Aje 2)

HEFEI UNIVERSITY 1AQ2

Optimization Algorithms
7. Simulated Annealing

Thomas Weise - % £ .%&
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn/5

Institute of Applied Optimization (IAQ) | & Atk Ae#t AT
School of Artificial Intelligence and Big Data | AL#H it 5 KR&EF X
Hefei University | &2 # 1%
Hefei, Anhui, China | F B=#4 &

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn/5

QOutline

Introduction

Algorithm Concept: Probabilistic Acceptance of Worse Solutions
Ingredient: Temperature Schedule

Algorithm Implementation

Configuring the Algorithm

o ok~ w o=

Experiment and Analysis

Introduction

Local Search and Hill Climbing

® So far, we have only discussed one variant of local search.

Local Search and Hill Climbing

® So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

Local Search and Hill Climbing

® So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

® A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

Local Search and Hill Climbing

® So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

® A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

® We also found that we can utilize the variance of the result quality by

restarting the optimization process when it could not improve any
more.

Local Search and Hill Climbing

® So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

® A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

® We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

® But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Local Search and Hill Climbing

So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Alternatively, we also tried to use operators with larger
neighborhoods.

Local Search and Hill Climbing

So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Alternatively, we also tried to use operators with larger
neighborhoods, but there will either still be local optima

Local Search and Hill Climbing

So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Alternatively, we also tried to use operators with larger
neighborhoods, but there will either still be local optima (if the
neighborhood is not large enough)

Local Search and Hill Climbing

So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Alternatively, we also tried to use operators with larger
neighborhoods, but there will either still be local optima (if the
neighborhood is not large enough) or there are points where it is hard
to escape from

Local Search and Hill Climbing

So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Alternatively, we also tried to use operators with larger
neighborhoods, but there will either still be local optima (if the
neighborhood is not large enough) or there are points where it is hard
to escape from (if the neighborhood is very large but non-uniformly
sampled, as our nswap operator does)

Local Search and Hill Climbing

So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Alternatively, we also tried to use operators with larger
neighborhoods, but there will either still be local optima (if the
neighborhood is not large enough) or there are points where it is hard
to escape from (if the neighborhood is very large but non-uniformly
sampled, as our nswap operator does) or the search will get very slow

Local Search and Hill Climbing

So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Alternatively, we also tried to use operators with larger
neighborhoods, but there will either still be local optima (if the
neighborhood is not large enough) or there are points where it is hard
to escape from (if the neighborhood is very large but non-uniformly
sampled, as our nswap operator does) or the search will get very slow
(if the neighborhood is very large and uniformly sampled).

Local Search and Hill Climbing

So far, we have only discussed one variant of local search: the
stochastic hill climbing algorithm.

A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

Alternatively, we also tried to use operators with larger
neighborhoods, but there will either still be local optima (if the
neighborhood is not large enough) or there are points where it is hard
to escape from (if the neighborhood is very large but non-uniformly
sampled, as our nswap operator does) or the search will get very slow
(if the neighborhood is very large and uniformly sampled).

So, for now, let's stick with the 1swap operator.

Idea

® A schedule which is a local optimum (under 1swap) probably is at
least somewhat similar to what the globally optimal schedule would
look like.

Idea

® A schedule which is a local optimum (under 1swap) probably is at

least somewhat similar to what the globally optimal schedule would
look like.

® |t must, obviously, also be somewhat different (otherwise it would be
the global optimum already).

Idea

® A schedule which is a local optimum (under 1swap) probably is at

least somewhat similar to what the globally optimal schedule would
look like.

® |t must, obviously, also be somewhat different (otherwise it would be
the global optimum already).

® This difference is shaped such that it cannot be conquered by the
1swap unary search operator that we use.

Idea

A schedule which is a local optimum (under 1swap) probably is at
least somewhat similar to what the globally optimal schedule would
look like.

It must, obviously, also be somewhat different (otherwise it would be
the global optimum already).

This difference is shaped such that it cannot be conquered by the
1swap unary search operator that we use.

If we do a restart, we also dispose of the similarities to the global
optimum that we have already discovered.

Idea

A schedule which is a local optimum (under 1swap) probably is at
least somewhat similar to what the globally optimal schedule would
look like.

It must, obviously, also be somewhat different (otherwise it would be
the global optimum already).

This difference is shaped such that it cannot be conquered by the
1swap unary search operator that we use.

If we do a restart, we also dispose of the similarities to the global
optimum that we have already discovered.

Then, we will subsequently spend time to re-discover them in the
hope that this will happen in a way that allows us to eventually reach
the global optimum itself (or at least a better local optimum).

Idea

A schedule which is a local optimum (under 1swap) probably is at
least somewhat similar to what the globally optimal schedule would
look like.

It must, obviously, also be somewhat different (otherwise it would be
the global optimum already).

This difference is shaped such that it cannot be conquered by the
1swap unary search operator that we use.

If we do a restart, we also dispose of the similarities to the global
optimum that we have already discovered.

Then, we will subsequently spend time to re-discover them in the
hope that this will happen in a way that allows us to eventually reach
the global optimum itself (or at least a better local optimum).

Can there be a less-costly way?

Algorithm Concept: Probabilistic Acceptance of
Worse Solutions

Simulated Annealing

¢ Simulated Annealing (SA)**° is a local search which provides another
approach to escape from local optima?®”.

Simulated Annealing

¢ Simulated Annealing (SA)**° is a local search which provides another
approach to escape from local optima?®”.

® |nstead of restarting the algorithm when reaching a local optima, it
tries to preserve the parts of the current solution by sometimes
permitting search steps towards worsening objective values.

Simulated Annealing

¢ Simulated Annealing (SA)**° is a local search which provides another
approach to escape from local optima?®”.

® |nstead of restarting the algorithm when reaching a local optima, it
tries to preserve the parts of the current solution by sometimes
permitting search steps towards worsening objective values.

® This algorithm therefore introduces three principles

Simulated Annealing

¢ Simulated Annealing (SA)**° is a local search which provides another
approach to escape from local optima?®”.
® |nstead of restarting the algorithm when reaching a local optima, it
tries to preserve the parts of the current solution by sometimes
permitting search steps towards worsening objective values.
® This algorithm therefore introduces three principles:
1. Worse candidate solutions are sometimes accepted, too.

Simulated Annealing

¢ Simulated Annealing (SA)**° is a local search which provides another
approach to escape from local optima?®”.

® |nstead of restarting the algorithm when reaching a local optima, it
tries to preserve the parts of the current solution by sometimes
permitting search steps towards worsening objective values.

® This algorithm therefore introduces three principles:

1. Worse candidate solutions are sometimes accepted, too.
2. The probability P of accepting them is decreases with increasing
differences AE of the objective values to the current solution.

Simulated Annealing

¢ Simulated Annealing (SA)**° is a local search which provides another
approach to escape from local optima?®”.

® |nstead of restarting the algorithm when reaching a local optima, it
tries to preserve the parts of the current solution by sometimes
permitting search steps towards worsening objective values.

® This algorithm therefore introduces three principles:
1. Worse candidate solutions are sometimes accepted, too.
2. The probability P of accepting them is decreases with increasing
differences AE of the objective values to the current solution.
3. The probability also decreases with the number of performed search
steps.

Simulated Annealing

¢ Simulated Annealing (SA)**° is a local search which provides another
approach to escape from local optima?®”.

® |nstead of restarting the algorithm when reaching a local optima, it
tries to preserve the parts of the current solution by sometimes
permitting search steps towards worsening objective values.

® This algorithm therefore introduces three principles:

1. Worse candidate solutions are sometimes accepted, too.

2. The probability P of accepting them is decreases with increasing
differences AE of the objective values to the current solution.

3. The probability also decreases with the number of performed search
steps.

® These principles are "injected” into the basic loop of the hill climber.

Simulated Annealing

¢ Simulated Annealing (SA)**° is a local search which provides another
approach to escape from local optima?®”.

® |nstead of restarting the algorithm when reaching a local optima, it
tries to preserve the parts of the current solution by sometimes
permitting search steps towards worsening objective values.

® This algorithm therefore introduces three principles:

1. Worse candidate solutions are sometimes accepted, too.

2. The probability P of accepting them is decreases with increasing
differences AE of the objective values to the current solution.

3. The probability also decreases with the number of performed search
steps.

® These principles are "injected” into the basic loop of the hill climber.

® How can we implement these concepts?

Acceptance Probability

® How can we implement these concepts?

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is z € X.

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it.

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

® AFE then be the difference between the objective value of 2’ and x.

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

e AFE then be the difference between the objective value of 2’ and x:

AE = f(y(z) = f(v(x)) (1)

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

AF then be the difference between the objective value of z’ and :

AE = f(y(z) = f(v(x)) (1)

AFE < 0 means that?

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

AF then be the difference between the objective value of z’ and :
AE = f(v(2')) = f(v(2)) (1)

AE < 0 means that the new 2’ is better than z since

f(y(z") < f(y(z)).

