
Databases
Thomas Weise (汤卫思)

June 7, 2025

Abstract

This book is an introduction into databases for undergraduate and graduate students.

Contents

Contents i

1 Introduction 1
1.1 Features that we want from a Database . 4
1.2 History . 8
1.3 Software . 13
1.4 Further Reading . 15

I Getting Started 19

2 Installing PostgreSQL 23
2.1 Installing PostgreSQL under Ubuntu Linux . 23
2.2 Installing PostgreSQL under Microsoft Windows . 29

3 Installing LibreOffice 43
3.1 Installing LibreOffice under Ubuntu Linux . 44
3.2 Installing LibreOffice under Microsoft Windows . 45

4 Installing Python, PyCharm, and Psycopg 54
4.1 Installing Psycopg . 54

5 Installing yEd 57
5.1 Installing yEd on Ubuntu Linux . 57
5.2 Installing yEd on Microsoft Windows . 61

6 Installing PgModeler 65
6.1 Installing PgModeler under Ubuntu Linux . 65
6.2 Installing PgModeler under Microsoft Windows . 69

II A Simple Example: The Factory Database 77

7 Creating a User and the Database 79
7.1 Creating a User . 79
7.2 Creating a new Database . 84

8 Downloading the Example Codes 89

9 Creating Tables and Filling them with Data 91
9.1 The Table “product” . 91
9.2 The Table “customer” . 100
9.3 The Table “demand” . 104

10 Join-based Select and Views 108
10.1 Joining Tables . 108
10.2 Views as Virtual Tables . 110
10.3 Using our View . 112

i

CONTENTS ii

11 Updating and Deleting Records 115
11.1 Updating Records . 115
11.2 Deleting Records . 116

12 Connecting from Python 117

13 Accessing the Database from LibreOffice Base 122
13.1 Connect to the Database . 122
13.2 Adding Rows to a Table and Executing Views . 125
13.3 Relationship Diagrams . 127
13.4 Forms . 128
13.5 Reports . 138

14 Cleanup After the Example 145

15 Summary 147

III Database Design and Modeling 149

16 The Database Lifecycle 151
16.1 Classical Software Engineering Design Processes . 152
16.2 Databases Design Processes . 154

17 Requirements Analysis 158
17.1 Types of Requirements . 158
17.2 Requirements Gathering . 158
17.3 Requirements Specification Document . 159
17.4 Example: Teaching Management Platform . 159

18 Conceptual Model Design 164
18.1 Entities and Attributes . 164
18.2 Keys . 174
18.3 Relationships . 176
18.4 Weak Entities . 181
18.5 The Cardinality of Relationships . 182
18.6 Compact Crow’s Foot Notation . 188
18.7 Database Model Selection . 195
18.8 Summary . 196

19 Logical Model Design 197
19.1 The Relational Data Model . 197
19.2 Mapping Conceptual Models to Logical Models . 200
19.3 Normalization . 295

Backmatter 327

Best Practices 328

Useful Tools 330

Glossary 331

SQL Commands 339

Bibliography 341

Preface

The goal of the course and book is to teach undergraduate and graduate students the topic of databases
(DBs). Our focus is a practice-oriented approach to the topic. This means that each concept that we
introduce or discuss is always accompanied by a rich set of examples. In the course we will use many
tools, ranging from

• the PostgreSQL database management system (DBMS) [146, 279, 309, 391], over

• yEd, a graph editor that can be used for conceptual modeling [347, 451],

• LibreOffice Base, which can be used as convenient front end for creating forms and reports for
data in a DB [145, 348],

• Python [437], a programming language which can connect to PostgreSQL using the psycopg
module [428], to the

• PgModeler, a tool with which we can conveniently design logical PostgreSQL DB schemas [7].

After completing the course, you should be able to productively work with databases, at least at a
beginner level. You should be able to realize simple database-based applications. And you should be
able to navigate the huge ecosystem of different database management systems, tools, and paradigms
in this field in order to pick the right tool for the right problem.

This book is intended to be read on an electronic device. Please do not print it. Help preserving
the environment.

This book is work in progress. It will take years to be completed and I plan to keep improving and
extending it for quite some time.

