0b2 230 120 412 340 0 10 a machine index and
job31450 330 215 020 115

| +++++++++++++++++++++++

a time requirement.



Instance abz7

Instance abz7 by Adams et al.”®

20 jobs  Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 7)

15 machines

2 24 2 17 27 021 625 827 726 130 53111
6 30 3151220 11 19 1 24 13 156 10 28 236 526 7 15 0
635 0221323 732 220 3121219 1023 917 1 14 5
920 629 119 7 14 1233 430 032 521 11 29 10 24 14
11 23 13 20 128 632 7 16 518 824 923 324 10 34 2
8241119 1421 133 734 635 5401036 323 226 4
1327 330 621 819 1212 427 239 9 13 14 12 5 36 10
527 419 629 920 321 10 40 8 14 14 39 13 39 227 1
133211 29 824 327 540 421 926 027 1427 616 2
1235 111 539 14 18 7 23 034 32413 11 830 11 31 4
10 28 537 1229 131 725 813 14 14 4 20 3 27 9 25 13
0221125 5281335 431 821 9201419 229 7 32 10
1239 532 236 814 3281337 038 620 7 19 11 12 14
828 129 14 40 12 23 4 34 533 627 10 17 020 7 28 11
92114 3¢ 3301238 011 1116 214 514 134 8 33 4
913 14 40 736 417 013 533 82513 24 10 23 3 36 2
325 515 2281240 739 131 835 6311136 4 12 10
12 22 10 14 012 220 512 118 11 17 839 14 31 3 31 7
518 10 30 7 38 14 22 13 15 11 20 9 16 3 17 1 12 2 13 12
931 8391227 114 533 33111221336 016 7 11 14

-

e

-

-

-
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Instance 1a24

Instance 1a24 by Lawrence®.

I

DO ONODMMNDNON OO0 < 00
~— N~ ~— < 00 O — M

ONMNNMAFANAMOANOS O

ONANTDAINEANMO O O LW
NOFAOANNMMMOFTO0 AN

AN MULOOFHFHAOL O

VONOMLOLOO v FLW 00 O Mmoo
OANMNO < < I~ ANANM—00N

LAV MOWOHOLWO O I~

ONN—NDONMO H NN WO N~
NEHADA—AOON~NOONNN~ N~

ADOONMNMIOIANNOONMM

NDHAF D000 NO L WOWNN +
MO O 35231877H
OFNOOAFIFIMOOLO MO +

OOV OMWOW—ENOVOVOOON +
MNOOOMOOOOOF O I +

(Table 7, instance 4)

+

4
1
0
5
1
9
9
2
7
1
2
8
2
8
0
++

FTOMNOMANO AN O HOLW
M~ A © MOOMOANWOAAOH

QOFOOLOAMLO LN

NMNODDONDLOOFOMMNOM
MO IFLOINMMMNSWLAN

OCMULFOFOLOMETANMLO

LMD HONDNDHOON
MM MNFOOM DO O

DOMNMMANOANANMNOOMM—N

THO OO WFO AN OO
AL OOOMNMOMWOOON

AN O AAN0OOIFAINOO

10 machines

awrence 15x10 instance

22452994985
e

15 jobs



Instance swv15

Instance swv15 by Storer et al."”

++

AR

50 jobs  Storer, Wu, and Vaccari hard 50x10

~~J50] [t0}—10 machines
2 93 4 40 1

+
0 W R ON O KON OO RN COWON A ORON O POWOONWOR W R EO

0 3
92 4 80 1 76 3 59
44 2 92 3 96 4 77
60 2 19 3 76 0 73
2 0 24 3 41 1 2
41 2 35 1 32 4 18
59 0 45 4 53 3 44
30 4 51 3 25 0 51
47 3 18 2 40 4 62
33 1 68 0 41 4 72
28 1100 4 20 0 35
65 2 12 4 53 3 93
58 1 60 4 97 3 31
64 0 58 1 49 2 45
10 4 8 3 72 2 37
93 0 87 1 87 2 18
72 0 56 3 57 2 15
36 3 63 4 79 2 32
83 4 20 0 9 1 38
100 3 29 2 60 4 63
81 0 60 3 62 4 48
40 4 80 1 41 2 10
3 2 12 0 35 3 17
36 2 41 3 27 4 36
65 3 27 4 T4 0 32
48 1 8 2 92 4 95
84 2 50 0 70 4 24
95 4 41 2 11 3 98
84 2 49 1 17 3 69
48 0 29 4 1 1 64
81 4 25 3 33 0 22
62 4 25 0 21 2 20
43 0 16 2 91 3 96
91 2 20 4 44 0 42
33 3 95 4 68 2 22
15 3 47 1 24 2 31
95 0 42 4 5 1 57
54 0 15 1 20 3 64
22 4 27 1 77 3 25
68 1 82 2 16 0 83
64 0 76 2 8 3 71
94 1 45 2 94 4 84
23 1 10 0 82 3 93
75 2 27 4 97 3 9
42 3 41 2 35 0 75
72 1 63 0 33 2 27

