Aje 2)

HEFEI UNIVERSITY 1AQ2

Optimization Algorithms
4. Random Sampling

Thomas Weise - % %
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn/5

Institute of Applied Optimization (IAQ) | & Atk Ae#t AT
School of Artificial Intelligence and Big Data | AL#H it 5 KR&EF X
Hefei University | &2 # 1%
Hefei, Anhui, China | F B=#4 &

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn/5

QOutline

Introduction

Algorithm Concept
Experiment and Analysis
Improved Algorithm Concept

Experiment and Analysis 2

o ok~ w o=

Summary

Introduction

Introduction

® We will now learn our very first optimization algorithm.

Introduction

® We will now learn our very first optimization algorithm.

® We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

Introduction

® We will now learn our very first optimization algorithm.

® We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

® How does this help us to search?

Introduction

We will now learn our very first optimization algorithm.

We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

How does this help us to search?

Well, we can first try the trivial thing: create a random solution!

Introduction

® We will now learn our very first optimization algorithm.

® We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

® How does this help us to search?

® Well, we can first try the trivial thing: create a random solution!

® We can therefore

1. put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m xn

Introduction

® We will now learn our very first optimization algorithm.

® We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

® How does this help us to search?

® Well, we can first try the trivial thing: create a random solution!

® We can therefore

1. put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point z(€ X)

Introduction

® We will now learn our very first optimization algorithm.

® We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

® How does this help us to search?

® Well, we can first try the trivial thing: create a random solution!

® We can therefore

1. put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point zy € X), then
2. randomly shuffle the values like a deck of cards

Introduction

We will now learn our very first optimization algorithm.

We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

How does this help us to search?

Well, we can first try the trivial thing: create a random solution!

We can therefore

1.

put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point zy € X), then

. randomly shuffle the values like a deck of cards (so we get a random

valid point = € X)

Introduction

We will now learn our very first optimization algorithm.

We already have the basic tools: We can represent a Gantt chart
for m machines and n jobs as an integer string of length m x n.

How does this help us to search?

Well, we can first try the trivial thing: create a random solution!

We can therefore

1.

put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point zy € X), then

. randomly shuffle the values like a deck of cards (so we get a random

valid point z € X), and

. apply the representation mapping ~ to get a Gantt chart y = vy(z),

yeY.

Algorithm Concept

Interface for a Function to Sample 1 Point from X

® \We already have the interface that we need to implement to do such
a thing

Interface for a Function to Sample 1 Point from X

® \We already have the interface that we need to implement to do such
a thing: the | INullarySearchOperator

Interface for a Function to Sample 1 Point from X

® \We already have the interface that we need to implement to do such
a thing: the | INullarySearchOperator

package aitoa.structure;
public interface INullarySearchOperator<X> {

void apply(X dest, Random random) ;

Implementation: Create Random Point in X

public class JSSPNullaryOperator {

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

}

for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, O, dest, i, this.n);

}

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

}

for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, O, dest, i, this.n);

}

34

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

}

for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, O, dest, i, this.n);

}

for (int i = dest.length; i > 1;) {

34

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

}

for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, O, dest, i, this.n);

}

for (int i = dest.length; i > 1;) {
int j random.nextInt (i--);
int t array [i];

34

Implementation: Create Random Point in X

public class JSSPNullaryOperator implements
INullarySearchOperator<int[]1> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

}
for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, O, dest, i, this.n);
}
for (int i = dest.length; i > 1;) {
int j = random.nextInt (i--);
int t = array[i];
array[i] = array[j];

array[j] = t;
}
}

34

Implementation: Single Random Sampling Algorithm

package aitoa.algorithms;

public class SingleRandomSample<X, Y> {

Implementation: Single Random Sampling Algorithm

package aitoa.algorithms;

public class SingleRandomSample<X, Y> extends
Metaheuristic0<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

Implementation: Single Random Sampling Algorithm

package aitoa.algorithms;

public class SingleRandomSample<X, Y> extends
Metaheuristic0<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {
X x = process.getSearchSpace().create();

Implementation: Single Random Sampling Algorithm

package aitoa.algorithms;

public class SingleRandomSample<X, Y> extends
Metaheuristic0<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {
X x = process.getSearchSpace().create();

this.nullary.apply(x, process.getRandom());

