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Information from Good Solutions

® Qur first algorithm, random sampling, was not very efficient.

® |t does not make any use of the information it “sees” during the
optimization process.

® Each search step consists of creating an entirely new, entirely random
candidate solution.

® Each search step is thus independent of all prior steps.
® |s this a good idea?
® Probably not.

® |n almost all practical scenarios, good solutions are somewhat similar
to other good solutions.

® |n other words, every good solution we see is some useful information.
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Basic Idea

® So how we can make use of the information we have seen during the
search?

® |nstead of generating a completely random new candidate solution in
each step. ..

® . why can't we try to iteratively improve the best solution we have
seen so far?
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Stochastic Hill Climbing

® This is the concept of Local Search®® and its simplest realization is
Stochastic Hill Climbing?.
® Simple Concept:
1. create random initial solution
2. make a modified copy of best-so-far solution
3. if it is better, it becomes the new best-so-far solution (if it is not
better, discard it).
4. go back to 2. (until the time is up)
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package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
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Implementation of the Stochastic Hill Climber

package aitoa.algorithms;

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {

fBest = fCur;

public class HillClimber <X, Y> extends Metaheuristicl<X,

Y>

{




Implementation of the Stochastic Hill Climber

package aitoa.algorithms;
public class HillClimber <X, Y> extends Metaheuristicl<X,

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {

fBest = fCur;

process.getSearchSpace () .copy (xCur, xBest);
}
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Implementation of the Stochastic Hill Climber

package aitoa.algorithms;

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);

while (!process.shouldTerminate()) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate (xCur) ;
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);
}

public class HillClimber <X, Y> extends Metaheuristicl<X,

Y>

{
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Causality

® | ocal searches like hill climbers exploit a property of many
optimization problems called causality®®.

® Causality means that small changes in the features of an object (or
candidate solution) also lead to small changes in its behavior (or
objective value).

® |f an optimization problem exhibits causality, then there should be
good solutions that are similar to other good solutions.

® The idea is that if we have a good candidate solution, then there may
exist similar solutions which are better.

® \We hope to find one of them and then continue trying to do the same
from there.
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Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

® |t must make sure that the modified copy is still a valid element of X.

® |t should ideally be randomized, i.e., applying it twice to the same
point = should yield different results.

package aitoa.structure;
public interface IUnarySearchOperator<X> {

void apply(X x, X dest, Random random);
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Unary Search Operator

® Qur hill climber must be able to make modified copies of an existing
point & € X in order to find these better points.

® A unary search operator accepts on existing point x € X and creates
a modified copy of it.

® |t must make sure that the modified copy is still a valid element of X.

® |t should ideally be randomized, i.e., applying it twice to the same
point = should yield different results.

® How can we implement this for our JSSP scenario?
® Easy: Just swap two (different) job IDs in the string!

® Since the numbers of occurrences of the IDs will not change, the new
strings will be valid.
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Example for our 1swap Operator

(2,0,1,0,1,1,2,3,2,3, 1swap (2,0,1,0,1,1,2,3,2,3,
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Example for our 1swap Operator
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X 2,0,0,1,3,3,2,3,1,0) 2,0,3,1,3,0,2,3,1,0)
=
l’Zakespan: 180 l’ny'lakespan: 195
4 [ 0] 4 [
3 3
Y 2{mem 2{ 2l N
14 14
o{[@ o{ [ E2
0 50 100 150 200 0 50 100 150 200



Example for our 1swap Operator

X

(21

2
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,0,0,1,3,3,2,3,1,0)

lswap
<
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public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

public void apply(int[] x, int[] dest, Random random) {

System.arraycopy(x, 0, dest, O, x.length);

int i
int jobI

random.nextInt (dest.length) ;
dest [i];

int j = random.nextInt(dest.length);
int jobJ = dest[jl;

dest [i] jobJ;
dest[j] = jobI;




package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {

public void apply(int[] x, int[] dest, Random random) {

System.arraycopy(x, 0, dest, O, x.length);

int i random.nextInt (dest.length) ;
int jobI = dest[il];

int j = random.nextInt(dest.length);
int jobJ = dest[jl;
if (jobI != jobJ) {

dest [i] jobJ;

dest[j] = jobI;




package aitoa.examples.jssp;

public class JSSPUnaryOperatorlSwap implements
IUnarySearchOperator<int []1> {
// unnecessary stuff omitted here...
public void apply(int[] x, int[] dest, Random random) {
// copy the source point in search space to the dest
System.arraycopy(x, 0, dest, O, x.length);