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

e AFE then be the difference between the objective value of 2’ and x:
AE = f(v(2')) = f(v(2)) (1)

o AFE < 0 means that the new 2’ is better than z since

f(y(z") < f(y(z)).

e AFE > (0 means that?

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

e AFE then be the difference between the objective value of 2’ and x:
AE = f(v(2')) = f(v(2)) (1)

o AFE < 0 means that the new 2’ is better than z since
f(y(z") < f(y(z)).

e AFE > 0 means that the new solution is worse.

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

e AFE then be the difference between the objective value of 2’ and x:
AE = f(v(2')) = f(v(2)) (1)

o AFE < 0 means that the new 2’ is better than z since
f(y(z") < f(y(z)).

e AFE > 0 means that the new solution is worse.
e AF = (0 means that?

Acceptance Probability

® How can we implement these concepts?

® |et's assume that the “current” point in the search space known by
our local search is x € X and that we have derived a new
point ' € X from it using the unary search operator.

e AFE then be the difference between the objective value of 2’ and x:
AE = f(v(2')) = f(v(2)) (1)

o AFE < 0 means that the new 2’ is better than z since
f(y(z") < f(y(z)).

e AFE > 0 means that the new solution is worse.

o AFE =0 means that both have the same quality.

Acceptance Probability

AE = f(y(2') = f((x))

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

P = (2)

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

P = (2)

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAEL0
P = (2)

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 if AE<0
-

P=< e

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAEL0

P={ ¢%F fAE>OAT >0 2)

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAE<0
P={ ¢%F fAE>OAT >0 (2)

0

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAEL0

T fAE>O0AT >0 (2)
0 otherwise (AE >0AT =0)

P=< e

Acceptance Probability

AE = f(v(a") = f((=)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAEL0

T fAE>SOAT >0 (2)
0 otherwise (AE >0AT =0)

P=< ¢

¢ |f the new point z’ is better than the current point z, i.e., AE < 0,
then we will definitely accept it.

Acceptance Probability

AE = f(v(a") = f((=)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAE<0

T fAE>SOAT >0 (2)
0 otherwise (AE >0AT =0)

P=< ¢

e |f the new point 2/ is better (or, at least, not worse) than the current
point z, i.e., AE <0, then we will definitely accept it.

Acceptance Probability

AE = f(v(a") = f((=)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAEL0

T fAE>SOAT >0 (2)
0 otherwise (AE >0AT =0)

P=< ¢

e |f the new point 2/ is better (or, at least, not worse) than the current
point x, i.e., AE <0, then we will definitely accept it.

e If the new point 2’ is worse (AFE > 0), then the acceptance
probability

Acceptance Probability

AE = f(v(a") = f((=)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAEL0

T fAE>SOAT >0 (2)
0 otherwise (AE >0AT =0)

P=< ¢

e |f the new point 2/ is better (or, at least, not worse) than the current
point x, i.e., AE <0, then we will definitely accept it.

e If the new point 2’ is worse (AFE > 0), then the acceptance
probability

1. gets smaller the larger AE is.

Acceptance Probability

AE = f(y(2') = f((x)) (1)

® The probability P to accept the new solution 2’ (and discard the
current one) is:

1 ifAEL0

T fAESOAT >0 (2)
0 otherwise (AE >0AT =0)

P=< e

e |f the new point 2/ is better (or, at least, not worse) than the current
point x, i.e., AE <0, then we will definitely accept it.
e If the new point 2’ is worse (AFE > 0), then the acceptance
probability
1. gets smaller the larger AFE is and
2. gets smaller the smaller the so-called “temperature” 7' > 0 is.

Ingredient: Temperature Schedule

Temperature Schedule

A

1 ifAE<O

P=X ¢% {fAE>0AT >0

0 otherwise (AE >0AT =0)

Temperature Schedule

1 ifAE<O
E

P=X ¢ WAE>0AT >0
0 otherwise (AE >0AT =0)

® What about this temperature 77

Temperature Schedule

1 ifAE<O0
AE

P={ eF fAE>0AT>0 (2)
0 otherwise (AE >0AT =0)

® What about this temperature 17
® The temperature is defined to decrease and approaches zero with a
rising number 7 of algorithm iterations, i.e., the performed objective

function evaluations.

Temperature Schedule

1 fAE<O
“F fAESOAT >0
0 otherwise (AE >0AT =0)

P={ ¢

® \What about this temperature 1'?

® The temperature is defined to decrease and approaches zero with a
rising number 7 of performed objective function evaluations.

® The optimization process is initially “hot” and T is high.

Temperature Schedule

1 fAE<O
“F fAESOAT >0
0 otherwise (AE >0AT =0)

P={ ¢

What about this temperature T'?

The temperature is defined to decrease and approaches zero with a
rising number 7 of performed objective function evaluations.

® The optimization process is initially “hot” and T is high.

® Then, even significantly worse solutions may be accepted.

Temperature Schedule

1 fAE<O
“F fAESOAT >0
0 otherwise (AE >0AT =0)

P={ ¢

What about this temperature T'?

The temperature is defined to decrease and approaches zero with a
rising number 7 of performed objective function evaluations.

® The optimization process is initially “hot” and T is high.
® Then, even significantly worse solutions may be accepted.

® Qver time, the process “cools” down and T decreases.

Temperature Schedule

1 fAE<O
“F fAESOAT >0 (2)
0 otherwise (AE >0AT =0)

P={ ¢

® \What about this temperature 1'?

® The temperature is defined to decrease and approaches zero with a
rising number 7 of performed objective function evaluations.

® The optimization process is initially “hot” and T is high.
® Then, even significantly worse solutions may be accepted.
® Qver time, the process “cools” down and T decreases.

® Slowly, fewer and fewer worse solutions are accepted and more likely
such which are only a bit worse.

Temperature Schedule

1 fAE<O
“F fAESOAT >0 (2)
0 otherwise (AE >0AT =0)

P={ ¢

® \What about this temperature 1'?

® The temperature is defined to decrease and approaches zero with a
rising number 7 of performed objective function evaluations.

® The optimization process is initially “hot” and T is high.
® Then, even significantly worse solutions may be accepted.
® Qver time, the process “cools” down and T decreases.

® Slowly, fewer and fewer worse solutions are accepted and more likely
such which are only a bit worse.

® At temperature 7' = 0, the algorithm only accepts better solutions.

Temperature Schedule

1 ifAE<O0

P=¢ 77 ifAE>0AT(7)>0 (2)
0 otherwise (AE >0AT(7)=0)

® What about this temperature 7'(7)?

® The temperature is defined to decrease and approaches zero with a
rising number 7 of performed objective function evaluations.

® The optimization process is initially “hot” and 7'(7) is high.
® Then, even significantly worse solutions may be accepted.
® Over time, the process “cools” down and 7'(7) decreases.

® Slowly, fewer and fewer worse solutions are accepted and more likely
such which are only a bit worse.

® At temperature 7'(7) = 0, the algorithm only accepts better solutions.

® T is a monotonously decreasing function 7'(7): the “temperature
schedule.”

Conditions for Temperature Schedule

1 fAE<O0
AFE

P=4¢ e 70 fAE>0AT(7)>0 (2)
0 otherwise (AE >0AT(7)=0)

Conditions for Temperature Schedule

1 fAE<O

P=4¢ e 70 fAE>0AT(7)>0 (2)
0 otherwise (AE >0AT(7)=0)

® The temperature 7'(7) is defined to decrease and approaches zero
with a rising number 7 of performed objective function evaluations.

Conditions for Temperature Schedule

1 fAE<O

P=4¢ e 70 fAE>0AT(7)>0 (2)
0 otherwise (AE >0AT(7)=0)

® The temperature 7'(7) is defined to decrease and approaches zero
with a rising number 7 of performed objective function evaluations.

® |t holds that lim 7'(7) = 0.
T—+o00

Conditions for Temperature Schedule

1 fAE<O

P=4¢ e 70 fAE>0AT(7)>0 (2)
0 otherwise (AE >0AT(7)=0)

® The temperature 7'(7) is defined to decrease and approaches zero
with a rising number 7 of performed objective function evaluations.

® |t holds that lim 7'(7) = 0.
T—+o00

® |t begins with an start temperature T at 7 = 1.

Conditions for Temperature Schedule

1 ifAE<O
AE
P=4¢ e 70 fAE>0AT(7)>0 (2)

0 otherwise (AE >0AT(7)=0)

The temperature 7'(7) is defined to decrease and approaches zero
with a rising number 7 of performed objective function evaluations.

It holds that lim 7'(7) = 0.
T—+o00

It begins with an start temperature T at 7 = 1.

® Apart from this, we can define 7'(7) in any way we want.

Base Class for Implementing Temperature Schedules

package aitoa.algorithms;
public abstract class TemperatureSchedule {
public final double startTemperature;

public abstract double temperature(long tau);

Exponential Temperature Schedule

® |n an exponential temperature schedule, the temperature decreases
exponentially with time (as the name implies).

