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• A pure hill climbing algorithm is likely to get stuck at local optima,
which may vary in quality.

• We also found that we can utilize the variance of the result quality by
restarting the optimization process when it could not improve any
more.

• But such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).

• Alternatively, we also tried to use operators with larger
neighborhoods, but there will either still be local optima (if the
neighborhood is not large enough) or there are points where it is hard
to escape from (if the neighborhood is very large but non-uniformly
sampled, as our nswap operator does) or the search will get very slow
(if the neighborhood is very large and uniformly sampled).

• So, for now, let’s stick with the 1swap operator.
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• A schedule which is a local optimum (under 1swap) probably is at
least somewhat similar to what the globally optimal schedule would
look like.

• It must, obviously, also be somewhat different (otherwise it would be
the global optimum already).

• This difference is shaped such that it cannot be conquered by the
1swap unary search operator that we use.

• If we do a restart, we also dispose of the similarities to the global
optimum that we have already discovered.

• Then, we will subsequently spend time to re-discover them in the
hope that this will happen in a way that allows us to eventually reach
the global optimum itself (or at least a better local optimum).

• Can there be a less-costly way?
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• How can we implement these concepts?

• Let’s assume that the “current” point in the search space known by
our local search is x ∈ X and that we have derived a new
point x′ ∈ X from it using the unary search operator.

• ∆E then be the difference between the objective value of x′ and x:

∆E = f(γ(x′))− f(γ(x)) (1)

• ∆E < 0 means that the new x′ is better than x since
f(γ(x′)) < f(γ(x)).

• ∆E > 0 means that the new solution is worse.

• ∆E = 0 means that both have the same quality.



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







(2)



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1

(2)



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

(2)



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T (2)



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0 (2)



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0

(2)



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0 otherwise (∆E > 0 ∧ T = 0)

(2)



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0 otherwise (∆E > 0 ∧ T = 0)

(2)

• If the new point x′ is better than the current point x, i.e., ∆E < 0,
then we will definitely accept it.



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0 otherwise (∆E > 0 ∧ T = 0)

(2)

• If the new point x′ is better (or, at least, not worse) than the current
point x, i.e., ∆E≤ 0, then we will definitely accept it.



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0 otherwise (∆E > 0 ∧ T = 0)

(2)

• If the new point x′ is better (or, at least, not worse) than the current
point x, i.e., ∆E≤ 0, then we will definitely accept it.

• If the new point x′ is worse (∆E > 0), then the acceptance
probability



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0 otherwise (∆E > 0 ∧ T = 0)

(2)

• If the new point x′ is better (or, at least, not worse) than the current
point x, i.e., ∆E≤ 0, then we will definitely accept it.

• If the new point x′ is worse (∆E > 0), then the acceptance
probability

1. gets smaller the larger ∆E is.



Acceptance Probability

∆E = f(γ(x′))− f(γ(x)) (1)

• The probability P to accept the new solution x′ (and discard the
current one x) is:

P =







1 if ∆E≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0 otherwise (∆E > 0 ∧ T = 0)

(2)

• If the new point x′ is better (or, at least, not worse) than the current
point x, i.e., ∆E≤ 0, then we will definitely accept it.

• If the new point x′ is worse (∆E > 0), then the acceptance
probability

1. gets smaller the larger ∆E is and
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rising number τ of performed objective function evaluations.

• The optimization process is initially “hot” and T (τ) is high.

• Then, even significantly worse solutions may be accepted.

• Over time, the process “cools” down and T (τ) decreases.

• Slowly, fewer and fewer worse solutions are accepted and more likely
such which are only a bit worse.

• At temperature T (τ) = 0, the algorithm only accepts better solutions.

• T is a monotonously decreasing function T (τ): the “temperature
schedule.”
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Conditions for Temperature Schedule

P =











1 if ∆E ≤ 0

e
−

∆E

T (τ) if ∆E > 0 ∧ T (τ) > 0
0 otherwise (∆E > 0 ∧ T (τ) = 0)

(2)

• The temperature T (τ) is defined to decrease and approaches zero
with a rising number τ of performed objective function evaluations.

• It holds that lim
τ→+∞

T (τ) = 0.

• It begins with an start temperature Ts at τ = 1.

• Apart from this, we can define T (τ) in any way we want.



