pleE)

HEFEI UNIVERSITY 1AQ2

Optimization Algorithms
5. Stochastic Hill Climbing

Thomas Weise - % £ .%&
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn/5

Institute of Applied Optimization (IAQ) | & Atk Ae#t AT
School of Artificial Intelligence and Big Data | AL#H it 5 KR&EF X
Hefei University | &2 # 1%
Hefei, Anhui, China | F B=#4 &

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn/5

QOutline

Introduction

Algorithm Concept

Ingredient: Unary Search Operator
Experiment and Analysis

Improved Algorithm Concept 1
Experiment and Analysis

Improved Algorithm Concept 2

Experiment and Analysis

© 0 N o gk w =

Improved Algorithm Concept 3
10. Experiment and Analysis

11. Summary

Introduction

Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

® |t does not make any use of the information it “sees” during the
optimization process.

Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

® |t does not make any use of the information it “sees” during the
optimization process.

® Each search step consists of creating an entirely new, entirely random
candidate solution.

Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

® |t does not make any use of the information it “sees” during the
optimization process.

® Each search step consists of creating an entirely new, entirely random
candidate solution.

® Each search step is thus independent of all prior steps.

Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

® |t does not make any use of the information it “sees” during the
optimization process.

® Each search step consists of creating an entirely new, entirely random
candidate solution.

® Each search step is thus independent of all prior steps.

® |s this a good idea?

Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

® |t does not make any use of the information it “sees” during the
optimization process.

® Each search step consists of creating an entirely new, entirely random
candidate solution.

® Each search step is thus independent of all prior steps.
® |s this a good idea?
® Probably not.

Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

® |t does not make any use of the information it “sees” during the
optimization process.

® Each search step consists of creating an entirely new, entirely random
candidate solution.

® Each search step is thus independent of all prior steps.
® |s this a good idea?
® Probably not.

® |n almost all practical scenarios, good solutions are somewhat similar
to other good solutions.

Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

® |t does not make any use of the information it “sees” during the
optimization process.

® Each search step consists of creating an entirely new, entirely random
candidate solution.

® Each search step is thus independent of all prior steps.
® |s this a good idea?
® Probably not.

® |n almost all practical scenarios, good solutions are somewhat similar
to other good solutions.

® |n other words, every good solution we see is some useful information.

Basic Idea

® So how we can make use of the information we have seen during the
search?

Basic Idea

® So how we can make use of the information we have seen during the
search?

Basic Idea

® So how we can make use of the information we have seen during the
search?

® |nstead of generating a completely random new candidate solution in
each step. ..

Basic Idea

® So how we can make use of the information we have seen during the
search?

® |nstead of generating a completely random new candidate solution in
each step. ..

® . why can't we try to iteratively improve the best solution we have
seen so far?

Algorithm Concept

Stochastic Hill Climbing

® This is the concept of Local Search®® and its simplest realization is
Stochastic Hill Climbing?.

Stochastic Hill Climbing

® This is the concept of Local Search®® and its simplest realization is
Stochastic Hill Climbing?.

® Simple Concept

Global Optimum y*

Stochastic Hill Climbing

® This is the concept of Local Search®® and its simplest realization is
Stochastic Hill Climbing?.
® Simple Concept:
1. create random initial solution

Stochastic Hill Climbing

® This is the concept of Local Search®® and its simplest realization is
Stochastic Hill Climbing?.
® Simple Concept:
1. create random initial solution
2. make a modified copy of best-so-far solution

Stochastic Hill Climbing

® This is the concept of Local Search®® and its simplest realization is
Stochastic Hill Climbing?.
® Simple Concept:
1. create random initial solution
2. make a modified copy of best-so-far solution

3. if it is better, it becomes the new best-so-far solution (if it is not
better, discard it).

Stochastic Hill Climbing

® This is the concept of Local Search®® and its simplest realization is
Stochastic Hill Climbing?.
® Simple Concept:
1. create random initial solution
2. make a modified copy of best-so-far solution
3. if it is better, it becomes the new best-so-far solution (if it is not
better, discard it).
4. go back to 2. (until the time is up)

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;

public class HillClimber<X, Y> {

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {
X xCur = process.getSearchSpace().create();

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber<X, Y> extends Metaheuristicl<X, Y> {
public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

public class HillClimber <X, Y> extends Metaheuristicl<X,

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {

fBest = fCur;

public class HillClimber <X, Y> extends Metaheuristicl<X,

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {

fBest = fCur;

process.getSearchSpace () .copy (xCur, xBest);
}

Y>

{

Implementation of the Stochastic Hill Climber

package aitoa.algorithms;

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

while (!process.shouldTerminate()) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate (xCur) ;
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);
}

public class HillClimber <X, Y> extends Metaheuristicl<X,

Y>

{

Causality

® | ocal searches like hill climbers exploit a property of many
optimization problems called causality®®.

Causality

® | ocal searches like hill climbers exploit a property of many
optimization problems called causality®®.

® Causality means that small changes in the features of an object (or
candidate solution) also lead to small changes in its behavior (or
objective value).

Causality

® | ocal searches like hill climbers exploit a property of many
optimization problems called causality®®.

® Causality means that small changes in the features of an object (or
candidate solution) also lead to small changes in its behavior (or
objective value).

® |f an optimization problem exhibits causality, then there should be
good solutions that are similar to other good solutions.

Causality

® | ocal searches like hill climbers exploit a property of many
optimization problems called causality®®.

® Causality means that small changes in the features of an object (or
candidate solution) also lead to small changes in its behavior (or
objective value).

® |f an optimization problem exhibits causality, then there should be
good solutions that are similar to other good solutions.

® The idea is that if we have a good candidate solution, then there may
exist similar solutions which are better.

Causality

® | ocal searches like hill climbers exploit a property of many
optimization problems called causality®®.

® Causality means that small changes in the features of an object (or
candidate solution) also lead to small changes in its behavior (or
objective value).

® |f an optimization problem exhibits causality, then there should be
good solutions that are similar to other good solutions.

® The idea is that if we have a good candidate solution, then there may
exist similar solutions which are better.

® \We hope to find one of them and then continue trying to do the same
from there.

Ingredient: Unary Search Operator

Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

® |t must make sure that the modified copy is still a valid element of X.

Unary Search Operator

Our hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

It must make sure that the modified copy is still a valid element of X.

It should ideally be randomized, i.e., applying it twice to the same
point = should yield different results.

Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

® |t must make sure that the modified copy is still a valid element of X.

® |t should ideally be randomized, i.e., applying it twice to the same
point = should yield different results.

package aitoa.structure;
public interface IUnarySearchOperator<X> {

void apply(X x, X dest, Random random);

Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

It must make sure that the modified copy is still a valid element of X.

It should ideally be randomized, i.e., applying it twice to the same
point = should yield different results.

® How can we implement this for our JSSP scenario?

Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

® |t must make sure that the modified copy is still a valid element of X.

® |t should ideally be randomized, i.e., applying it twice to the same
point = should yield different results.

® How can we implement this for our JSSP scenario?

® Easy: Just swap two (different) job IDs in the string!

Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

® |t must make sure that the modified copy is still a valid element of X.

® |t should ideally be randomized, i.e., applying it twice to the same
point = should yield different results.

® How can we implement this for our JSSP scenario?
® Easy: Just swap two (different) job IDs in the string!

® Since the numbers of occurrences of the IDs will not change, the new
strings will be valid.

Example for our 1swap Operator

(2,0,1,0,1,1,2,3,2,3,
2,0,0,1,3,3,2,3,1,0)

Example for our 1swap Operator

(2,0,1,0,1,1,2,3,2,3,
2,0,0,1,3,3,2,3,1,0)

1

Example for our 1swap Operator

X (2,0,1,0,1,1,2,3,2,3,
2,0,0,1,3,3,2,3,1,0)

o~ N W b
b (@)

. |

(e%]

Example for our 1swap Operator

X (2,0,1,0,1,1,2,3,2,3,
2,0,0,1,3,3,2,3,1,0)
7

o = N W b
PU—

-
1@
0 50 100 150 200

Example for our 1swap Operator

(2,0,1,0,1,1,2,3,2,3, 1swap (2,0,1,0,1,1,2,3,2,3,
X 2,0,0@3,2,3,1,0) 2,0,3,1,3,0,2,3,1,0)

o~ N W b
1 (@)

. |

(e%]

Example for our 1swap Operator

(2,0,1,0,1,1,2,3,2,3, lswap > (2,0,1,0,1,1,2,3,2,3,
X 2,0,0,1,3,3,2,3,1,0) 2,0,3,1,3,0,2,3,1,0)
=
l makespan: 180 l’ny'lakespan: 195
44 2 0] 4 2
3 3
Y 24 2w 2{ 2l I
11 11
o{ @ o{ @ [3 12
0 50 100 150 200 0 50 100 150 200

Example for our 1swap Operator

(2,0,1,0,1,1,2,3,2,3, lswap > (2,0,1,0,1,1,2,3,2,3,
X 2,0,0,1,3,3,2,3,1,0) 2,0,3,1,3,0,2,3,1,0)
=
l’Zakespan: 180 l’ny'lakespan: 195
4 [0] 4 [
3 3
Y 2{mem 2{ 2l N
14 14
o{[@ o{ [E2
0 50 100 150 200 0 50 100 150 200

Example for our 1swap Operator

X

(21

2

0,1,0,1,1,2,3,2,3,
,0,0,1,3,3,2,3,1,0)

lswap
<

(2,0,1,0,1,1,2,3,2,3,
2,0,3,1, 3 0,2,3,1,0)

................................. L £ PP PP ’y

makespan: 180

Y

o = N W b
P S WY W 1

makespan: 195

2 0] 44 IEEE I
3

[| 24 W20

11

0] 3 o{m [3 I

0 50 100 150 200 0 50 100 150 200

package aitoa.examples.jssp;

public class JSSPUnaryOperatoriSwap {

package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

public void apply(int[] x,

int [] dest, Random random) {

package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

public void apply(int[] x, int[] dest, Random random) {

System.arraycopy(x, 0, dest, O, x.length);

package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

public void apply(int[] x, int[] dest, Random random)

