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Introduction

We will now learn our very first optimization algorithm.

We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

How does this help us to search?

Well, we can first try the trivial thing: create a random solution!

We can therefore

1.

put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point zy € X), then

. randomly shuffle the values like a deck of cards (so we get a random

valid point z € X), and

. apply the representation mapping ~ to get a Gantt chart y = vy(z),

yeY.
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Interface for a Function to Sample 1 Point from X

® \We already have the interface that we need to implement to do such
a thing: the | INullarySearchOperator

package aitoa.structure;
public interface INullarySearchOperator<X> {

void apply(X dest, Random random) ;
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Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

}

for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, O, dest, i, this.n);

}

for (int i = dest.length; i > 1;) {
int j random.nextInt (i--);
int t array [i];
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Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

}
for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, O, dest, i, this.n);
}
for (int i = dest.length; i > 1;) {
int j = random.nextInt (i--);
int t = array[i];
array[i] = array[j];

array[j] = t;
}
}

34
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Implementation: Single Random Sampling Algorithm

package aitoa.algorithms;

public class SingleRandomSample<X, Y> extends
Metaheuristic0<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {
X x = process.getSearchSpace().create();

this.nullary.apply(x, process.getRandom());
process.evaluate (x);

}
}
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So what do we get?

Median solution for swv15
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So what do we get?

Median solution for yn4
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So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

® The results are not good, there is lots of white space = wasted time.
That was expected: Our solutions are random.

® Notice 1. We can create and test the schedules very very fast (much
faster than 3min).

® Notice 2. There is a high variance in the results due to randomness.

makespan last improvement
z best | mean | med | sd | med(t) | med(FEs)
abz7 1'131 | 1'334 | 1’326 | 106 0Os 1
la24 | 1'487 | 1'842 | 1'814 | 165 Os 1
swv15 | 5'935 | 6'600 | 6'563 | 346 0Os 1
yn4 1'754 | 2’036 | 2'039 | 125 Os 1
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Exploit Variance: Random Sampling

If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

...then why don’t we keep generating schedules until the 3 minutes
are up and keep the best one?

New idea: The Random sampling algorithm (also called random
search) repeats creating random solutions until the computational
budget is exhausted®.

It works as follows:

1. create new random candidate solution y (via random sampling from
the search space)

2. remember best solution ever encountered

3. repeat until 3 min are exhausted
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Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> extends MetaheuristicO<X,
Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X x = process.getSearchSpace().create();
Random random = process.getRandom() ;
do {

this.nullary.apply(x, random);

} while (!process.shouldTerminate());

}




Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> extends MetaheuristicO<X,
Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X x = process.getSearchSpace().create();
Random random = process.getRandom() ;
do {

this.nullary.apply(x, random);
process.evaluate (x);
} while (!process.shouldTerminate());

}
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So what do we get?

® | execute the program 101 times for each of the instances abz7,

la24, swvlb, and yn4

makespan last improvement

A algo | best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 1rs | 1131 | 1334 | 1326 | 106 Os 1
rs 85s | 6'512'505

la24 irs | 1487 | 1842 | 1814 | 165 Os 1
rs 82s | 15'902'911

swvlb | 1rs | 5935 | 6600 | 6563 | 346 Os 1
rs 87s | 5'559'124

yn4 1rs | 1754 | 2036 | 2039 | 125 Os 1
rs 76s | 4'814'914
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So what do we get?

rs: median result of 3 min of random sampling algorithm
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So what do we get?

1rs: median result of single random sample algorithm
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So what do we get?

rs: median result of 3 min of random sampling algorithm
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Progress over Time

What progress does the algorithm make over time?
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® Law of Diminishing Returns®: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and

smaller.

® This holds for runtime, but also for improvements of algorithms.
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® |n this lesson, we have learned three things
1. a first algorithm for solving optimization: random sampling.
2. a tool to improve algorithm performance: restarts.
3. an inherent nature of optimization processes: much progress early,
fewer and smaller improvements later.
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Summary: Random Sampling

® With random sampling, we now have a basic algorithm that provides
some solutions.

® Butitis... well ... quite stupid.
® |t just makes random guesses.

® |t does not make any use of the information it has seen during the
search.

® Random Sampling has two very important uses, though:

1. If an optimization problem has no structure whatsoever, if knowledge
of existing good solutions is not helpful to find new good solutions in
any way, then we cannot really do better than Random Sampling!

2. In most relevant optimization problems, however, such information is
helpful. An optimization algorithm is only reasonable if it is
significantly better than Random Sampling.
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Summary: Restarts

® We started with an algorithm that created a single random solution.
Let's call this algorithm A.

® \We then wrapped a loop around A, we restarted A again and again
until the time was up (and of course, remembered the best solution).

® This is actually basic strategy of “algorithm B = a restarted
algorithm A", a tool that we have available from now on!
® |t can be applied in many scenarios, but has the following limitations:

1. It only works if there is a reasonably-large variance, i.e., if different runs
of A produce different results.

2. It only works if A produces good-enough results early-enough, so that
we have enough time in our budget to restart A.
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Thank you
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