1 0 4

1 0 4

1 0 3

1 4

9 4 3 2
S

MRS 0 G0 8 8 0 N G0 0 G0 (R 1 GO O B 09 1 G0 N R G R R R O O N

instance (Table 2, instance

5 16 9 74 8 11 6 51
5 8 9 17 6 78 7 30
9 10 7 49 5 84 8 59
7 13 8 93 5 68 9 50
9 44 7 79 8 81 5 16
8 98 6 29 5 19 7 14
5 84 6 23 7 45 8§ 39
6 60 5 45 7 89 8§ 25
5 36 7 93 8 77 9 90
6 69 7 47 5 22 9 47
5 24 9 41 6 42 7 100
8 18 7 23 5 60 6 89
9 8 5 64 7 38 6 85
8 49 6 22 5 99 9 15
5 70 7 45 9 8 6 83
8 78 5 67 9 20 6 17
6 41 5 40 9 8 8 32
6 25 7 86 9 91 5 21
7 5 9 99 5 18 8§ 29
8 71 6 35 5 26 9 9
7 28 5 69 8 92 6 79
8 28 9 51 7 33 6 82
9 29 7 18 8 93 6 94
7 64 6 88 5 25 9 92
5 8 8 73 6 92 7 83
8 72 9 76 5 58 7 11
9 55 5100 6 70 7 4
5 64 6 8 7 26 8 6
8 75 6 45 9 38 7 59
5 23 7 64 9 31 6 56
5 74 9 56 8 33 7 85
6 3 9 9 5 91 8 90
5 11 9 91 7 41 8§ 35
9 57 6 15 5 38 8§ 42
7 53 8 13 9 70 5 22
8 14 9 28 7 59 5 52
6 3 9 21 8 70 5 9
9 40 7 6 5 8 6 91
8 72 9 61 6 75 7 4

7 10 8 8 5 41 9 21
5 97 7 8 6 40 8 70
8 41 5 30 7 47 6 19
8 67 7 9 9 18 5 22
9 14 5 50 7 31 8 62
9 65 7 38 6 38 8 51
5 52 7 42 9 10 6 14
6 49 5 22 8 31 9 69
6 8 7 25 8 99 5 67
7 96 8 79 9 68 5 76
7 12 9 45 6 52 8 49

NPEIRNPPROORNDNRA VR VRRNORAODNNONAD VNN VRODBROOORAAD~ &



Instance yn4

Instance yn4 by Yamada and Nakano®

20 jobs Yamada and Nakano 20x20 instance (Table 4, instance 4)