System.arraycopy(x, 0, dest, O, x.length);

int i random.nextInt (dest.length) ;
int jobI = dest[il];

package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

public void apply(int[] x, int[] dest, Random random)

System.arraycopy(x, 0, dest, O, x.length);

int i
int jobI

random.nextInt (dest.length) ;
dest [i];

int j = random.nextInt(dest.length);
int jobJ = dest[jl;

package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

public void apply(int[] x, int[] dest, Random random) {

System.arraycopy(x, 0, dest, O, x.length);

int i
int jobI

random.nextInt (dest.length) ;
dest [i];

int j = random.nextInt(dest.length);
int jobJ = dest[jl;

dest [i] jobJ;
dest[j] = jobI;

package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

public void apply(int[] x, int[] dest, Random random) {

System.arraycopy(x, 0, dest, O, x.length);

int i random.nextInt (dest.length) ;
int jobI = dest[il];

int j = random.nextInt(dest.length);
int jobJ = dest[jl;
if (jobI != jobJ) {

dest [i] jobJ;

dest[j] = jobI;

package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {
// unnecessary stuff omitted here...
public void apply(int[] x, int[] dest, Random random) {
// copy the source point in search space to the dest
System.arraycopy(x, 0, dest, O, x.length);

// choose the index of the first sub-job to swap
int i random.nextInt (dest.length) ;
int jobI = dest[il; // remember job id

for (;;) { // try to find a location j with a different job
int j = random.nextInt(dest.length);
int jobJ = dest[j];

if (jobI != jobJ) { // we found two locations with two
dest[i] = jobJ; // different wvalues
dest[j] = jobI; // then we swap the wvalues
return; // and are done

}

Experiment and Analysis

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

A algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | rs 895 947 949 8bs | 6'512'505
hc_1swap 28 Os 16'978

la24 | rs 1153 | 1206 | 1208 82s | 15'902'911
hc_1swap 56 Os 6'612

swvlh | rs 4988 | 5166 | 5172 87s | 5'559'124
hc_1swap 137 1s 104'598

yné rs 1460 | 1498 | 1499 76s | 4'814'914
hc_1swap 48 Os 31'789

So what do we get?

rs: median result of 3 min of random sampling

15 SERE) 14 | 5] 6 11 17 8 2
6 8 2@ 915 11l 12 1ol 7 [5 I 0 R4 -l |
o 17NZNiSNN13 ENEZNCHD SN2 s
"8 [| 9 [i8 ol [z 2 I
15 [N 92 6 [FESl 174 ls O .
[| 8 611 204 oI FE W17 13 @2
13 9N 8 6 15 9 111 IZEeEE 17 4 2
15 9 [16 2 [ENSHEENf0 4 [0] 1113017 KA W@s 6
2 [Ble i | | 50 K] (1612 8 sl EEEe Wme 17
B o 15 10N 2 s (Ol 13 ZEEE E o K 2
[| 13 1 6811 9 [N femaEm #
6l 6 i s EE° 15 [72HSl {2 B 7 m= B =
17[8] 2l B2 15 6 N Ho 11 s 13181 4 IR 19
9lis @ [y 4] [0| 215 6 [H2NN7l 1 8
| 20 N [0] 8 abz7/ 949 13-I 6 m_-_.
0 200

400 600 800

So what do we get?

hc_1swap: median result of 3 min of hill climber

"e@m @ 2SN 15 o NN 13 17 e
17 o [ZNONENNENTSlc 1) 13 IEEN [15 B I EDEsH
Bt s MiE 0 EmEE © 13 o clENTN 2
61 5 '6 11747 2 s ol |
Zo N 11 8 [ll6 “EE 2EEs o
13 19 8 6 M 17 118l 15 @ 4 A ° EBE 2
fOFeEa 15 9 2 4 11 17 132 8 [7EA 6
2 e & 6113 4 [{2Hs fo e 15 9 17
11 9 8 [HoNSHEN 13 5 40 ¢ 2
[] I ®Evesis @ N D FOEEN: W W 2@
CH 0L o2 7 7 e 2l 415 B 13
17 |6l 2l 6 N2 11 ENS s 7154139 o ol
Bl 13 HelcolEN17 Nel Ml 4 117015 6 22l 8
g abz7 /798
0 200 400 600 800

So what do we get?

rs: median result of 3 min of random sampling

13 [N s ¢ [N | o 2
[s 0 14 9 e v :H
I £ BEN s | [N o IEEEN [
8 Bl OR | o
;N . EENEE ¢
s e B o] DEEE- o c S
o s

la24 / 1208

So what do we get?

hc_1swap: median result of 3 min of hill climber

o I : BN IENEE
HE OE
- o - g

3
6 3 unjJ2 Pl B s
T m .
[Hnm 8 “. 2I|324{10866 __-
600

0 200 400

So what do we get?

rs: median result of 3 min of random sampling

o W UE 1Y o BEmETT
. I NE EEEC NN CEIH
. TR Il

. | % ERIE I | OENOE 3 W

5 1 0 [T 1EINN e zE
A+ HIER E: D2 Ha2 a0
«ll Wi 1 | KN = 1 2
R _CAll-Dm i | | N}
8 el NN O [0l W

swvi5/ 5172 |
30|00 4000 5000

So what do we get?

hc_1swap: median result of 3 min of hill climber

4 T TG W1 TETIT I Edl
g I TENAEE O DN |
™ BEN:INS ol Bl RECR
6 I I I UDEEFET Kl PN
5 B C T N SEEEEEEE A
« 1 Nl B € iSAmi-EER |

|G I 12 -0 B Nl

T/ N W
S ENINEECE M

| swv15/4108
T

3000 4000

5000

So what do we get?

rs: median result of 3 min of random sampling

1
18-/13E Wl

1742 110m6
1

15
144
134
124
114
10+

ol 6
6mn

84

7+ B

6 13

4]
3+
21
14
o

0

g:a 02

17
8

<)

7 IsH 176EHE 14

11 sl 2
<]

13 17 2015@6H 8

E

[
[]
.
8 B K
w21
1500 9 18
9 6

17E8 9
9 154 m

11 13 15

9

,_-_ﬁ]_'_-_w2 :

IEEN

2 I 1
cHIE E 15
130 N

136 8 9 mm

HSEE B =
fizm2

48

|]

8 (o]

HS9I15

13 EEANZN 2 | I

W64 m2762

15 6HER | |
2174 19

16

Fame 17 9
E1EE W
11Ee 2
[O]
9
Bl
[~ 0]
16 10

A
17 W [
8 W2

11I

S Y4 | 1499

Em

17

1 0]
Ll

13 17 Wl

W13

]
8

1307
4mmel 9

8 mm

1113 8 4 @
19 M2 1emN

17

7l

S 4]

1718 96

9]

6 @ 1 8 N2HoEwew 15 8l6
4

u

6 EF9

Mo 2
1
s

1 El8 615

i

2160
2 18
14)

6EE117

600 800

T
1000

15I
1200

T
1400

So what do we get?

hc_1swap: median result of 3 min of hill climber

1 17 | 20 EFoW6 I WO W9 W26 15 8 NnzEsE
1813 Bl MsHE6 15 H 20 9m @
1742 110 1 e 6 | L RE] Bl 8 mER
1 17H9E7 40 isE EEEEY 6 M213 [BCREIREE |
151 11 l8 1 2 IM5 E mE= 17 © | 1 FNEE] 9
14 [4mi9NNzs EA 17 [Mi11m26 9 EA 15 8 EE
139 M6 15 17 W13 Biie2mmam 8 M B
1 6 E11ms 2 O3 16 9 gismmm Wi17H
114 M P @ %4 moRERiEg sEBE 9 61702
1048 1 114 <" N0 18 [CIRE 17 2134 LR 5]
an EEAN7m13 2760 9 n2 el 8
8 MU sEZMME4BI2 6 W 2 MW M98 1mo
7- 11 ISEEN7 12 Hm15 6 KBS e mE s
6-{ M2 15M 8 Y 9 Me4n | 2FmEeNi17 11 6 78
9 e 6 411E H13Im17 8 | a2
13 176 8 F9I OFi2N0l HEN BE 2 |
15 9 4B 7 17 i | IR | CA5N | 2 | 0]
1511 21 13 8I 6 _172l9
926l o] 17 &
> -_j.‘l_yn4/1220 9 15 5 .

0 200 400 800 1000 1200

1400

Progress over Time

What progress does the algorithm make over time?

Progress over Time

What progress does the algorithm make over time?

1400

abz7
—_rs
— hc_1swap

1200 1300

8

1000

800 900

time in ms
T
10 100 1000 10000 100000

Progress over Time

What progress does the algorithm make over time?

- abz7

§ —_—rs

e} — hc_1swap

8

Y

8

8

@

time in ms

T T T T T
10 100 1000 10000 100000

First we have much progress. ..

Progress over Time

What progress does the algorithm make over time?

la24
—_rs
— hc_1swap

time in ms
T T T
1 10 100 1000 10000 100000

First we have much progress. ..

Progress over Time

What progress does the algorithm make over time?

swvi5
—_— s
— hc_1swap

time inms
T T T
1 10 100 1000 10000 100000

First we have much progress. ..

Progress over Time

What progress does the algorithm make over time?

yn4
—_—rs
— hc_1swap

1600 1700 1800

1400 1500

time in ms
T T T
10 100 1000 10000 100000

1100 1200 1300

First we have much progress. ..

Progress over Time

What progress does the algorithm make over time?

yn4
—_—rs
— hc_1swap

g
g
8
L
g
g
f=3
g
o
g
8

time in ms
T T T T
1 10 100 1000 10000 100000

First we have much progress. ..
... but then the hill climber stagnates!

