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Introduction

• There are many optimization algorithms

• For solving an optimization problem, we want to use the algorithm
most suitable for it.

• What does this mean?
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Performance Indicators

• Two key parameter3–6:

1. Solution quality reached after a certain runtime
2. Runtime to reach a certain solution quality

• Measure data samples A containing the results from multiple runs
and estimate key parameters.
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Absolute Runtime

Measure the (absolute) consumed runtime of the algorithm in ms

• Advantages:
• Results in many works reported in this format
• A quantity that makes physical sense
• Includes all “hidden complexities” of algorithm

• Disadvantages:
• Strongly machine dependent
• Granularity of about 10 ms: many things seem to happen at the same

time
• Can be biased by “outside effects,” e.g., OS, scheduling, other

processes, I/O, swapping, . . .
• Inherently incomparable

• Hardware, software, OS, etc. all have nothing to do with the
optimization algorithm itself and are relevant only in a specific
application. . .

• . . . so for research they may be less interesting, while for a specific
application they do matter.
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Function Evaluations: FEs

Measure the number of fully constructed and tested candidate solutions

• Advantages:
• Results in many works reported in this format (or FEss can be deduced)
• Machine-independent measure
• Cannot be influenced by “outside effects”
• In many optimization problems, computing the objective value is the

most time consuming task

• Disadvantages:
• No clear relationship to real runtime
• Does not contain “hidden complexities” of algorithm
• 1 FE: very different costs in different situations!

• Relevant for comparing algorithms, but not so much for the practical
application
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• Common measure of solution quality: Objective function value of best
solution discovered.

• Rewrite the two key parameters3 5:

1. Best objective function value reached after a certain number of FEs
2. Number FEs needed to reach a certain objective function value
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Key Parameters

• Which one is the “better”performance indicator?

1. Best objective function value reached after a certain number of FEs
2. Number FEs needed to reach a certain objective function value

f

time in ms

vertical cut:

solution quality achieved

within given time

horizontal cut:

time required to achieve given solution quality



Key Parameters

• Which one is the “better”performance indicator?

1. Best objective function value reached after a certain number of FEs
2. Number FEs needed to reach a certain objective function value

• This question actually does not really need an answer. . .
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Which Indicator is better?

• Number FEs needed to reach a certain objective function value

• Preferred by, e.g., the BBOB/COCO benchmark suite3:
• Measures a time needed to reach a target function value ⇒

‘̀Algorithm A is two/ten/hundred times faster than Algorithm B in
solving this problem.”

• Benchmark Perspective: No interpretable meaning to the fact that
Algorithm A reaches a function value that is two/ten/hundred times
smaller than the one reached by Algorithm B.
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Which Indicator is better?

• Best objective function value reached after a certain number of FEs

• Preferred by many benchmark suites such as7.

• Practice Perspective: Best results achievable with given time budget
wins.

• This perspective maybe less suitable for benchmarking, but surely
true in practice.

• This is the scenario in our JSSP example, too.
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Key Parameters

• No official consensus on which view is “better.”

• This also strongly depends on the situation.

• Best approach: Evaluate algorithm according to both methods.5 6 8
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Determining Target Values

• How to determine the right maximum FEs or target function values?

1. From the constraints of a practical application
2. From studies in literature regarding similar or the same problem.
3. From experience.
4. From prior, small-scale experiments.
5. Based on known lower bounds
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Randomized Algorithms

• Special situation: Randomized Algorithms

• Performance values cannot be given absolute!

• 1 run = 1 application of an optimization algorithm to a problem, runs
are independent from all prior runs.

• Results can be different for each run!

• Executing a randomized algorithm one time does not give reliable
information.

• Statistical evaluation over a set of runs necessary.



Important Distinction

• Crucial Difference: distribution and sample



Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.



Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process



Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process

• Statistical parameters of the distribution can be estimated from a
sample



Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process

• Statistical parameters of the distribution can be estimated from a
sample

• Example: Dice Throw

based on http://www.freestockphotos.biz/stockphoto/16223



Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process

• Statistical parameters of the distribution can be estimated from a
sample

• Example: Dice Throw

• How likely is it to roll a 1, 2, 3, 4, 5, or 6?

based on http://www.freestockphotos.biz/stockphoto/16223
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# throws number f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
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Important Distinction