Exponential Temperature Schedule

® |n an exponential temperature schedule, the temperature decreases
exponentially with time (as the name implies).

® Besides the start temperature Ty, it has a parameter € € (0, 1) which
tunes the speed of the temperature decrease.

Exponential Temperature Schedule

® |n an exponential temperature schedule, the temperature decreases
exponentially with time (as the name implies).

® Besides the start temperature Ty, it has a parameter € € (0, 1) which
tunes the speed of the temperature decrease.

T(r)=Ts+(1—¢g)"" (3)

Exponential Temperature Schedule

® |n an exponential temperature schedule, the temperature decreases
exponentially with time (as the name implies).

® Besides the start temperature Ty, it has a parameter € € (0, 1) which
tunes the speed of the temperature decrease.

T(r)=Ts+(1—¢g)"" (3)

® Higher values of ¢ lead to a faster temperature decline.

Exponential Temperature Schedule

package aitoa.algorithms;

public class Exponential extends TemperatureSchedule {
public final double epsilon;
public double temperature(long tau) {

return (this.startTemperature * Math.pow((1d -
this.epsilon), (tau - 1L)));

Logarithmic Temperature Schedule

® The logarithmic temperature schedule will prevent the temperature
from becoming very small for a longer time.

Logarithmic Temperature Schedule

® The logarithmic temperature schedule will prevent the temperature
from becoming very small for a longer time.

® Compared to the exponential schedule, it will longer retain a higher
probability to accept worse solutions.

Logarithmic Temperature Schedule

® The logarithmic temperature schedule will prevent the temperature
from becoming very small for a longer time.

® Compared to the exponential schedule, it will longer retain a higher
probability to accept worse solutions.

® |t also has the parameters ¢ € (0,00) and Ts.

Logarithmic Temperature Schedule

® The logarithmic temperature schedule will prevent the temperature
from becoming very small for a longer time.

® Compared to the exponential schedule, it will longer retain a higher
probability to accept worse solutions.

® |t also has the parameters ¢ € (0,00) and Ts.

Logarithmic Temperature Schedule

The logarithmic temperature schedule will prevent the temperature
from becoming very small for a longer time.

® Compared to the exponential schedule, it will longer retain a higher
probability to accept worse solutions.

It also has the parameters ¢ € (0,00) and Ts.

Ts
T(r) = In(e(t—1)+e))

Larger values of € again lead to a faster temperature decline.

Logarithmic Temperature Schedule

package aitoa.algorithms;
public class Logarithmic extends TemperatureSchedule {
public final double epsilon;

public double temperature(long tau) {

return (this.startTemperature / Math.log(((tau - 1L)
* this.epsilon) + Math.E));

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?

2 8-11

® | et’s think back again about Evolutionary Algorithms

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?
® |et's think back again about Evolutionary Algorithms?&*!,

® By using the population size parameters 1 and A, we can tune the

behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

The Meaning of the Temperature Schedule

Why do we have such a strange thing like a temperature schedule?

Let's think back again about Evolutionary Algorithms?

By using the population size parameters p and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

The Meaning of the Temperature Schedule

Why do we have such a strange thing like a temperature schedule?
2 8-11

Let’s think back again about Evolutionary Algorithms

By using the population size parameters p and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

The temperature schedule in SA allows us to do the same.

The Meaning of the Temperature Schedule

Why do we have such a strange thing like a temperature schedule?
2 8-11

Let’s think back again about Evolutionary Algorithms

By using the population size parameters p and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

The temperature schedule in SA allows us to do the same but
dynamically!

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?
® |et's think back again about Evolutionary Algorithms?&*!,

® By using the population size parameters 1 and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

® This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

® The temperature schedule in SA allows us to do the same but
dynamically!

® |f T is high at the beginning. ..

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?
® |et's think back again about Evolutionary Algorithms?&*!,

® By using the population size parameters 1 and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

® This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

® The temperature schedule in SA allows us to do the same but
dynamically!

® |f T is high at the beginning = many bad solutions are accepted.

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?
® |et's think back again about Evolutionary Algorithms?&*!,

® By using the population size parameters 1 and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

® This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

® The temperature schedule in SA allows us to do the same but
dynamically!

® If T is high at the beginning = many bad solutions are accepted =-
random sampling.

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?
® |et's think back again about Evolutionary Algorithms?&*!,

® By using the population size parameters 1 and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

® This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

® The temperature schedule in SA allows us to do the same but
dynamically!

® If T is high at the beginning = many bad solutions are accepted =-
random sampling.

® At theend, T~ 0...

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?
® |et's think back again about Evolutionary Algorithms?&*!,

® By using the population size parameters 1 and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

® This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

® The temperature schedule in SA allows us to do the same but
dynamically!

® If T is high at the beginning = many bad solutions are accepted =-
random sampling.

® At the end, T'~ 0 = no worse solutions are accepted anymore.

The Meaning of the Temperature Schedule

® Why do we have such a strange thing like a temperature schedule?

2 8-11

® | et’s think back again about Evolutionary Algorithms

® By using the population size parameters 1 and A, we can tune the
behavior of an EA between random sampling (1 — 0o or A — o0)
and hill climbing (u =X =1).

® This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

® The temperature schedule in SA allows us to do the same but
dynamically!

® If T is high at the beginning = many bad solutions are accepted =-
random sampling.

® At the end, T'~ 0 = no worse solutions are accepted anymore = hill
climbing.

Algorithm Implementation

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

® Simple Concept

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions
® Simple Concept:
1. Start with 7 = 1.

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions
® Simple Concept:
1. Start with 7 = 1.

2. Create random initial point =, which also becomes the first “current
point” = and the overall best point xy.

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

® Simple Concept:
1. Start with 7 = 1.

2. Create random initial point =, which also becomes the first “current
point” = and the overall best point xy.
3. Create a modified copy 2’ of the current point

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions
® Simple Concept:
1. Start with 7 = 1.
2. Create random initial point =, which also becomes the first “current
point” = and the overall best point xy.
Create a modified copy 2’ of the current point
4. Set 7 =7+ 1.

w

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

® Simple Concept:

1.
2.

hall o

Start with 7 = 1.

Create random initial point z;, which also becomes the first “current
point” = and the overall best point xy.

Create a modified copy 2’ of the current point

Set 7 =7+1.

. If the new point 2’ is better than x, set x;, = 2.

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

® Simple Concept:

1.
2.

o0 w

Start with 7 = 1.

Create random initial point z;, which also becomes the first “current
point” = and the overall best point xy.

Create a modified copy 2’ of the current point

Set 7 =7+1.

If the new point 2’ is better than z;, set 7, = 2’.

If the new point 2’ is better than z, set = = 2.

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

® Simple Concept:

1.
2.

Noow

Start with 7 = 1.

Create random initial point z;, which also becomes the first “current
point” = and the overall best point xy.

Create a modified copy 2’ of the current point

Set 7 =7+1.

If the new point 2’ is better than z;, set 7, = 2’.

If the new point 2’ is better than z, set = = 2.

If it is worse (AE > 0): accept it as current solution with

probability P(AE, 7) (which gets smaller over time and also the
smaller the worse the new solution is) or otherwise reject it.

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

® Simple Concept:

1.
2.

Noow

Start with 7 = 1.

Create random initial point z;, which also becomes the first “current
point” = and the overall best point xy.

Create a modified copy 2’ of the current point

Set 7 =7 +1.
If the new point 2’ is better than z;, set 7, = 2’.
If the new point 2’ is better than z, set = = 2.

If it is worse (AE > 0): accept it as current solution with
probability P(AE, 7) (which gets smaller over time and also the
smaller the worse the new solution is) or otherwise reject it.

. Go back to 3. (until the time is up)

Simulated Annealing Algorithm

® Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

® Simple Concept:

1.
2.

Noow

o

Start with 7 = 1.

Create random initial point z;, which also becomes the first “current
point” = and the overall best point xy.

Create a modified copy 2’ of the current point

Set 7 =7+1.

If the new point 2’ is better than z;, set 7, = 2’.

If the new point 2’ is better than z, set = = 2.

If it is worse (AE > 0): accept it as current solution with

probability P(AE, 7) (which gets smaller over time and also the
smaller the worse the new solution is) or otherwise reject it.

Go back to 3. (until the time is up)

Return the best ever-encountered point z;,.