[20——20 machines
1 41738 021 6

6 3 1 15 156 42 8 17 7 41 18 10 10 26 11 24 1 31 19 25 14 31 13 33 4 35 9
541 11 33 6 15 16 38 040 14 38 3 37 1201322 434 7 16 17 39 9 15 2 19 10 36 12
1734 112 16 10 7 47 13 28 16 27 0 19 6 34 19 33 1240 9 37 14 24 8 15 10 34 244 3
548 7 46 16 47 10 45 14 16 8 25 034 3 24 12 35 18 156 2 48 13 19 11 10 1 48 17 16 15
12 .47 323 948 16 45 14 39 6 42 832 15 11 13 16 5 14 11 19 1 46 19 10 10 17 7 41 2
18 14 16 20 1 18 12 14 13 10 6 16 524 4 18 0 24 11 18 15 42 19 13 3 23 14 40 9 48 8
027 12 15 4 26 13 19 17 14 549 7 16 18 28 16 16 8 20 9 36 221 14 30 3 36 1 17 15
03216 156 17 12 7 46 3 37 18 43 11 40 13 43 948 4 36 15624 825 133 1432 526 6
10 34 6 33 1525 846 020 18 33 4 19 13 45 247 132 3 12 11 29 16 29 5 46 12 17 7
1326 347 544 649 12217 12 10 28 19 36 9 27 4 25 14 48 7 11 16 49 12 24 11 48 2
13 23 18 48 14 15 042 336 8 15 632 10 18 1 45 15 23 11 45 2 13 17 21 1232 7 44 5
17 37 749 15645 228 915 8351229 1344 126 425 530 339 015 14 28 18 23 6
010 637 31513 13 10 11 249 1 28 14 28 15 13 8 29 12 21 16 32 11 21 4 48 5 11 17
18 38 041 4301343 6 11 243 14 27 326 9 30 15 19 16 36 1 31 17 47 5 41 10 34 8
624 530 710 10 35 828 16 43 19 12 944 156 15 3 16 23518 43 038 4 16 1 29 17
348 6351343 237 17 18 527 927 7 41 1221528 16 18 10 37 18 48 4 10 8 14 11
013 1338 734 642 136 545 18 24 8 35 14 26 19 30 12 47 16 24 11 47 4 40 10 43 3
16 30 13 47 19 49 8 20 4 40 3 46 17 21 14 33 6 44 7 23 924 048 10 43 1541 232 5
13 10 5 36 12 18 16 48 0 27 14 43 10 46 6 27 7 46 19 35 11 31 2 18 8 24 3 23 17 29 18
9 45 16 44 0 43 17 31 14 35 13 17 12 42 3 14 18 37 10 39 6 48 7 38 15626 4 49 2 28 11

-

e
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Problem Instance Data in Java

® How can we represent such data in Java program code?



Problem Instance Data in Java

® How can we represent such data in Java program code?

package aitoa.examples. jssp;
public class JSSPInstance {
public final int m;
public final int n;

public final int[1[] jobs;




Solution Space




Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
input we get.
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input we get.
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Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

® But what output should we produce?

® |n other words, what is a solution for an instance of the JSSP?
® Basically, a Gantt Chart®?.



Output: Candidate Solutions and Solution Space Y

one possible solution for the demo instance, illustrated as Gantt chart

—




Output: Candidate Solutions and Solution Space Y

one possible solution for the 1a24 instance, illustrated as Gantt chart
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Output: Candidate Solutions and Solution Space Y

one possible solution for the yn4 instance, illustrated as Gantt chart
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Output: Candidate Solutions and Solution Space Y

one possible solution for the swv15 instance, illustrated as Gantt chart
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Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

® But what output should we produce?
® |n other words, what is a solution for an instance of the JSSP?
® Basically, a Gantt Chart®?.

® A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.



Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
Input we get.

® But what output should we produce?

® |n other words, what is a solution for an instance of the JSSP?

® Basically, a Gantt Chart®?.

® A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

® The solution space Y is the set of all possible feasible solutions for
one JSSP instance.



Output: Candidate Solutions and Solution Space Y

® \We now know how a problem instance of the JSSP looks like, i.e., the
Input we get.

® But what output should we produce?

® |n other words, what is a solution for an instance of the JSSP?

® Basically, a Gantt Chart®?.

® A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

® The solution space Y is the set of all possible feasible solutions for
one JSSP instance.

® QOne possible solution is called candidate solution and it can be
illustrated as Gantt chart.



As Java Class

® We now need to represent this information as a Java class.



As Java Class

® We now need to represent this information as a Java class.

package aitoa.examples. jssp;
public class JSSPCandidateSolution {

public int [J[] schedule;




As Java Class

® We now need to represent this information as a Java class.

® Each of the m lists in holds n operations for

each machine as three values jobID, start time, end time, i.e., has
length 3n.

package aitoa.examples. jssp;
public class JSSPCandidateSolution {

public int [J[] schedule;




As Java Class

new int[]1[] {
{06, 0, 10,

1, 20, 30,

{1, 0, 20, 2, 30, 50,
{2, 0, 30, 0, 70, 90,
{1, 30, 60, 3, 60, 90,
{3, 0, 50, 2, 50, 62,

3, 155, 175, 2, 175, 185},
0, 50, 70, 3, 175, 190},
1, 90, 140, 3, 140, 155},
0, 90, 130, 2, 130, 170},
0, 130, 140, 1, 140, 170}