// choose the index of the first sub-job to swap
int i random.nextInt (dest.length) ;
int jobI = dest[il; // remember job id

for (;;) { // try to find a location j with a different job
int j = random.nextInt(dest.length);
int jobJ = dest[j];

if (jobI != jobJ) { // we found two locations with two
dest[i] = jobJ; // different wvalues
dest[j] = jobI; // then we swap the wvalues
return; // and are done

}
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So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

A algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | rs 895 947 949 8bs | 6'512'505
hc_1swap 28 Os 16'978

la24 | rs 1153 | 1206 | 1208 82s | 15'902'911
hc_1swap 56 Os 6'612

swvlh | rs 4988 | 5166 | 5172 87s | 5'559'124
hc_1swap 137 1s 104'598

yné rs 1460 | 1498 | 1499 76s | 4'814'914
hc_1swap 48 Os 31'789
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rs: median result of 3 min of random sampling
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So what do we get?

rs: median result of 3 min of random sampling
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So what do we get?

hc_1swap: median result of 3 min of hill climber
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So what do we get?
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So what do we get?

hc_1swap: median result of 3 min of hill climber
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What progress does the algorithm make over time?
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First we have much progress. ..
... but then the hill climber stagnates!
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Indeed, we waste time!

makespan last improvement
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Indeed, we waste time!

makespan last improvement

7z algo best | mean | med | sd | med(t) | med(FEs)
abz7 | rs 895 | 947 | 949 85s | 6'512'505
hc_1swap 28 Os 16’978

la24 | rs 1153 | 1206 | 1208 82s | 15'902'911
hc_1swap 56 Os 6'612

swvl5 | rs 4988 | 5166 | 5172 87s | 5'559'124
hc_1swap 137 1s 104'598

ynd Ts 1460 | 1498 | 1499 76s | 4'814'914
hc_1swap 48 Os 31'789

® \We have three minutes but after about 1 second, our hc_1swap

algorithm stops improving!
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Premature Convergence

® Qur algorithm makes most of its progress early during the search.
® | ater, it basically stagnates and cannot improve.
® Why is that?

® The search operator 1swap defines a neighborhood N (z) C X around
a point x.

® The hill climber can only find solutions which are in the neighborhood
of the current best solution.

® Only the schedules that | can reach by swapping two operations of
two different jobs.

e Clearly |N(z)| < |X]!
® What happens if f(y(z*)) < f(y(x))Vz € N(z*) but z* is not the
global optimum?

® Qur algorithm gets trapped in the local optimum z* and cannot
escape!

® This is called Premature Convergence.?®
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Stochastic Hill Climber with Restarts

® |dea: We have seen that the results of the hill climber exhibit a
relatively high standard deviation.

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | rs 895 947 | 949 | 12 8bs | 6'512'505
hc_iswap | 717 800 | 798 | 28 Os 16’978

la24 | rs 1153 | 1206 | 1208 | 15 82s | 15'902'911
hc_1lswap | 999 | 1095 | 1086 | 56 Os 6'612

swvlb | rs 4988 | 5166 | 5172 | 50 87s | 5'559'124
hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598

yné rs 1460 | 1498 | 1499 | 15 76s | 4'814'914
hc_1iswap | 1109 | 1222 | 1220 | 48 Os 31'789
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T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | rs 895 047 | 949 | 12 85s | 6'512'505
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Stochastic Hill Climber with Restarts

® |dea: We have seen that the results of the hill climber exhibit a
relatively high standard deviation.

® At the same time, a single run of the algorithm converges quickly.

® | et us exploit this variance!

® |dea: If we did not make any progress for a number L of algorithm
steps, we simply restart at a new random solution.

® Of course, we will always remember the overall best solution we ever
had (in another variable).
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package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);
long failCounter = OL;

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);
failCounter = OL;
} else {
if ((++failCounter) >= this.failsBeforeRestart) {




Stochastic Hill Climbing Algorithm with Restarts

package aitoa.algorithms;
public class HillClimberWithRestarts<X, Y> extends Metaheuristicl<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xCur = process.getSearchSpace().create();
X xBest = process.getSearchSpace().create();
Random random = process.getRandom();

while (!(process.shouldTerminate())) {
this.nullary.apply(xBest, random);
double fBest = process.evaluate (xBest);
long failCounter = OL;

while (!(process.shouldTerminate())) {
this.unary.apply(xBest, xCur, random);
double fCur = process.evaluate(xCur);
if (fCur < fBest) {
fBest = fCur;
process.getSearchSpace () .copy (xCur, xBest);
failCounter = OL;
} else {
if ((++failCounter) >= this.failsBeforeRestart) {
break;
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We now have an algorithm which, in theory, should be able to utilize
some of the variance that we observe in the results of hc_1swap.