Base Class for Implementing Temperature Schedules

package aitoa.algorithms;

public abstract class TemperatureSchedule {

// unnecessary things omitted here

public final double startTemperature; // ≡ Ts

public abstract double temperature(long tau); // ≡ T (τ)

}
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• In an exponential temperature schedule, the temperature decreases
exponentially with time (as the name implies).

• Besides the start temperature Ts, it has a parameter ε ∈ (0, 1) which
tunes the speed of the temperature decrease.

T (τ) = Ts ∗ (1− ε)τ−1
(3)

• Higher values of ε lead to a faster temperature decline.



Exponential Temperature Schedule

package aitoa.algorithms;

public class Exponential extends TemperatureSchedule {

// unnecessary things omitted here

public final double epsilon; // ≡ ε

public double temperature(long tau) {

// T (τ) = Ts ∗ (1− ε)τ−1

return (this.startTemperature * Math.pow ((1d -

this.epsilon), (tau - 1L)));

}

}



Logarithmic Temperature Schedule

• The logarithmic temperature schedule will prevent the temperature
from becoming very small for a longer time.
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Logarithmic Temperature Schedule

• The logarithmic temperature schedule will prevent the temperature
from becoming very small for a longer time.

• Compared to the exponential schedule, it will longer retain a higher
probability to accept worse solutions.

• It also has the parameters ε ∈ (0,∞) and Ts.

T (τ) =
Ts

ln (ε(τ − 1) + e)
(4)

• Larger values of ε again lead to a faster temperature decline.



Logarithmic Temperature Schedule

package aitoa.algorithms;

public class Logarithmic extends TemperatureSchedule {

// unnecessary things omitted here

public final double epsilon; // ≡ ε

public double temperature(long tau) {

// T (τ) = Ts

ln (ε(τ−1)+e)

return (this.startTemperature / Math.log ((( tau - 1L)

* this.epsilon) + Math.E));

}

}
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• Why do we have such a strange thing like a temperature schedule?
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The Meaning of the Temperature Schedule

• Why do we have such a strange thing like a temperature schedule?

• Let’s think back again about Evolutionary Algorithms2 8–11.

• By using the population size parameters µ and λ, we can tune the
behavior of an EA between random sampling (µ → ∞ or λ → ∞)
and hill climbing (µ = λ = 1).

• This allowed us to tune between exploration and exploitation, to find
a “sweet spot” where the algorithm performs best.

• The temperature schedule in SA allows us to do the same but
dynamically!

• If T is high at the beginning ⇒ many bad solutions are accepted ⇒

random sampling.

• At the end, T ≈ 0 ⇒ no worse solutions are accepted anymore ⇒ hill
climbing.



Algorithm Implementation
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Simulated Annealing Algorithm

• Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

• Simple Concept:

1. Start with τ = 1.
2. Create random initial point x, which also becomes the first “current

point” x and the overall best point xb.
3. Create a modified copy x′ of the current point x.
4. Set τ = τ + 1.
5. If the new point x′ is better than xb, set xb = x′.
6. If the new point x′ is better than x, set x = x′.
7. If it is worse (∆E > 0): accept it as current solution with

probability P (∆E, τ) (which gets smaller over time and also the
smaller the worse the new solution is) or otherwise reject it.

8. Go back to 3. (until the time is up)
4. Return the best ever-encountered point xb.
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} // otherwise fNew > fCur and not accepted

//

} // process will have automatically remembered the best candidate solution

}



Implementing Simulated Annealing

package aitoa.algorithms;

public class SimulatedAnnealing <X, Y> extends Metaheuristic1 <X, Y> {

// unnecessary things omitted

public void solve(IBlackBoxProcess <X, Y> process) {

X xNew = process.getSearchSpace ().create ();

X xCur = process.getSearchSpace ().create ();

Random random = process.getRandom ();// get random number generator

// create starting point: a random point in the search space

this.nullary.apply(xCur , random); // put random point in xCur

double fCur = process.evaluate(xCur); // map xCur to Y and evaluate objective f
long tau = 1L; // initialize step counter to 1

do { // repeat until budget exhausted

this.unary.apply(xCur , xNew , random); // create modified copy xNew of xCur

++tau; // increase step counter

double fNew = process.evaluate(xNew); // map xNew from X to Y and evaluate result

if ((fNew <= fCur) || // accept if new solution is better solution OR

(random.nextDouble () < // probability is exp (−∆E/T ) using −∆E = −(fNew − fCur)
Math.exp((fCur - fNew) / this.schedule.temperature(tau)))) {

fCur = fNew; // update current objective value

process.getSearchSpace ().copy(xNew , xCur); // copy xNew to xCur

} // otherwise fNew > fCur and not accepted

} while (! process.shouldTerminate ()); // until time is up

} // process will have automatically remembered the best candidate solution

}
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Configuring the Algorithm

• Our algorithm has four parameters:

1. the start temperature Ts,
2. the parameter ε,
3. the type of temperature schedule to use (here, logarithmic or

exponential), and
4. the unary search operator (in our case, we could use 1swap or nswap).