}
4 0 1 I
3 1 3 0
2 0 L &
1 2 N
0 | , ER2 |
0 50 100 150



As Java Class

new int[]1[] {

MO{GI 0;
mM14{1, O,
M2{2, 01
M3 {1, 30,
M4 {3, O,
}

4

3

2

1

0

10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

1 3 0

0 1 3

2 KN

50 100 150



As Java Class

new int[]1[] {

o, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{3, 0o, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{4, 0o, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3 0o, 50, 2, 50, 62, 6, 130, 140, 1, 140, 170}

100 150



As Java Class

new int[]1[] {

{0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{2, P, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 3p, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, o, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}
}

1 Dl

3 3 0]

2 0 1 3

1 2 N

0 | 3 i

0 50 100 150



As Java Class

new int[][] {
{6, O,
{1, 0,
{2, o,
{1, 30,
{3,

~ N~ 0~ 0~ 3

NWONK
HNWWN

175,
175,
140,
130,
140,




As Java Class

new int[]1[] {
{06, 0, 10, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o0, 20, p, 30, 50, 0, 50, 70, 3, 175, 190},
{2, 0, 30, O, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60,3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, 0, 50,/2, 50, 62, 0, 130, 140, 1, 140, 170}

0 50 100 150



As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

1, , 30, 3, 155, 175, 2, 175, 185},
2, jo, 50, 0, 50, 70, 3, 175, 190},
o, yo, 90, 1, 90, 140, 3, 140, 155},
3,/60, 90, 0, 90, 130, 2, 130, 170},
2,/50, 62, 0, 130, 140, 1, 140, 170}

50 100 150



As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

1, 20, , 3, 155, 175, 2, 175, 185},
2, 30, 30, 0, 50, 70, 3, 175, 190},
0, 70, pQo, 1, 90, 140, 3, 140, 155},
3, 60,/90, 0, 90, 130, 2, 130, 170},
2, 50/ 62, 0, 130, 140, 1, 140, 170}

50 100 150



As Java Class

new int[]1[] {

{01 0; 10;
{1, o, 20,
{2, 0, 30,
{1, 30, 60,
{3r 0; 50;
}
4
3
2

0 50 100 150



As Java Class

new int[][] {

{06, 0, 10, 175, 185},
{1, o0, 20, 175, 190},
{2, 0, 30, 140, 155},
{1, 30, 60, 130, 170},
{3, 0, 50, 170}
}
4
3
2
1
0

0 50 100 150



As Java Class

new int[]1[] {

1, 20, 30, 3, 155, , 2, 175, 185},
2, 30, 50, 0, 50, 7%, 3, 175, 190},
0, 70, 90, 1, 90, 144, 3, 140, 155},
3, 60, 90, 0, 90, 1306\ 2, 130, 170},
2, 50, 62, 0, 130, 140, 1, 140, 170}

{0, 0, 10,
{1, 0o, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,
}

4

3

2

1

0

0

50 100 150



As Java Class

new int[]1[] {

20, 30, 3, 155, 175, @&, 175, 185},
30, 50, 0, 50, 70, 3, 175, 190},
70, 90, 1, 90, 140, 3} 140, 155},
60, 90, 0, 90, 130, 2) 130, 170},
50, 62, 0, 130, 140, 1,\ 140, 170}

NWONK

{0, 0, 10,
{1, 0o, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,
}

4

3

2

1

0

0

50 100 150



As Java Class

new int[]1[] {

{0, 0, 10, 1, 20, 30, 3, 155, 175, 2, , 185},
{1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}
}

4

3 1 3 0]

2 0 1 3

1 2 A

0

0 50 100 150



As Java Class

new int[]1[] {
{6, 0, 10, 1, 20, 30, 3, 155, 175, 2,
{1, o0, 20, 2, 30, 50, 0, 50, 70, 3,
{2, 0, 30, 0, 70, 90, 1, 90, 140, 3,
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2,
{3, 0, 50, 2, 50, 62, 0, 130, 140, 1,

3 1 3 0]

2 0] 1 3
1 2

0

175,
175,
140,
130,
140,

oo

155},
170},
170}




As Java Class

new int[][] {
{6, 0, 10, 1, 20,
, 0, 20, 2, 30,
{2, 0, 30, 0, 70,
{1, 30, 60, 3, 60,
{3y 0, 50, 2, 50,