# throws number f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000

based on http://www.freestockphotos.biz/stockphoto/16223



Important Distinction

# throws number f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000

based on http://www.freestockphotos.biz/stockphoto/16223



Important Distinction

# throws number f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000

based on http://www.freestockphotos.biz/stockphoto/16223



Important Distinction

# throws number f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909
12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833

based on http://www.freestockphotos.biz/stockphoto/16223
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# throws number f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909
12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833
100 . . . 0.1900 0.2100 0.1500 0.1600 0.1200 0.1700

1’000 . . . 0.1700 0.1670 0.1620 0.1670 0.1570 0.1770
10’000 . . . 0.1682 0.1699 0.1680 0.1661 0.1655 0.1623
100’000 . . . 0.1671 0.1649 0.1664 0.1676 0.1668 0.1672

1’000’000 . . . 0.1673 0.1663 0.1662 0.1673 0.1666 0.1664
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Important Distinction

# throws number f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909
12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833
100 . . . 0.1900 0.2100 0.1500 0.1600 0.1200 0.1700

1’000 . . . 0.1700 0.1670 0.1620 0.1670 0.1570 0.1770
10’000 . . . 0.1682 0.1699 0.1680 0.1661 0.1655 0.1623
100’000 . . . 0.1671 0.1649 0.1664 0.1676 0.1668 0.1672

1’000’000 . . . 0.1673 0.1663 0.1662 0.1673 0.1666 0.1664
10’000’000 . . . 0.1667 0.1667 0.1666 0.1668 0.1667 0.1665
100’000’000 . . . 0.1667 0.1666 0.1666 0.1667 0.1667 0.1667

1’000’000’000 . . . 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
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• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process

• Statistical parameters of the distribution can be estimated from a
sample

• Example: Dice Throw

• How likely is it to roll a 1, 2, 3, 4, 5, or 6?

• Never forget: All measured parameters are just estimates.
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• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process

• Statistical parameters of the distribution can be estimated from a
sample

• Example: Dice Throw

• How likely is it to roll a 1, 2, 3, 4, 5, or 6?

• Never forget: All measured parameters are just estimates.

• The parameters of a random process cannot be measured directly, but
only be approximated from multiple measures

based on http://www.freestockphotos.biz/stockphoto/16223
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Measures of the Average

• Assume that we have obtained a sample A = (a0, a1, . . . , an−1) of
n observations from an experiment, e.g., we have measured the
quality of the best discovered solutions of 101 independent runs of an
optimization algorithm.

• We usually want to reduce this set of numbers to a single value which
can give us an impression of what the “average outcome” (or result
quality is).

• Two of the most common options for doing so, for estimating the
“center” of a distribution, are to either compute the arithmetic mean
or the median.
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Arithmetic Mean

Definition (Arithmetic Mean)

The arithmetic mean mean(A) is an estimate of the expected value of a
data sample A = (a0, a1, . . . , an−1). It is computed as the sum of all n
elements ai in the sample data A divided by the total number n of values.

mean(A) =
1

n

n−1
∑

i=0

ai (1)
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Definition (Median)

The median med(A) is the value separating the bigger half from the lower
half of a data sample or distribution. It is the value right in the middle of
a sorted data sample A = (a0, a1, . . . , an−1) where
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Median

Definition (Median)

The median med(A) is the value separating the bigger half from the lower
half of a data sample or distribution. It is the value right in the middle of
a sorted data sample A = (a0, a1, . . . , an−1) where
ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1).

med(A) =

{

an−1

2

if n is odd

1

2

(

an

2
−1 + an

2

)

otherwise
if ai−1 ≤ ai ∀i ∈ 1 . . . (n−1)

(2)
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• Sometimes the data contains outliers9 10, i.e., observations which are
much different from the other measurements.

• They may be important, real data, e.g., represent some unusual
side-effect in a clinical trial of a new medicine.

• They may also represent measurement errors or observations which
have been been disturbed by unusual effects.

• For example, maybe the operating system was updating itself during a
run of one of our JSSP algorithms and, thus, took away much of the
3 minute computation budget.

• We can see that such odd times are possible, as our experimental
data shows that there are sometimes outliers in the time it takes to
create and evaluate the first candidate solution.



Outliers

outliers in terms of the time needed for the first

function evaluation (FE): Normally, the first FE

completes in less than 1ms, but in very few of

the runs it needs more than 2ms, sometimes even

10ms! This may be because of scheduling or other

OS issues and does not reflect the normal behavior

of the algorithm implementation.