Implementing Simulated Annealing

package aitoa.algorithms;

public class SimulatedAnnealing<X, Y> {

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {
X xNew = process.getSearchSpace().create();

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {
public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);
long tau = 1L;

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);
long tau = 1L;

this.unary.apply (xCur, xNew, random);

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);
long tau = 1L;

this.unary.apply (xCur, xNew, random);
++tau;

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);
long tau = 1L;

this.unary.apply (xCur, xNew, random);
++tau;
double fNew = process.evaluate (xNew);

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);
long tau = 1L;

this.unary.apply (xCur, xNew, random);
++tau;

double fNew = process.evaluate (xNew);
if (fNew <= fCur) {

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);
long tau = 1L;

this.unary.apply (xCur, xNew, random);
++tau;
double fNew = process.evaluate (xNew);
if ((fNew <= fCur) ||
(random.nextDouble () <
Math.exp ((fCur - fNew) / this.schedule.temperature(tau))))

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);
long tau = 1L;

this.unary.apply (xCur, xNew, random);
++tau;
double fNew = process.evaluate (xNew);
if ((fNew <= fCur) ||
(random.nextDouble () <
Math.exp ((fCur - fNew) / this.schedule.temperature(tau))))
fCur = fNew;

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);
double fCur = process.evaluate(xCur);
long tau = 1L;

this.unary.apply (xCur, xNew, random);
++tau;
double fNew = process.evaluate (xNew);
if ((fNew <= fCur) ||
(random.nextDouble () <
Math.exp ((fCur - fNew) / this.schedule.temperature(tau))))
fCur = fNew;
process.getSearchSpace () .copy (xNew, xCur);

}

Implementing Simulated Annealing

package aitoa.algorithms;
public class SimulatedAnnealing<X, Y> extends Metaheuristicl<X, Y¥> {

public void solve(IBlackBoxProcess<X, Y> process) {

X xNew = process.getSearchSpace().create();
X xCur = process.getSearchSpace().create();
Random random = process.getRandom();

this.nullary.apply (xCur, random);

double fCur = process.evaluate(xCur);
long tau = 1L;
do {
this.unary.apply (xCur, xNew, random);
++tau;
double fNew = process.evaluate (xNew);

if ((fNew <= fCur) ||
(random.nextDouble () <
Math.exp ((fCur - fNew) / this.schedule.temperature(tau)))) {
fCur = fNew;
process.getSearchSpace () .copy (xNew, xCur);
¥
} while (!process.shouldTerminate());

}

Configuring the Algorithm

Configuring the Algorithm

® Qur algorithm has four parameters.

Configuring the Algorithm

® Qur algorithm has four parameters:
1. the start temperature T

Configuring the Algorithm

® Qur algorithm has four parameters:

1. the start temperature Tk,
2. the parameter ¢

Configuring the Algorithm

® Qur algorithm has four parameters:
1. the start temperature Tk,
2. the parameter ¢,

3. the type of temperature schedule to use (here, logarithmic or
exponential)

Configuring the Algorithm

® Qur algorithm has four parameters:

1. the start temperature Tk,
2. the parameter ¢,

3. the type of temperature schedule to use (here, logarithmic or
exponential), and

4. the unary search operator (in our case, we could use 1swap or nswap).

Configuring the Algorithm

® Qur algorithm has four parameters:
1. the start temperature Tk,
2. the parameter ¢,

3. the type of temperature schedule to use (here, logarithmic or
exponential), and

4. the unary search operator (in our case, we could use 1swap or nswap).

® We will only use 1swap as choice for the unary operator and focus on
the exponential temperature schedule.

Configuring the Algorithm

® Qur algorithm has four parameters:
1. the start temperature Tk,
2. the parameter ¢,

3. the type of temperature schedule to use (here, logarithmic or
exponential), and

4. the unary search operator (in our case, we could use 1swap or nswap).

® We will only use 1swap as choice for the unary operator and focus on
the exponential temperature schedule.

® This leaves T and ¢ to be configured.

Configuring the Algorithm

Our algorithm has four parameters:
1. the start temperature Tk,
2. the parameter ¢,
3. the type of temperature schedule to use (here, logarithmic or
exponential), and
4. the unary search operator (in our case, we could use 1swap or nswap).

We will only use 1swap as choice for the unary operator and focus on
the exponential temperature schedule.

This leaves T and ¢ to be configured.

Interestingly, we may be able to very roughly compute some
reasonable values for them!

Simulated Annealing as Improved Hill Climber

® | et us consider Simulated Annealing as an improved Hill Climber.

Simulated Annealing as Improved Hill Climber

® | et us consider Simulated Annealing as an improved Hill Climber and
look at the experimental results of this algorithm.

Simulated Annealing as Improved Hill Climber

® | et us consider Simulated Annealing as an improved Hill Climber and
look at the experimental results of this algorithm.

Z | med(total FEs) | sd

abz7 35'648'639 | 28
la24 70'952'285 | 56
swv1l5b 21'662'286 | 137
ynéd 27'090'611 | 48
median 31'369'575 | 52

Simulated Annealing as Improved Hill Climber

® | et us consider Simulated Annealing as an improved Hill Climber and
look at the experimental results of this algorithm.

Z | med(total FEs) | sd

abz7 35'648'639 | 28
la24 70'952'285 | 56
swv1l5b 21'662'286 | 137
ynéd 27'090'611 | 48
median 31'369'575 | 52

® hc_1swap performs 30 million FEs (within the three minute budget)
in median over all instances.

Simulated Annealing as Improved Hill Climber

® | et us consider Simulated Annealing as an improved Hill Climber and
look at the experimental results of this algorithm.

Z | med(total FEs) | sd

abz7 35'648'639 | 28
la24 70'952'285 | 56
swv1b 21'662'286 | 137
ynéd 27'090'611 | 48
median 31'369'575 | 52

® hc_1swap performs 30 million FEs (within the three minute budget)
in median over all instances.

® The median of the standard deviations of the result quality at the end
of the three minutes (over all instances) is about 50.

Simulated Annealing as Improved Hill Climber

® | et us consider Simulated Annealing as an improved Hill Climber and
look at the experimental results of this algorithm.

Z | med(total FEs) | sd

abz7 35'648'639 | 28
la24 70'952'285 | 56
swv1l5b 21'662'286 | 137
ynéd 27'090'611 | 48
median 31'369'575 | 52

® hc_1swap performs 30 million FEs (within the three minute budget)
in median over all instances.

® The median of the standard deviations of the result quality at the end
of the three minutes (over all instances) is about 50.

® \What can we do with these information?

End Result Standard Deviation

® The median standard deviation of the final results of hc_1swap of 50
tells us something about the local optima.

End Result Standard Deviation

® The median standard deviation of the final results of hc_1swap of 50
tells us something about the local optima.

® We know that hc_1swap gets stuck in local optima — it stopped
improving after just one second!

End Result Standard Deviation

1400

abz7
—_rs
— hc_1swap

1200 1300

8

1000

800 900

time in ms
T
10 100 1000 10000 100000

End Result Standard Deviation

la24
—_rs
— hc_1swap

time in ms
T
1 10 100 1000 10000 100000

End Result Standard Deviation

swvi5s
—_—rs
— hc_1swap

time in ms
T
1 10 100 1000 10000 100000

End Result Standard Deviation

yn4
—_—rs
— hc_1swap

g
g
8
L
g
g
f=3
g
o
g
8

time in ms
T T
1 10 100 1000 10000 100000

End Result Standard Deviation

® The median standard deviation of the final results of hc_1swap of 50
tells us something about the local optima.

® We know that hc_1swap gets stuck in local optima — it stopped
improving after just one second!

® The standard measures how spread out the local optima.

End Result Standard Deviation

® The median standard deviation of the final results of hc_1swap of 50
tells us something about the local optima.

® We know that hc_1swap gets stuck in local optima — it stopped
improving after just one second!

® The standard measures how spread out the local optima.

® |t is a gives us a good impression of how different the qualities of the
local optima are that we can expect to see.

End Result Standard Deviation

® The median standard deviation of the final results of hc_1swap of 50
tells us something about the local optima.

® We know that hc_1swap gets stuck in local optima — it stopped
improving after just one second!
® The standard measures how spread out the local optima.

® |t is a gives us a good impression of how different the qualities of the
local optima are that we can expect to see.

® Thus, accepting a solution which is worse by 50 units of makespan,
i.e., with AF ~ 50, should be possible at the beginning of the
optimization process.

End Result Standard Deviation

The median standard deviation of the final results of hc_1swap of 50
tells us something about the local optima.

We know that hc_1swap gets stuck in local optima — it stopped
improving after just one second!

The standard measures how spread out the local optima.

It is a gives us a good impression of how different the qualities of the
local optima are that we can expect to see.

Thus, accepting a solution which is worse by 50 units of makespan,
i.e., with AF ~ 50, should be possible at the beginning of the
optimization process.

Let's say that the probability to accept such a solution should be 10

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for T}

1 fAE<O0
AFE
P=<¢ ¢To ifAE>0AT(T) >0 (5)

0 otherwise (AE >0AT(7)=0)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

1 fAE<O0
AFE
P=q e T fAE>0AT(7)>0 (5)

0 otherwise (AE >0AT(7)=0)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

_AE
P=e TM) (5)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

_AE
P=e TM) (5)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

_AE
Psp =e T (5)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

50

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

50

0.l=¢e Ts (5)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

50

0.l=¢ Ts (5)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

50
In0.1 = —Ts (5)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

50
In0.1 = —i (5)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

50

T, = ———
In0.1

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

50

T, = ———
In0.1

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

Te ~ 21.714724095 (5)

From End Result Standard Deviation to Start Temperature

® The median standard deviation of the end result quality of the hill
climber is 50.