Implementation: Single Random Sampling Algorithm

package aitoa.algorithms;

public class SingleRandomSample<X, Y> extends
Metaheuristic0<X, Y> {

public void solve(IBlackBoxProcess<X, Y> process) {
X x = process.getSearchSpace().create();

this.nullary.apply(x, process.getRandom());
process.evaluate (x);

}
}

Experiment and Analysis

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

makespan last improvement
z best | mean | med | sd | med(t) | med(FEs)
abz7 1'131 | 1'334 | 1’326 | 106 0Os 1
la24 | 1'487 | 1'842 | 1'814 | 165 Os 1
swv15 | 5'935 | 6'600 | 6'563 | 346 0Os 1
yn4 1'754 | 2’036 | 2'039 | 125 Os 1

So what do we get?

Median solution for abz7

14 15913 W T [] 8 17, I3 2
1316 8 [i 1HE2 e 270 s [5 1 |
12 9 2l il | 12 0] 4 Es
1 8 118 1l B oN BOE s Al
1 [] [] 6 > EHEEE Wass 0
ENE O & 8 ol 2 21 5 LIRER]
13@ 9l Is [B0l @54 17 2
15 9 BEEN4H8] [|5 0] 2lEl 1l | 6 17 £:314]
cE2me 0 k5 BT sl 15HOMS 179
o [2Nl0li1 {9 15 8 13HACIEEN 6 2
0] 1113 8 6 |Gl [l [] 119 2[4
4 5] 14] ofigZ sfg E N B4 15 178 13
e §2 1 m 6 2@ 1sh @ls [°
4138 N o le2> 2 8
, s [l gE Le027/186) s un e |
0 200 400 600 800 1000 1200

So what do we get?

Median solution for abz7

14 15913 W T [] 8 17, I3 2
1346 8 i 112 f9 27 & [5} |
12 9 2l il | 12 0] 4 Es
1 8 118 1l B oN BOE s Al
1 [] [] 6 > EHEEE Wass 0
EmiE 0 @ s [Wmell4 2 12 (5 ERER
13@ 9l Is [B0l @54 17 2
15 9 BEEN4H8] [|5 0] 2lEl 1l | 6 17 £:314]
sHl2@a @© 131N 4 | 15 IOMITS 179
o [2Nl0li1 {9 15 8 13HACIEEN 6 2
0] 1113 8 6 |Gl [l [] 119 2[4
4 5] 14] ofigZ sfg E N B4 15 178 13
e §2 1 m 6 2@ 1sh @ls [°
4138 N o mitle2 2 8
, s [l _ Bm | 027/18%6) 05 00 un gl |
0 200 400 600 800 1000 1200

...there is lots of white space between the operations. ..

So what do we get?

Median solution for 1a24

H I
B B

1

=N > [-l
8 s ol
/N B R
B 6

Y ¢ v 9 9

13]

-

1 9 [l

8

L

o 810

T N TN
2 |
B sl |°2
2 of Il s 11
= N
m |

.
EEE :
]

11
0

> @

8

R

2 | 1224/ 1814 6

T
500

1000

0 N1l

...there is lots of white space between the operations. ..

So what do we get?

Median solution for swv15

> I TOT W IE M TETEE]
4 1 HEIR SEIEEmin 11
" BITEND @Rl Ewn g
6 1 I 1IN 1R | [HElnn
5 M [Gl N ZD2 N

nin 0Nl meE h
1] I MO =l e
mia nimE mEnE o |

=T Al 2 IBNEL F
swv15/ 6563
0 1000 2000 3000 4000 5000 6000

...there is lots of white space between the operations. ..

So what do we get?