But we waste time...

What if we look at this without log-scaling the time axis?

But we waste time...

What if we look at this without log-scaling the time axis?

1400

abz7
—_rs
— hc_1swap

1200 13|00

11|00

1000

800 900

time in ms

700

But we waste time...

What if we look at this without log-scaling the time axis?

1400

abz7
—_rs
— hc_1swap

1200 13|00

11|00

1000

800 900

time in ms

700

T T
0 50000 100000 150000

Then it looks even much worse!

But we waste time...

What if we look at this without log-scaling the time axis?

1
—_

§_ la24
—_rs

8- — hc_1swap
o

‘8__

8

ol

8

Y

8

,§_ time in ms

T T T
0 50000 100000 150000

Then it looks even much worse!

But we waste time...

What if we look at this without log-scaling the time axis?

swvi5s
—_—rs
— hc_1swap

7000

—

g -
< time in ms

r T T T
0 50000 100000 150000

50|00

0

Then it looks even much worse!

But we waste time...

What if we look at this without log-scaling the time axis?

%- f yn4

—_—rs
— hc_1swap

o
§_%
o
‘g__
time in ms
I T T T
0 50000 100000 150000

Then it looks even much worse!

Indeed, we waste time!

makespan last improvement

z algo best | mean | med | sd | med(t) | med(FEs)
abz7 | rs 895 | 947 | 949 85s | 6'512'505
hc_1swap 28 Os 16’978

la24 | rs 1153 | 1206 | 1208 82s | 15'902'911
hc_1swap 56 Os 6'612

swvl5 | rs 4988 | 5166 | 5172 87s | 5'559'124
hc_1swap 137 1s 104'598

ynd Ts 1460 | 1498 | 1499 76s | 4'814'914
hc_1swap 48 Os 31'789

Indeed, we waste time!

makespan last improvement

7z algo best | mean | med | sd | med(t) | med(FEs)
abz7 | rs 895 | 947 | 949 85s | 6'512'505
hc_1swap 28 Os 16’978

la24 | rs 1153 | 1206 | 1208 82s | 15'902'911
hc_1swap 56 Os 6'612

swvl5 | rs 4988 | 5166 | 5172 87s | 5'559'124
hc_1swap 137 1s 104'598

ynd Ts 1460 | 1498 | 1499 76s | 4'814'914
hc_1swap 48 Os 31'789

Indeed, we waste time!

makespan last improvement

7z algo best | mean | med | sd | med(t) | med(FEs)
abz7 | rs 895 | 947 | 949 85s | 6'512'505
hc_1swap 28 Os 16’978

la24 | rs 1153 | 1206 | 1208 82s | 15'902'911
hc_1swap 56 Os 6'612

swvl5 | rs 4988 | 5166 | 5172 87s | 5'559'124
hc_1swap 137 1s 104'598

ynd Ts 1460 | 1498 | 1499 76s | 4'814'914
hc_1swap 48 Os 31'789

® \We have three minutes but after about 1 second, our hc_1swap

algorithm stops improving!

Premature Convergence

® Qur algorithm makes most of its progress early during the search.

Premature Convergence

® Qur algorithm makes most of its progress early during the search.

® | ater, it basically stagnates and cannot improve.

Premature Convergence

® Qur algorithm makes most of its progress early during the search.
® | ater, it basically stagnates and cannot improve.
® Why is that?

Premature Convergence

® Qur algorithm makes most of its progress early during the search.
® | ater, it basically stagnates and cannot improve.
® Why is that?

® The search operator 1swap defines a neighborhood N (z) C X around
a point x.

Premature Convergence

® Qur algorithm makes most of its progress early during the search.
® | ater, it basically stagnates and cannot improve.
Why is that?

The search operator 1swap defines a neighborhood N(z) C X around
a point x.

The hill climber can only find solutions which are in the neighborhood
of the current best solution.

Premature Convergence

® Qur algorithm makes most of its progress early during the search.

® | ater, it basically stagnates and cannot improve.

® Why is that?

® The search operator 1swap defines a neighborhood N (z) C X around
a point z.

® The hill climber can only find solutions which are in the neighborhood
of the current best solution.

® Only the schedules that | can reach by swapping two operations of
two different jobs.

Premature Convergence

® Qur algorithm makes most of its progress early during the search.

® | ater, it basically stagnates and cannot improve.

® Why is that?

® The search operator 1swap defines a neighborhood N (z) C X around
a point z.

® The hill climber can only find solutions which are in the neighborhood
of the current best solution.

® Only the schedules that | can reach by swapping two operations of
two different jobs.

e Clearly |N(z)| < |X]!

Premature Convergence

® Qur algorithm makes most of its progress early during the search.

® | ater, it basically stagnates and cannot improve.

® Why is that?

® The search operator 1swap defines a neighborhood N (z) C X around
a point z.

® The hill climber can only find solutions which are in the neighborhood
of the current best solution.

® Only the schedules that | can reach by swapping two operations of
two different jobs.

e Clearly |N(z)| < |X]!
® What happens if f(y(z*)) < f(y(x))Vz € N(z*) but z* is not the
global optimum?

Premature Convergence

® Qur algorithm makes most of its progress early during the search.

® | ater, it basically stagnates and cannot improve.

® Why is that?

® The search operator 1swap defines a neighborhood N (z) C X around
a point z.

® The hill climber can only find solutions which are in the neighborhood
of the current best solution.

® Only the schedules that | can reach by swapping two operations of
two different jobs.

e Clearly |N(z)| < |X]!
® What happens if f(y(z*)) < f(y(x))Vz € N(z*) but z* is not the
global optimum?

® Qur algorithm gets trapped in the local optimum z* and cannot
escape!

Premature Convergence

® Qur algorithm makes most of its progress early during the search.
® | ater, it basically stagnates and cannot improve.
® Why is that?

® The search operator 1swap defines a neighborhood N (z) C X around
a point x.

® The hill climber can only find solutions which are in the neighborhood
of the current best solution.

® Only the schedules that | can reach by swapping two operations of
two different jobs.

e Clearly |N(z)| < |X]!
® What happens if f(y(z*)) < f(y(x))Vz € N(z*) but z* is not the
global optimum?

® Qur algorithm gets trapped in the local optimum z* and cannot
escape!

® This is called Premature Convergence.?®

Premature Convergence

>

global optimum
X

objective values f(y(x))
" w

>

Improved Algorithm Concept 1

Stochastic Hill Climber with Restarts

® |dea: We have seen that the results of the hill climber exhibit a
relatively high standard deviation.

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | rs 895 947 | 949 | 12 8bs | 6'512'505
hc_iswap | 717 800 | 798 | 28 Os 16’978

la24 | rs 1153 | 1206 | 1208 | 15 82s | 15'902'911
hc_1lswap | 999 | 1095 | 1086 | 56 Os 6'612

swvlb | rs 4988 | 5166 | 5172 | 50 87s | 5'559'124
hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598

yné rs 1460 | 1498 | 1499 | 15 76s | 4'814'914
hc_1iswap | 1109 | 1222 | 1220 | 48 Os 31'789

Stochastic Hill Climber with Restarts

® |dea: We have seen that the results of the hill climber exhibit a
relatively high standard deviation.

® At the same time, a single run of the algorithm converges quickly.

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | rs 895 047 | 949 | 12 85s | 6'512'505
hc_iswap | 717 800 | 798 | 28 Os 16’978

la24 | rs 1153 | 1206 | 1208 15 82s | 15'902'911
hc_lswap | 999 | 1095 | 1086 | 56 Os 6'612

swvlb | rs 49088 | 5166 | 5172 | 50 87s | 5'559'124
hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598

yné rs 1460 | 1498 | 1499 | 15 76s | 4'814'914
hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789

Stochastic Hill Climber with Restarts

® |dea: We have seen that the results of the hill climber exhibit a
relatively high standard deviation.
® At the same time, a single run of the algorithm converges quickly.

® | et us exploit this variance!

Stochastic Hill Climber with Restarts

® |dea: We have seen that the results of the hill climber exhibit a
relatively high standard deviation.

® At the same time, a single run of the algorithm converges quickly.
® | et us exploit this variance!

® |dea: If we did not make any progress for a number L of algorithm
steps, we simply restart at a new random solution.

Stochastic Hill Climber with Restarts

® |dea: We have seen that the results of the hill climber exhibit a
relatively high standard deviation.

® At the same time, a single run of the algorithm converges quickly.

® | et us exploit this variance!

® |dea: If we did not make any progress for a number L of algorithm
steps, we simply restart at a new random solution.

® Of course, we will always remember the overall best solution we ever
had (in another variable).

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;

public class HillClimberWithRestarts<X, Y> {

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {
X xCur = process.getSearchSpace().create();

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {
public void solve(IBlackBoxProcess<X, Y> process) {
X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
}
}

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {
public void solve(IBlackBoxProcess<X, Y> process) {
X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();
}
}

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;

public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;

public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {

fBest = fCur;

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);

double fCur = process.evaluate(xCur);

if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;

public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply (xBest, random);
double fBest = process.evaluate (xBest);

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;

public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply (xBest, random);
double fBest = process.evaluate (xBest);

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);
long failCounter = OL;

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);
long failCounter = OL;

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);
failCounter = OL;

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);
long failCounter = OL;

while (!(process.shouldTerminate())) {

this.unary.apply(xBest, xCur, random);

double fCur = process.evaluate(xCur);

if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);
failCounter = OL;

} else {

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);
long failCounter = OL;

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);
failCounter = OL;
} else {
if ((++failCounter) >= this.failsBeforeRestart) {

Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);
long failCounter = OL;

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);
failCounter = OL;
} else {
if ((++failCounter) >= this.failsBeforeRestart) {
break;

Experiment and Analysis

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

® \We got one problem, though ...

