
Optimization Algorithms

2. Structure

Thomas Weise · 汤卫思
tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn/5

Institute of Applied Optimization (IAO) 应用优化研究所

School of Artificial Intelligence and Big Data 人工智能与大数据学院

Hefei University 合肥学院

Hefei, Anhui, China 中国安徽省合肥市

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn/5

Outline

1. Introduction

2. Example Problem: Job Shop Scheduling

3. Problem Instance

4. Solution Space

5. Objective Function

6. From Solution Space to Search Space

7. Number of Possible Solutions

8. Search Operators

9. Termination

10. Summary

Introduction

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics1–4 are algorithms to solve them.

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics1–4 are algorithms to solve them.

• But we do not really know yet how that works.

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics1–4 are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics1–4 are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

• We will first learn about the basic ingredients that make up an
optimization task.

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics1–4 are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

• We will first learn about the basic ingredients that make up an
optimization task.

• Then we will step-by-step work our way from stupid to good
metaheuristics for solving it.

Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

• We will learn key ideas and concepts that apply to many different
scenarios.

Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

• We will learn key ideas and concepts that apply to many different
scenarios.

• We could look at them from an abstract point of view, similar to an
abstract Maths class.

Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

• We will learn key ideas and concepts that apply to many different
scenarios.

• We could look at them from an abstract point of view, similar to an
abstract Maths class.

• Then this lesson would be short. . .

Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

• We will learn key ideas and concepts that apply to many different
scenarios.

• We could look at them from an abstract point of view, similar to an
abstract Maths class.

• Then this lesson would be short. but maybe you won’t get a
very good feeling for the topic.

Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

• We will learn key ideas and concepts that apply to many different
scenarios.

• We could look at them from an abstract point of view, similar to an
abstract Maths class.

• Then this lesson would be short. but maybe you won’t get a
very good feeling for the topic.

• Instead, we will directly take the abstract concepts and look how they
are implemented on one concrete problem.

Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

• We will learn key ideas and concepts that apply to many different
scenarios.

• We could look at them from an abstract point of view, similar to an
abstract Maths class.

• Then this lesson would be short. but maybe you won’t get a
very good feeling for the topic.

• Instead, we will directly take the abstract concepts and look how they
are implemented on one concrete problem.

• This makes the lesson longer, but I hope it will provide for a better
understanding.

Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

• We will learn key ideas and concepts that apply to many different
scenarios.

• We could look at them from an abstract point of view, similar to an
abstract Maths class.

• Then this lesson would be short. but maybe you won’t get a
very good feeling for the topic.

• Instead, we will directly take the abstract concepts and look how they
are implemented on one concrete problem.

• This makes the lesson longer, but I hope it will provide for a better
understanding.

• The example we will use is just an example – the concepts can be
implemented differently for almost all optimization problems.

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved –
we develop software for solving a class of problems, but this software is
applied to specific problem instances, the actual scenarios

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R, which rates “how good” a candidate

solution y ∈ Y is.

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X, i.e., a simpler data structure for internal use, which
can more efficiently be processed by an optimization algorithm than Y

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,
5. a representation mapping γ : X 7→ Y, which translates “points” x ∈ X

to candidate solutions y ∈ Y

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,
5. a representation mapping γ : X 7→ Y,
6. search operators searchOp : Xn 7→ X, which allow for the iterative

exploration of the search space X

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,
5. a representation mapping γ : X 7→ Y,
6. search operators searchOp : Xn 7→ X, and
7. a termination criterion, which tells the optimization process when to

stop.

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,
5. a representation mapping γ : X 7→ Y,
6. search operators searchOp : Xn 7→ X, and
7. a termination criterion.

• Looks complicated..

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,
5. a representation mapping γ : X 7→ Y,
6. search operators searchOp : Xn 7→ X, and
7. a termination criterion.

• Looks complicated, but don’t worry..

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,
5. a representation mapping γ : X 7→ Y,
6. search operators searchOp : Xn 7→ X, and
7. a termination criterion.

• Looks complicated, but don’t worry. We will do this one-by-one.

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,
5. a representation mapping γ : X 7→ Y,
6. search operators searchOp : Xn 7→ X, and
7. a termination criterion.

• Looks complicated, but don’t worry. We will do this one-by-one.

• We want to get an understanding of the structure of optimization
problems from the metaheuristic perspective by looking at one
concrete problem from production planning.

Example Problem: Job Shop Scheduling

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Problem

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

• We have a factory with m machines.

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

• The goal is to fulfill all tasks as quickly as possible.

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

• The goal is to fulfill all tasks as quickly as possible.

• This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

• The goal is to fulfill all tasks as quickly as possible.

• This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

• This problem is NP-hard.10 11

What we will do

• In this course, we will use the JSSP as example domain.

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

• We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

• We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

• We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach, test and compare different working approaches

What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

• We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach, test and compare different working approaches, (normally
you would then improve them further, but we will skip this)

Problem Instance

The Input: Problem Instances

• The JSSP is a type of problem.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance I.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance I.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance I.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley12 manages the OR Library of benchmark datasets from
different fields of operations research (OR)

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance I.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley12 manages the OR Library of benchmark datasets from
different fields of operations research (OR)

• He also provides several example instances of the JSSP at http://
people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance I.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley12 manages the OR Library of benchmark datasets from
different fields of operations research (OR)

• He also provides several example instances of the JSSP at http://
people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

• More information about these instances has been collected by
van Hoorn13 14 at http://jobshop.jjvh.nl.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance I.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley12 manages the OR Library of benchmark datasets from
different fields of operations research (OR)

• He also provides several example instances of the JSSP at http://
people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

• More information about these instances has been collected by
van Hoorn13 14 at http://jobshop.jjvh.nl.