30, 3, 155, 175,
50, 0, 50, 70,
90, 1, 90, 140,
90, 0, 90, 130,
62, 0, 130, 140,
0
1

175, 185},
175, 190},
140, 155},
130, 170},
140, 170}

HNWWN

~ 0~ 0~ 0~ 0~

100



As Java Class

new int[]1[] {

{0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, @ 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{2, P, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, [o, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}
}

1 Dl

3 3 0]

2 0 1 3

1 2 N

0 | 3 i

0 50 100 150



As Java Class

new int[]1[] {

{0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o, B@, 2, 30, 50, 0, 50, 70, 3, 175, 190},
{2, 0o, B0, o, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, b0, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, , 2, 50, 62, 0, 130, 140, 1, 140, 170}
}

4 Dl

3 3 0]

2 0 1 3

1 2 N

0 | 3 i

0 50 100 150



As Java Class

new int[]1[] {

{0, o, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

{1, 0, 20, 30, 50, 0, 50, 70, 3, 175, 190},

{2, o, 30, ¢, 70, 90, 1, 90, 140, 3, 140, 155},

{1, 30, 60, B, 60, 90, 0, 90, 130, 2, 130, 170},

{3, 0, 50, p, 50, 62, 0, 130, 140, 1, 140, 170}
}

0 50 100 150



As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

1, 20, 30, 3, 155, 175, 2, 175, 185},
2, , 50, 0, 50, 70, 3, 175, 190},
o, /70, 90, 1, 90, 140, 3, 140, 155},
3,/60, 90, 0, 90, 130, 2, 130, 170},
2,/50, 62, 0, 130, 140, 1, 140, 170}

50 100 150



As Java Class

new int[]1[] {

{0, 0, 10,

{1, 0, 20,

{2, 0, 30,

{1, 30, 60,

{3, 0, 50,
}

1, 20, 30, 3, 155, 175, 2, 175, 185},
2, 30, , 0, 50, 70, 3, 175, 190},
o0, 70, 90, 1, 90, 140, 3, 140, 155},
3, 60, po, 0, 90, 130, 2, 130, 170},
2, 50, /62, 0, 130, 140, 1, 140, 170}

50 100 150



As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

155,
50,
90,
90,

130,

175,

70,
140,
130,
140,

HNWWN

~ 0~ 0~ 0~ 0~

175,
175,
140,
130,
140,

185},
190},
155},
170},
170}




As Java Class

new int[]1[] {

{0, 0, 10,
{1, 0, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,

NWONK

20,
30,
70,
60,

30,
50,
90,
90,

155, 175, 2, 175,
, 70, 3, 175,
140, 3, 140,
2,
1,

~ 0~ 0~ 0~

, 130, 130,
140,

oo OoW

185},
190},
155},
170},
170}




As Java Class

new int[]1[] {

{0, o,

{1, o,

{2, 0,

{1, 30,

{3, 0,
}

N

w

N

'y

10,
20,
30,
60,
50,

175,
175,
140,
130,
140,

185},
190},
155},
170},
170}




As Java Class

new int[]1[] {

1, 20, 30, 3, 155, 175, 2, 175, 185},
2, 30, 50, 0, 50, 70,8, 175, 190},
0, 70, 90, 1, 90, 140, 3}, 140, 155},
3, 60, 90, 0, 90, 130, 2\ 130, 170},
2, 50, 62, 0, 130, 140, 1)\ 140, 170}

{0, 0, 10,
{1, 0o, 20,
{2, 0, 30,
{1, 30, 60,
{3, 0, 50,
}
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As Java Class

new int[]1[] {

{0, o, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o0, 20, 2, 30, 50, 0, 50, 70, 3, , 190},
{2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
{3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}




As Java Class

new int[]1[] {
{6, 0, 10, 1, 20, 30, 3, 155, 175, 2,
{1, o0, 20, 2, 30, 50, 0, 50, 70, 3,
{2, 0, 30, 0, 70, 90, 1, 90, 140, 3,
{1, 30, 60, 3, 60, 90, 0, 90, 130, 2,
{3, 0, 50, 2, 50, 62, 0, 130, 140, 1,

175, 185},

175,

140, 155},

130, 1
140, 17
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Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.
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Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.
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Solution Quality

The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.
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Solution Quality

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.
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Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.
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Solution Quality

® The objective function f : Y — R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.
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® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

® This objective function is subject to minimization: smaller values are
better.
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and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

® This objective function is subject to minimization: smaller values are
better.