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

® \We got one problem, though actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

® \We got one problem, though actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

® \What do we do with that?

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

® \We got one problem, though actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

® \What do we do with that?

® | et's take a look.

Configuring the Algorithm: Parameter L

|
-

abz7 / 656
la24 / 935
swv15 /2885
yn4 / 929

best f / Ib* her_L_1swap

1449

H‘\@/*_(

A
L\A\“\ﬂ—\a_,g_g_é,-e—— restart fimit L

T T T T T T T T
128 256 5{ 2 1024 2048 4096 8192 1 6&84 32768 65536 131072 262

144

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

® \We got one problem, though actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

® \What do we do with that?
® | et's take a look.

® |f we choose L too small, we will restart the algorithm too early

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

® \We got one problem, though actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

® \What do we do with that?
® | et's take a look.

® |f we choose L too small, we will restart the algorithm too early,
before it even arrives in a local optimum

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

® \We got one problem, though actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

® \What do we do with that?
® | et's take a look.

® |f we choose L too small, we will restart the algorithm too early,
before it even arrives in a local optimum

® |f we choose L too large, we will restart too late and thus waste time

Configuring the Algorithm: Parameter L

® We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

® \We got one problem, though actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

® \What do we do with that?
® | et's take a look.

® |f we choose L too small, we will restart the algorithm too early,
before it even arrives in a local optimum

® |f we choose L too large, we will restart too late and thus waste time,
that we could have used for more restarts

Configuring the Algorithm: Parameter L

We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

We got one problem, though actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

What do we do with that?
Let's take a look.

If we choose L too small, we will restart the algorithm too early,
before it even arrives in a local optimum

If we choose L too large, we will restart too late and thus waste time,
that we could have used for more restarts

L = 2™ = 16/384 seems to be a reasonable choice.

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | rs 895 947 949 | 12 8bs | 6'512'505
hc_1swap 717 | 800 | 798| 28 0s 16'978
hcr_16384_1swap 91s | 18'423'530

la24 | rs 1153 | 1206 | 1208 | 15 82s | 15'902'911
hc_1swap 999 | 1095 | 1086 | 56 Os 6'612
hcr_16384_1swap 80s | 34'437'999

swvlh | rs 4988 | 5166 | 5172 | 50 87s | 5'659'124
hc_1swap 3837 | 4108 | 4108 | 137 1s 104'598
hcr_16384_1swap 92s | 11'756'497

ynéd rs 1460 | 1498 | 1499 | 15 76s | 4'814'914
hc_1swap 1109 | 1222 | 1220 | 48 0s 31'789
hcr_16384_1swap Ols | 14'804'358

So what do we get?

hc_1swap: median result of 3 min of hill climber

14 15 9 17 611N s D7 e EmeT 0 2
1346 8 E 11 2@ LU R RERE] 0 e 1 14 5 RRIRYE]
12417 o |ZNIONITEISNNT9) ¢ ki) 13 IEN EN 2 1l KEEsE
i (5 RERRCR N 15} 17 @ IENDEe NE @ 13 o clENTN 2
10 [N el 15 (6 117N 2 Wls ofi iz
1140} 11 8 @6 [07l 2[@8 N 13 9 2N
SENEN s 6 WEE 17 1 SN 15 @ A o EEES 2
HONSTERNEICN 15 9 2 [11 17 T1s 2 s 7K ¢
2 e XA el 13 4 H2EE s ol e 15 9 17
1 9 8 [FONEEN 2 5N 40 ¢ 2
| [0] B8N 1 6 sl sl W i FoEENe BN 2 2@
o @BOM s oNENE 7 7 B o 2l (4 5 B 13
17 el 2 6 W2 v MEENNSE s W7 15 [401cHS o [NEON
11715 6 22l 8
abz7 / 798

0 200 400 600

So what do we get?

hcr_16384_1swap: median result of 3 min of hill climber which restarts after
L = 16’384 search steps without improvement

g6 11 2@ o 15 [T NN KNG 7 1S
17 o ITZECENSENONS) 3 LN 6 u B s EEE

"H M = 7 [EEEH o fONEN ENEDETEise 2

10 FN W7 > EEEsoBliss AT o HEMN N2 9
1 8 ol 2 M2 o 17 |NNEZNE 13
13 WisN 11 s s W o SN (7 [4NZENN EEX 2@
15 EIEN 2 o IENNONSEICN 4 11 2N 7 s 8 Gl 14]
2 6 [0 /] Fezs 1[EEe el o EAit1 15 17
[B11 o OGN 15 2l s oAl 13 W 6 2
[0 IRERTRENN | 8 61309 ol PEEN 2 Eme
6 s 2 o [Ef2ie IME s 174 B 13

16 7 2 A NN e WEENc o B 4 s oS
Eo FOEGH 1304 EEE WGl EONCEATEG W22 615 s

2 o oM W o277 jog 53 eENoMEENS |
I T I
0 200

400 600

So what do we get?

hc_1swap: median result of 3 min of hill climber

600

So what do we get?

hcr_16384_1swap: median result of 3 min of hill climber which restarts after
L = 16’384 search steps without improvement

.2 13
|

So what do we get?

hc_1swap: median result of 3 min of hill climber

o [T NN 28 1+ T B TH T ANT-R-E |
T O “N-ENil: TNl |
: | Bl BiE S AR 0 o-aE

. I AL T T
. o000 N DEECREEEENT N
o] WERAIE -0 G SR

o -0 ZHI 1 14 K< I (0

o |1 I < (@ |

So what do we get?

hcr_16384_1swap: median result of 3 min of hill climber which restarts after
L = 16’384 search steps without improvement

o REIELE &l L E e
. o G | S - B R |

. o - ETIE]

. T e K D e -

. I IEEONET EEN-EEIE I E |

ool R W o2l (M I | -

Z 1 WH-EER 1| O | BIE =k 1|

s e A

sl oD IO - E W

swvi5/ 3§51_23
2000 3000 4000

So what do we get?

hc_1swap: median result of 3 min of hill climber

1 17 | 20 EFd 9 NE § WOIT 0 Mol W28613 15 8 mzmsH
18- 13 DN W7n [6H 8 W91 6 15 11 H 2 9om]
1772 11O 7 W9 9 6 H 13 [N 14 8 aEn
1 1797 40NN BsE EEESTY 6 213 B 9 8 11 MW
151 11 8 B 2 §IN5 WmE e En 17 6 [-] [18)
14+ 4 EAowi2s EERi1317 KN 11@82 6 9 15 8
13-{9 HOM6I 15 17 Wl 13 W11 62N 4m 8 E B
1 6 B 11mme 2. 103 16 9 g3z ©17 W
1 |] [4 |HOl NEEE]11HOl sBM 9 6 170 2
10 8 1 EZINSH 9 [EEEENSI 15 17 21134 [N 6 Bl |

4w 15 EEERZE13 2 6 179 W o2 el 8

110 8 (ENMEEI4 B2 6 W 2 el 13 g mo
11 ISENGm7ZE N2 ME15 6 EERNSI 170 el am 8
21 150 8 [EN 9 HBNan il 2 EEeen 17 11 6 78
9 15EENE] W8l 6 411E D 13018 17 8 WA 0 2
13 1716 1 8 WOl ONI2IE EEE BEE 2 4n
15 9 Hl 17 130 118 6 HSIE 2 [0]
15 11 2n 13 i 8 06 [OEESH 17 2 W9
o mm
9 Elii2msl [T yna / 1220.n—6 . 1;7
T

0 200 400 600 800 1000 1200

PP

So what do we get?

hcr_16384_1swap: median result of 3 min of hill climber which restarts after

L = 16’384 search steps without improvement

19 17 9 | 3 8 13MB8N6 15
18413 [5 /] 8 B 9i8 6 WK 15 LB | 2110 9 4
174 2 7ECE11H9 9 6] m 13m 8 A 4
16-17 IAZEIONESENN EEENZ0EEE 02 6813 9 16 | 1
15+ 8 B 200N 11 W50 A 178 6 [18]
14+ H HoM20nSEEN 4 131708 9 2N 6l 8 15 11N
1349 17 IONENBI 15 13 6 2N 8 HmZm 2 = N 11
1 6 | SN N 2 el sHm 11W9 13 [0] u 17
11 || | N [J 8 HON4ENEE HEl 0= 9 6 217 1NEA
104 8 I EmsE 9 EEEE [0 W9 15 2 17 413 7ain W6 6
4 159 EEENZE13 17 2 @ 6 12 [N el 8

81 8 Bri2nel 4 me 2 1B 13 Wer W 9
7/ ISENZEEEE 2 11 15 N6 17EEEESI 8 HON Wan

15 8 9 HBIHONE 2 4n 17 [Emen] B 6 1

14N 18] 156 6 a4 8 I W13 m 11 @917 HA 2

613 17 8 ENE O 2 H FoNE 113HSl 4 2 Hom

15 9 W4 W78 WOl 17 NN B 13m8 iB6 11 2
13 8 11 [ECINSH N W6l 2 @17 HoM4n 0 [

)

R O Eyaviswer=—n - BERRN 1400 18] 17
ynd / 1115 m
T T T 15 8 T T
0 200 400 600 800 1000 1200

Progress over Time

What progress does the algorithm make over time?

Progress over Time

1400

abz7
—_—rs
— hc_1swap
— hcr_16384_1swap

1300

1200

1100

1000

time in ms

700 800 900

10 1(I)0 10I00 10(I)00 100IOOO
What progress does the algorithm make over time?

Progress over Time

1400

abz7
—_—rs
— hc_1swap
— hcr_16384_1swap

1300

1200

1100

1000

time in ms

700 800 900

10 1(I)0 10I00 10(I)00 100IOOO
What progress does the algorithm make over time?