This book is freely available. You can download its newest version from https://thomasweise.
github.io/databases. This version may change since this book is, well, work in progress.

The book consists of two types of material: Materials that the author (Thomas Weise) has created by
himself and such that have been created by others. The vast majority of the material is teaching material
created by the author. This and only this material is released under the Attribution-NonCommercial-
ShareAlike 4.0 International license (CC BY-NC-SA 4.0). However, the book also includes some images
and figures created by others, which are marked explicitly and licensed under their authors’ terms. For
example, all logos and trademarks are under the copyright of their respective owners.

You can cite this book [436], e.g., by using the following BibTEX:

1 @book{databases ,
2 author = {Thomas Weise},
3 title = {Databases},
4 year = {2025} ,
5 publisher = {Institute of Applied Optimization ,
6 School of Artificial Intelligence and Big Data ,
7 Hefei University},
8 address = {Hefei , Anhui , China},
9 url = {https :// thomasweise.github.io/databases}

10 }

The text of the book itself is also available in the repository https://github.com/thomasWeise/
databases. There, you can also submit issues, such as change requests, suggestions, errors, typos, or
you can inform me that something is unclear, so that I can improve the book. Such feedback is most

iii

https://thomasweise.github.io/databases
https://thomasweise.github.io/databases
http://creativecommons.org/licenses/by-nc-sa/4.0
https://github.com/thomasWeise/databases
https://github.com/thomasWeise/databases
https://github.com/thomasWeise/databases/issues

CONTENTS iv

welcome. The book is written using LATEX and this repository contains all the scripts, styles, graphics,
and source files of the book (except the source files of the example programs).

Copyright © 2025
Prof. Dr. Thomas Weise (汤卫思教授)
at the Institute of Applied Optimization (应用优化研究所, IAO)
of the School of Artificial Intelligence and Big Data (人工智能与大数据学院)
of Hefei University (合肥大学),
in Hefei, Anhui, China (中国安徽省合肥市)

Contact me via email to tweise@hfuu.edu.cn with CC to tweise@ustc.edu.cn.

http://www.hfuu.edu.cn/aibd
http://www.hfuu.edu.cn/english
http://www.hfuu.edu.cn
mailto:tweise@hfuu.edu.cn
mailto:tweise@ustc.edu.cn

CONTENTS v

[book pdf] [course website]

https://thomasweise.github.io/databases

This book was built using the following software:

1 Alpine Linux 3.22.0
2 Linux 6.11.0 -1015 - azure x86_64
3
4 python: 3.12.11
5 PostgreSQL client: 16.9
6 LibreOffice: 24.2.7.2 420(Build :2)
7 psycopg: 3.2.9
8 yEd: 3.25.1
9 java: openjdk 21.0.7 2025 -04 -15

10 pgModeler: 1.1.0~ beta1 -1 build2.Debian Qt 6.4.2
11
12 latexgit_py: 0.8.27
13 latexgit_tex: 0.8.5
14 pycommons: 0.8.65
15 pdflatex: pdfTeX 3.141592653 -2.6 -1.40.28 (TeX Live 2025)
16 biber: 2.20
17 makeglossaries: 4.7 (2025 -05 -14)
18 ghostscript: 10.05.1 (2025 -04 -29)
19
20 date: 2025 -06 -07 05:52:03 +0000

https://thomasweise.github.io/databases/databases.pdf
https://thomasweise.github.io/databases
https://thomasweise.github.io/databases

Chapter 1

Introduction

Data is ubiquitously present. Names, addresses, bank accounts and transactions, online purchases,
train tickets, mobile phone numbers, 微信 (WeChat) chats, websites, books, manuals, program source
code, map data, highschool grades, health check results and medical histories, tax data, employment
histories, game scores . . . everything is data. Data is maybe one of the most important resources of
our digital age. And data needs to be stored, sorted, retrieved, backed-up, aggregated, summarized,
updated, and managed.

There are many different kinds of data.Since these kinds differ very much in their nature, the ways
in which we store and retrieve them vary as well.