® \We want to accept a solution with AFE = 50 with probability
Psp=0.1at7=1.

® At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

® \We can solve the probability Equation 2 for Tk:

T, ~ 20 (5)

From End Result Standard Deviation to Start Temperature

The median standard deviation of the end result quality of the hill
climber is 50.

We want to accept a solution with AE = 50 with probability
Psp=0.1at7=1.

At 7 = 1, the temperature of any temperature schedule equals the
start temperature T.

We can solve the probability Equation 2 for T}:

T, ~ 20 (5)

A start temperature T of about 20 seems to be a good choice.

End Temperature

® | et us first think about the end temperature T, that should be
reached at the end of the run.

End Temperature

® | et us first think about the end temperature T, that should be
reached at the end of the run.
® While we know that lirJ]rn T(7) =0, we also know that three
T—r+00

minutes of runtime is less than +oo.

End Temperature

® | et us first think about the end temperature T, that should be
reached at the end of the run.
® While we know that lirJ]rn T(7) =0, we also know that three
T—r+00

minutes of runtime is less than +ooc.
® T = (0 will thus not be reached within a finite number 7 of steps and
the actual end temperature 7T, should probably be slightly above 0.

End Temperature

® | et us first think about the end temperature T, that should be
reached at the end of the run.
® While we know that lirJ]rn T(7) =0, we also know that three
T—r+00

minutes of runtime is less than +ooc.
® T = (0 will thus not be reached within a finite number 7 of steps and
the actual end temperature 7T, should probably be slightly above 0.
® | et us remember back our hcr_L_1swap algorithm, i.e., the 1swap
hill climber restarting after L unsuccessful steps.

End Temperature

Let us first think about the end temperature T, that should be

reached at the end of the run.

While we know that lirJ]rn T(7) =0, we also know that three
T—r+00

minutes of runtime is less than +ooc.

T = 0 will thus not be reached within a finite number 7 of steps and
the actual end temperature 7T, should probably be slightly above 0.
Let us remember back our hcr_L_1swap algorithm, i.e., the 1swap
hill climber restarting after L unsuccessful steps.

There, we found L = 2% = 16’384 to be reasonable choice.

End Temperature

Let us first think about the end temperature T, that should be

reached at the end of the run.

While we know that lirJ]rn T(7) =0, we also know that three
T—r+00

minutes of runtime is less than +ooc.

T = 0 will thus not be reached within a finite number 7 of steps and
the actual end temperature 7T, should probably be slightly above 0.
Let us remember back our hcr_L_1swap algorithm, i.e., the 1swap
hill climber restarting after L unsuccessful steps.

There, we found L = 2% = 16’384 to be reasonable choice.

As idea to get a reasonable T¢, we could say that the end

probability P, to accept a solution which is AF = 1 makespan unit
worse than the current solution should be P. =1/L = m at the
end of our Simulated Annealing runs.

End Temperature

Let us first think about the end temperature T, that should be

reached at the end of the run.

While we know that lirJ]rn T(7) =0, we also know that three
T—r+00

minutes of runtime is less than +ooc.

T = 0 will thus not be reached within a finite number 7 of steps and
the actual end temperature 7T, should probably be slightly above 0.
Let us remember back our hcr_L_1swap algorithm, i.e., the 1swap
hill climber restarting after L unsuccessful steps.

There, we found L = 2% = 16’384 to be reasonable choice.

As idea to get a reasonable T¢, we could say that the end
probability P, to accept a solution which is AF = 1 makespan unit
worse than the current solution should be P. =1/L = m at the
end of our Simulated Annealing runs.

Then, the chance to accept a solution marginally worse than the
current one would be about as large as making a complete restart
in hcr_16384_1swap.

End Temperature

Let us first think about the end temperature T, that should be

reached at the end of the run.

While we know that lirJ]rn T(7) =0, we also know that three
T—r+00

minutes of runtime is less than +ooc.

T = 0 will thus not be reached within a finite number 7 of steps and
the actual end temperature 7T, should probably be slightly above 0.
Let us remember back our hcr_L_1swap algorithm, i.e., the 1swap
hill climber restarting after L unsuccessful steps.

There, we found L = 2% = 16’384 to be reasonable choice.

As idea to get a reasonable T¢, we could say that the end
probability P, to accept a solution which is AF = 1 makespan unit
worse than the current solution should be P. =1/L = m at the
end of our Simulated Annealing runs.

Then, the chance to accept a solution marginally worse than the
current one would be about as large as making a complete restart
in hcr_16384_1swap.

This is a bit far fetched.

End Temperature

Let us first think about the end temperature T, that should be

reached at the end of the run.

While we know that lirJ]rn T(7) =0, we also know that three
T—r+00

minutes of runtime is less than +ooc.

T = 0 will thus not be reached within a finite number 7 of steps and
the actual end temperature 7T, should probably be slightly above 0.
Let us remember back our hcr_L_1swap algorithm, i.e., the 1swap
hill climber restarting after L unsuccessful steps.

There, we found L = 2% = 16’384 to be reasonable choice.

As idea to get a reasonable T¢, we could say that the end
probability P, to accept a solution which is AF = 1 makespan unit
worse than the current solution should be P. =1/L = m at the
end of our Simulated Annealing runs.

Then, the chance to accept a solution marginally worse than the
current one would be about as large as making a complete restart
in hcr_16384_1swap.

This is a bit far fetched, but as a rough guess it will do.

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P. = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P. = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

1 ifAE<O0
AE
P=4¢ e T ifAE>0AT(T)>0 (6)

0 otherwise (AE >0AT(7)=0)

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P. = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

1 ifAE<O0
AE
P=q e T fAE>0AT(T)>0 (6)

0 otherwise (AE >0AT(7)=0)

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = ﬁ at the end of our Simulated
Annealing runs.

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = ﬁ at the end of our Simulated
Annealing runs.

AFE

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = ﬁ at the end of our Simulated
Annealing runs.

AFE

End Temperature

® To get an end temperature T, the end probability P, to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = 16,—{384 at the end of our Simulated
Annealing runs.

1 AE

_— = T(T)
16384 ¢ ©)

End Temperature

® To get an end temperature T, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

1 AE

_ = T(7)
16384 ¢ ©)

End Temperature

® To get an end temperature T, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

1 AE

- — e Te
16384 ¢ ©)

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

1 AE

— — p Te
16384 ¢ ©)

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

1 1
- - Te
16384 ©)

End Temperature

® To get an end temperature T¢, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

1 1
- - Te
16384 ©)

End Temperature

® To get an end temperature T, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = ﬁ at the end of our Simulated
Annealing runs.

1 1

m—— = ——
167384 T T ©)

End Temperature

® To get an end temperature T, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P, = 1/L = ﬁ at the end of our Simulated
Annealing runs.

1 1

m—— = ——
167384 T T ©)

End Temperature

® To get an end temperature T¢, the end probability P, to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P. = 1/L = 16,7%84 at the end of our Simulated
Annealing runs.

1
— (6)

Te —_ —
In 157357

End Temperature

® To get an end temperature T¢, the end probability P, to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P. = 1/L = 16,7{384 at the end of our Simulated
Annealing runs.

1
— (6)

Te —_ —
In 157357

End Temperature

® To get an end temperature T, the end probability P, to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P. = 1/L = ﬁ at the end of our Simulated
Annealing runs.

Te ~ 0.103 049 646 (6)

End Temperature

® To get an end temperature T, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P. = 1/L = @ at the end of our Simulated
Annealing runs.

T. ~ 0.1 (6)

End Temperature

® To get an end temperature T, the end probability P. to accept a
solution which is AE = 1 makespan unit worse than the current
solution should be P. = 1/L = ﬁ at the end of our Simulated
Annealing runs.

T. ~ 0.1 (6)

® |t seems that an end temperature T, ~= 0.1 is a reasonable setting
for SA using 1swap.

Epsilon from End Temperature and Iteration

® We now want to find a good setting for the € parameter.

Epsilon from End Temperature and Iteration

® We now want to find a good setting for the € parameter.

® This parameter plays a role in the exponential temperature schedule.

Epsilon from End Temperature and Iteration

® We now want to find a good setting for the € parameter.

® This parameter plays a role in the exponential temperature schedule.

Epsilon from End Temperature and Iteration

® We now want to find a good setting for the € parameter.
® This parameter plays a role in the exponential temperature schedule.

® |t relates the temperature T'(7) at a given iteration 7 to the iteration
index 7.

Epsilon from End Temperature and Iteration

® We now want to find a good setting for the € parameter.

This parameter plays a role in the exponential temperature schedule.

It relates the temperature T'(7) at a given iteration 7 to the iteration
index 7.