• We will only use 1swap as choice for the unary operator and focus on
the exponential temperature schedule.

• This leaves Ts and ε to be configured.

• Interestingly, we may be able to very roughly compute some
reasonable values for them!
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Simulated Annealing as Improved Hill Climber

• Let us consider Simulated Annealing as an improved Hill Climber and
look at the experimental results of this algorithm.

I med(total FEs) sd

abz7 35’648’639 28
la24 70’952’285 56

swv15 21’662’286 137
yn4 27’090’511 48

median 31’369’575 52

• hc_1swap performs 30 million FEs (within the three minute budget)
in median over all instances.

• The median of the standard deviations of the result quality at the end
of the three minutes (over all instances) is about 50.

• What can we do with these information?
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• The median standard deviation of the final results of hc_1swap of 50
tells us something about the local optima.

• We know that hc_1swap gets stuck in local optima – it stopped
improving after just one second!

• The standard measures how spread out the local optima.

• It is a gives us a good impression of how different the qualities of the
local optima are that we can expect to see.

• Thus, accepting a solution which is worse by 50 units of makespan,
i.e., with ∆E ≈ 50, should be possible at the beginning of the
optimization process.

• Let’s say that the probability to accept such a solution should be 10
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From End Result Standard Deviation to Start Temperature

• The median standard deviation of the end result quality of the hill
climber is 50.

• We want to accept a solution with ∆E = 50 with probability
P50 = 0.1 at τ = 1.

• At τ = 1, the temperature of any temperature schedule equals the
start temperature Ts.

• We can solve the probability Equation 2 for Ts:

Ts ≈ 20 (5)

• A start temperature Ts of about 20 seems to be a good choice.
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• Let us first think about the end temperature Te that should be
reached at the end of the run.

• While we know that lim
τ→+∞

T (τ) = 0, we also know that three

minutes of runtime is less than +∞.
• T = 0 will thus not be reached within a finite number τ of steps and

the actual end temperature Te should probably be slightly above 0.
• Let us remember back our hcr_L_1swap algorithm, i.e., the 1swap
hill climber restarting after L unsuccessful steps.

• There, we found L = 214 = 16′384 to be reasonable choice.
• As idea to get a reasonable Te, we could say that the end
probability Pe to accept a solution which is ∆E = 1 makespan unit
worse than the current solution should be Pe = 1/L = 1

16′384
at the

end of our Simulated Annealing runs.
• Then, the chance to accept a solution marginally worse than the
current one would be about as large as making a complete restart
in hcr_16384_1swap.

• This is a bit far fetched, but as a rough guess it will do.
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End Temperature

• To get an end temperature Te, the end probability Pe to accept a
solution which is ∆E = 1 makespan unit worse than the current
solution should be Pe = 1/L = 1

16′384
at the end of our Simulated

Annealing runs.

Te ≈ 0.1 (6)

• It seems that an end temperature Te ≈= 0.1 is a reasonable setting
for SA using 1swap.
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Epsilon from End Temperature and Iteration

• We now want to find a good setting for the ε parameter.

• This parameter plays a role in the exponential temperature schedule.

• It relates the temperature T (τ) at a given iteration τ to the iteration
index τ .

• In order to compute a rough guess for ε, we thus need a value for τ
and one for T (τ) first.

• The start temperature Ts alone does not help us here, but we now
also have an end temperature Te.

T (τ) = Ts ∗ (1− ε)τ−1
(3)
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Epsilon from End Temperature and Iteration

• We have a start temperature Ts and an end temperature Te.

• What we need it we want to solve Equation 3 for ε is the iteration
index τ at which T (τ) = Te.

• Before, we said that our optimization processes run for about
30’000’000 FEs in median.

• Since Te is the end temperature, the right value for τ is the time
when we can expect the runs to end: Te = T (30′000′000)
and τ = 30′000′000.

