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The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics1–4 are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

• We will first learn about the basic ingredients that make up an
optimization task.

• Then we will step-by-step work our way from stupid to good
metaheuristics for solving it.
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Warnings

• This will be one of the tougher and probably the longest lesson in this
lecture.

• We will learn key ideas and concepts that apply to many different
scenarios.

• We could look at them from an abstract point of view, similar to an
abstract Maths class.

• Then this lesson would be short. . . . . . but maybe you won’t get a
very good feeling for the topic.

• Instead, we will directly take the abstract concepts and look how they
are implemented on one concrete problem.

• This makes the lesson longer, but I hope it will provide for a better
understanding.

• The example we will use is just an example – the concepts can be
implemented differently for almost all optimization problems.
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Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1. the input data which specifies the problem instance I to be solved
2. a data type Y for the candidate solutions y ∈ Y, and
3. an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4. a search space X,
5. a representation mapping γ : X 7→ Y,
6. search operators searchOp : Xn 7→ X, and
7. a termination criterion.

• Looks complicated, but don’t worry. We will do this one-by-one.

• We want to get an understanding of the structure of optimization
problems from the metaheuristic perspective by looking at one
concrete problem from production planning.
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Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP)5–9 is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

• The goal is to fulfill all tasks as quickly as possible.

• This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

• This problem is NP-hard.10 11



What we will do

• In this course, we will use the JSSP as example domain.



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

• We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

• We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

• We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach, test and compare different working approaches



What we will do

• In this course, we will use the JSSP as example domain.

• We will discuss all components of an optimization problem based on
this example.

• We will discuss several different optimization algorithms – and apply
them to this problem.

• But we will do this from an educational perspective

• We will not focus on the best possible data structures or highest
possible efficiency.

• It needs years of research to get there. . .

• We will, instead, approach the JSSP in the same way you would
approach a completely new problem domain: develop a working
approach, test and compare different working approaches, (normally
you would then improve them further, but we will skip this)
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Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units, and finally it
goes to machine 4 for 30 time units.
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Demo Instance

Job 2 first needs to be processed by machine 2 for 30 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 4 for 12 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 0 for 10 time units.
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Demo Instance

And Job 3 first needs to be processed by machine 4 for 50 time units, it
then goes to machine 3 for 30 time units, it then goes to machine 2 for 15
time units, it then goes to machine 0 for 20 time units, and finally it goes
to machine 1 for 15 time units.
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Demo Instance

number n of jobs

number m of machines
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job 1
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Each of the n jobs

has m operations ,

each consisting of

a machine index and

a time requirement.

+++++++++++++++++++++++

A simple demo
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Instance abz7

Instance abz7 by Adams et al.15



Instance la24

Instance la24 by Lawrence16.



Instance swv15

Instance swv15 by Storer et al.17



Instance yn4

Instance yn4 by Yamada and Nakano18.
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Problem Instance Data in Java

• How can we represent such data in Java program code?

package aitoa.examples.jssp;

public class JSSPInstance {

public final int m; // number of machines

public final int n; // number of jobs

public final int [][] jobs; // one row per job

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

}



Solution Space
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Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

• But what output should we produce?

• In other words, what is a solution for an instance of the JSSP?

• Basically, a Gantt Chart19 20.
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one possible solution for the demo instance, illustrated as Gantt chart
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Output: Candidate Solutions and Solution Space Y

one possible solution for the la24 instance, illustrated as Gantt chart
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Output: Candidate Solutions and Solution Space Y

one possible solution for the yn4 instance, illustrated as Gantt chart
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Output: Candidate Solutions and Solution Space Y

one possible solution for the swv15 instance, illustrated as Gantt chart
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Output: Candidate Solutions and Solution Space Y

• We now know how a problem instance of the JSSP looks like, i.e., the
input we get.

• But what output should we produce?

• In other words, what is a solution for an instance of the JSSP?

• Basically, a Gantt Chart19 20.

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

• The solution space Y is the set of all possible feasible solutions for
one JSSP instance.

• One possible solution is called candidate solution and it can be
illustrated as Gantt chart.
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• We now need to represent this information as a Java class.

package aitoa.examples.jssp;

public class JSSPCandidateSolution {

public int [][] schedule; // one row per machine

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

}



As Java Class

• We now need to represent this information as a Java class.

• Each of the m int[] lists in schedule holds n operations for
each machine as three values jobID, start time, end time, i.e., has
length 3n.

package aitoa.examples.jssp;

public class JSSPCandidateSolution {

public int [][] schedule; // one row per machine

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

}



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class
new int[][] {

 {0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

 {1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

 {2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

 {1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

 {3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

M4

M3

M2

M1

M0

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



As Java Class

new int[][] {

  {0,  0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

  {1,  0, 20, 2, 30, 50, 0,  50,  70, 3, 175, 190},

  {2,  0, 30, 0, 70, 90, 1,  90, 140, 3, 140, 155},

  {1, 30, 60, 3, 60, 90, 0,  90, 130, 2, 130, 170},

  {3,  0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

time

m
a
c
h
in
e



Objective Function



Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.



Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?



Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.



Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan



Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed



Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.



Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

• This objective function is subject to minimization: smaller values are
better.



Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

• This objective function is subject to minimization: smaller values are
better.

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).
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• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).



An Interface for Objective Functions in Java

package aitoa.structure;

public interface IObjectiveFunction <Y> {

double evaluate(Y y);

}
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package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0; // biggest end time
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}

return makespan;

}

}



The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0; // biggest end time

for (int[] machine : y.schedule) {

int end = machine[machine.length - 1];

//

//

//

}

return makespan;

}

}



The JSSP Objective Function in Java

package aitoa.examples.jssp;

public class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

/** Some stuff that is not relevant here has been omitted.

You can find it in the full code online. */

public double evaluate(final JSSPCandidateSolution y) {

int makespan = 0; // biggest end time

for (int[] machine : y.schedule) {

int end = machine[machine.length - 1];

if (end > makespan) { // this machine ends later

makespan = end; // remember biggest end time

}

}

return makespan;

}

}
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f(y⋆) ≤ f(y) ∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP-hard10 11, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.
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The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y) ∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP-hard10 11, so any algorithm that
guarantees that it will always find this solution may sometimes need a
runtime exponential in m or n in the worst case.

• So we cannot guarantee to always find the best possible solution for a
normal-sized JSSP in reasonable time.

• What we can always do is search in Y and hope to get as close to y⋆

within reasonable time as possible.

• If we can find a solution with a slightly larger makespan than the best
possible solution, but we can get it within a few minutes, that would
also be nice. . .
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• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart
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Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine
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• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time
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• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time, and

5. the precedence constraints of the operations must be honored.
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• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1. all operations of all jobs must be assigned to their respective machines
and properly be completed,

2. only the jobs and machines specified by the problem instance must
occur in the chart,

3. an operations must be assigned a time window on its corresponding
machine which is exactly as long as the operation needs on that
machine,

4. the operations cannot intersect or overlap, each machine can only carry
out one job at a time, and

5. the precedence constraints of the operations must be honored.

• Only a Gantt chart obeying all of these constraints is feasible, i.e.,
can be implemented in practice.
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• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!
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A cyclic blockage has appeared: no job
can be executed on any machine if we
follow this schedule.
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This is called a deadlock. The sched-
ule is infeasible, because it cannot
be executed or written down without
breaking the precedence constraint.
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• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

• We would like to have a handy representation for Gantt charts.

• The representation should allow us to easy create and modify the
candidate solutions.

• Solution: We develop a data structure X which we can handle easily
and which can always be translated to feasible Gantt charts by a
mapping γ : X 7→ Y.
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• The solution space Y is complicated and constrained.

• In a real-world JSSP, there would even be more issues, such as job-
and machine-specific setup times and transfer times. . .

• If we would have a valid Gantt chart y ∈ Y, then trying to improve it
would be quite complicated.

• If we imagine the space Y of possible Gantt charts for a JSSP, then
searching through this space in some kind of targeted way would be
complicated.

• We want to search in a simpler space that we can easily understand,
where we do not need to worry about the constraints and feasibility.

• This space is therefore called the search space X.

• Of course, X must somehow be related to Y: We need a
representation mapping γ : X 7→ Y which translates from X to Y.
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One Search Space X for the JSSP

number n of jobs

number m of machines

job 0

job 1

job 2

job 3

Each of the n jobs

has m operations ,

each consisting of

a machine index and

a time requirement.

+++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++

This is information that we have, which does not need
to be stored in the elements x ∈ X.



One Search Space X for the JSSP

0 50 100 150

0

1

2

3

4

0 1 3 2

1 2 0 3

2 0 1 3

1 3 0 2

3 2 0 1

demo

The instance data I and the data from one point x ∈ X

should, together, encode such a Gantt chart y ∈ Y.
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• So how could a simple search space X for the JSSP look like?
• Let us revisit the demo problem instance.
• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.
• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the operations.

• We could easily translate such strings to Gantt charts, but we could
end up with infeasible solutions and deadlocks or a string telling us to
do the second operation of a job before the first one. . .
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• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 operation one ID, a number in
0 . . . 19.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 operations that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the operations per job =⇒ we do not need to
encode it.

• We just include each job id m times in the string.21–24

• The first occurrence of a job’s ID stands for its first operation, the
second occurrence for the second operation, and so on.

• This way, we will always have the operations in the right order.
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The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

• As long as our integer strings of length m ∗ n contain each value in
1 . . . n exactly m times, we will always get feasible Gantt charts by
applying our mapping γ : X 7→ Y!

• We call this the representation.

• If necessary, we could also easily add more constraints, such as
job-order specific machine setup times, or job/machine specific
transport times – they would all go into the mapping γ.