In order to compute a rough guess for €, we thus need a value for 7
and one for T'(7) first.

Epsilon from End Temperature and Iteration

® We now want to find a good setting for the € parameter.
® This parameter plays a role in the exponential temperature schedule.

® |t relates the temperature T'(7) at a given iteration 7 to the iteration
index 7.

® In order to compute a rough guess for £, we thus need a value for 7
and one for T'(7) first.

® The start temperature T alone does not help us here, but we now
also have an end temperature Ts.

T(r) =T, (1—¢)" 1 (3)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'000"000.

T(r)=Tsx(1—¢g)™ 1 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'000"000.

T(r)=Tgx(1—¢g)™ 1 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'000"000.

T.=Ty*(1—¢)"! (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'000"000.

0.1=Ts*(1— 5)7_1 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'000"000.

0.1=Ts*(1— 5)7_1 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0.1 = Ts * (1 . 8)30’000’000—1)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0.1 = Ts * (1 . 8)30/000’000—1 @)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0.1 =Ty * (1 —e)?9999%)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0.1 =T} * (1 —)99)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0.1 = 20 % (1 — g)29'9997999 @

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0.1 =20 % (1 — g)2%'9997999 @

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30000"000.

0.1 —(1— 8)29’999/999
20

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0005 — (1 . 5)29/999/999 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0005 — (1 _ 5)29/999/999 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(7) = T.

® Before, we said that our optimization processes run for about
30°000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'0007000.

0.0051/29’999’999 —1—¢ @)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature 7.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = T..

® Before, we said that our optimization processes run for about
30'000°000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30’0007000.

0.999 999823 389 ~ 1—¢

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature 7.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = T..

® Before, we said that our optimization processes run for about
30'000°000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30’0007000.

e~ 1-—0.999999 823 389 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature 7.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = T..

® Before, we said that our optimization processes run for about
30'000°000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30’0007000.

e~ 1-0.999999 823 389 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature 7.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = T..

® Before, we said that our optimization processes run for about
30'000°000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30’0007000.

e ~ 0.000000176 610 569 (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'000"000.

e~ 1.776 x 10~ (7)

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'000"000.

g€ [1%1077,2%1077] ™

Epsilon from End Temperature and Iteration

® \We have a start temperature T and an end temperature T¢.

® What we need it we want to solve Equation 3 for ¢ is the iteration
index 7 at which T'(1) = Te.

® Before, we said that our optimization processes run for about
30'000'000 FEs in median.

® Since T, is the end temperature, the right value for 7 is the time
when we can expect the runs to end: T, = T'(30'000'000)
and 7 = 30'000"000.

e€ [1%1077,2%1077])

® Values of ¢ between 1 and 2 times 10~7 seem reasonable.

Configuration from Previous Knowledge

® We now have reasonable parameter values for our Simulated
Annealing algorithm with Exponential Temperature Schedule.

Configuration from Previous Knowledge

® We now have reasonable parameter values for our Simulated
Annealing algorithm with Exponential Temperature Schedule.

® \We have a rough impression about how far local optima under the
unary operator are apart in terms of objective value (about 50).

Configuration from Previous Knowledge

® We now have reasonable parameter values for our Simulated
Annealing algorithm with Exponential Temperature Schedule.

® \We have a rough impression about how far local optima under the
unary operator are apart in terms of objective value (about 50).

® \We used this to obtain a reasonable start temperature T; = 20.

Configuration from Previous Knowledge

We now have reasonable parameter values for our Simulated
Annealing algorithm with Exponential Temperature Schedule.

We have a rough impression about how far local optima under the
unary operator are apart in terms of objective value (about 50).

We used this to obtain a reasonable start temperature T = 20.

® We can choose a reasonably small end temperature T,.

Configuration from Previous Knowledge

® We now have reasonable parameter values for our Simulated
Annealing algorithm with Exponential Temperature Schedule.

® \We have a rough impression about how far local optima under the
unary operator are apart in terms of objective value (about 50).

® \We used this to obtain a reasonable start temperature T; = 20.

® We can choose a reasonably small end temperature T,.

® We did this by setting T, = 0.1 such that we would accept a solution
which is AE = 1 worse than the current solution about every

L = 16’384 steps (which was the length until the hill climber would
do a restart).

Configuration from Previous Knowledge

® We now have reasonable parameter values for our Simulated
Annealing algorithm with Exponential Temperature Schedule.

® \We have a rough impression about how far local optima under the
unary operator are apart in terms of objective value (about 50).

® We used this to obtain a reasonable start temperature T = 20.

® We can choose a reasonably small end temperature T,.

® We did this by setting T, = 0.1 such that we would accept a solution
which is AE = 1 worse than the current solution about every

L = 16’384 steps (which was the length until the hill climber would
do a restart).

® Finally, by knowing that we can do about 30'000'000 FEs in total, we
can set € € [1 %1077, 2 % 10_7} such that T, would be reached near
the end of the runs.

Behavior of the Configurations

exponential: T(t)=20(1 — 510~ %)""
exponential: T(x)=20(1 — 110" 7)" "
exponential: T(t)=20(1 —1.5*10")
exponential: T(x)=20(1 —2*1077)""

exponential: T(x)=20(1 —8*10 /)"

10 10? 10° 10*

Behavior of the Configurations

P(accept AE=1)=¢ /T

0.6

0.2

18*10°

24*10°

T

3*10’

Behavior of the Configurations

b P(accept AE=3)=¢ 3/T® :?:18:3
0.8
0.6
0.4
0.2
0 -

[[[
1 6*10° 12*10°

[
18*10°

24*10°

T

3*10’

Behavior of the Configurations

b P(accept AE=10)=e " 1%/T® :?:18:3 i
0.6
0.4 —
0.2

0 4

I I I
1 6*10° 12*10°

I
18*10°

24*10°

© 37107

Behavior of the Configurations

0.8

0.6

0.4

0.2

% -8
_EnY_a—50/T(x) =510
P(accept AE=50)=e e=1*10"7
e=1.5*10
e=2*10""
¢=8*10""
I I I I I |
1 6*10° 12*10° 18*10° 24*10° <« 3*10°

Behavior of the Configurations

exponential: T(x)=20(1 —5*10 8"
exponential: T(x)=20(1 — 110" /)"
exponential: T(t)=20(1 — 1.5*10)"
exponential: T(x)=20(1 —2*1077)""

exponential: T(x)=20(1 —8*10™")""

10 10? 10° 10* 10° 10° 10" =

Our very rough calculations gave us parameter settings for T and &
that produce these temperature- and probability curves.

Behavior of the Configurations

exponential: T(x)=20(1 —5*10 8"
exponential: T(x)=20(1 — 110" /)"
exponential: T(t)=20(1 —1.5*10" /)"
exponential: T(x)=20(1 —2*1077)""

exponential: T(x)=20(1 —8*10™")""

10 10? 10° 10* 10° 10° 10" =

Our very rough calculations gave us parameter settings for T and &
that produce these temperature- and probability curves.

® Whether these settings are actually any good must be studied now.

Relation of ¢ and Performance

abz7 / 656
la24 /935
swv15 /2885
yn4 / 929

sa_exp_20_g_1swap

tiot

Relation of ¢ and Performance

abz7 / 656
la24 / 935
swv15 /2885
yn4 / 929

sa_exp_20_g_1swap

tidt

® |ndeed, values of
g€ [1%x1077,2%107"] perform well
for Ty = 20.

Relation of ¢ and Performance

—&— abz7 /656
—— la24 /935
—— swv15/2885
—+— yn4/929

sa_exp_20_g_1swap

® |ndeed, values of
g€ [1%x1077,2%107"] perform well
for Ty = 20.

® Only for 1a24, smaller ¢ are better.

Relation of ¢ and Performance

—~best f/Ib* sa_exp_20_g_1swap —&— abz7/656
—— 1a24/935

—— yn4/929
® |ndeed, values of

€€ [1 *1077,2 % 10_7] perform well
for Ts = 20.

® Only for 1a24, smaller ¢ are better,
because on 1a24, we could do more
than 70 million FEs, whereas on all
other instances, we did less than

36 million.