0.0051/29
′999′999 = 1− ε (7)
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Epsilon from End Temperature and Iteration

• We have a start temperature Ts and an end temperature Te.

• What we need it we want to solve Equation 3 for ε is the iteration
index τ at which T (τ) = Te.

• Before, we said that our optimization processes run for about
30’000’000 FEs in median.

• Since Te is the end temperature, the right value for τ is the time
when we can expect the runs to end: Te = T (30′000′000)
and τ = 30′000′000.

ε∈
[

1 ∗ 10−7, 2 ∗ 10−7
]

(7)

• Values of ε between 1 and 2 times 10−7 seem reasonable.
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Configuration from Previous Knowledge

• We now have reasonable parameter values for our Simulated
Annealing algorithm with Exponential Temperature Schedule.

• We have a rough impression about how far local optima under the
unary operator are apart in terms of objective value (about 50).

• We used this to obtain a reasonable start temperature Ts = 20.

• We can choose a reasonably small end temperature Te.

• We did this by setting Te = 0.1 such that we would accept a solution
which is ∆E = 1 worse than the current solution about every
L = 16′384 steps (which was the length until the hill climber would
do a restart).

• Finally, by knowing that we can do about 30’000’000 FEs in total, we
can set ε ∈

[

1 ∗ 10−7, 2 ∗ 10−7
]

such that Te would be reached near
the end of the runs.



Behavior of the Configurations

1 10 10
2

10
3

10
4

10
5

10
6

10
7

0

4

8

12

16

20

τ

T(τ)

exponential: T(τ)=20(1 −5*10
−8)

τ−1

exponential: T(τ)=20(1 −1*10
−7)

τ−1

exponential: T(τ)=20(1 −1.5*10
−7)

τ−1

exponential: T(τ)=20(1 −2*10
−7)

τ−1

exponential: T(τ)=20(1 −4*10
−7)

τ−1

exponential: T(τ)=20(1 −8*10
−7)

τ−1



Behavior of the Configurations

1 6*10
6

12*10
6

18*10
6

24*10
6

3*10
7

0

0.2

0.4

0.6

0.8

1

ε=5*10
−8  

ε=1*10
−7  

ε=1.5*10
−7

ε=2*10
−7  

ε=4*10
−7  

ε=8*10
−7  

τ

P(accept ΔE=1)=e
−1 T(τ)



Behavior of the Configurations

1 6*10
6

12*10
6

18*10
6

24*10
6

3*10
7

0

0.2

0.4

0.6

0.8

1 ε=5*10
−8  

ε=1*10
−7  

ε=1.5*10
−7

ε=2*10
−7  

ε=4*10
−7  

ε=8*10
−7  

τ

P(accept ΔE=3)=e
−3 T(τ)



Behavior of the Configurations

1 6*10
6

12*10
6

18*10
6

24*10
6

3*10
7

0

0.2

0.4

0.6

0.8

1 ε=5*10
−8  

ε=1*10
−7  

ε=1.5*10
−7

ε=2*10
−7  

ε=4*10
−7  

ε=8*10
−7  

τ

P(accept ΔE=10)=e
−10 T(τ)



Behavior of the Configurations

1 6*10
6

12*10
6

18*10
6

24*10
6

3*10
7

0

0.2

0.4

0.6

0.8

1 ε=5*10
−8  

ε=1*10
−7  

ε=1.5*10
−7

ε=2*10
−7  

ε=4*10
−7  

ε=8*10
−7  

τ

P(accept ΔE=50)=e
−50 T(τ)



Behavior of the Configurations

• Our very rough calculations gave us parameter settings for Ts and ε
that produce these temperature- and probability curves.
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Behavior of the Configurations

• Our very rough calculations gave us parameter settings for Ts and ε
that produce these temperature- and probability curves.

• Whether these settings are actually any good must be studied now.
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Relation of ε and Performance

• Indeed, values of
ε ∈

[

1 ∗ 10−7, 2 ∗ 10−7
]

perform well
for Ts = 20.

• Only for la24, smaller ε are better,
because on la24, we could do more
than 70 million FEs, whereas on all
other instances, we did less than
36 million.
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So what do we get?