We got one problem, though ... ... actually, it is not just one
algorithm, it is an algorithm with a parameter L: hcr_L_1swap.

What do we do with that?
Let's take a look.

If we choose L too small, we will restart the algorithm too early,
before it even arrives in a local optimum

If we choose L too large, we will restart too late and thus waste time,
that we could have used for more restarts

L = 2™ = 16/384 seems to be a reasonable choice.
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® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | rs 895 947 949 | 12 8bs | 6'512'505
hc_1swap 717 | 800 | 798| 28 0s 16'978
hcr_16384_1swap 91s | 18'423'530

la24 | rs 1153 | 1206 | 1208 | 15 82s | 15'902'911
hc_1swap 999 | 1095 | 1086 | 56 Os 6'612
hcr_16384_1swap 80s | 34'437'999

swvlh | rs 4988 | 5166 | 5172 | 50 87s | 5'659'124
hc_1swap 3837 | 4108 | 4108 | 137 1s 104'598
hcr_16384_1swap 92s | 11'756'497

ynéd rs 1460 | 1498 | 1499 | 15 76s | 4'814'914
hc_1swap 1109 | 1222 | 1220 | 48 0s 31'789
hcr_16384_1swap Ols | 14'804'358




So what do we get?

hc_1swap: median result of 3 min of hill climber
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So what do we get?

hcr_16384_1swap: median result of 3 min of hill climber which restarts after
L = 16’384 search steps without improvement
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So what do we get?

hcr_16384_1swap: median result of 3 min of hill climber which restarts after
L = 16’384 search steps without improvement
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So what do we get?

hc_1swap: median result of 3 min of hill climber
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So what do we get?

hcr_16384_1swap: median result of 3 min of hill climber which restarts after

L = 16’384 search steps without improvement
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Progress over Time

What progress does the algorithm make over time?



Progress over Time

1400

abz7
—_—rs
— hc_1swap
— hcr_16384_1swap

1300

1200

1100

1000

time in ms

700 800 900

10 1(I)0 10I00 10(I)00 100IOOO
What progress does the algorithm make over time?




Progress over Time

1400

abz7
—_—rs
— hc_1swap
— hcr_16384_1swap

1300

1200

1100

1000

time in ms

700 800 900

10 1(I)0 10I00 10(I)00 100IOOO
What progress does the algorithm make over time?

® First it behaves like the normal hill climber



Progress over Time

1400

abz7
—_—rs
— hc_1swap
— hcr_16384_1swap

1300

1200

1100

1000

700 800 900

time in ms

10 1(I)0 10I00 10(I)00 10(;000
What progress does the algorithm make over time?

® First it behaves like the normal hill climber

® But it keeps improving.



Progress over Time

la24
—_—rs
— hc_1swap
— hcr_16384_1swap

time in ms

1 10 100 1000 10000 100000
What progress does the algorithm make over time?
® First it behaves like the normal hill climber

® But it keeps improving.



Progress over Time

swvi5s
—rs
sS4 — hc_1swap
~ — hcr_16384_1swap
8.
3

5000

time in ms

T T T T
1 10 100 1000 10000 100000

What progress does the algorithm make over time?
® First it behaves like the normal hill climber

® But it keeps improving.



Progress over Time

yn4
—_—rs
— hc_1swap
— hcr_16384_1swap

time in ms

T T T T T
1 10 100 1000 10000 100000

What progress does the algorithm make over time?
® First it behaves like the normal hill climber

® But it keeps improving.



Progress over Time

| f abz7
— s
é_ — hc_1swap
— hcr_16384_1swap
o
&-
8
8.
=
o
8-
e —
8 time in ms |
T T T T
0 50000 100000 150000

What progress does the algorithm make over time?
® First it behaves like the normal hill climber

® But it keeps improving.



Progress over Time

1400

abz7
—_—rs
— hc_1swap
— hcr_16384_1swap

12|00 13|00

11|00

10|00
/7

800 900

700

time in ms |

1001000 1501000
What progress does the algorithm make over time?