Median solution for yn4

19 709 2= W MW 0 | [| 15 B s 9 W27
1813l 10 7 6 [| 8 15 H9 2 11 |
1742 [| 0] [| 13 Il 4B 8 [|
16 18 BEE N 1801 |] |] 1
15+ 8 2 11 1 m 17 6 N B 9l
14 1 “miEl mom W 726 O - EERis 8
1301 15MH86 21713 118l 0 I
124 4 |] 209 W8 . © 7 17 1
11 /4] m M CmAB 948 | em2 M
1048 H 31 | 1) 17 0] 2197 16 E16
4 FAL 14 62] (0] 13 818
8- [| 8 I Bme 74 [| 1319 191
7H 1 B 215 Wi 10| 10 1 |]] 8
6 mso H msE2 7 m 16]
5- I8l 9 6 Il 16 1 13 8 2
41 ® 17 e 1201 191116 4 |
3415 9 7m4 17 B || 6 W 1128 | [|
2 2 msi 6 18 2BI° | | 41
1 1 ol W | | o "W817 14msl 19
0-6N_memreE M2 m me 17l_¥’l4|/2039 9 15 4 :
0 500 1000 1500 2000

... there is lots of white space between the operations. . .

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4
® The results are not good, there is lots of white space = wasted time.

makespan last improvement
z best | mean | med | sd | med(t) | med(FEs)
abz7 1'131 | 1'334 | 1’326 | 106 0Os 1
la24 | 1'487 | 1'842 | 1'814 | 165 Os 1
swv15 | 5'935 | 6'600 | 6'563 | 346 0Os 1
yn4 1'754 | 2’036 | 2'039 | 125 Os 1

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

® The results are not good, there is lots of white space = wasted time.
That was expected: Our solutions are random.

makespan last improvement
z best | mean | med | sd | med(t) | med(FEs)
abz7 1'131 | 1'334 | 1’326 | 106 0Os 1
la24 | 1'487 | 1'842 | 1'814 | 165 Os 1
swv15 | 5'935 | 6'600 | 6'563 | 346 0Os 1
yn4 1'754 | 2’036 | 2'039 | 125 Os 1

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

® The results are not good, there is lots of white space = wasted time.
That was expected: Our solutions are random.

® Notice 1. We can create and test the schedules very very fast (much
faster than 3min).

makespan last improvement
z best | mean | med | sd | med(t) | med(FEs)
abz7 1'131 | 1'334 | 1’326 | 106 Os 1
la24 | 1'487 | 1'842 | 1'814 | 165 Os 1
swv15 | 5'935 | 6'600 | 6'563 | 346 0Os 1
yn4 1'754 | 2’036 | 2'039 | 125 Os 1

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

® The results are not good, there is lots of white space = wasted time.
That was expected: Our solutions are random.

® Notice 1. We can create and test the schedules very very fast (much
faster than 3min).

® Notice 2. There is a high variance in the results due to randomness.

makespan last improvement
z best | mean | med | sd | med(t) | med(FEs)
abz7 1'131 | 1'334 | 1’326 | 106 0Os 1
la24 | 1'487 | 1'842 | 1'814 | 165 Os 1
swv15 | 5'935 | 6'600 | 6'563 | 346 0Os 1
yn4 1'754 | 2’036 | 2'039 | 125 Os 1

Improved Algorithm Concept

Exploit Variance: Random Sampling

® |f we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

Exploit Variance: Random Sampling

® |f we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

® . .then why don't we keep generating schedules until the 3 minutes
are up and keep the best one?

Exploit Variance: Random Sampling

® |f we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

® . .then why don't we keep generating schedules until the 3 minutes
are up and keep the best one?

® New idea

Exploit Variance: Random Sampling

® |f we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

® . .then why don't we keep generating schedules until the 3 minutes
are up and keep the best one?

® New idea: The Random sampling algorithm (also called random
search) repeats creating random solutions until the computational
budget is exhausted®.

Exploit Variance: Random Sampling

If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

...then why don’t we keep generating schedules until the 3 minutes
are up and keep the best one?

New idea: The Random sampling algorithm (also called random
search) repeats creating random solutions until the computational
budget is exhausted®.

It works as follows

Exploit Variance: Random Sampling

If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

...then why don’t we keep generating schedules until the 3 minutes
are up and keep the best one?

New idea: The Random sampling algorithm (also called random
search) repeats creating random solutions until the computational
budget is exhausted®.

It works as follows:

1. create new random candidate solution y (via random sampling from
the search space)

Exploit Variance: Random Sampling

If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

...then why don’t we keep generating schedules until the 3 minutes
are up and keep the best one?