• What do such JSSP instances look like?

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

Demo Instance

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

number n of jobs
+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

number n of jobs

number m of machines

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units, it then goes to machine 3 for 40 time units

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 4 for 10 time units.

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units, and finally it
goes to machine 4 for 30 time units.

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

Job 2 first needs to be processed by machine 2 for 30 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 4 for 12 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 0 for 10 time units.

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

And Job 3 first needs to be processed by machine 4 for 50 time units, it
then goes to machine 3 for 30 time units, it then goes to machine 2 for 15
time units, it then goes to machine 0 for 20 time units, and finally it goes
to machine 1 for 15 time units.

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Demo Instance

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

Each of the n jobs

has m operations ,

each consisting of

a machine index and

a time requirement.

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

Instance abz7

Instance abz7 by Adams et al.15

Instance la24

Instance la24 by Lawrence16.

Instance swv15

Instance swv15 by Storer et al.17

Instance yn4

Instance yn4 by Yamada and Nakano18.

Problem Instance Data in Java

• How can we represent such data in Java program code?

Problem Instance Data in Java

• How can we represent such data in Java program code?

package aitoa.examples.jssp;

public class JSSPInstance {

public final int m; // number of machines

public final int n; // number of jobs

public final int [][] jobs; // one row per job

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

}

Solution Space

Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

• But what output should we produce?

Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

• But what output should we produce?

• In other words, what is a solution for an instance of the JSSP?

Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

• But what output should we produce?

• In other words, what is a solution for an instance of the JSSP?

• Basically, a Gantt Chart19 20.