-

® First it behaves like the normal hill climber
® But it keeps improving.

® Although we still do not use the available time very well. ..



Progress over Time

f la24
—_rs
§— — hc_1swap
- —— hcr_16384_1swap
8

timeinms |

0 50000 1001000 15()IOOO
What progress does the algorithm make over time?

® First it behaves like the normal hill climber
® But it keeps improving.
® Although we still do not use the available time very well. ..



Progress over Time

f swvi5s
— s
S84 — hc_1swap
~ —— hcr_16384_1swap
8.
3
M=
3
]
S =
84
i 0 n
timein ms |
T

0 50000 100IOOO 15(;000
What progress does the algorithm make over time?
® First it behaves like the normal hill climber
® But it keeps improving.

® Although we still do not use the available time very well. ..



Progress over Time

%' f yn4
—_—rs
— hc_1swap
§ — hcr_16384_1swap

time in ms

T T T
0 50000 100000 150000

What progress does the algorithm make over time?
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® Although we still do not use the available time very well. ..
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Drawbacks of Restarts

A restarted algorithm is still the same algorithm, just restarted.

® |f there are many more local optima than global optima, every restart
will probably end again in a local optimum.

® |f there are many more “bad” local optima than “good” local optima,
every restart will probably end in a “bad” local optimum.

® While restarts improve the chance to find better solutions, they
cannot solve the intrinsic shortcomings of an algorithm.

® Another problem is: With every restart we throw away all
accumulated knowledge and information of the current run.

® Restarts are therefore also wasteful.
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How else can we stop premature convergence?

® Qur hc_1swap hill climber will stop improving if it can no longer
finder better solutions.

® This happens when it reaches a local optimum.

® A local optimum is a point x* in X where no 1swap-move can yield
any improvement.

® |t does not matter which two job ids | exchange in the current best
string £, the result is not better than z*.

® Notice: Whether or not a point z is a local optimum, is determined
entirely by the unary search operator!

® |f we had a different operator with a bigger neighborhood, then
maybe x> would no longer be a local optimum and we could still
improve the results after reaching it. ..
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Making the neighborhood bigger

® Two solutions 1 and x5 are “neighbors” if | can reach x5 by applying
the search operator one time to x.

® The search operator determines which solutions are “neighbors”.
® The neighborhood determines what a local optimum is.

® | et’s make it bigger.

® |t always helps to think about the extreme cases first.

® On one hand, we already have 1swap, which swaps two jobs. This is
the smallest step | can imagine.

® On the other end of the spectrum, we could simply swap all jobs in
our points x randomly. Is this a good idea?Probably not: It would
turn our algorithm into random sampling!

® We should respect the causality: small changes to the solution cause
small changes in the objective value — big changes will lead to
unpredictable results.
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® nswap operator idea:

1.

2.
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Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).
3. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
4. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

5. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 3.125% in total), we will swap 6 job ids (and stop).
6. and so on.

® \We most often make small moves, but sometimes bigger ones.



Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).
3. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
4. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

5. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 3.125% in total), we will swap 6 job ids (and stop).
6. and so on.

® \We most often make small moves, but sometimes bigger ones.

® Theoretically, we could always escape from any local optimum.



Making the neighborhood bigger

® |dea: Let's most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, ...
® nswap operator idea:
1. flip a coin: if it is heads (50% probability), we will swap 2 job ids (and
stop).
2. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 25% in total), we will swap 3 job ids (and stop).
3. otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now in total), we will swap 4 job ids (and stop).
4. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now in total), we will swap 5 job ids (and stop).

5. otherwise (it was tail), we again flip a coin. if it is heads (50%
probability, now 3.125% in total), we will swap 6 job ids (and stop).
6. and so on.

® \We most often make small moves, but sometimes bigger ones.