New idea: The Random sampling algorithm (also called random
search) repeats creating random solutions until the computational
budget is exhausted®.
It works as follows:

1. create new random candidate solution y (via random sampling from

the search space)
2. remember best solution ever encountered

Exploit Variance: Random Sampling

If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

...then why don’t we keep generating schedules until the 3 minutes
are up and keep the best one?

New idea: The Random sampling algorithm (also called random
search) repeats creating random solutions until the computational
budget is exhausted®.

It works as follows:

1. create new random candidate solution y (via random sampling from
the search space)

2. remember best solution ever encountered

3. repeat until 3 min are exhausted

Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> {

Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> extends MetaheuristicO<X,
Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> extends MetaheuristicO<X,
Y> {

public void solve(IBlackBoxProcess<X, Y> process) {
X x = process.getSearchSpace().create();

Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> extends MetaheuristicO<X,
Y> {

public void solve(IBlackBoxProcess<X, Y> process) {
X x = process.getSearchSpace().create();

Random random = process.getRandom() ;

Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> extends MetaheuristicO<X,
Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X x = process.getSearchSpace().create();
Random random = process.getRandom() ;
do {

} while (!process.shouldTerminate());

Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> extends MetaheuristicO<X,
Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X x = process.getSearchSpace().create();
Random random = process.getRandom() ;
do {

this.nullary.apply(x, random);

} while (!process.shouldTerminate());

}

Random Sampling Algorithm

package aitoa.algorithms;

public class RandomSampling<X, Y> extends MetaheuristicO<X,
Y> {

public void solve(IBlackBoxProcess<X, Y> process) {

X x = process.getSearchSpace().create();
Random random = process.getRandom() ;
do {

this.nullary.apply(x, random);
process.evaluate (x);
} while (!process.shouldTerminate());

}

Experiment and Analysis 2

So what do we get?

® | execute the program 101 times for each of the instances abz7,
la24, swvlb, and yn4

So what do we get?

® | execute the program 101 times for each of the instances abz7,

la24, swvlb, and yn4

makespan last improvement

A algo | best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 1rs | 1131 | 1334 | 1326 | 106 Os 1
rs 85s | 6'512'505

la24 irs | 1487 | 1842 | 1814 | 165 Os 1
rs 82s | 15'902'911

swvlb | 1rs | 5935 | 6600 | 6563 | 346 Os 1
rs 87s | 5'559'124

yn4 1rs | 1754 | 2036 | 2039 | 125 Os 1
rs 76s | 4'814'914

So what do we get?

1rs: median result of single random sample algorithm

15913 N [| [] 8 17, I 2
68/ i 12 i8S 2078 s [5 ¥ |
9 2 e | o i @Es
8 118 1l B o BOEE 6 e
[| [| 6 2 EEeC W4es |
Elis O & 8 el 4 2 i3 | 5 L RERE]
13E Sl s @s HollE #5417 2
15 9 BEEN4H6l [|5 0] 213l 11l @ e 17 £y 14]
cEH2E4 O 136] | 15 (OIS 17 9
o 20011 [9 §15 8 [13HMEIEE 6 2
[] 0] 11138 6 Bl Ie [] 19 2[4
6 f6TNEE ofigm sH9 E B B4 15 178 13
s §2 1 M 6 2@ s Els [4Em °
4138 & 0] 7ile2 |2 8
o [N — B |2bz7/13%) g 47 moEeE |

0 200 400 600 800 1000 1200

So what do we get?

rs: median result of 3 min of random sampling algorithm

[EIREE 4]5] W 7s EOEE @2
68 2[4 1 12190 7 HIE B8

18 | ol Wi ol (N 2

1 M 92 ofigl “ls © M
foEcEm @ 8 6 focl4oEl W 132
13[9I8 6 15 9 I e 7 4 2

15 9 [16 2 [ESEE04 [0 | 1113J17 [@8 6

2@ls@ & (5 OfCH | 8 sEEE No 17
Bo 15110 2 s @13 4EN 8o 2

o n @ estt o WE EN iz & M
WEoi s @o e W@ s T T (RE
B E2N2s 6 He e | E4EEN
38 meNdE B o O 2 oz

abz7 /949

o [2fed HOlE @ [\ E K¢ s @

So what do we get?