® First it behaves like the normal hill climber

Progress over Time

1400

abz7
—_—rs
— hc_1swap
— hcr_16384_1swap

1300

1200

1100

1000

700 800 900

time in ms

10 1(I)0 10I00 10(I)00 10(;000
What progress does the algorithm make over time?

® First it behaves like the normal hill climber

® But it keeps improving.

Progress over Time

la24
—_—rs
— hc_1swap
— hcr_16384_1swap

time in ms

1 10 100 1000 10000 100000
What progress does the algorithm make over time?
® First it behaves like the normal hill climber

® But it keeps improving.

Progress over Time

swvi5s
—rs
sS4 — hc_1swap
~ — hcr_16384_1swap
8.
3

5000

time in ms

T T T T
1 10 100 1000 10000 100000

What progress does the algorithm make over time?
® First it behaves like the normal hill climber

® But it keeps improving.

Progress over Time

yn4
—_—rs
— hc_1swap
— hcr_16384_1swap

time in ms

T T T T T
1 10 100 1000 10000 100000

What progress does the algorithm make over time?
® First it behaves like the normal hill climber

® But it keeps improving.

Progress over Time

| f abz7
— s
é_ — hc_1swap
— hcr_16384_1swap
o
&-
8
8.
=
o
8-
e —
8 time in ms |
T T T T
0 50000 100000 150000

What progress does the algorithm make over time?
® First it behaves like the normal hill climber

® But it keeps improving.

Progress over Time

1400

abz7
—_—rs
— hc_1swap
— hcr_16384_1swap

12|00 13|00

11|00

10|00
/7

800 900

700

time in ms |

1001000 1501000
What progress does the algorithm make over time?

-

® First it behaves like the normal hill climber
® But it keeps improving.

® Although we still do not use the available time very well. ..

Progress over Time

f la24
—_rs
§— — hc_1swap
- —— hcr_16384_1swap
8

timeinms |

0 50000 1001000 15()IOOO
What progress does the algorithm make over time?

® First it behaves like the normal hill climber
® But it keeps improving.
® Although we still do not use the available time very well. ..

Progress over Time

f swvi5s
— s
S84 — hc_1swap
~ —— hcr_16384_1swap
8.
3
M=
3
]
S =
84
i 0 n
timein ms |
T

0 50000 100IOOO 15(;000
What progress does the algorithm make over time?
® First it behaves like the normal hill climber
® But it keeps improving.

® Although we still do not use the available time very well. ..

Progress over Time

%' f yn4
—_—rs
— hc_1swap
§ — hcr_16384_1swap

time in ms

T T T
0 50000 100000 150000

What progress does the algorithm make over time?
® First it behaves like the normal hill climber
® But it keeps improving.

® Although we still do not use the available time very well. ..

Improved Algorithm Concept 2

Drawbacks of Restarts

® A restarted algorithm is still the same algorithm, just restarted.

Drawbacks of Restarts

® A restarted algorithm is still the same algorithm, just restarted.

® |f there are many more local optima than global optima, every restart
will probably end again in a local optimum.

Drawbacks of Restarts

® A restarted algorithm is still the same algorithm, just restarted.

® |f there are many more local optima than global optima, every restart
will probably end again in a local optimum.

® |f there are many more “bad” local optima than “good” local optima,
every restart will probably end in a “bad” local optimum.

Drawbacks of Restarts

A restarted algorithm is still the same algorithm, just restarted.

® |f there are many more local optima than global optima, every restart
will probably end again in a local optimum.

® |f there are many more “bad” local optima than “good” local optima,
every restart will probably end in a “bad” local optimum.

® While restarts improve the chance to find better solutions, they
cannot solve the intrinsic shortcomings of an algorithm.

Drawbacks of Restarts

A restarted algorithm is still the same algorithm, just restarted.

® |f there are many more local optima than global optima, every restart
will probably end again in a local optimum.

® |f there are many more “bad” local optima than “good” local optima,
every restart will probably end in a “bad” local optimum.

® While restarts improve the chance to find better solutions, they
cannot solve the intrinsic shortcomings of an algorithm.

® Another problem is: With every restart we throw away all
accumulated knowledge and information of the current run.

Drawbacks of Restarts

A restarted algorithm is still the same algorithm, just restarted.

® |f there are many more local optima than global optima, every restart
will probably end again in a local optimum.

® |f there are many more “bad” local optima than “good” local optima,
every restart will probably end in a “bad” local optimum.

® While restarts improve the chance to find better solutions, they
cannot solve the intrinsic shortcomings of an algorithm.

® Another problem is: With every restart we throw away all
accumulated knowledge and information of the current run.

® Restarts are therefore also wasteful.

How else can we stop premature convergence?

® Qur hc_1swap hill climber will stop improving if it can no longer
finder better solutions.

How else can we stop premature convergence?

® Qur hc_1swap hill climber will stop improving if it can no longer
finder better solutions.

® This happens when it reaches a local optimum.

How else can we stop premature convergence?

® Qur hc_1swap hill climber will stop improving if it can no longer
finder better solutions.

® This happens when it reaches a local optimum.

® A local optimum is a point ™ in X where no 1swap-move can yield
any improvement.

How else can we stop premature convergence?

® Qur hc_1swap hill climber will stop improving if it can no longer
finder better solutions.

® This happens when it reaches a local optimum.

® A local optimum is a point ™ in X where no 1swap-move can yield
any improvement.

® |t does not matter which two job ids | exchange in the current best

string £, the result is not better than z*.

How else can we stop premature convergence?

® Qur hc_1swap hill climber will stop improving if it can no longer
finder better solutions.

® This happens when it reaches a local optimum.

® A local optimum is a point ™ in X where no 1swap-move can yield
any improvement.

® |t does not matter which two job ids | exchange in the current best
string £, the result is not better than z*.

® Notice: Whether or not a point = is a local optimum, is determined
entirely by the unary search operator!

How else can we stop premature convergence?

® Qur hc_1swap hill climber will stop improving if it can no longer
finder better solutions.

® This happens when it reaches a local optimum.

® A local optimum is a point x* in X where no 1swap-move can yield
any improvement.

® |t does not matter which two job ids | exchange in the current best
string £, the result is not better than z*.

® Notice: Whether or not a point z is a local optimum, is determined
entirely by the unary search operator!

® |f we had a different operator with a bigger neighborhood, then
maybe x> would no longer be a local optimum and we could still
improve the results after reaching it. ..

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.

® The neighborhood determines what a local optimum is.

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.
® The neighborhood determines what a local optimum is.

® | et’s make it bigger.

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

The search operator determines which solutions are “neighbors”.

The neighborhood determines what a local optimum is.

® | et’s make it bigger.

It always helps to think about the extreme cases first.

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.
® The neighborhood determines what a local optimum is.

® | et’s make it bigger.

® |t always helps to think about the extreme cases first.

® On one hand, we already have 1swap, which swaps two jobs.

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.
® The neighborhood determines what a local optimum is.

® | et’s make it bigger.

® |t always helps to think about the extreme cases first.

® On one hand, we already have 1swap, which swaps two jobs. This is
the smallest step | can imagine.

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.

® The neighborhood determines what a local optimum is.

® | et’s make it bigger.

® |t always helps to think about the extreme cases first.

® On one hand, we already have 1swap, which swaps two jobs. This is
the smallest step | can imagine.

® On the other end of the spectrum, we could simply swap all jobs in
our points & randomly.

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.

® The neighborhood determines what a local optimum is.

® | et’s make it bigger.

® |t always helps to think about the extreme cases first.

® On one hand, we already have 1swap, which swaps two jobs. This is
the smallest step | can imagine.

® On the other end of the spectrum, we could simply swap all jobs in
our points x randomly. Is this a good idea?

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.
® The neighborhood determines what a local optimum is.

® | et’s make it bigger.

® |t always helps to think about the extreme cases first.

® On one hand, we already have 1swap, which swaps two jobs. This is
the smallest step | can imagine.
® On the other end of the spectrum, we could simply swap all jobs in

our points x randomly. Is this a good idea?Probably not: It would
turn our algorithm into random sampling!

Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.
® The neighborhood determines what a local optimum is.

® | et’s make it bigger.

® |t always helps to think about the extreme cases first.

® On one hand, we already have 1swap, which swaps two jobs. This is
the smallest step | can imagine.

® On the other end of the spectrum, we could simply swap all jobs in
our points x randomly. Is this a good idea?Probably not: It would
turn our algorithm into random sampling!

® We should respect the causality: small changes to the solution cause
small changes in the objective value — big changes will lead to
unpredictable results.

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin.

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).
3. otherwise (it was tail), we again flip a coin.

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).
3. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 4 job ids (and stop).

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:

1.

2.

flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).

otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).

. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
otherwise (it was tail), we again flip a coin.

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...

® nswap operator idea:

1.

2.

flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).

otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).

. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...

® nswap operator idea:

1.

2.

flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).

otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).

. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

. otherwise (it was tail), we again flip a coin.

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...

® nswap operator idea:

1.

2.

flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).

otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).

. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now 3.125% in total), we will swap 6 job ids (and stop).

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...

® nswap operator idea:

1.

2.

flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).

otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).

. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now 3.125% in total), we will swap 6 job ids (and stop).

. and so on.

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).
3. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
4. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

5. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 3.125% in total), we will swap 6 job ids (and stop).
6. and so on.

® \We most often make small moves, but sometimes bigger ones.

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).
3. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
4. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

5. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 3.125% in total), we will swap 6 job ids (and stop).
6. and so on.

® \We most often make small moves, but sometimes bigger ones.

® Theoretically, we could always escape from any local optimum.

Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).
3. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
4. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

5. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 3.125% in total), we will swap 6 job ids (and stop).
6. and so on.

® \We most often make small moves, but sometimes bigger ones.

® Theoretically, we could always escape from any local optimum, but
the probability may sometimes be very very small.