Output: Candidate Solutions and Solution Space Y

one possible solution for the demo instance, illustrated as Gantt chart

0 50 100 150

0

1

2

3

4

0 1 3 2

1 2 0 3

2 0 1 3

1 3 0 2

3 2 0 1

demo

Output: Candidate Solutions and Solution Space Y

one possible solution for the la24 instance, illustrated as Gantt chart

0 200 400 600 800

0

1

2

3

4

5

6

7

8

9

11 8 0 1 5 2 14 3 13 6 4 12 10 7

2 3 12 1 6 13 4 9 11 5 0 14 7 8 10

14 13 6 4 11 2 12 7 0 8 10 9 1 3 5

2 1 11 12 9 7 10 8 4 14 3 0 6 5

8 3 5 0 10 1 7 11 9 14 4 12

13 14 2 7 3 8 5 10 0 1 9 6 12

1 6 13 0 3 12 14 2 4 9 11 10 8 5 7

4 3 7 13 10 8 6 12 5 1 9 2

7 1 5 13 6 14 4 11 9 0 3 12 8 2

0 12 9 14 8 6 11 5 7 1 4 2 3 10 13

la24

Output: Candidate Solutions and Solution Space Y

one possible solution for the yn4 instance, illustrated as Gantt chart

0 200 400 600 800

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

7 6 10 19 0 13 18 8 1 3 5 2 17 15 14 9 4

12 2 9 5 10 15 16 8 11 1 0 3 13 6 4 19 14 7 18 17

12 15 11 13 8 3 6 18 14 19 1 9 17 2 4 5 7 0

15 9 10 7 17 4 3 1 13 8 11 6 5 18 2 0

6 17 13 8 5 9 12 11 1 19 7 3 0 16 10 4 2

3 1 18 9 14 15 6 5 16 11 8 4 10 13 17 19 7 0 2

12 8 15 14 1 9 0 10 16 5 17 18 19 2 4 3 11 6 7

3 11 7 16 2 15 6 0 17 18 9 19 10 1 12 8 4 5

8 17 12 14 3 0 11 6 16 4 18 2 7 1 13 5 19 9

19 15 4 9 14 17 6 13 12 7 1 2 3 0 5 18 16 8

8 3 14 10 9 18 19 0 15 17 1 4 2 13 16 6 5 7

1 7 10 12 5 0 8 3 18 15 9 4 19 16 11 6 17 2 13 14

4 6 18 12 19 5 11 3 10 9 2 8 16 1 13 0 7 17

10 9 17 15 16 6 13 5 8 2 11 3 1 7 4 0 14

12 19 3 18 17 1 13 9 4 16 6 15 11 0 2 8 5 7 14

8 11 0 10 15 2 5 13 19 4 17 3 7 6 1 18 9

0 17 7 19 3 18 2 5 1 14 12 15 6 4 9 8 13 16 10 11

11 2 0 7 19 15 6 9 17 10 12 1 3 13 18 8 14 4 5 16

10 5 13 7 8 19 6 0 3 16 15 12 14 11 1 2 9 4

17 9 18 5 2 0 16 12 10 4 15 3 8 1 11 6 19 13 7

yn4

Output: Candidate Solutions and Solution Space Y

one possible solution for the swv15 instance, illustrated as Gantt chart

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6

7

8

9

11 8 12 1 28 26 23 42 39 20 3 44 7 6 40 15 2 9 19 43 41 27 13

31 38 5 22 12 8 3 39 7 2 20 1 6 40 33 10 48 9 15 34 36 25 29 0 45 19 46 14 43 27

24 30 5 8 18 0 49 36 2 1 20 7 32 40 6 46 19 25 41

5 26 21 11 4 3917 37 28 42 3 1620 1 18 34 2 9 6 32 40 48 0 13 36 33 14 25 27

21 24 16 8 12 17 1 7 37 42 15 3 0 6 2 34 45 40 14 9 19 43 25 41 46

24 8 31 11 12 30 26 37 47 1 3 20 7 6 2 40 15 48 14 25 27 13

38 47 21 22 24 5 23 11 12 4 26 37 39 1 7 30 20 42 3 32 9 0 34 14 25

8 4 23 17 24 30 281 7 2 48 35 6 16 10 9 29 0 33

38 5 22 24 47 8 31 4 28 39 42 23 3 26 20 1 2 48 15 36 6 40 19 25 45 14 43

38 4 12 8 23 17 44 18 16 3 32 7 48 0 3433 25 6 9 46

swv15

Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

• But what output should we produce?

• In other words, what is a solution for an instance of the JSSP?

• Basically, a Gantt Chart19 20.

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

• But what output should we produce?

• In other words, what is a solution for an instance of the JSSP?

• Basically, a Gantt Chart19 20.

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

• The solution space Y is the set of all possible feasible solutions for
one JSSP instance.

Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

• But what output should we produce?

• In other words, what is a solution for an instance of the JSSP?

• Basically, a Gantt Chart19 20.

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

• The solution space Y is the set of all possible feasible solutions for
one JSSP instance.

• One possible solution is called candidate solution and it can be
illustrated as Gantt chart.

As Java Class

• We now need to represent this information as a Java class.

As Java Class

• We now need to represent this information as a Java class.

package aitoa.examples.jssp;

public class JSSPCandidateSolution {

public int [][] schedule; // one row per machine

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

}

As Java Class

• We now need to represent this information as a Java class.

• Each of the m int[] lists in schedule holds n operations for
each machine as three values jobID, start time, end time, i.e., has
length 3n.

package aitoa.examples.jssp;

public class JSSPCandidateSolution {

public int [][] schedule; // one row per machine

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

}

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class
new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

M4

M3

M2

M1

M0

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

As Java Class

new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e

Objective Function

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

• This objective function is subject to minimization: smaller values are
better.

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

• This objective function is subject to minimization: smaller values are
better.

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Solution Quality

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Solution Quality

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Solution Quality

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Solution Quality

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Solution Quality

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Solution Quality

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Solution Quality

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Solution Quality

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

An Interface for Objective Functions in Java

package aitoa.structure;

public interface IObjectiveFunction <Y> {

double evaluate(Y y);

}

The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction {

//

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

//

//

//

//

//

//

//

//

//

//

}

The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

//

//

//

//

//

//

//

//

//

//

}

The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

//

//

//

//

//

//

//

//

}

}

The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0; // biggest end time

//

//

//

//

//

//

//

}

}

The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0; // biggest end time

//

//

//

//

//

//

return makespan;

}

}

The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0; // biggest end time

for (int[] machine : y.schedule) {

//

//

//

//

}

return makespan;

}

}

The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0; // biggest end time

for (int[] machine : y.schedule) {

int end = machine[machine.length - 1];

//

//

//

}

return makespan;

}

}

The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0; // biggest end time

for (int[] machine : y.schedule) {

int end = machine[machine.length - 1];

if (end > makespan) { // this machine ends later

makespan = end; // remember biggest end time

}

}

return makespan;

}

}

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆.

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y) ∀y ∈ Y holds.

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y) ∀y ∈ Y holds.

• How do we find such a solution?

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y) ∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP-hard10 11, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

The Global Optimum y
⋆ in Y

10
20

10
25

10
30

10
35

10
40

10
100

1000

1 million

1 billion

1 trillion

64 12816 32 256 512 1024 2048

ms per day

f(s)

picoseconds

since the big bang

s

10
15

8421

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y) ∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP-hard10 11, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

• So we cannot guarantee to always find the best possible solution for a
normal-sized JSSP in reasonable time.

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y) ∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP-hard10 11, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

• So we cannot guarantee to always find the best possible solution for a
normal-sized JSSP in reasonable time.

• What we can always do is search in Y and hope to get as close to y⋆

within reasonable time as possible.

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y) ∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP-hard10 11, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

• So we cannot guarantee to always find the best possible solution for a
normal-sized JSSP in reasonable time.

• What we can always do is search in Y and hope to get as close to y⋆

within reasonable time as possible.

• If we can find a solution with a slightly larger makespan than the best
possible solution, but we can get it within a few minutes, that would
also be nice. . .

From Solution Space to Search Space

Feasibility of Solutions

• So what do we need to consider when searching in Y?

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed

Feasibility of Solutions

Feasibility of Solutions

cannot omit

operation

Feasibility of Solutions

Feasibility of Solutions

Feasibility of Solutions

cannot move
operation

Feasibility of Solutions

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart

Feasibility of Solutions

Feasibility of Solutions

5 can’t add
machines

Feasibility of Solutions

5 can’t add
machines

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine

Feasibility of Solutions

Feasibility of Solutions

cannot shorten jobs

Feasibility of Solutions

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time

Feasibility of Solutions

Feasibility of Solutions

operations
must not
overlap!