1rs: median result of single random sample algorithm

9 8 B n i e @] 13
:E B O o EERs | |
N EmE . E wEEe sl
&1l B @ 73 :iIEl: H [|
J e ERN =
oW T R

' LT e :
eRIREN |] e g0 |s
i o - AT
1 s 2 | 1224/ 18:;00 6 13 [

&

Ci)

So what do we get?

rs: median result of 3 min of random sampling algorithm

5 IO 1+ K BEY o KRR
13 g s o | |92
6 N s 0 14 {08 : @ 1 @
| | - EEEE
: oOmm 0E B -
. EEENN v °0 o EEEEE ¢
Ao s B ool OEE: o o
TR T ERTE
1a24 / 1208
o e 120

0 500 1000 1500

So what do we get?

1rs: median result of single random sample algorithm

4 I T T "I NE T T el

4 I HEIN SEIRERIN 1A
™ BITEN 0 GNER NNy o
6 i I IWm 1R | [HETER
5 MO Gl N ZDE N

I Fn 0l NEE W
1] I MO 21 e |
miue nime mEnE Qo
gl _(BEEl BIIJ o INEE1 1

swv15/ 6563
0 1000 2000 3000 4000 5000 6000

So what do we get?

rs: median result of 3 min of random sampling algorithm

4 W THE 1T " TEOET
4 I (HE EEE NI -Ein
™ I TN b nem |
6 |0 R TN R | I N

i B0 RITNTENN REEN N
A1 N DN AN
AN RE: ol Bl
Ol (N | ONEE | e
TN CC T

Y ¢+ q

—_
1

o MM owis 572
T T T

0 1000 2000 3000 4000 5000

6000

So what do we get?

1rs: median result of single random sample algorithm

19 1709 27 W | 0 | [| 15 Bl s A9 |27
18181 10 7 6 | | 8 151 09 2 11 1
1742 | 0] [| 13 4B 8 [|
164 18 BEE N 1801 [| [) | k] 11
154 8 2 11 O 1 2 17 6 0 B 9l
14 1 ZmiE mom m m2e 0] 15 8
13491 15M186 21743 o 118l 1 m
129 4 [] 219 W8 I ° H 17 1
114 725l 10 M s o 48 | 6m2 W
108 MW 3 19 17 0] 2197 8 E16
w Lakl14] 62 || 0] 13 8B
8 | | | K I Bme a4 [| 1319 191
7H 1 B 215 10| 10 1 []| 8
6l W89 N BNz 7EE m e 116 1
5- I8l 9 6l 16 1 13 8 2
4 6 17 lvd (3] 1201 190116 Pl |
315 9 7m4n 17 B || 6 B0 1128 | N |
2- g2 m3i 6 18 289 [| 41
1 | ol m | = 817 4 L)
5 13 2 B me 17l_¥'l4|/2039 9 15 2 :
0 500 1000 1500 2000

So what do we get?

rs: median result of 3 min of random sampling algorithm

1 179 2 8 15
18131 ms 1 eAm N 15 mmo2 1
1742 W] 130 B mE s

1640 1 89 mE 1o

15 11800 2 EEm e 17 o 6 EY
14] mZmT 9 EN2 WN HS8 615
1306 4317 2150818 EUE A M@ 0]
ey 1 g2 B mWE W "EW m 17
114 E =] 8 O ame o m W62
1048 B ESE W0 9 7M W62 6
ohls m 9 2 16 EEEsE | |
& sEM I W4 W76 W13 @M 99
7 mIUtE2] ma 5EE 1 @ 8 ma
ga CREE BT] m 11]

96 16 138i|@ 1IN [| 0] 2

+ 8 17889 M7 69 mAEEm N N 260
39154 wm 17mm = 111 1 260

2 13 8 2 Bl NN N% 2EEm |

1 (I Em som O yn4/1499'l -17l

617113 2I 17 r

0 500 1 000 1500

2000

Progress over Time

What progress does the algorithm make over time?