Experiment and Analysis

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement

T algo best [mean | med [sd [med(t) | med(FEs)
abz7 | hcr_65536_nswap 712 731 732 6 96s | 21'189'358
eac_4_bY,_nswap 672 690 690 | 9 68s | 12'474'571
sa_exp_20_2_1swap 112s | 21'803'600

la24 | hcr_65536_nswap 942 973 974 71s | 31'466'420
eac_4_b5J,_nswap 963 | 961 | 16 30s | 9'175'579
sa_exp_20_2_1swap | 938 8 33s | 12'358'941

swv15 | hcr_65536_nswap 3740 | 3818 | 3826 | 35 89s | 10'783'296
eac_4_bY,_nswap 3102 | 3220 | 3224 | 65 168s | 18'245'534
sa_exp_20_2_1swap 157s | 20'045'507

yné4 hcr_65536_nswap 1068 | 1109 | 1110 | 12 78s | 18'756'636
eac_4_5%_nswap 1000 | 1038 | 1037 | 18 118s | 15'382'072
sa_exp_20_2_1swap 130s | 20'407'559

So what do we get?

eac_4_5%_nswap: median result of 3 min of the EA with clearing and pu =\ =4
with nswap unary operator and 5% sequence recombination

17

o 20 11 |2 W s omiSN DN EEIN 7 G 1o I
17 o |NENGEINTSNc DN s > NINENCE ~WGN @@l s KN

11 s 11 |H FEE B 7EAoEel © 15 2 OSN3 6 7w
10 17100 . N 2 mams R SN 1S o 2 ¢ SN 6 (0]

(& 14 LB 0) 1 [4te 2 8 [ONN2N 6 7 HEM o WM 13
B s WSNiZe [s ENi 7 o INEZEEEE: N =
BEN s 2 [N o IEmEEs 1 B N 7 Ws] s W6

2 N6 TATEEE N 2N e 188 15 [HONNSNEEN © 11 17

11 o WEEE ‘s e © EEED e 2 BN 6
50 AR s HONZ MSH o EZACI nionIEEN 2 (417
O o EEWEEE s 2 anEeN o s OEEN 7 L RE
e 2 17 2 o WM WD s aEEN s o NEOM tolS SN
130 pane ECEN IGHTONON 7 N > NN s MO 1 6 8

7 15M 9 abz7 /690 g 13 6

T T
0 100 200 300 400 500 600

So what do we get?

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, T = 20, and e = 2 - 10~7 and 1swap unary operator

Eomomel EONEIN s oEEN 7 MO =

o 17 ISNNENN o IO 1o IGERNSGHESEN 2 Em Bt s EES

FOm 7 o [ENED 13 GH o ENMEN 2 15

17 71 EEan e 2 ol e sEENs WEES

EANONEE W @ 1 s b BN 2 s EEN o 17NN 1o 6 W
13 SN 26 ¢ 11 FENOREN o 7 WeN s KD R
15 BN > 04 o EEONEEENEN 1 W 7 WD e B 6
¢ N7INEE ¢ EEEENZ 5[0 CHNOEDY sWN o 17 15 11

11 NN © MEeN4DNEE 3B s 5 o O

KN 56 o EEEOEE o ¢ H NONZEECN7 2 Wl

6 NN W27 2 (B s WS o [HONEE 7 15 R
Bz 7 el 6 NN E o IEAEEN o 13 Ol s 15 NSNS

BCRREN 5 BIERD 17 O ST 2 2l 11 (6 B8
9 abz7 /673 13 8 8

. = I .
0 100 200 300 400 500 600

So what do we get?

eac_4_5%_nswap: median result of 3 min of the EA with clearing and pu =\ =4
with nswap unary operator and 5% sequence recombination

o [l 6 11 2
c IEls « e - BE ¢ |
ST IO BN Y
@ o N NN O - - O
: NN O e EEc o
Wooc NN NN @ BN - GEESN B O
W ow @ OB e -
. W o WM o OEOEcEE o 0

1a24 /961 6

So what do we get?

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, T = 20, and e = 2 - 10~7 and 1swap unary operator

So what do we get?

eac_4_5%_nswap: median result of 3 min of the EA with clearing and pu =\ =4
with nswap unary operator and 5% sequence recombination

H 4 38 17 34 32 0 7 46 443QEY 8 23@ 12§19 4825

o EEEEeE - 1D 12 O CEE- T i
A B Bl le (I =20 e e N
. DA OE > @l IKE- el Fsgen - K3

. THSTE-" (R CTE R e - L
s W= =R el Rz 1 K N e

e G o+ 2 = N1 -]
pi=l-Ea N 2 IED=E -~ 1 @E B s
L e I 110 e T2

swv15 / 3224 Yo CIR I
2500 3000

So what do we get?

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, T = 20, and e = 2 - 10~7 and 1swap unary operator

H g 4 23 12 17 EVAK] kP BEY 25 [44 0 |48 k7! 146
A1 =R || = @ | s |- 6 B |
. 2 1+ 0 G W21 o < B4 o IEKT N I+
S s o« KEERENE HE- IEXEZ N

] B2 R M EURE s s[4kl IR Elo2s 43 2ff 41 1 40 EB
2s [JRLo7 2oy Rdls oo -9|321834ﬂl33 |
B D<M - S R O

1 D1 B & WD - A < T

T T
2500 3000

So what do we get?

eac_4_5%_nswap: median result of 3 min of the EA with clearing and pu =\ =4
with nswap unary operator and 5% sequence recombination

8 113
5 oE 13 8 [JORNN B 15 Wel Hi1 2 9 L]
17411 2 WOz 6 179 i §28 WEEE 13 8 4

16-17 EIE72 W47 ISHEFEVNEIENoN2l 8 6 13 s 9 W@ 1
1 8 11 Il N2 4@ 1500 WA 17 1 9 6 9
14 [| am BEZEEN 17 NN 13HENS 9 WZE2KE 15 11 6 8 NN
1 9§ 17 W6 15 8 2 (13 Wzm@ 11 N - BN [0 |
1 68 | 11 2 IS 2 8 MOMNDINEE A 9 W @ 13 17 H
11] 78 1 8 24 WO B EE BN 17 9 11 HEI 6 2
10 1 OB 18 | 15 17 WSl 2 dmm 13HEl 6H
wam 15 HEE7m 9 1713 2 6 W2 N 0 | 5] en 8
8 A 11 170MEBI W2 F4msl 6 W #118] mi13E 9 mem
11 INSENGIN7ZE 2 EOm6 15 17HEN 8 9 NN 2 Eomwan
if] 8 M2iF 15 (MeN 9 EEm4anm 2 17 & 7 19 8 1 6
EEE 9 6 15m6H & 8 11 N W17 13 N 2
8 17 13 78 9 1120 Wl 3 OENEN 9N moN @21
4 15 W 9 HoIN7E 17 E 8 BIENN13 [k} 6 2N []
11 2w 15 8 13 EZEESmE W6 17 a2 9 NeNENEaN
o ——
f2mi61 9 8 BN15HE yn4(_1037 135 176 19 -
T

T T
0 200 400 600 800 1000

So what do we get?

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, T = 20, and e = 2 - 10~7 and 1swap unary operator

1 7 9 2 W IUEEN6ST§ WO ANi2NEsN 15 13 8 NNem7ie 11
1813 DS s Ul 6 W8 WoN 15 EEN 02 2 WM 119 4
17 Il 20 a9 6 17 e 13 128 1 N 14 B
1 17 19 SEICEEEE 4 710 13 EEEM2 6 9 8 1610 11
15 8 HME N1 2 Wm 15 4 Hid =l = e 17 6 N EER 9
14 | | F2Ig13MoN 4 ' WEEN N 17 9 @EI2I0M 6 15 BEEAZE 8 11
13- 9MBEN 17 (13 15 WBEE 2 cZE 8 B 4 Wl 11 WE
1 | 6 12 SN 11 2 el 9 [WiBw 13 8 HE 17 H
1 N 78 oEE f28 4K sEF 9 WmeW MeN 2 17 6 11
10 8 [| [14N KCRENON 18 | 15 MeN13 2 17 W4 mien 7 6
4 13115 9 NZNEIE 2 6 17H21 0 NS 8 e
8 8 17H ISl 11 47 meie W 2 13 IE g m mem o
7 SN 11 2N 2 NEEE 15 6 IEENO 17 Mooz 8 4
6-{ Mi20E! 8 15[9 HOEImeN 2 4 EE 17 e] B B 6 11
[14 18 BECEN L 15 6 HeH 4 130 W 8 11 EE 17 HSENE 2
13 17 6 8 9 118 ORI ENsE 2 4 mmon
15 0 9 4 N W 138 17 am E s He6 211 (O |
| 130 15 11 [I EA6 W2 W H917 9N4nE [7
22 F 9 |WOE mey 1513 vyl | K16 WONEER 17

8 6
T T

yn4 / 985 17 15 9 =

0 200 400 600 800 1000

Progress over Time

What progress does the algorithm make over time?

Progress over Time

What progress does the algorithm make over time?

abz7
— hcr_65536_nswap
— eac_4_5% nswap
— sa_exp_20_2_1swap

time in ms

T
1 10 100 1000 10000 100000

Progress over Time

What progress does the algorithm make over time?