Feasibility of Solutions

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time, and

5. the precedence constraints of the operations must be honored.

Feasibility of Solutions

Feasibility of Solutions

order of operations
must be preserved

Feasibility of Solutions

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time, and

5. the precedence constraints of the operations must be honored.

• Only a Gantt chart obeying all of these constraints is feasible, i.e.,
can be implemented in practice.

Hardships when Searching in Y

• So how do we search in the space of Gantt charts?

Hardships when Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

Hardships when Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

Hardships when Searching in Y

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

Hardships when Searching in Y

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

Hardships when Searching in Y

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

Hardships when Searching in Y

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

Hardships when Searching in Y

job 0

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0 M0: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0 M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

Hardships when Searching in Y

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

Hardships when Searching in Y

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

Hardships when Searching in Y

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

Hardships when Searching in Y

job 0

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10

0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Machine 0 should begin by doing job 1.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Machine 0 should begin by doing job 1.
Job 1 can only start on machine 0 after
it has been finished on machine 1.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Machine 0 should begin by doing job 1.
Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.
Before job 0 can be put on machine 1,
it must go through machine 0.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

So job 1 cannot go to machine 0 until
it has passed through machine 1, but
in order to be executed on machine 1,
job 0 needs to be finished there first.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Job 0 cannot begin on machine 1 until
it has been passed through machine 0,
but it cannot be executed there, be-
cause job 1 needs to be finished there
first.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

A cyclic blockage has appeared: no job
can be executed on any machine if we
follow this schedule.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

A cyclic blockage has appeared: no job
can be executed on any machine if we
follow this schedule. This is called a
deadlock.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

This is called a deadlock. The sched-
ule is infeasible, because it cannot
be executed or written down without
breaking the precedence constraint.

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0 M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Hardships when Searching in Y

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

deadlock

Hardships when Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

Hardships when Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

Hardships when Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

• We would like to have a handy representation for Gantt charts.

Hardships when Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

• We would like to have a handy representation for Gantt charts.

• The representation should allow us to easy create and modify the
candidate solutions.

Hardships when Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

• We would like to have a handy representation for Gantt charts.

• The representation should allow us to easy create and modify the
candidate solutions.

• Solution: We develop a data structure X which we can handle easily
and which can always be translated to feasible Gantt charts by a
mapping γ : X 7→ Y.

The Search Space X

• The solution space Y is complicated and constrained.

The Search Space X

• The solution space Y is complicated and constrained.

• In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. . .

The Search Space X

• The solution space Y is complicated and constrained.

• In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. . .

• If we would have a valid Gantt chart y ∈ Y, then trying to improve it
would be quite complicated.

The Search Space X

• The solution space Y is complicated and constrained.

• In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. . .

• If we would have a valid Gantt chart y ∈ Y, then trying to improve it
would be quite complicated.

• If we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

The Search Space X

• The solution space Y is complicated and constrained.

• In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. . .

• If we would have a valid Gantt chart y ∈ Y, then trying to improve it
would be quite complicated.

• If we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

• We want to search in a simpler space that we can easily understand.

The Search Space X

• The solution space Y is complicated and constrained.

• In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. . .

• If we would have a valid Gantt chart y ∈ Y, then trying to improve it
would be quite complicated.

• If we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

• We want to search in a simpler space that we can easily understand,
where we do not need to worry about the constraints and feasibility.

• This space is therefore called the search space X.

The Search Space X

• The solution space Y is complicated and constrained.

• In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. . .

• If we would have a valid Gantt chart y ∈ Y, then trying to improve it
would be quite complicated.

• If we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

• We want to search in a simpler space that we can easily understand,
where we do not need to worry about the constraints and feasibility.

• This space is therefore called the search space X.

• Of course, X must somehow be related to Y.

The Search Space X

• The solution space Y is complicated and constrained.

• In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. . .

• If we would have a valid Gantt chart y ∈ Y, then trying to improve it
would be quite complicated.

• If we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

• We want to search in a simpler space that we can easily understand,
where we do not need to worry about the constraints and feasibility.

• This space is therefore called the search space X.

• Of course, X must somehow be related to Y: We need a
representation mapping γ : X 7→ Y which translates from X to Y.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.

One Search Space X for the JSSP

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

Each of the n jobs

has m operations ,

each consisting of

a machine index and

a time requirement.

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

This is information that we have, which does not need
to be stored in the elements x ∈ X.

One Search Space X for the JSSP

0 50 100 150

0

1

2

3

4

0 1 3 2

1 2 0 3

2 0 1 3

1 3 0 2

3 2 0 1

demo

The instance data I and the data from one point x ∈ X

should, together, encode such a Gantt chart y ∈ Y.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.
• Ideally, we want to encode this two-dimensional structure in
something very simple.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.
• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.
• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.
• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.
• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.
• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.
• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the operations.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.
• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.
• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the operations.

• We could easily translate such strings to Gantt charts.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.
• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.
• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the operations.

• We could easily translate such strings to Gantt charts, but we could
end up with infeasible solutions and deadlocks or a string telling us to
do the second operation of a job before the first one. . .

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• How can we use a linear encoding without deadlocks?