Progress over Time

abz7

1600

1400
1

12[00

1000

time inms

T T
0 50600 100000 150000

Progress over Time

. la24

; 18[00 20[00 22[00 2400

1600

1400
1

1200

time in ms

T T T
0 50000 100000 150000

Progress over Time

f swvi5
) — rs
2
8.
4
é_
g
8.
8
o
=N time in ms

T T T
0 50000 100000 150000

Progress over Time

yn4
— rs

2200

2000

18|00

1600

time in ms

T T
0 50600 100000 150000

Progress over Time

® |Law of Diminishing Returns®

Progress over Time

® Law of Diminishing Returns®: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime).

Progress over Time

® Law of Diminishing Returns®: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
smaller.

Progress over Time

abz7
— s

1600

1400
1

normal plot

12[00

1000

time inms

T T
0 50600 100000 150000

Progress over Time

abz7
— s

1600

1400
1

log-scale plot

1200

1000

time in ms

T T
1 10 100 1000 10000 100000

Progress over Time

® Law of Diminishing Returns®: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
smaller.

0 w0 w0 a0 20z oan

Progress over Time

® Law of Diminishing Returns®: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and

smaller.

Progress over Time

® Law of Diminishing Returns®: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and

smaller.

® This holds for runtime, but also for improvements of algorithms.

SO o0 S0 S0 sw0 60

H

3 W o o

Summary

Summary

® |n this lesson, we have learned three things

Summary

® In this lesson, we have learned three things
1. a first algorithm for solving optimization: random sampling.

Summary

® |n this lesson, we have learned three things

1. a first algorithm for solving optimization: random sampling.
2. a tool to improve algorithm performance: restarts.

Summary

® |n this lesson, we have learned three things
1. a first algorithm for solving optimization: random sampling.
2. a tool to improve algorithm performance: restarts.
3. an inherent nature of optimization processes: much progress early,
fewer and smaller improvements later.

Summary: Random Sampling

® With random sampling, we now have a basic algorithm that provides
some solutions.

Summary: Random Sampling

® With random sampling, we now have a basic algorithm that provides
some solutions.

® Butitis... well ... quite stupid.

Summary: Random Sampling

® With random sampling, we now have a basic algorithm that provides
some solutions.

® Butitis... well ... quite stupid.

® |t just makes random guesses.

Summary: Random Sampling

With random sampling, we now have a basic algorithm that provides
some solutions.

® Butitis... well ... quite stupid.

It just makes random guesses.

It does not make any use of the information it has seen during the
search.

Summary: Random Sampling

® With random sampling, we now have a basic algorithm that provides
some solutions.

® Butitis... well ... quite stupid.
® |t just makes random guesses.

® |t does not make any use of the information it has seen during the
search.

® Random Sampling has two very important uses, though

Summary: Random Sampling

® With random sampling, we now have a basic algorithm that provides
some solutions.

® Butitis... well ... quite stupid.

® |t just makes random guesses.

® |t does not make any use of the information it has seen during the
search.

® Random Sampling has two very important uses, though:

1. If an optimization problem has no structure whatsoever, if knowledge
of existing good solutions is not helpful to find new good solutions in
any way, then we cannot really do better than Random Sampling!

Summary: Random Sampling

® With random sampling, we now have a basic algorithm that provides
some solutions.

® Butitis... well ... quite stupid.
® |t just makes random guesses.

® |t does not make any use of the information it has seen during the
search.

® Random Sampling has two very important uses, though:

1. If an optimization problem has no structure whatsoever, if knowledge
of existing good solutions is not helpful to find new good solutions in
any way, then we cannot really do better than Random Sampling!

2. In most relevant optimization problems, however, such information is
helpful.

Summary: Random Sampling

® With random sampling, we now have a basic algorithm that provides
some solutions.

® Butitis... well ... quite stupid.
® |t just makes random guesses.

® |t does not make any use of the information it has seen during the
search.

® Random Sampling has two very important uses, though:

1. If an optimization problem has no structure whatsoever, if knowledge
of existing good solutions is not helpful to find new good solutions in
any way, then we cannot really do better than Random Sampling!

2. In most relevant optimization problems, however, such information is
helpful. An optimization algorithm is only reasonable if it is
significantly better than Random Sampling.