® Theoretically, we could always escape from any local optimum, but
the probability may sometimes be very very small.
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package aitoa.examples.jssp;

public class JSSPUnaryOperatorNSwap {
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Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {
public void apply(int[] x, int[] dest, Random random) {

System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

dest [i] = first;
}




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {
public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

int i = random.nextInt (dest.length);
int first = dest[il;

int j = random.nextInt (dest.length);

dest [i] = first;
}




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

int j = random.nextInt (dest.length);

int jobJ = dest[jl;

dest [i] = first;
}




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

int j = random.nextInt (dest.length);
int jobJ = dest[jl;

if (first != jobJ) {

}

dest [i] = first;




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;

dest [i] = first;




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;
i js

dest [i] = first;




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {
public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

int i = random.nextInt (dest.length);
int first = dest[il;

inner: for (;;) {

int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;
i = 35

break inner;

}

dest [i] = first;
}




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

for(;;) {
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;
i is

break inner;

}

dest [i] = first;
}




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];

boolean hasNext;

do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {
dest[i] = jobJ;
i =J;
break inner;
}
}

} while (hasNext);

dest [i] = first;
}




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

int i = random.nextInt (dest.length);
int first = dest[i];
int last = first;
boolean hasNext;
do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;
i is

break inner;
}

}
} while (hasNext);

dest [i] = first;
}




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);

int i = random.nextInt (dest.length);
int first = dest[i];
int last = first;
boolean hasNext;
do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if (first != jobJ) {

dest[i] = jobJ;

i =3
last = joblJ;
break inner;

}
} while (hasNext);

dest [i] = first;




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];
int last = first;
boolean hasNext;
do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if ((last != jobJ) &&
( (first !'= jobJ))) {
dest[i] = jobJ;
i =J;
last = joblJ;
break inner;

}
} while (hasNext);

dest [i] = first;




Implementation of the nswap Operator

package aitoa.examples. jssp;
public class JSSPUnaryOperatorNSwap implements IUnarySearchOperator<int([]> {

public void apply(int[] x, int[] dest, Random random) {
System.arraycopy(x, 0, dest, O, x.length);
int i = random.nextInt (dest.length);
int first = dest[i];
int last = first;
boolean hasNext;
do {
hasNext = random.nextBoolean();
inner: for (;;) {
int j = random.nextInt (dest.length);
int jobJ = dest[jl;
if ((last != jobJ) &&
(hasNext || (first != jobJ))) {
dest[i] = jobJ;
i =J;
last = joblJ;
break inner;

}
} while (hasNext);

dest [i] = first;




Experiment and Analysis




So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4



So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1lswap 717 | 800 | 798| 28 Os 16'978
hcr_16384_1swap **6 91s | 18'423'530
hc_nswap 724 758 758 | 17 35s | 7'781'762

la24 | hc_1swap 999 | 1095 | 1086 | 56 0Os 6'612
hcr_16384_1swap | 953 80s | 34'437'999
hc_nswap 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1lswap 3837 | 4108 | 4108 | 137 1s 104'598
hcr_16384_1swap | 3752 92s | 11'756'497
hc_nswap 3880 | 3872 | 112 70s | 8'351'112

yné4 hc_1swap 1109 | 1222 | 1220 | 48 0Os 31'789
hcr_16384_1swap 91s | 14'804'358
hc_nswap 1095 | 1162 | 1160 | 34 71s | 11'016'757




So what do we get?

hc_1swap: median result of 3 min of hill climber using 1swap
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So what do we get?

hc_nswap: median result of 3 min of hill climber using nswap
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So what do we get?

hc_1swap: median result of 3 min of hill climber using 1swap
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So what do we get?

hc_nswap: median result of 3 min of hill climber using nswap
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So what do we get?

hc_1swap: median result of 3 min of hill climber using 1swap
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So what do we get?

hc_nswap: median result of 3 min of hill climber using nswap
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So what do we get?

hc_1swap: median result of 3 min of hill climber using 1swap
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So what do we get?

hc_nswap: median result of 3 min of hill climber using nswap
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Progress over Time

What progress does the algorithm make over time?
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What progress does the algorithm make over time?

® hc_nswap first behaves like hc_1swap, because most of the nswap
moves are the same as 1swap moves.
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What progress does the algorithm make over time?

® The rare larger moves allow it to escape from local optima that would
trap hc_1swap.
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What progress does the algorithm make over time?

The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

The hill climber with restarts seems to improve longer.
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What progress does the algorithm make over time?

® The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

® The hill climber with restarts seems to improve longer.
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What progress does the algorithm make over time?

® The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

® The hill climber with restarts seems to improve longer.



Progress over Time
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What progress does the algorithm make over time?

® The rare larger moves allow it to escape from local optima that would
trap hc_1swap.

® The hill climber with restarts seems to improve longer.
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Combining the Two Improvements

® Now we know two ways to improve the performance of our hill
climber.
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® Now we know two ways to improve the performance of our hill
climber:

1. we can restart it and
2. we can use a unary operator with larger neighborhood that still mostly
makes small steps.