Implementation of the nswap Operator

package aitoa.examples.jssp;

public class JSSPUnaryOperatorNSwap {

Implementation of the nswap Operator

package aitoa.examples. jssp;

public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {
public void apply(int[] x, int[] dest, Random random) {

System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

dest [i] = first;
}

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {
public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

int i = random.nextInt (dest.length);
int first = dest[il;

int j = random.nextInt (dest.length);

dest [i] = first;
}

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

int j = random.nextInt (dest.length);

int jobJ = dest[jl;

dest [i] = first;
}

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

int j = random.nextInt (dest.length);
int jobJ = dest[jl;

if (first != jobJ) {

}

dest [i] = first;

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;

dest [i] = first;

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;
i js

dest [i] = first;

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {
public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

int i = random.nextInt (dest.length);
int first = dest[il;

inner: for (;;) {

int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;
i = 35

break inner;

}

dest [i] = first;
}

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

for(;;) {
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;
i is

break inner;

}

dest [i] = first;
}

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

boolean hasNext;

do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {
dest[i] = jobJ;
i =J;
break inner;
}
}

} while (hasNext);

dest [i] = first;
}

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

int i = random.nextInt (dest.length);
int first = dest[i];
int last = first;
boolean hasNext;
do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;
i is

break inner;
}

}
} while (hasNext);

dest [i] = first;
}

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

int i = random.nextInt (dest.length);
int first = dest[i];
int last = first;
boolean hasNext;
do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;

i =3
last = joblJ;
break inner;

}
} while (hasNext);

dest [i] = first;

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];
int last = first;
boolean hasNext;
do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if ((last != jobJ) &&
((first !'= jobJ))) {
dest[i] = jobJ;
i =J;
last = joblJ;
break inner;

}
} while (hasNext);

dest [i] = first;

Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];
int last = first;
boolean hasNext;
do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if ((last != jobJ) &&
(hasNext || (first != jobJ))) {
dest[i] = jobJ;
i =J;
last = joblJ;
break inner;

}
} while (hasNext);

dest [i] = first;

Experiment and Analysis

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1lswap 717 | 800 | 798| 28 Os 16'978
hcr_16384_1swap **6 91s | 18'423'530
hc_nswap 724 758 758 | 17 35s | 7'781'762

la24 | hc_1swap 999 | 1095 | 1086 | 56 0Os 6'612
hcr_16384_1swap | 953 80s | 34'437'999
hc_nswap 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1lswap 3837 | 4108 | 4108 | 137 1s 104'598
hcr_16384_1swap | 3752 92s | 11'756'497
hc_nswap 3880 | 3872 | 112 70s | 8'351'112

yné4 hc_1swap 1109 | 1222 | 1220 | 48 0Os 31'789
hcr_16384_1swap 91s | 14'804'358
hc_nswap 1095 | 1162 | 1160 | 34 71s | 11'016'757

So what do we get?

hc_1swap: median result of 3 min of hill climber using 1swap

14 15 9 17 611N s D7 e EmeT 0 2
1346 8 E 11 2@ LU R RERE] 0 e 1 14 5 RRIRYE]
12417 o |ZNIONITEISNNT9) ¢ ki) 13 IEN EN 2 1l KEEsE
i (5 RERRCR N 15} 17 @ IENDEe NE @ 13 o clENTN 2
10 [N el 15 (6 117N 2 Wls ofi iz
1140} 11 8 @6 [07l 2[@8 N 13 9 2N
SENEN s 6 WEE 17 1 SN 15 @ A o EEES 2
HONSTERNEICN 15 9 2 [11 17 T1s 2 s 7K ¢
2 e XA el 13 4 H2EE s ol e 15 9 17
1 9 8 [FONEEN 2 5N 40 ¢ 2
| [0] B8N 1 6 sl sl W i FoEENe BN 2 2@
o @BOM s oNENE 7 7 B o 2l (4 5 B 13
17 el 2 6 W2 v MEENNSE s W7 15 [401cHS o [NEON
11715 6 22l 8
abz7 / 798

0 200 400 600

So what do we get?

hc_nswap: median result of 3 min of hill climber using nswap

14- 9 17 11 . 8 mG_ 2
e eme2 1[E | 17 |9 15 OGN 1o IS
117 2N o IONSNGN 1 NOMN 2 BN MR 1t 'E

A 5 R L 15l enfe R7ANCIEENs o W2 6

10 - N cavEe e os N 12
7. @ivs 72 W 6 EEENT W2 O
GEEES 6 s @il v oEGEEE s EEEZ o 2|

BIN 5 > GECENGNS o W0 7 N v [o b s EOS
2 [& e Wen (1o B2 6 17 HOMIOR 5 11 o

A o @ s NEMNSN 13 s WEECEE 6 2
N (18715 8 BN [N o EENSEDESl o 2w > =

6 i s cFAE 7 FEOEEE o 15 g 13
8117 N 2 7 B 1 = 6 [4ls 13 15 SN o EONTS
13 7470 N0 17 NISINGl N7l | 0] 14 I 152l 6 8
2 n l - abz7 / 758 .13.. - - sm
I T

0 200 400 600

So what do we get?

hc_1swap: median result of 3 min of hill climber using 1swap

600

So what do we get?

hc_nswap: median result of 3 min of hill climber using nswap

T N1 R
o B WO &K =
v [o T - 5
CRCR===N N N

So what do we get?

hc_1swap: median result of 3 min of hill climber using 1swap

o [T NN 28 1+ T B TH T ANT-R-E |
T O “N-ENil: TNl |
: | Bl BiE S AR 0 o-aE

. I AL T T
. o000 N DEECREEEENT N
o] WERAIE -0 G SR

o -0 ZHI 1 14 K< I (0

o |1 I < (@ |

So what do we get?

hc_nswap: median result of 3 min of hill climber using nswap

. |] | 12|l We| 4 32| Pesi7l6 o
S BN - ENE: KD - EE] ol
A | e O WS@E W00l <
6 P2 7fs7 KU 7 BRE JoulE] | RE
. A4 ¢ O EEE EEEEE o
2o v+ EEE SR | B |

i BEC- I TN BN B s

o 2 N (N N I B

< | BN I 0 R ok

0 1000 2000 3000 4000

So what do we get?

hc_1swap: median result of 3 min of hill climber using 1swap

1 17 | 20 EFd 9 NE § WOIT 0 Mol W28613 15 8 mzmsH
18- 13 DN W7n [6H 8 W91 6 15 11 H 2 9om]
1772 11O 7 W9 9 6 H 13 [N 14 8 aEn
1 1797 40NN BsE EEESTY 6 213 B 9 8 11 MW
151 11 8 B 2 §IN5 WmE e En 17 6 [-] [18)
14+ 4 EAowi2s EERi1317 KN 11@82 6 9 15 8
13-{9 HOM6I 15 17 Wl 13 W11 62N 4m 8 E B
1 6 B 11mme 2. 103 16 9 g3z ©17 W
1 |] [4 |HOl NEEE]11HOl sBM 9 6 170 2
10 8 1 EZINSH 9 [EEEENSI 15 17 21134 [N 6 Bl |

4w 15 EEERZE13 2 6 179 W o2 el 8

110 8 (ENMEEI4 B2 6 W 2 el 13 g mo
11 ISENGm7ZE N2 ME15 6 EERNSI 170 el am 8
21 150 8 [EN 9 HBNan il 2 EEeen 17 11 6 78
9 15EENE] W8l 6 411E D 13018 17 8 WA 0 2
13 1716 1 8 WOl ONI2IE EEE BEE 2 4n
15 9 Hl 17 130 118 6 HSIE 2 [0]
15 11 2n 13 i 8 06 [OEESH 17 2 W9
o mm
9 Elii2msl [T yna / 1220.n—6 . 1;7
T

0 200 400 600 800 1000 1200

PP

So what do we get?

hc_nswap: median result of 3 min of hill climber using nswap

19 17 9 2 15 6 8 13
5 13 o 7m 8 N8 6 e 8 15 [14 G5 (RN JRC] 24
17111 M 21 6 M99 | | B2 13EE4EA 8 HE
16 17 F7EEN 4 W0 FoiNSHEr 66 m@ o 8 18 | 11
1 8 [0 INENE N I 0 15 I Er EE 617 EE 9
14 [| |4 EER 11216 819 13 9 17HEEEM6" 15 2 110 8 I
1 9WBl 17 15M 136 2W7ZW4M W 8 11 -] 0]
1 |50 HERVoN11MESE 2 9 H@ w8 M W13 17
11 |] 8l 9 = 6 17 11 2 A
10 EEN BSE Ho Hol 15 HBI4 WE 17 2 W@ 613H
4 15 7 INENN 6 2 13 17HEEE2 73Tl 16 Tl 8
8 EE [4 Hem2 8111 6 | g2 m 13 W8l 9

11 HEN7El WSH 2 N

EER6 15 1 9117 MOET4T W o8

[l 8 15 M2MMBIE 4T 9 [HE 2 Wion 17 Wm 6 B 11
9 HEN WENa15 6 4 11 W@ 8 e 19 13 17 21a
136 17 8 FlN7E o Wel 1120 WeN B [] 0C] 1 2 mo
15 9 H NEEN 17 HE Bl HisEs 11H6IE 2 [m
15 2l 11 13 8 SN 6 MIEEI19 Foran 170 2 @ 0}

S REom HNE EE 7. EEE136 e EER 17
2 yn4/1160 7 s grm o m

T T T
0 200 400 600 800 1000 1200

Progress over Time

What progress does the algorithm make over time?

Progress over Time

1400

abz7

rs
hc_1swap
hcr_16384_1swap
hc_nswap

1200 1300

1100

1000

time inms |
T
10 100 1000 10000 100000

700 800 900

What progress does the algorithm make over time?