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the operations per job.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the operations per job =⇒ we do not need to
encode it.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the operations per job =⇒ we do not need to
encode it.

• We just include each job id m times in the string.21–24

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the operations per job =⇒ we do not need to
encode it.

• We just include each job id m times in the string.21–24

• The first occurrence of a job’s ID stands for its first operation, the
second occurrence for the second operation, and so on.

One Search Space X for the JSSP

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the operations per job =⇒ we do not need to
encode it.

• We just include each job id m times in the string.21–24

• The first occurrence of a job’s ID stands for its first operation, the
second occurrence for the second operation, and so on.

• This way, we will always have the operations in the right order.

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

Demo Example for the Search Space

The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

• As long as our integer strings of length m ∗ n contain each value in
1 . . . n exactly m times, we will always get feasible Gantt charts by
applying our mapping γ : X 7→ Y!

The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

• As long as our integer strings of length m ∗ n contain each value in
1 . . . n exactly m times, we will always get feasible Gantt charts by
applying our mapping γ : X 7→ Y!

• We call this the representation.

The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

• As long as our integer strings of length m ∗ n contain each value in
1 . . . n exactly m times, we will always get feasible Gantt charts by
applying our mapping γ : X 7→ Y!

• We call this the representation.

• If necessary, we could also easily add more constraints, such as
job-order specific machine setup times, or job/machine specific
transport times – they would all go into the mapping γ.

An Interface for Representation Mappings in Java

package aitoa.structure;

public interface IRepresentationMapping <X, Y> {

void map(X x, Y y);

}

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping {

//

// omitted useless stuff , like member variable "instance"

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables.

//

//

//

//

//

//

//

//

//

//

//

//

//

//

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

//

//

//

//

//

//

//

//

//

//

//

//

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

//

//

//

//

//

//

//

//

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

//

//

//

//

//

//

//

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

//

//

//

//

//

//

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

int machine = jobSteps[jobStep]; // get the machine to use

//

//

//

//

//

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

int machine = jobSteps[jobStep]; // get the machine to use

int start = Math.max(machineTime[machine], jobTime[nextJob]);

//

//

//

//

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

int machine = jobSteps[jobStep]; // get the machine to use

int start = Math.max(machineTime[machine], jobTime[nextJob]);

int end = start + jobSteps[jobStep + 1]; // begin + operation time

//

//

//

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

int machine = jobSteps[jobStep]; // get the machine to use

int start = Math.max(machineTime[machine], jobTime[nextJob]);

int end = start + jobSteps[jobStep + 1]; // begin + operation time

jobTime[nextJob] = machineTime[machine] = end;

//

//

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

int machine = jobSteps[jobStep]; // get the machine to use

int start = Math.max(machineTime[machine], jobTime[nextJob]);

int end = start + jobSteps[jobStep + 1]; // begin + operation time

jobTime[nextJob] = machineTime[machine] = end;

int[] schedule = y.schedule[machine]; // get list of tasks for machine

//

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

int machine = jobSteps[jobStep]; // get the machine to use

int start = Math.max(machineTime[machine], jobTime[nextJob]);

int end = start + jobSteps[jobStep + 1]; // begin + operation time

jobTime[nextJob] = machineTime[machine] = end;

int[] schedule = y.schedule[machine]; // get list of tasks for machine

schedule[machineState[machine]++] = nextJob; // store job

//

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

int machine = jobSteps[jobStep]; // get the machine to use

int start = Math.max(machineTime[machine], jobTime[nextJob]);

int end = start + jobSteps[jobStep + 1]; // begin + operation time

jobTime[nextJob] = machineTime[machine] = end;

int[] schedule = y.schedule[machine]; // get list of tasks for machine

schedule[machineState[machine]++] = nextJob; // store job

schedule[machineState[machine]++] = start; // store start time

//

} // end iteration over job IDs

} // end function

} // end abridged class

The JSSP Representation Mapping in Java

package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob]; // get the operations of the job

int jobStep = (jobState[nextJob]++) << 1; // 2*(increased job step index)

int machine = jobSteps[jobStep]; // get the machine to use

int start = Math.max(machineTime[machine], jobTime[nextJob]);

int end = start + jobSteps[jobStep + 1]; // begin + operation time

jobTime[nextJob] = machineTime[machine] = end;

int[] schedule = y.schedule[machine]; // get list of tasks for machine

schedule[machineState[machine]++] = nextJob; // store job

schedule[machineState[machine]++] = start; // store start time

schedule[machineState[machine]++] = end; // store end time

} // end iteration over job IDs

} // end function

} // end abridged class

Number of Possible Solutions

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have
n! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ . . . ∗ n possible ways to arrange the n jobs.

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have
n! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ . . . ∗ n possible ways to arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have
n! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ . . . ∗ n possible ways to arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For three machines, we are at (n!)3.

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have
n! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ . . . ∗ n possible ways to arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For m machines, we are at (n!)m possible solutions.

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have
n! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ . . . ∗ n possible ways to arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For m machines, we are at (n!)m possible solutions.

• But some may be wrong, i.e., contain deadlocks!