® A Gantt chart y; € Y is a better solution to our problem than another
chart y2 € Y if f(y1) < f(y2).



Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).
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Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).
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Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another

chart yo € Y if f(y1) < f(y2).
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Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).
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Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another

chart yo € Y if f(y1) < f(y2).
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Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).
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Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).
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Solution Quality

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if f(y1) < f(y2).
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An Interface for Objective Functions in Java

package aitoa.structure;
public interface IObjectiveFunction<Y¥> {

double evaluate(Y y);
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package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
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public double evaluate(final JSSPCandidateSolution y) {
int makespan = 0;

return makespan;
}
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package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0;
for (int[] machine : y.schedule) {
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The JSSP Objective Function in Java

package aitoa.examples. jssp;

public class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

public double evaluate(final JSSPCandidateSolution y) {
int makespan = 0;
for (int[] machine : y.schedule) {
int end = machine[machine.length - 1];
if (end > makespan) {
makespan = end;
}
}
return makespan;
}
}
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® There must be at least one globally optimal solution y* for which
f(y*) < f(y) Yy € Y holds.
® How do we find such a solution?

e We know the problem is N'P-hard®!, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.
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The Global Optimum y* in Y

® There must be at least one globally optimal solution y* for which
f(y*) < f(y) Vy € Y holds.

® How do we find such a solution?

e We know the problem is N'P-hard®!, so any algorithm that
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runtime exponential in m or n in the worst case.
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normal-sized JSSP in reasonable time.
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The Global Optimum y* in Y

® There must be at least one globally optimal solution y* for which
f(y*) < f(y) Yy € Y holds.
® How do we find such a solution?

e We know the problem is N'P-hard®!, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

® So we cannot guarantee to always find the best possible solution for a
normal-sized JSSP in reasonable time.

® \What we can always do is search in Y and hope to get as close to y*
within reasonable time as possible.

® |f we can find a solution with a slightly larger makespan than the best
possible solution, but we can get it within a few minutes, that would
also be nice. ..
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® |ndeed, there are several constraints we need to impose on our Gantt
charts:
1. all operations of all jobs must be assigned to their respective machines
and properly be completed
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Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:

1.

all operations of all jobs must be assigned to their respective machines
and properly be completed,

. only the jobs and machines specified by the problem instance must

occur in the chart
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Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt

charts:
1. all operations of all jobs must be assigned to their respective machines
and properly be completed,
2. only the jobs and machines specified by the problem instance must
occur in the chart,
3. an operations must be assigned a time window on its corresponding

machine which is exactly as long as the operation needs on that
machine
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Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time
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Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time, and

5. the precedence constraints of the operations must be honored.
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Feasibility of Solutions

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® |ndeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time, and

5. the precedence constraints of the operations must be honored.

® Only a Gantt chart obeying all of these constraints is feasible, i.e.,
can be implemented in practice.
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® So how do we search in the space of Gantt charts?
® \We need to create Gantt charts that fulfill all the constraints.

® [For different instances, different solutions are feasiblel!
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Job 0 cannot begin on machine 1 until
it has been passed through machine 0,
but it cannot be executed there, be-
cause job 1 needs to be finished there

first.
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A cyclic blockage has appeared: no job
can be executed on any machine if we
follow this schedule. This is called a
deadlock.
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This is called a deadlock. The sched-
ule is infeasible, because it cannot
be executed or written down without
breaking the precedence constraint.
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® So how do we search in the space of Gantt charts?
® \We need to create Gantt charts that fulfill all the constraints.
® [For different instances, different solutions are feasiblel!

® Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

® Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

® \We would like to have a handy representation for Gantt charts.

® The representation should allow us to easy create and modify the
candidate solutions.

® Solution: We develop a data structure X which we can handle easily
and which can always be translated to feasible Gantt charts by a
mapping v : X — Y.
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® The solution space Y is complicated and constrained.

® In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. ..

® |f we would have a valid Gantt chart y € Y, then trying to improve it
would be quite complicated.

® |f we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

® We want to search in a simpler space that we can easily understand,
where we do not need to worry about the constraints and feasibility.

® This space is therefore called the search space X.