Progress over Time

1400

abz7

rs
hc_1swap
hcr_16384_1swap
hc_nswap

1200 1300

1100

1000

—'

" timeinms
T

10 100 1000 10000 100000

700 800 900

What progress does the algorithm make over time?

® hc_nswap first behaves like hc_1swap, because most of the nswap
moves are the same as 1swap moves.

Progress over Time

1400

abz7

rs
hc_1swap
hcr_16384_1swap
hc_nswap

1200 1300

1100

1000

—'

" timeinms
T

10 100 1000 10000 100000

700 800 900

What progress does the algorithm make over time?

® The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

Progress over Time

1400

1300

12?0

11PO

1000

800 900

0

abz7

rs

hc_1swap
hcr_16384_1swap
hc_nswap

" timeinms

-

1b 160 1&” 10&” 1&*XD
What progress does the algorithm make over time?

The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

The hill climber with restarts seems to improve longer.

Progress over Time

la24

—_—rs

— hc_1swap

— hcr_16384_1swap
— hc_nswap

time inms
T T T T
1 10 100 1000 10000 100000

What progress does the algorithm make over time?

® The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

® The hill climber with restarts seems to improve longer.

Progress over Time

f swvi5s
—_—rs
§_ — hc_1swap
~ —— hcr_16384_1swap
— hc_nswap
8
3 :
—— -
g | -
B
8
?
time in ms
T T T T T
1 10 100 1000 10000 100000

What progress does the algorithm make over time?

® The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

® The hill climber with restarts seems to improve longer.

Progress over Time

yn4
rs
hc_1swap
hcr_16384_1swap
hc_nswap

time in ms

T T T T T
1 10 100 1000 10000 100000

What progress does the algorithm make over time?

® The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

® The hill climber with restarts seems to improve longer.

Improved Algorithm Concept 3

Combining the Two Improvements

® Now we know two ways to improve the performance of our hill
climber.

Combining the Two Improvements

® Now we know two ways to improve the performance of our hill
climber:

1. we can restart it

Combining the Two Improvements

® Now we know two ways to improve the performance of our hill
climber:

1. we can restart it and
2. we can use a unary operator with larger neighborhood that still mostly
makes small steps.

Combining the Two Improvements

® Now we know two ways to improve the performance of our hill
climber:
1. we can restart it and
2. we can use a unary operator with larger neighborhood that still mostly
makes small steps.

® |t is only natural to try to combine these two improvements.

Configuring the Algorithm

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1swap | 717 800 | 798 | 28 Os 16’978
hc_nswap | 724 758 | 758 | 17 35s | T7'781'762

la24 | hc_1swap | 999 | 1095 | 1086 | 56 Os 6'612
hc_nswap | 945 | 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598
hc_nswap | 3602 | 3880 | 3872 | 112 70s | 8'351'112

yn4 hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789
hc_nswap | 1095 | 1162 | 1160 | 34 71s | 11'016'757

Configuring the Algorithm

® The hc_nswap improves longer than hc_1swap

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1swap | 717 800 | 798 | 28 Os 16’978
hc_nswap | 724 758 | 758 | 17 35s | T7'781'762

la24 | hc_1swap | 999 | 1095 | 1086 | 56 Os 6'612
hc_nswap | 945 | 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598
hc_nswap | 3602 | 3880 | 3872 | 112 70s | 8'351'112

yn4 hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789
hc_nswap | 1095 | 1162 | 1160 | 34 71s | 11'016'757

Configuring the Algorithm

® The hc_nswap improves longer than hc_1swap

® \We can expect that the number L of unsuccessful steps before a
restart should be higher now.

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1swap | 717 800 | 798 | 28 Os 16’978
hc_nswap | 724 758 | 758 | 17 35s | T7'781'762

la24 | hc_1swap | 999 | 1095 | 1086 | 56 Os 6'612
hc_nswap | 945 | 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598
hc_nswap | 3602 | 3880 | 3872 | 112 70s | 8'351'112

yn4 hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789
hc_nswap | 1095 | 1162 | 1160 | 34 71s | 11'016'757

Configuring the Algorithm

[Te}
=1 bestf/Ib* her_L_nswap —e— abz7//656
—A— a24/935
—©— swv15/2885
—— yn4/929
<
Y
«_|
o~ 4
4
A A restart limit L -4

T T T T T | T T T
128 256 S‘I 2 1024 2048 4096 8192 16384 32768 65536 131072 262144

Configuring the Algorithm

® The hc_nswap improves longer than hc_1swap

® \We can expect that the number L of unsuccessful steps before a
restart should be higher now.

® |et's choose L = 65536, i.e., hcr_65536_nswap.

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1swap | 717 800 | 798 | 28 Os 16’978
hc_nswap | 724 758 | 758 | 17 35s | T7'781'762

la24 | hc_1swap | 999 | 1095 | 1086 | 56 Os 6'612
hc_nswap | 945 | 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598
hc_nswap | 3602 | 3880 | 3872 | 112 70s | 8'351'112

yn4 hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789
hc_nswap | 1095 | 1162 | 1160 | 34 71s | 11'016'757

Experiment and Analysis

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hcr_16384_1swap 714 732 733 91s | 18'423'530
hc_nswap 724 758 758 | 17 35s | 7'781'762
hcr_65536_nswap 6 96s | 21'189'358

la24 | hcr_16384_1swap | 953 976 | 976 80s | 34'437'999
hc_nswap 945 | 1018 | 1016 | 29 25s | 9'072'935
hcr_65536_nswap 8 71s | 31'466'420

swvl5 | hcr_16384_1swap | 3752 | 3859 | 3861 | 42 92s | 11'756'497
hc_nswap 3880 | 3872 | 112 70s | 8'351'112
hcr_65536_nswap | 3740 89s | 10'783'296

yné hcr_16384_1swap | 1081 | 1115 | 1115 91s | 14'804'358
hc_nswap 1095 | 1162 | 1160 | 34 71s | 11'016'757
hcr_65536_nswap 12 78s | 18'756'636

So what do we get?

hcr_16384_1swap: median result of 3 min of hcr_16384_1swap

14 [flo 13 11 7y s 17 6 el |er 4T 2 |
1318 16 LAl | 9 15 |[NZNNN7 SNEON ST 17 G 1S S
12417 o [ZENEINEINONo) 13 MM 2 [Bt s HEN
11 HE s 17 (SN o AONeN @ECmZmise 2

17 Tl A PR T BN]
1 8 oMMl N2 o 17 |INNIZNE 13

13 mem 15 s HONG N o WEN 7 ez KO 2@
5 GEEEN 2 o EENONNEENES 1 WEHEN 17 13 8 s
2 6 [0 =] mEmZc o [EEM Wel o E 15 17
B o WEN s W2l s EeNEEEEEEEm s Kl 6 2
H NN st S REE poN EEEE 2 MW
6 s W2 o [OWeTel WO 5 7 04 B 13
6 17 e 2N v NN ¢ NN e o BN (@ 15 13 NS
Blo NN 13 4 WON7E NN NN W22 6 15 8
, 2 [oM W73 gm s 4 1 o M 7016
0 100 200 300 400 500 600 700

So what do we get?

hcr_65536_nswap: median result of 3 min of hcr_65536_nswap

6 s WIS WO A CEEEE z |
s 46 2 11 [EmN ofl WM 13 15 NCNNONEIENGE 7 WO 5
o 17 NG 13 SNNAN > NG o MG TN Y
s

s B 171 13 o oM > NENONSEE © W7

7 W23 W e EEE s o eI e EsE O
0] (] " Mis 26 73N femEl e W

13 mien s 7 W 11 @l o 15 NENEDN KB W]
SRRl B AT (4 O

R s W e 15 e WeNEc OIS 5 11 o 17

1Ol e mie@ s 15 MOMEEN: ¢ EIWEE
1sHEl (18 11 o SN ° OO : & Wm
ez s o v [E@NOEE B 5 1]
N 7 2 EEND 116 ol e I s o o 0N NS
pan 13 ol vERENGE W9 WEN oNZENCH 2N s o 8
T S [o | o e d27/732gg e 58 Wil NN o EEONGN|
0 100 200 300 400 500 600 700

So what do we get?

hcr_16384_1swap: median result of 3 min of hcr_16384_1swap

1a24 / 976
o e o oo

400 600 800

So what do we get?

hcr_65536_nswap: median result of 3 min of hcr_65536_nswap

So what do we get?

hcr_16384_1swap: median result of 3 min of hcr_16384_1swap

; REIELE &t
. E T | 1D < - R W

7 i | | I71IE<HEN el =090 &Ll |
. T e o D e <D BN+
5 N (EOERD: Nel-Ri-2I0 1T 5l |

PRIEs | o7l] o7k «s ke | [402 | BB

|l DUEE 7kl W) Gl o Jlesiths <2l

O+ 2 |EENE | & Gl

ool W WONDEE CZEN-MENE W

2500 3000 3500

So what do we get?

hcr_65536_nswap: median result of 3 min of hcr_65536_nswap

H 17 12 418 | 9 32 23
& ool & 2of] N Feooo] Ko a7ks sl] Rl
I 7o &8 B E @ FEOEE 1 B e NEE
IE e - e - - W B
. e | oE 0| CEEEDE- EONEXD | 12N
il B o Wi B 1 R RO | B |

I e | B 2 S
T 0= e

q?
©

0 500 1000 1500 2000 2500 3000 3500

So what do we get?