An Interface for Representation Mappings in Java

package aitoa.structure;

public interface IRepresentationMapping <X, Y> {

void map(X x, Y y);

}
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package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob ]; // get the operations of the job

int jobStep = (jobState[nextJob ]++) << 1; // 2*( increased job step index)

int machine = jobSteps[jobStep ]; // get the machine to use
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} // end iteration over job IDs

} // end function

} // end abridged class
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package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid
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for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob ]; // get the operations of the job

int jobStep = (jobState[nextJob ]++) << 1; // 2*( increased job step index)

int machine = jobSteps[jobStep ]; // get the machine to use

int start = Math.max(machineTime[machine], jobTime[nextJob ]);

int end = start + jobSteps[jobStep + 1]; // begin + operation time
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//

} // end iteration over job IDs
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} // end abridged class
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package aitoa.examples.jssp;

public class JSSPRepresentationMapping

implements IRepresentationMapping <int[], JSSPCandidateSolution > {

// omitted useless stuff , like member variable "instance"

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = new int[this.instance.m]; // These variables can be member

int[] machineTime = new int[this.instance.m]; // variables that only need to be

int[] jobState = new int[this.instance.n]; // filled with 0. Then we avoid

int[] jobTime = new int[this.instance.n]; // allocating them each time.

for (int nextJob : x) { // iterate over job IDs in x

int[] jobSteps = this.instance.jobs[nextJob ]; // get the operations of the job
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• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have
n! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ . . . ∗ n possible ways to arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For m machines, we are at (n!)m possible solutions.

• But some may be wrong, i.e., contain deadlocks!
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name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16
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3 3 63 216
3 4 147 1’296
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Size of Search Space X

name n m |Y| |X|
3 2 36 90
3 3 216 1’680
3 4 1’296 34’650
3 5 7’776 756’756
4 2 576 2’520
4 3 13’824 369’600
4 4 331’776 63’063’000
5 2 14’400 113’400
5 3 1’728’000 168’168’000
5 4 207’360’000 305’540’235’000
5 5 24’883’200’000 623’360’743’125’120

demo 4 5 7’962’624 11’732’745’024
la24 15 10 ≈ 1.462*10121 ≈ 2.293*10164

abz7 20 15 ≈ 6.193*10275 ≈ 1.432*10372

yn4 20 20 ≈ 5.278*10367 ≈ 1.213*10501

swv15 50 10 ≈ 6.772*10644 ≈ 1.254*10806
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Size of Search Space X

• Our search space X is not the same as the solution space Y.

• How many points are in our representations of the solution space?

• Both X and Y are very big for any relevant problem size.

• X is bigger, we pay with size for the simplicity and the avoidance of
infeasible solutions.
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}



Search Operators

• Another general structure element needed by many optimization
algorithms are search operators.

Definition

Search OperatorAn k-ary search operator searchOp : Xk 7→ X is a
left-total relation which accepts k points in the search space X as input
and returns one point in the search space as output.

• Based on their arity k, we can distinguish the following most common
operator types:

• nullary operators (k = 0) generate one (random) point in X.
• unary operators (k = 1) take one point from X as input and return

another (similar) point.
• binary operators (k = 2) take two points from X as input and return

another point which should be similar to both.

• We will discuss concrete implementations of the operators later.
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Searching and Stopping

• Eventually, we will have a program that uses the search operators
efficiently to find elements in the set X which correspond to good
solutions in Y.

• How long should it run?

• When can it stop?

• This is called the termination criterion.
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When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve larger, hard JSSPs with such huge numbers of potential
solutions until she comes back?

• Probably not.
• The best algorithms guaranteeing to find the optimal solution for our
JSSPs may need a runtime growing exponential with m and n.6 25

• Even algorithms that just guarantee to be a constant factor worse
than the optimum (like, 1% longer, 10 times longer. . . ) cannot faster
on the JSSP in the worst case!26–28

• So? . . . The operator drinks a coffee. . . . We have a about three
minutes. . . . Let’s look for the algorithm implementation that can
give us the best solution quality within that time window.

• This is the termination criterion we will use on our JSSP example
problem in this lecture.

• Obviously, in other scenarios, there might be vastly different
criteria. . .
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Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1. Understand how the scenario / input data is defined!
2. Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3. Define the objective function f , which rates how good a solution is!
4. Is Y easy to understand and to process by an algorithm? If yes: cool. If

no: define a simple data structure X and a translation γ from X to Y!
5. Understand when we need to stop the search!

• If we have this, we can directly use most of the algorithms in the rest
of the lecture (almost) as-is.
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Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The key is often to translate the complicated task to work with a
complex data structure Y (e.g., Gantt diagram with many constraints)
to a simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

• If I can do that, then from now on I do not need to worry about Y
and its rules any more – I only need to work with X, which is easier to
understand and to program.

• Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y within 3 minutes).



谢谢
Thank you
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