Number of Solutions: Size of Y

name n m min(#feasible) |Y|
2 2 3 4

Number of Solutions: Size of Y

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8

Number of Solutions: Size of Y

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16

Number of Solutions: Size of Y

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32

Number of Solutions: Size of Y

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1’296
3 5 317 7’776
4 2 244 576
4 3 1’630 13’824
4 4 7’451 331’776

Number of Solutions: Size of Y

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1’296
3 5 317 7’776
4 2 244 576
4 3 1’630 13’824
4 4 7’451 331’776

demo 4 5 7’962’624
la24 15 10 ≈ 1.462*10121

abz7 20 15 ≈ 6.193*10275

yn4 20 20 ≈ 5.278*10367

swv15 50 10 ≈ 6.772*10644

Size of Search Space X

• Our search space X is not the same as the solution space Y.

Size of Search Space X

• Our search space X is not the same as the solution space Y.

• How many points are in our representations of the solution space?

Size of Search Space X

name n m |Y| |X|
3 2 36 90
3 3 216 1’680
3 4 1’296 34’650
3 5 7’776 756’756
4 2 576 2’520
4 3 13’824 369’600
4 4 331’776 63’063’000
5 2 14’400 113’400
5 3 1’728’000 168’168’000
5 4 207’360’000 305’540’235’000
5 5 24’883’200’000 623’360’743’125’120

demo 4 5 7’962’624 11’732’745’024
la24 15 10 ≈ 1.462*10121 ≈ 2.293*10164

abz7 20 15 ≈ 6.193*10275 ≈ 1.432*10372

yn4 20 20 ≈ 5.278*10367 ≈ 1.213*10501

swv15 50 10 ≈ 6.772*10644 ≈ 1.254*10806

Size of Search Space X

Size of Search Space X

• Our search space X is not the same as the solution space Y.

• How many points are in our representations of the solution space?

• Both X and Y are very big for any relevant problem size.

Size of Search Space X

• Our search space X is not the same as the solution space Y.

• How many points are in our representations of the solution space?

• Both X and Y are very big for any relevant problem size.

• X is bigger, we pay with size for the simplicity and the avoidance of
infeasible solutions.

Search Operators

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

• Based on their arity k, we can distinguish the following most common
operator types:

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

• Based on their arity k, we can distinguish the following most common
operator types:

• nullary operators (k = 0) generate one (random) point in X.

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;

public interface INullarySearchOperator <X> {

void apply(X dest , Random random);

}

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

• Based on their arity k, we can distinguish the following most common
operator types:

• nullary operators (k = 0) generate one (random) point in X.
• unary operators (k = 1) take one point from X as input and return

another (similar) point.

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;

public interface IUnarySearchOperator <X> {

void apply(X x, X dest , Random random);

}

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

• Based on their arity k, we can distinguish the following most common
operator types:

• nullary operators (k = 0) generate one (random) point in X.
• unary operators (k = 1) take one point from X as input and return

another (similar) point.
• binary operators (k = 2) take two points from X as input and return

another point which should be similar to both.

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

package aitoa.structure;

public interface IBinarySearchOperator <X> {

void apply(X x0, X x1, X dest , Random random);

}

Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

• Based on their arity k, we can distinguish the following most common
operator types:

• nullary operators (k = 0) generate one (random) point in X.
• unary operators (k = 1) take one point from X as input and return

another (similar) point.
• binary operators (k = 2) take two points from X as input and return

another point which should be similar to both.

• We will discuss concrete implementations of the operators later.

Termination

Searching and Stopping

• Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

Searching and Stopping

• Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

• How long should it run?

Searching and Stopping

• Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

• How long should it run?

• When can it stop?

Searching and Stopping

• Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

• How long should it run?

• When can it stop?

• This is called the termination criterion.

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

• Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer. . .) cannot faster
on the JSSP in the worst case!26–28

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

• Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer. . .) cannot faster
on the JSSP in the worst case!26–28

• So?

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

• Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer. . .) cannot faster
on the JSSP in the worst case!26–28

• So? . . . The operator drinks a coffee.

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

• Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer. . .) cannot faster
on the JSSP in the worst case!26–28

• So? . . . The operator drinks a coffee. . . . We have a about three
minutes.

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

• Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer. . .) cannot faster
on the JSSP in the worst case!26–28

• So? . . . The operator drinks a coffee. . . . We have a about three
minutes. . . . Let’s look for the algorithm implementation that can
give us the best solution quality within that time window.

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

• Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer. . .) cannot faster
on the JSSP in the worst case!26–28

• So? . . . The operator drinks a coffee. . . . We have a about three
minutes. . . . Let’s look for the algorithm implementation that can
give us the best solution quality within that time window.

• This is the termination criterion we will use on our JSSP example
problem in this lecture.

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

• Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer. . .) cannot faster
on the JSSP in the worst case!26–28

• So? . . . The operator drinks a coffee. . . . We have a about three
minutes. . . . Let’s look for the algorithm implementation that can
give us the best solution quality within that time window.

• This is the termination criterion we will use on our JSSP example
problem in this lecture.

• Obviously, in other scenarios, there might be vastly different
criteria. . .

Summary

Summary

• This was the most complicated lesson in this course!

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem!

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f , which rates how good a solution is!

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f , which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm?

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f , which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm? If yes: cool.

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f , which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm? If yes: cool. If

no: define a simple data structure X and a translation γ from X to Y!

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f , which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm? If yes: cool. If

no: define a simple data structure X and a translation γ from X to Y!
5. Understand when we need to stop the search!