hcr_16384_1swap: median result of 3 min of hcr_16384_1swap

19 17 9 | | 6] 8 13MBH6 5
184 13 SN] 8 B 98 6 LN 15 [-R | 211 9 @
1742 7N 11H 9 617] [] 1302 B 8 EER 4
16-17 NEZNSIESENN BEER 40NN 02 68 13 9 W6] 1
15 8 B 2HE 11 W54 e 1781 6 IEER
14 B FoN2anE EER 4013 17 08 9 2N 6l 8 15 11 W
1349 17 MONMNBI 15 (13 6 2 W 8 Hm7Zm 3 | Il 11
1 6 |] oni2 msm 2 16 sHm 1109 13 0] u 17
1 | L 2 48 NoN4ENEE HEE E= o 6 2 17 1A
101 8 [14 <) | 18 _NON TRE] 2 17 @13 amim 6N 6

wam 15 9 EANZm13 17 2 W@ 6 2] I ENCEN mes 8
8 8 Bi2erel 4 e 2 11EH 13 sn || 9
74 meEmZEES 2 11 15 W6 17 EEEMQ9I9 8 WON M2vdn

9 WBN HONNE 2 4w 17 (SN | B 6 11

15 MIGNEL 6 a4 8 N W13 m 11 817 K 2
613 17 8 ENE o a2zn H [ONCE 11SBN 4 2 o

15 9 W4 No 17 WE SN 13E8 B 11 2 ol
E2m 15 13 8 11 [ZEmSH N W6l 2 @e@17 FHomam N [N

W15 8 e T TANESE 116 EEIMoNEER 17

ynd /1115 . 5 9w

T T
0 200 400 600 800 1000

So what do we get?

hcr_65536_nswap: median result of 3 min of hcr_65536_nswap

1 7 9 2N We EEEN N0 EOMSRNNESN 15§ W6 15Me)
1e4a13 mom EmeNs BN6 mel 11 15 EEMA2EN °n 9 “
17411 MM 2 7 W9l 6 9 17 i 62 13 @ 8 mn
1 17 ESEEEEER ARG M1 mBe 9 1 m
15 11 g EE 20 o SEEEET 69 17 BEme N 9
14+ | B B 21374 EEN 17068 11 9 2 EEHE6 BN 15 8 I
1349 EGED 15 BN6 17 13 WE2 11 WM & M a (0]
124 ® m o ESENIONZ 2 EENNDI WM 98 m 17 H3EN
114 - - S4EMBIEE] 9 11 17HOI6 2
1048 [ol W WENESI 15 W 17 24 13WEl W 2 E6
o-jmien wam 15 9 EZE13EEE 2 W1776 EE 8 W8l
& 8 11[NGNE] WE2 HEN4N6 °m 13 men 9
74 11 HSEEGIIN7ZE 2 6l 15 017 EENONONoN 12 8 4
1M 8 [OH 9 el @ WOl 2 wAW 17 EEIWI9N 11 B7a 6
9 EOEEN 6 15 [EmSE 11 2 0 8 WS EE17 [T 0 P
13 17 8E11 WM ONZENZE WGl N BONEE 2 Amom
15 9 W4 700l s 17 13m 11 sl (- 18] 2n 0]
15 112 13 ESN s N OEAE N 17 2 HENANEE 0]
11 1 o 4nmimiy EESEENTN 6 EE) 17 1
ommme gy yndlTTT0 e
T

T T
0 200 400 600 800 1000

Progress over Time

What progress does the algorithm make over time?

Progress over Time

What progress does the algorithm make over time?

g
A abz7
8 — hc_1swap
7 — hc_nswap

— hcr_16384_1swap
§_ —— her_65536_nswap
8.

1000

900

800

time in ms
T
1 10 100 1000 10000 100000

700

Progress over Time

What progress does the algorithm make over time?

8
A abz7
S — hc_1swap
7 — hc_nswap

— hcr_16384_1swap
§_ — hcr_65536_nswap
8.

1000

900

800

time in ms

700

T T T
100 1000 10000 100000

-
o

hcr_nswap tends to be a tiny little bit better than hcr_1swap ... but
not much

Progress over Time

What progress does the algorithm make over time?

la24

hc_1swap
hc_nswap
her_16384_1swap
hcr_65536_nswap

time in ms
T T T
1 10 100 1000 10000 100000

hcr_nswap tends to be a tiny little bit better than hcr_1swap ... but
not much

Progress over Time

What progress does the algorithm make over time?

swv15
— hc_1swap
§_ — hc_nswap
~ —— hcr_16384_1swap
— hcr_65536_nswap
8
8
8
3
time in ms
T T T T T
1 10 100 1000 10000 100000

hcr_nswap tends to be a tiny little bit better than hcr_1swap ... but
not much

Progress over Time

What progress does the algorithm make over time?

yn4

hc_1swap
hc_nswap
her_16384_1swap
hcr_65536_nswap

time in ms

T T T
1 10 100 1000 10000 100000

hcr_nswap tends to be a tiny little bit better than hcr_1swap ... but
not much

Progress over Time

What progress does the algorithm make over time?

yn4

hc_1swap
hc_nswap
her_16384_1swap
hcr_65536_nswap

time in ms

T T T
1 10 100 1000 10000 100000

hcr_nswap tends to be a tiny little bit better than hcr_1swap ... but
not much

Summary

Summary

® \We now have learned a second, more efficient metaheuristic
optimization algorithm: stochastic hill climber.

Summary

® \We now have learned a second, more efficient metaheuristic
optimization algorithm: stochastic hill climber.

® By making use of the best point in the search space we have seen so
far and iteratively trying to improve it, we can dramatically improve
the results compared to random sampling.

Summary

® \We now have learned a second, more efficient metaheuristic
optimization algorithm: stochastic hill climber.

® By making use of the best point in the search space we have seen so
far and iteratively trying to improve it, we can dramatically improve
the results compared to random sampling.

® | ike random sampling, we can apply it to all sorts of problems, as
long as we provide the basic structural ingredients.

Summary

® \We now have learned a second, more efficient metaheuristic
optimization algorithm: stochastic hill climber.

® By making use of the best point in the search space we have seen so
far and iteratively trying to improve it, we can dramatically improve
the results compared to random sampling.

® | ike random sampling, we can apply it to all sorts of problems, as
long as we provide the basic structural ingredients.

® Hill climbing is a local search and vulnerable to get trapped in local
optima.

Summary

® \We now have learned a second, more efficient metaheuristic
optimization algorithm: stochastic hill climber.

® By making use of the best point in the search space we have seen so
far and iteratively trying to improve it, we can dramatically improve
the results compared to random sampling.

® | ike random sampling, we can apply it to all sorts of problems, as
long as we provide the basic structural ingredients.

® Hill climbing is a local search and vulnerable to get trapped in local
optima.

® We can try to work around that by implementing good search
operators and by restarting the algorithm.

LI

Thank you

References |

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO) [£ A £ AL#F % FT] of
the School of Atrtificial Intelligence and Big Data [A L% fit 5 k4% % %] of Hefei University [4 2% K], Hefei [&27],
Anhui [%#4], China [E], 2018-2020. URL http://thomasweise.github.io/aitoa/.

2. Thomas Weise. Global Optimization Algorithms — Theory and Application. it-weise.de (self-published), Germany, 2009. URL
http://www.it-weise.de/projects/book.pdf.

3. Holger H. Hoos and Thomas Stiitzle. Stochastic Local Search: Foundations and Applications. The Morgan Kaufmann Series
in Artificial Intelligence. Elsevier, 2005. ISBN 1493303732.

4. Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (AIMA). Prentice Hall International
Inc., Upper Saddle River, NJ, USA, 2 edition, 2002. ISBN 0-13-080302-2.

5. James C. Spall. Introduction to Stochastic Search and Optimization, volume 6 of Estimation, Simulation, and Control —
Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley Interscience, Chichester, West Sussex, UK, April
2003. ISBN 0-471-33052-3. URL http://www. jhuapl.edu/ISS0/.

6. Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD
thesis, Technische Universitat Berlin, Berlin, Germany, 1971-1973.

7. Ingo Rechenberg. Evolutionsstrategie '94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Frommann-Holzboog
Verlag, Bad Cannstadt, Stuttgart, Baden-Wiirttemberg, Germany, 1994. ISBN 3-7728-1642-8.

8. Thomas Weise, Raymond Chiong, and Ke Tang. Evolutionary optimization: Pitfalls and booby traps. Journal of Computer
Science and Technology (JCST), 27:907-936, September 2012. doi:10.1007/s11390-012-1274-4.

9. Thomas Weise, Michael Zapf, Raymond Chiong, and Antonio Jests Nebro Urbaneja. Why is optimization difficult? In
Raymond Chiong, editor, Nature-Inspired Algorithms for Optimisation, volume 193/2009 of Studies in Computational
Intelligence (SCI), chapter 1, pages 1-50. Springer-Verlag, Berlin/Heidelberg, April 2009. ISBN 978-3-642-00266-3.
doi:10.1007/978-3-642-00267-0_1.

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf
http://www.jhuapl.edu/ISSO/
https://doi.org/10.1007/s11390-012-1274-4
https://doi.org/10.1007/978-3-642-00267-0_1

	Outline
	Introduction
	Information from Good Solutions
	Basic Idea

	Algorithm Concept
	Stochastic Hill Climbing
	Implementation of the Stochastic Hill Climber
	Causality

	Ingredient: Unary Search Operator
	Unary Search Operator
	Example for our 1swap Operator

	Experiment and Analysis
	So what do we get?
	Progress over Time
	But we waste time…
	Indeed, we waste time!
	Premature Convergence

	Improved Algorithm Concept 1
	Stochastic Hill Climber with Restarts
	Stochastic Hill Climbing Algorithm with Restarts

	Experiment and Analysis
	Configuring the Algorithm: Parameter L
	So what do we get?
	Progress over Time

	Improved Algorithm Concept 2
	Drawbacks of Restarts
	How else can we stop premature convergence?
	Making the neighborhood bigger
	Making the neighborhood bigger
	Implementation of the nswap Operator

	Experiment and Analysis
	So what do we get?
	Progress over Time

	Improved Algorithm Concept 3
	Combining the Two Improvements
	Configuring the Algorithm

	Experiment and Analysis
	So what do we get?
	Progress over Time

	Summary
	Summary

	Presentation End
	References