Summary: Restarts

® We started with an algorithm that created a single random solution.

Summary: Restarts

® We started with an algorithm that created a single random solution.
Let's call this algorithm A.

Summary: Restarts

® We started with an algorithm that created a single random solution.
Let's call this algorithm A.

® \We then wrapped a loop around A, we restarted A again and again
until the time was up.

Summary: Restarts

® We started with an algorithm that created a single random solution.
Let's call this algorithm A.

® \We then wrapped a loop around A, we restarted A again and again
until the time was up (and of course, remembered the best solution).

Summary: Restarts

® We started with an algorithm that created a single random solution.
Let's call this algorithm A.

® \We then wrapped a loop around A, we restarted A again and again
until the time was up (and of course, remembered the best solution).

® This is actually basic strategy of “algorithm B = a restarted
algorithm A", a tool that we have available from now on!

Summary: Restarts

® We started with an algorithm that created a single random solution.
Let's call this algorithm A.

® \We then wrapped a loop around A, we restarted A again and again
until the time was up (and of course, remembered the best solution).

® This is actually basic strategy of “algorithm B = a restarted
algorithm A", a tool that we have available from now on!

® |t can be applied in many scenarios, but has the following limitations

Summary: Restarts

® We started with an algorithm that created a single random solution.
Let's call this algorithm A.

® \We then wrapped a loop around A, we restarted A again and again
until the time was up (and of course, remembered the best solution).

® This is actually basic strategy of “algorithm B = a restarted
algorithm A", a tool that we have available from now on!

® |t can be applied in many scenarios, but has the following limitations:

1. It only works if there is a reasonably-large variance, i.e., if different runs
of A produce different results.

Summary: Restarts

® We started with an algorithm that created a single random solution.
Let's call this algorithm A.

® \We then wrapped a loop around A, we restarted A again and again
until the time was up (and of course, remembered the best solution).

® This is actually basic strategy of “algorithm B = a restarted
algorithm A", a tool that we have available from now on!
® |t can be applied in many scenarios, but has the following limitations:

1. It only works if there is a reasonably-large variance, i.e., if different runs
of A produce different results.

2. It only works if A produces good-enough results early-enough, so that
we have enough time in our budget to restart A.

LI

Thank you

References |

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO) [£ A £ AL#F % FT] of
the School of Atrtificial Intelligence and Big Data [A L% fit 5 kK #4% % %] of Hefei University [4 2% K], Hefei [&/E7],
Anhui [%#4], China [E], 2018-2020. URL http://thomasweise.github.io/aitoa/.

2. Thomas Weise. Global Optimization Algorithms — Theory and Application. it-weise.de (self-published), Germany, 2009. URL
http://www.it-weise.de/projects/book.pdf.

3. Sir Ronald Aylmer Fisher and Frank Yates. Statistical Tables for Biological, Agricultural and Medical Research. Oliver &
Boyd, London, UK, 3 edition, 1948.

4. Donald Ervin Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison—Wesley,
Reading, MA, USA, 1969.

5. James C. Spall. Introduction to Stochastic Search and Optimization, volume 6 of Estimation, Simulation, and Control —
Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley Interscience, Chichester, West Sussex, UK, April
2003. ISBN 0-471-33052-3. URL http://www.jhuapl.edu/ISS0/.

6. Paul Anthony Samuelson and William Dawbney Nordhaus. Microeconomics. McGraw-Hill Education (ISE Editions), Boston,
MA, USA, 17 edition, 2001. ISBN 0071-180664.

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf
http://www.jhuapl.edu/ISSO/

	Outline
	Introduction
	Introduction

	Algorithm Concept
	Interface for a Function to Sample 1 Point from X
	Implementation: Create Random Point in X
	Implementation: Single Random Sampling Algorithm

	Experiment and Analysis
	So what do we get?

	Improved Algorithm Concept
	Exploit Variance: Random Sampling
	Random Sampling Algorithm

	Experiment and Analysis 2
	So what do we get?
	Progress over Time

	Summary
	Summary
	Summary: Random Sampling
	Summary: Restarts

	Presentation End
	References