Outliers



Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)



Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

• We find that



Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

• We find that
• mean(A) = 1

19

∑

18

i=0
ai =

133

19
= 7



Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

• We find that
• mean(A) = 1

19

∑

18

i=0
ai =

133

19
= 7 and

• mean(B) = 1

19

∑

18

i=0
bi =

10
′
127

19
= 553



Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

• We find that
• mean(A) = 1

19

∑

18

i=0
ai =

133

19
= 7 and

• mean(B) = 1

19

∑

18

i=0
bi =

10
′
127

19
= 553, while

• med(A) = a9 = 6



Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

• We find that
• mean(A) = 1

19

∑

18

i=0
ai =

133

19
= 7 and

• mean(B) = 1

19

∑

18

i=0
bi =

10
′
127

19
= 553, while

• med(A) = a9 = 6 and
• med(B) = b9 = 6.
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Why are outliers important?

• If you think about, where could outliers in our experiments come
from?

1. The operating systems scheduling or other strange effects could mess
with our timing.

2. This could cause worse results.
3. But this is already it. There are hardly any other “outside” effects that

could mess up our results!
4. Instead, there could be: bugs in our code!
5. Or: bad worst-case behaviors of our algorithm!

• Thus, we often want that outliers influence our statistics.
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Mean vs. Median

• In our application scenarios, there are very few acceptable reasons for
outliers.

• We therefore want to know the arithmetic mean.

• We also want to know the median, because it shows us what we can
normally expect as results.

• If the arithmetic mean and median are very different, then
• maybe we have a bug in our code that only sometimes has an impact or
• our algorithm has bad worst-case behavior (which is also good to

know).

• So we can conclude: It is best to have both the mean and median
statistic of a given performance indicator.
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Measures of Spread

• The average gives us a good impression about the central value or
location of a distribution.

• It does not tell us much about the range of the data.

• We do not know whether the data we have measured is very similar
to the median or whether it may differ very much from the mean.

• For this, we can compute a measure of dispersion, i.e., a value that
tells us whether the observations are stretched and spread far or
squeezed tight around the center.
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Variance

Definition (Variance)

The variance is the expectation of the squared deviation of a random
variable from its mean. The variance var(A) of a data
sample A = (a0, a1, . . . , an−1) with n observations can be estimated as:

var(A) =
1

n− 1

n−1
∑

i=0

(ai −mean(A))2



Standard Deviation

Definition (Standard Deviation)

The statistical estimate sd(A) of the standard deviation of a data
sample A = (a0, a1, . . . , an−1) with n observations is the square root of
the estimated variance var(A).

sd(A) =
√

var(A)
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Standard Deviation

• Small standard deviations indicate that the observations tend to be
similar to the mean.

• Large standard deviations indicate that they tend to be far from the
mean.

• Small standard deviations in optimization results and runtime indicate
that the algorithm is reliable.

• Large standard deviations indicate unreliable algorithms, but may also
offer a potential that could be exploited (see hill climber with restarts)
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Quantiles

Definition (Quantile)

The q-quantiles are the cut points that divide a sorted data sample
A = (a0, a1, . . . , an−1) where ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1) into q-equally
sized parts. quantilekq be the kth q-quantile, with k ∈ 1 . . . (q − n), i.e.,
there are q − 1 of the q-quantiles.

h = (n− 1)k
q

quantilekq (A) =

{

ah if h is integer
a⌊h⌋ + (h− ⌊h⌋) ∗

(

a⌊h⌋+1 − a⌊h⌋
)

otherwise

.

• The quantile21A is the median of A

• 4-quantiles are called quartiles.

• We sometimes write things like “the 25% quantile,” meaning
quantile25100.
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• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

mean(A) = 7

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

mean(B) = 533

var(A) =
1

19− 1

19
∑

i=1

(ai −mean(a))2 =
198

18
= 11

var(B) =
1

19− 1

19
∑

i=1

(bi −mean(b))2 =
94′763′306

18
≈ 5′264′628.1

sd(A) =
√
varA =

√
11 ≈ 3.31662479

sd(B) =
√
varB =

√

94′763′306

18
≈ 2294.477743
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Quantiles: Example

• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10’008)

quantile14(A) = quantile14(B) = 4.5

quantile34(A) = quantile34(B) = 9
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Further Example

• The implicit assumption that mean± sd is a meaningful range is not
always true!

• Such a shape is possible in optimization:
• The global optimum marks a lower bound for the possible objective

values.
• A good algorithm often returns results which are close-to-optimal.
• There may be a long tail of few but significantly worse runs.



谢谢
Thank you
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