® Of course, X must somehow be related to Y: We need a
representation mapping v : X — Y which translates from X to Y.
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number m of machines

number n of jobs

(+++++++++++++++++++++++
A simple demo
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Each of the n jobs
has m ,
each consisting of
a machine index and
a time requirement.

(+++++++++++++++++++++++

This is information that we have, which does not need
to be stored in the elements z € X.
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The instance data Z and the data from one point z € X
should, together, encode such a Gantt chart y € Y.
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® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the operations.

® We could easily translate such strings to Gantt charts, but we could
end up with infeasible solutions and deadlocks or a string telling us to
do the second operation of a job before the first one. ..
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® So how could a simple search space X for the JSSP look like?

® | et us revisit the demo problem instance.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |n the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 operation one ID, a number in
0...19.

® How can we use a linear encoding without deadlocks?

® Fach job has m = 5 operations that must be distributed to the

machines in the sequence prescribed in the problem instance data.

® We know the order of the operations per job = we do not need to
encode it.

® We just include each job id m times in the string.?**

® The first occurrence of a job's ID stands for its first operation, the
second occurrence for the second operation, and so on.

® This way, we will always have the operations in the right order.
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The Search Space X

® \We now have search space X with which we can easily represent all
reasonable Gantt charts.

® As long as our integer strings of length m *x n contain each value in
1...n exactly m times, we will always get feasible Gantt charts by
applying our mapping v : X — Y!

® We call this the representation.

® |f necessary, we could also easily add more constraints, such as
job-order specific machine setup times, or job/machine specific
transport times — they would all go into the mapping ~.



An Interface for Representation Mappings in Java

package aitoa.structure;
public interface IRepresentationMapping<X, Y> {

void map(X x, Y y);
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for (int nextJob

package aitoa.examples.

int [] jobSteps =
int jobStep =
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int start
int end

jssp;

public class JSSPRepresentationMapping
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public void map(int[] x, JSSPCandidateSolution y) {

= new int[this.instance.m];
= new int[this.instance.m];
= new int[this.instance.n];

new int[this.instance.n];

x) {

this.instance.jobs [nextJob];
(jobState [nextJobl++) << 1;
jobSteps [jobStep];

= Math.max(machineTime [machine],
= start + jobSteps[jobStep + 1];

JSSPCandidateSolution> {

jobTime [nextJobl);




The JSSP Representation Mapping in Java

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = new int[this.instance.m];
int [] machineTime = new int[this.instance.m];
int [] jobState = new int[this.instance.n];
int[] jobTime = new int[this.instance.n];

for (int nextJob : x) {
int [] jobSteps = this.instance.jobs[nextJobl];

int jobStep = (jobState[nextJobl++) << 1;

int machine = jobSteps[jobStepl;

int start = Math.max(machineTime [machine], jobTime[nextJobl);
int end = start + jobSteps[jobStep + 1];

jobTime [nextJob] = machineTime [machine] = end;
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int end =
jobTime [nextJob] =

int [] schedule = y.

package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<intl[],
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package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {
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package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = new int[this.instance.m];
int [] machineTime = new int[this.instance.m];
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for (int nextJob : x) {
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package aitoa.examples. jssp;

public class JSSPRepresentationMapping
implements IRepresentationMapping<int[], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = new int[this.instance.m];
int [] machineTime = new int[this.instance.m];
int [] jobState = new int[this.instance.n];
int[] jobTime = new int[this.instance.n];

for (int nextJob : x) {
int [] jobSteps = this.instance.jobs[nextJobl];

int jobStep = (jobState[nextJobl++) << 1;

int machine = jobSteps[jobStepl;

int start = Math.max(machineTime [machine], jobTime[nextJobl);
int end = start + jobSteps[jobStep + 1];

jobTime [nextJob] = machineTime [machine] = end;

int [] schedule = y.schedule[machinel;

schedule [machineState [machine]l++] = nextJob;

schedule [machineState [machine]++] = start;

schedule [machineState [machine]++] = end;




Number of Possible Solutions




Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance



Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance

® How many possible candidate solutions are there?



Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.



Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.



Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.



Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.

® If there are 2 machines, this gives us (n!)  (n!) = (n!)? choices.



Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.
® If there are 2 machines, this gives us (n!)  (n!) = (n!)? choices.

® For three machines, we are at (n!)3.



Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.

® If there are 2 machines, this gives us (n!)  (n!) = (n!)? choices.

® For m machines, we are at (n!)™ possible solutions.