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f , which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm? If yes: cool. If

no: define a simple data structure X and a translation γ from X to Y!
5. Understand when we need to stop the search!

• If we have this, we can directly use most of the algorithms in the rest
of the lecture (almost) as-is.

Summary

• We now have the basic tools to search and find solutions for the JSSP.

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

• If I can do that, then from now on I do not need to worry about Y
and its rules any more – I only need to work with X, which is easier to
understand and to program.

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

• If I can do that, then from now on I do not need to worry about Y
and its rules any more – I only need to work with X, which is easier to
understand and to program.

• Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y).

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

• If I can do that, then from now on I do not need to worry about Y
and its rules any more – I only need to work with X, which is easier to
understand and to program.

• Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y within 3 minutes).

谢谢
Thank you

References I

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO) [应用优化研究所] of
the School of Artificial Intelligence and Big Data [人工智能与大数据学院] of Hefei University [合肥学院], Hefei [合肥市],
Anhui [安徽省], China [中国], 2018–2020. URL http://thomasweise.github.io/aitoa/.

2. Thomas Weise. Global Optimization Algorithms – Theory and Application. it-weise.de (self-published), Germany, 2009.
URL http://www.it-weise.de/projects/book.pdf.

3. Fred Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics, volume 57 of International Series in
Operations Research & Management Science (ISOR). Springer Netherlands, Dordrecht, Netherlands, 2003. ISBN
0-306-48056-5. doi:10.1007/b101874.

4. Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Springer-Verlag, Berlin/Heidelberg, 2nd
edition, 2004. ISBN 3-540-22494-7.

5. Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and Alexander Hendrik George Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:
287–326, 1979. doi:10.1016/S0167-5060(08)70356-X.

6. Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H.
Zipkin, editors, Handbook of Operations Research and Management Science, volume IV: Production Planning and
Inventory, chapter 9, pages 445–522. North-Holland Scientific Publishers Ltd., Amsterdam, The Netherlands, 1993.
doi:10.1016/S0927-0507(05)80189-6.

7. Eugene Leighton Lawler. Recent results in the theory of machine scheduling. In AAchim Bachem, Bernhard Korte, and
Martin Grötschel, editors, Math Programming: The State of the Art, chapter 8, pages 202–234. Springer-Verlag,
Bonn/New York, 1982. ISBN 978-3-642-68876-8. doi:10.1007/978-3-642-68874-4 9.

8. Éric D. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research (EJOR), 64(2):
278–285, January 1993. doi:10.1016/0377-2217(93)90182-M.

9. Jacek B lażewicz, Wolfgang Domschke, and Erwin Pesch. The job shop scheduling problem: Conventional and new solution
techniques. European Journal of Operational Research (EJOR), 93:1–33, August 1996. doi:10.1016/0377-2217(95)00362-2.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1650&type=pdf.

10. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors,
Complexity of Computer Computations. The IBM Research Symposia Series., pages 85–103. Springer, Boston, MA, USA,
1972. ISBN 978-1-4684-2003-6. doi:10.1007/978-1-4684-2001-2 9.

11. Stephen Arthur Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing (STOC’71), May 3–5, 1971, Shaker Heights, OH, USA, pages 151–158, New York,
NY, USA, 1971. ACM. doi:10.1145/800157.805047.

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf
https://doi.org/10.1007/b101874
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1007/978-3-642-68874-4_9
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(95)00362-2
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1650&type=pdf
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/800157.805047

References II

12. John Edward Beasley. Or-library: Distributing test problems by electronic mail. The Journal of the Operational Research
Society (JORS), 41:1069–1072, November 1990. doi:10.1057/jors.1990.166.

13. Jelke Jeroen van Hoorn. Job shop instances and solutions, 2015. URL http://jobshop.jjvh.nl.
14. Jelke Jeroen van Hoorn. The current state of bounds on benchmark instances of the job-shop scheduling problem. Journal

of Scheduling, 21:127–128, feb 2018. doi:10.1007/s10951-017-0547-8.
15. Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop scheduling. Management

Science, 34(3):391–401, 1988. doi:10.1287/mnsc.34.3.391.
16. Stephen R. Lawrence. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling

Techniques (Supplement). PhD thesis, Graduate School of Industrial Administration (GSIA), Carnegie-Mellon University,
Pittsburgh, PA, USA, 1984.

17. Robert H. Storer, S. David Wu, and Renzo Vaccari. New search spaces for sequencing problems with application to job
shop scheduling. Management Science, 38(10):1495–1509, 1992. doi:10.1287/mnsc.38.10.1495.

18. Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale job-shop instances. In Reinhard Männer
and Bernard Manderick, editors, Proceedings of Parallel Problem Solving from Nature 2 (PPSN II), September 28–30,
1992, Brussels, Belgium, pages 281–290, Amsterdam, The Netherlands, 1992. Elsevier.

19. James M. Wilson. Gantt charts: A centenary appreciation. European Journal of Operational Research (EJOR), 149:
430–437, September 2003. doi:10.1016/S0377-2217(02)00769-5. URL
http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Wilson03.pdf.

20. Robert Klein. Scheduling of Resource-Constrained Projects, volume 10 of Operations Research/Computer Science
Interfaces Series. Springer US, New York, NY, USA, 2000. ISBN 978-0-7923-8637-7. doi:10.1007/978-1-4615-4629-0.