Combining the Two Improvements

® Now we know two ways to improve the performance of our hill
climber:
1. we can restart it and
2. we can use a unary operator with larger neighborhood that still mostly
makes small steps.

® |t is only natural to try to combine these two improvements.



Configuring the Algorithm

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1swap | 717 800 | 798 | 28 Os 16’978
hc_nswap | 724 758 | 758 | 17 35s | T7'781'762

la24 | hc_1swap | 999 | 1095 | 1086 | 56 Os 6'612
hc_nswap | 945 | 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598
hc_nswap | 3602 | 3880 | 3872 | 112 70s | 8'351'112

yn4 hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789
hc_nswap | 1095 | 1162 | 1160 | 34 71s | 11'016'757




Configuring the Algorithm

® The hc_nswap improves longer than hc_1swap

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1swap | 717 800 | 798 | 28 Os 16’978
hc_nswap | 724 758 | 758 | 17 35s | T7'781'762

la24 | hc_1swap | 999 | 1095 | 1086 | 56 Os 6'612
hc_nswap | 945 | 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598
hc_nswap | 3602 | 3880 | 3872 | 112 70s | 8'351'112

yn4 hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789
hc_nswap | 1095 | 1162 | 1160 | 34 71s | 11'016'757




Configuring the Algorithm

® The hc_nswap improves longer than hc_1swap

® \We can expect that the number L of unsuccessful steps before a
restart should be higher now.

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1swap | 717 800 | 798 | 28 Os 16’978
hc_nswap | 724 758 | 758 | 17 35s | T7'781'762

la24 | hc_1swap | 999 | 1095 | 1086 | 56 Os 6'612
hc_nswap | 945 | 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598
hc_nswap | 3602 | 3880 | 3872 | 112 70s | 8'351'112

yn4 hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789
hc_nswap | 1095 | 1162 | 1160 | 34 71s | 11'016'757




Configuring the Algorithm
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Configuring the Algorithm

® The hc_nswap improves longer than hc_1swap

® \We can expect that the number L of unsuccessful steps before a
restart should be higher now.

® |et's choose L = 65536, i.e., hcr_65536_nswap.

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hc_1swap | 717 800 | 798 | 28 Os 16’978
hc_nswap | 724 758 | 758 | 17 35s | T7'781'762

la24 | hc_1swap | 999 | 1095 | 1086 | 56 Os 6'612
hc_nswap | 945 | 1018 | 1016 | 29 25s | 9'072'935

swvl5 | hc_1swap | 3837 | 4108 | 4108 | 137 1s 104'598
hc_nswap | 3602 | 3880 | 3872 | 112 70s | 8'351'112

yn4 hc_1swap | 1109 | 1222 | 1220 | 48 Os 31'789
hc_nswap | 1095 | 1162 | 1160 | 34 71s | 11'016'757




Experiment and Analysis




So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4



So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

T algo best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | hcr_16384_1swap 714 732 733 91s | 18'423'530
hc_nswap 724 758 758 | 17 35s | 7'781'762
hcr_65536_nswap 6 96s | 21'189'358

la24 | hcr_16384_1swap | 953 976 | 976 80s | 34'437'999
hc_nswap 945 | 1018 | 1016 | 29 25s | 9'072'935
hcr_65536_nswap 8 71s | 31'466'420

swvl5 | hcr_16384_1swap | 3752 | 3859 | 3861 | 42 92s | 11'756'497
hc_nswap 3880 | 3872 | 112 70s | 8'351'112
hcr_65536_nswap | 3740 89s | 10'783'296

yné hcr_16384_1swap | 1081 | 1115 | 1115 91s | 14'804'358
hc_nswap 1095 | 1162 | 1160 | 34 71s | 11'016'757
hcr_65536_nswap 12 78s | 18'756'636
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Summary

® \We now have learned a second, more efficient metaheuristic
optimization algorithm: stochastic hill climber.

® By making use of the best point in the search space we have seen so
far and iteratively trying to improve it, we can dramatically improve
the results compared to random sampling.

® | ike random sampling, we can apply it to all sorts of problems, as
long as we provide the basic structural ingredients.

® Hill climbing is a local search and vulnerable to get trapped in local
optima.

® We can try to work around that by implementing good search
operators and by restarting the algorithm.



LI

Thank you
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