Number of Solutions: Size of Y

o OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® |et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

® |f there was only 1 machine, then we would have
n!l=1%x2x3x4x5x...%xn possible ways to arrange the n jobs.

® If there are 2 machines, this gives us (n!)  (n!) = (n!)? choices.
® For m machines, we are at (n!)™ possible solutions.

® But some may be wrong, i.e., contain deadlocks!
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Number of Solutions: Size of Y

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1296
3 5 317 7776
4 2 244 576
4 3 1'630 13'824
4 4 7'451 331'776
demo 4 5 7'962'624
la24 15 10 ~ 1.462*%101%!
abz7 20 15 ~ 6.193*10%7
ynd 20 20 ~ 5.278%103¢7
swvis 50 10 A 6.772%1064
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Size of Search Space X

name n m [Y] IX]
3 2 36 90
3 3 216 1'680
3 4 1'296 34'650
3 5 7776 756'756
4 2 576 2'520
4 3 13'824 369'600
4 4 331'776 63'063'000
5 2 14'400 113'400
5 3 1'728'000 168'168'000
5 4 207'360°000 305'540'235'000
5 5 24'883'200'000 623'360'743'125'120
demo 4 5 7'962'624 11'732'745'024
la24 15 10 =~ 1.462*%10'%! A~ 2.203%10164
abz7 20 15 ~ 6.193*¥10%7® ~ 1.432%103%72
yn4d 20 20 ~ 5.278*10%¢7 ~ 1.213*10%0!
swvls 50 10 ~ 6.772%1004 A 1.254%10806
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Size of Search Space X

Our search space X is not the same as the solution space Y.

® How many points are in our representations of the solution space?

Both X and Y are very big for any relevant problem size.

X is bigger, we pay with size for the simplicity and the avoidance of
infeasible solutions.



Search Operators




Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.



Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.



Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:



Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:
® nullary operators (k = 0) generate one (random) point in X.



Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : X¥ — X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;
public interface INullarySearchOperator<X> {

void apply(X dest, Random random);




Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:
® nullary operators (k = 0) generate one (random) point in X.
® unary operators (k = 1) take one point from X as input and return
another (similar) point.



Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : X¥ — X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;
public interface IUnarySearchOperator<X> {

void apply(X x, X dest, Random random);




Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:
® nullary operators (k = 0) generate one (random) point in X.
® unary operators (k = 1) take one point from X as input and return
another (similar) point.
® binary operators (k = 2) take two points from X as input and return
another point which should be similar to both.



Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : X¥ — X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;
public interface IBinarySearchOperator<X> {

void apply(X x0, X x1, X dest, Random random) ;




Search Operators

® Another general structure element needed by many optimization
algorithms are search operators.

Definition
Search OperatorAn k-ary search operator searchOp : X¥ — X is a

left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

® Based on their arity k, we can distinguish the following most common
operator types:
® nullary operators (k = 0) generate one (random) point in X.
® unary operators (k = 1) take one point from X as input and return
another (similar) point.
® binary operators (k = 2) take two points from X as input and return
another point which should be similar to both.

® We will discuss concrete implementations of the operators later.



Termination




Searching and Stopping

® Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.



Searching and Stopping

® Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good

solutions in Y.
® How long should it run?



Searching and Stopping

® Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

® How long should it run?

® When can it stop?



Searching and Stopping

Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

® How long should it run?
® When can it stop?

This is called the termination criterion.
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When to stop?

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

® Probably not.
® The best algorithms guaranteeing to find the optimal solution for our

JSSPs may need a runtime growing exponential with m and n.°%

Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer...) cannot faster
on the JSSP in the worst case!*2®

So? ... The operator drinks a coffee. ... We have a about three
minutes. ... Let's look for the algorithm implementation that can
give us the best solution quality within that time window.

This is the termination criterion we will use on our JSSP example
problem in this lecture.

Obviously, in other scenarios, there might be vastly different

criteria. . .
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Summary

® This was the most complicated lesson in this course!
® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

2. Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f, which rates how good a solution is!

4. Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!

5. Understand when we need to stop the search!

® |f we have this, we can directly use most of the algorithms in the rest
of the lecture (almost) as-is.
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Summary

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v: X +— Y.

® |f | can do that, then from now on | do not need to worry about Y
and its rules any more — | only need to work with X, which is easier to
understand and to program.

® | et us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y within 3 minutes).



LI

Thank you
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