21. Mitsuo Gen, Yasuhiro Tsujimura, and Erika Kubota. Solving job-shop scheduling problems by genetic algorithm. In
Humans, Information and Technology: Proceedings of the 1994 IEEE International Conference on Systems, Man and
Cybernetics, October 2–5, 1994, San Antonio, TX, USA, volume 2. IEEE, 1994. ISBN 0-7803-2129-4.
doi:10.1109/ICSMC.1994.400072. URL http://read.pudn.com/downloads151/doc/658565/00400072.pdf.

22. Christian Bierwirth. A generalized permutation approach to job shop scheduling with genetic algorithms.
Operations-Research-Spektrum (OR Spectrum), 17:87–92, June 1995. doi:10.1007/BF01719250. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf.

https://doi.org/10.1057/jors.1990.166
http://jobshop.jjvh.nl
https://doi.org/10.1007/s10951-017-0547-8
https://doi.org/10.1287/mnsc.34.3.391
https://doi.org/10.1287/mnsc.38.10.1495
https://doi.org/10.1016/S0377-2217(02)00769-5
http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Wilson03.pdf
https://doi.org/10.1007/978-1-4615-4629-0
https://doi.org/10.1109/ICSMC.1994.400072
http://read.pudn.com/downloads151/doc/658565/00400072.pdf
https://doi.org/10.1007/BF01719250
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf

References III

23. Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. On permutation representations for scheduling problems. In
Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature (PPSN IV), September 22–24, 1996, Berlin, Germany,
volume 1141/1996 of Lecture Notes in Computer Science (LNCS), pages 310–318, Berlin, Germany, 1996. Springer-Verlag
GmbH. ISBN 3-540-61723-X. doi:10.1007/3-540-61723-X 995. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.8377&type=pdf.

24. Guoyong Shi, Hitoshi Iima, and Nobuo Sannomiya. New encoding scheme for solving job shop problems by genetic
algorithm. In Proceedings of the 35th IEEE Conference on Decision and Control (CDC’96), December 11–13, 1996, Kobe,
Japan, volume 4, pages 4395–4400. IEEE, 1997. ISBN 0-7803-3590-2. doi:10.1109/CDC.1996.577484.

25. Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of machine scheduling: Complexity, algorithms and
approximability. In Ding-Zhu Du and Panos M. Pardalos, editors, Handbook of Combinatorial Optimization, pages
1493–1641. Springer-Verlag US, Boston, MA, USA, 1998. ISBN 978-1-4613-7987-4. doi:10.1007/978-1-4613-0303-9 25.
also pages 21–169 in volume 3/3 by Kluwer Academic Publishers.

26. David Paul Williamson, Leslie A. Hall, J. A. Hoogeveen, Cor A. J. Hurkens, Jan Karel Lenstra, Sergey Vasil’evich
Sevast’janov, and David B. Shmoys. Short shop schedules. Operations Research, 45(2):288–294, March–April 1997.
doi:10.1287/opre.45.2.288.

27. Klaus Jansen, Monaldo Mastrolilli, and Roberto Solis-Oba. Approximation schemes for job shop scheduling problems with
controllable processing times. European Journal of Operational Research (EJOR), 167(2):297–319, December 2005.
doi:10.1016/j.ejor.2004.03.025. URL http://people.idsia.ch/~monaldo/papers/EJOR-varJsp-05.pdf.

28. Monaldo Mastrolilli and Ola Svensson. Hardness of approximating flow and job shop scheduling problems. Journal of the
ACM (JACM), 58(5):20:1–20:32, October 2011. doi:10.1145/2027216.2027218. URL
http://theory.epfl.ch/osven/Ola%20Svensson_publications/JACM11.pdf.

https://doi.org/10.1007/3-540-61723-X_995
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.8377&type=pdf
https://doi.org/10.1109/CDC.1996.577484
https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1287/opre.45.2.288
https://doi.org/10.1016/j.ejor.2004.03.025
http://people.idsia.ch/~monaldo/papers/EJOR-varJsp-05.pdf
https://doi.org/10.1145/2027216.2027218
http://theory.epfl.ch/osven/Ola%20Svensson_publications/JACM11.pdf

	Outline
	Introduction
	The Structure of Optimization
	Warnings
	Components of an Optimization Problem

	Example Problem: Job Shop Scheduling
	Job Shop Problem
	Job Shop Scheduling Problem
	What we will do

	Problem Instance
	The Input: Problem Instances
	Demo Instance
	Instance abz7
	Instance la24
	Instance swv15
	Instance yn4
	Problem Instance Data in Java

	Solution Space
	Output: Candidate Solutions and Solution Space Y
	As Java Class

	Objective Function
	Solution Quality
	An Interface for Objective Functions in Java
	The JSSP Objective Function in Java
	The Global Optimum y in Y

	From Solution Space to Search Space
	Feasibility of Solutions
	Hardships when Searching in Y
	The Search Space X
	One Search Space X for the JSSP
	Demo Example for the Search Space
	The Search Space X
	An Interface for Representation Mappings in Java
	The JSSP Representation Mapping in Java

	Number of Possible Solutions
	Number of Solutions: Size of Y
	Size of Search Space X

	Search Operators
	Search Operators

	Termination
	Searching and Stopping
	When to stop?

	Summary
	Summary
	Summary

	Presentation End
	References