• I execute the program 101 times for each of the instances abz7,
la24, swv15, and yn4

makespan last improvement

I algo best mean med sd med(t) med(FEs)

abz7 hcr_65536_nswap 712 731 732 6 96s 21’189’358
eac_4_5%_nswap 672 690 690 9 68s 12’474’571
sa_exp_20_2_1swap 663 673 673 5 112s 21’803’600

la24 hcr_65536_nswap 942 973 974 8 71s 31’466’420
eac_4_5%_nswap 935 963 961 16 30s 9’175’579
sa_exp_20_2_1swap 938 949 946 8 33s 12’358’941

swv15 hcr_65536_nswap 3740 3818 3826 35 89s 10’783’296
eac_4_5%_nswap 3102 3220 3224 65 168s 18’245’534
sa_exp_20_2_1swap 2936 2994 2994 28 157s 20’045’507

yn4 hcr_65536_nswap 1068 1109 1110 12 78s 18’756’636
eac_4_5%_nswap 1000 1038 1037 18 118s 15’382’072
sa_exp_20_2_1swap 973 985 985 5 130s 20’407’559



So what do we get?

eac_4_5%_nswap: median result of 3 min of the EA with clearing and µ = λ = 4
with nswap unary operator and 5% sequence recombination
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So what do we get?

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, Ts = 20, and ε = 2 · 10−7 and 1swap unary operator
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So what do we get?

eac_4_5%_nswap: median result of 3 min of the EA with clearing and µ = λ = 4
with nswap unary operator and 5% sequence recombination

0 200 400 600 800

0

1

2

3

4

5

6

7

8

9

11 0 5 8 1 2 14 3 6 10 12 4 7 13

3 2 12 6 1 4 9 11 14 5 713 10 8 0

14 13 6 11 4 2 12 10 7 9 8 0 1 3 5

11 2 1 12 9 10 7 14 8 4 6 3 5 0

8 3 5 0 10 1 7 14 9 11 12 4

14 13 2 3 8 7 10 5 1 6 9 12 0

1 6 0 3 13 12 2 14 10 9 4 11 8 5 7

3 4 10 7 8 6 12 13 5 9 2 1

7 5 1 6 14 4 11 9 12 13 2 0 3 8

0 12 9 14 8 6 11 5 7 10 1 2 3 4 13

la24 / 961



So what do we get?

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
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So what do we get?

eac_4_5%_nswap: median result of 3 min of the EA with clearing and µ = λ = 4
with nswap unary operator and 5% sequence recombination
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So what do we get?

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, Ts = 20, and ε = 2 · 10−7 and 1swap unary operator
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So what do we get?

eac_4_5%_nswap: median result of 3 min of the EA with clearing and µ = λ = 4
with nswap unary operator and 5% sequence recombination
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So what do we get?

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, Ts = 20, and ε = 2 · 10−7 and 1swap unary operator
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Progress over Time

What progress does the algorithm make over time?

Simulated Annealing is better than the other algorithms and keeps
improving longer.
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• Interestingly, the setups with ε = 4 · 10−7 and ε = 8 · 10−7, which we
did not choose for our summary, each found one solution for la24
with makespan 935.

• Since we know that the lower bound for the makespan on la24 is
also 93512 13, we know that we found two globally optimal, best
possible solutions!



Optimal Solutions for la24

sa_exp_20_2_1swap: median result of 3 min of Simulated Annealing with
exponential schedule, Ts = 20, and ε = 2 · 10−7 and 1swap unary operator
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Optimal Solutions for la24

sa_exp_20_4_1swap: best result of 3 min of Simulated Annealing with
exponential schedule, Ts = 20, and ε = 4 · 10−7 and 1swap unary operator
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Optimal Solutions for la24

sa_exp_20_8_1swap: best result of 3 min of Simulated Annealing with
exponential schedule, Ts = 20, and ε = 8 · 10−7 and 1swap unary operator
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Summary

• Simulated Annealing outperformed all algorithms that we have tested
before.

• We can also use knowledge to configure the algorithm more quickly.
For this, we need to know approximately:

• approximately how many algorithm steps we can do within the
computational budget and

• what “a bit worse” means in terms of the objective function.
• We then can determine a starting temperature Ts and a parameter ǫ to

tune the temperature schedule accordingly.

• Perspective:
• An Evolutionary Algorithm allows us to pick a behavior in between a

hill climber and a random sampling algorithm by choosing a small or
large population size.

• The Simulated Annealing algorithm allows for a smooth transition of a
random search behavior towards a hill climbing behavior over time.

• Compared to the hill climber with restarts, it offers a “softer” way to
escape from local optima which sacrifices less solution information.



谢谢
Thank you
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