8
81 f abz7

— hcer_65536_nswap
§_ — eac_4_ 5% nswap
- — sa_exp_20_2_1swap
8.
o
.8-_
84
(]

time inms

Progress over Time

What progress does the algorithm make over time?

la24
her_65536_nswap
eac_4_5% nswap
sa_exp_20_2_1swap

time in ms

T
1 10 100 1000 10000 100000

Progress over Time

1100 1200 1300 1400 1500 1600

1000

What progress does the algorithm make over time?

la24
— hcer_65536_nswap
— eac_4_ 5% nswap
— sa_exp_20_2_1swap

time in ms

Progress over Time

What progress does the algorithm make over time?

swvi5
— hcr_65536_nswap
— eac_4_ 5% nswap
— sa_exp_20_2_1swap

time in ms
T
1 10 100 1000 10000 100000

Progress over Time

What progress does the algorithm make over time?

swvi5
— hcer_65536_nswap
— eac_4_ 5% nswap
— sa_exp_20_2_1swap

3000 3500 4000 45[00 5000 5500 6000

time in ms

:

100000 150000

Progress over Time

What progress does the algorithm make over time?

yn4
— hcr_65536_nswap
— eac_4_5% nswap
— sa_exp_20_2_1swap

time in ms
T
1 10 100 1000 10000 100000

Progress over Time

What progress does the algorithm make over time?

o
S
& f yn4
— hcer_65536_nswap
s — eac_4_ 5% nswap
@7 — sa_exp_20_2_1swap
8.
@
o
.‘OI_
o
S
‘§-_ time in ms 1
T

T T
50000 100000 150000

o

Simulated Annealing is better than the other algorithms and keeps
improving longer.

Optimal Solutions for 1a24

e Interestingly, the setups with e =4 - 1077 and ¢ = 8- 10~7, which we
did not choose for our summary, each found one solution for 1a24
with makespan 935.

Optimal Solutions for 1a24

e Interestingly, the setups with e =4 - 1077 and ¢ = 8- 10~7, which we
did not choose for our summary, each found one solution for 1a24
with makespan 935.

® Since we know that the lower bound for the makespan on 1a24 is
also 93522, we know that we found two globally optimal, best
possible solutions!

Optimal Solutions for 1a24

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, Ts; = 20, and e = 2 - 10~7 and 1swap unary operator

Optimal Solutions for 1a24

sa_exp_20_4_1swap: best result of 3 min of Simulated Annealing with
exponential schedule, T = 20, and e =4 - 10~7 and 1swap unary operator

Optimal Solutions for 1a24

sa_exp_20_8_1swap: best result of 3 min of Simulated Annealing with
exponential schedule, T, = 20, and e = 8 - 10~7 and 1swap unary operator

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

® We can also use knowledge to configure the algorithm more quickly.

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

® We can also use knowledge to configure the algorithm more quickly.
For this, we need to know approximately:

® approximately how many algorithm steps we can do within the
computational budget.

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

® We can also use knowledge to configure the algorithm more quickly.
For this, we need to know approximately:

® approximately how many algorithm steps we can do within the
computational budget and

® what “a bit worse” means in terms of the objective function.

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

® We can also use knowledge to configure the algorithm more quickly.
For this, we need to know approximately:
® approximately how many algorithm steps we can do within the
computational budget and
® what “a bit worse” means in terms of the objective function.
® \We then can determine a starting temperature T and a parameter € to
tune the temperature schedule accordingly.

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

® We can also use knowledge to configure the algorithm more quickly.
For this, we need to know approximately:
® approximately how many algorithm steps we can do within the
computational budget and
® what “a bit worse” means in terms of the objective function.
® \We then can determine a starting temperature T and a parameter € to
tune the temperature schedule accordingly.

® Perspective

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

® We can also use knowledge to configure the algorithm more quickly.
For this, we need to know approximately:
® approximately how many algorithm steps we can do within the
computational budget and
® what “a bit worse” means in terms of the objective function.
® \We then can determine a starting temperature T and a parameter € to
tune the temperature schedule accordingly.
® Perspective:

® An Evolutionary Algorithm allows us to pick a behavior in between a
hill climber and a random sampling algorithm by choosing a small or
large population size.

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

® We can also use knowledge to configure the algorithm more quickly.
For this, we need to know approximately:
® approximately how many algorithm steps we can do within the
computational budget and
® what “a bit worse” means in terms of the objective function.
® \We then can determine a starting temperature T and a parameter € to
tune the temperature schedule accordingly.
® Perspective:

® An Evolutionary Algorithm allows us to pick a behavior in between a
hill climber and a random sampling algorithm by choosing a small or
large population size.

® The Simulated Annealing algorithm allows for a smooth transition of a
random search behavior towards a hill climbing behavior over time.

Summary

® Simulated Annealing outperformed all algorithms that we have tested
before.

® We can also use knowledge to configure the algorithm more quickly.
For this, we need to know approximately:
® approximately how many algorithm steps we can do within the
computational budget and
® what “a bit worse” means in terms of the objective function.
® \We then can determine a starting temperature T and a parameter € to
tune the temperature schedule accordingly.

® Perspective:

® An Evolutionary Algorithm allows us to pick a behavior in between a
hill climber and a random sampling algorithm by choosing a small or
large population size.

® The Simulated Annealing algorithm allows for a smooth transition of a
random search behavior towards a hill climbing behavior over time.

® Compared to the hill climber with restarts, it offers a “softer” way to
escape from local optima which sacrifices less solution information.

LI

Thank you

References |

10.

11.

12.

13.

Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO) [A £ L5} ZAT] of
the School of Atrtificial Intelligence and Big Data [A L% fit 5 K 4% 4 %] of Hefei University [& 2% K], Hefei [&/27],
Anhui [##4], China [E], 2018-2020. URL http://thomasweise.github.io/aitoa/.

Thomas Weise. Global Optimization Algorithms — Theory and Application. it-weise.de (self-published), Germany, 2009.
URL http://www.it-weise.de/projects/book.pdf.

Scott Kirkpatrick, C. Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science Magazine, 220
(4598):671-680, May 13, 1983. doi:10.1126/science.220.4598.671. URL
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175.

Vladimir Cerny. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal
of Optimization Theory and Applications, 45(1):41-51, January 1985. doi:10.1007/BF00940812. URL
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesman.pdf.

Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. Monte carlo techniques in code optimization. ACM SIGMICRO
Newsletter, 13(4):143-148, December 1982. Proceedings of the 15th Annual Workshop on Microprogramming

(MICRO 15), October 5-7, 1982, Palo Alto, CA, USA, New York, NY, USA: ACM.

Martin Pincus. Letter to the editor — a monte carlo method for the approximate solution of certain types of constrained
optimization problems. Operations Research, 18(6):1225-1228, November—December 1970. doi:10.1287 /opre.18.6.1225.
James C. Spall. Introduction to Stochastic Search and Optimization, volume 6 of Estimation, Simulation, and Control —
Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley Interscience, Chichester, West Sussex, UK,
April 2003. ISBN 0-471-33052-3. URL http://www.jhuapl.edu/ISS0/.

John Henry Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor, MI, USA, 1975. ISBN 0-472-08460-7.
Thomas Back, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of Evolutionary Computation.
Computational Intelligence Library. Oxford University Press, Inc., New York, NY, USA, 1997. ISBN 0-7503-0392-1.
Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Springer-Verlag, Berlin/Heidelberg, 2nd
edition, 2004. ISBN 3-540-22494-7.

David Edward Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989. ISBN 0-201-15767-5.

David Lee Applegate and William John Cook. A computational study of the job-shop scheduling problem. ORSA Journal on
Computing, 3(2):149-156, May 1991. doi:10.1287/ijoc.3.2.149. the JSSP instances used were generated in Bonn in 1986.
Jelke Jeroen van Hoorn. Job shop instances and solutions, 2015. URL http://jobshop.jjvh.nl.

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf
https://doi.org/10.1126/science.220.4598.671
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175
https://doi.org/10.1007/BF00940812
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesman.pdf
https://doi.org/10.1287/opre.18.6.1225
http://www.jhuapl.edu/ISSO/
https://doi.org/10.1287/ijoc.3.2.149
http://jobshop.jjvh.nl

	Outline
	Introduction
	Local Search and Hill Climbing
	Idea

	Algorithm Concept: Probabilistic Acceptance of Worse Solutions
	Simulated Annealing
	Acceptance Probability
	Acceptance Probability

	Ingredient: Temperature Schedule
	Temperature Schedule
	Conditions for Temperature Schedule
	Base Class for Implementing Temperature Schedules
	Exponential Temperature Schedule
	Exponential Temperature Schedule
	Logarithmic Temperature Schedule
	Logarithmic Temperature Schedule
	The Meaning of the Temperature Schedule

	Algorithm Implementation
	Simulated Annealing Algorithm
	Implementing Simulated Annealing

	Configuring the Algorithm
	Configuring the Algorithm
	Simulated Annealing as Improved Hill Climber
	End Result Standard Deviation
	From End Result Standard Deviation to Start Temperature
	End Temperature
	End Temperature
	Epsilon from End Temperature and Iteration
	Epsilon from End Temperature and Iteration
	Configuration from Previous Knowledge
	Behavior of the Configurations
	Relation of Epsilon and Performance

	Experiment and Analysis
	So what do we get?
	Progress over Time
	Optimal Solutions for la24
	Summary

	Presentation End
	References