CHAPTER 4. VARIABLES 69

Listing 4.3: A Python program showing several steps of the approximation of π using the method of
LIU Hui. (stored in file pi_liu_hui.py ; output in Listing 4.4)

1 from math import pi, sqrt
2
3 print(f"We use Liu Hui’s Method to Approximate \u03c0\u2248{pi}.")
4 e = 6 # the number of edges: We start with a hexagon , i.e., e=6.
5 s = 1.0 # the side length: Initially 1, meaning the radius is also 1.
6 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")
7
8 e *= 2 # We double the number of edges ...
9 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

10 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")
11
12 e *= 2 # We double the number of edges.
13 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.
14 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")
15
16 e *= 2 # We double the number of edges.
17 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.
18 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")
19
20 e *= 2 # We double the number of edges.
21 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.
22 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")
23
24 e *= 2 # We double the number of edges.
25 s = sqrt(2 - sqrt(4 - (s ** 2)))
26 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

↓ python3 pi_liu_hui.py ↓

Listing 4.4: The stdout of the program pi_liu_hui.py given in Listing 4.3.
1 We use Liu Hui ’s Method to Approximate π≈3.141592653589793.
2 6 edges , side length =1.0 give us π≈3.0.
3 12 edges , side length =0.5176380902050416 give us π≈3.1058285412302498.
4 24 edges , side length =0.2610523844401031 give us π≈3.132628613281237.
5 48 edges , side length =0.13080625846028635 give us π≈3.139350203046872.
6 96 edges , side length =0.0654381656435527 give us π≈3.14103195089053.
7 192 edges , side length =0.03272346325297234 give us π≈3.1414524722853443.

calculations and observing Figure 4.3, we get the equation:

s2e =

√
2 −

√
4 − s2

e (4.1)

π2e =
e

2
s2e (4.2)

Now that we have learned some programming, we do no longer need to type the numbers and com-
putation steps into a calculator. Instead, we can simply write them into a program, as illustrated
in Listing 4.3. We begin by setting the number of edges e = 6 and the side length to s = 1 , still
choosing r = 1. In each iteration of the approximation, we simply set e *= 2 , which is equivalent to
e = e * 2 , to double the number of edges. We compute s = sqrt(2 - sqrt(4 - (s ** 2))) hav-
ing imported the sqrt function from the math module. We print the approximated value of π as
e * s / 2 . Notice how elegantly we use the unicode characters π and ≈ via the escapes \u03c0 and
\u2248 , respectively, from back in Section 3.6.6 (and how nicely it indeed prints the greek character π
in the stdout in Listing 4.4). Either way, since Equations 4.1 and 4.2 are always the same, we can
simply copy-paste the lines of code for updating s , e , and printing the approximated value of π several
times.

Listing 4.4 shows the standard output stream (stdout) produced by this program. Indeed, each
new approximation comes closer to π. For 192 edges, we get the approximation 3.1414524722853443 .

CHAPTER 3. SIMPLE DATATYPES AND OPERATIONS 60

\u 0 1 2 3 4 5 6 7 8 9 a b c d e f

002 ! " # $ % & ' () * + , - . /

003 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

004 @ A B C D E F G H I J K L M N O

005 P Q R S T U V W X Y Z [\] ^ _

006 ` a b c d e f g h i j k l m n o

007 p q r s t u v w x y z { | } ~

597

598

4f6 你 佡 佢 佣 佤 佥 佦 佧 佨 佩 佪 佫 佬 佭 佮 佯

4f7 佰 佱 佲 佳 佴 併 佶 佷 佸 佹 佺 佻 佼 佽 佾 使

妎

奰 奱 奲 ⼥ 奴 奵 奶 奷 奸 她 奺 奻 奼 好 奾 奿

妀 妁 如 妃 妄 妅 妆 妇 妈 妉 妊 妋 妌 妍 妏

. . .

. . .

. . .
300

301

、 。 〃 〄 々 〆 〇 〈 〉 《 》 「 」『 』

【 】 〒 〓 〔 〕〖 〗〘 〙〚 〛 〜 〝 〞 〟

好你 。
\u4f60 \u597d \u3002

Figure 3.29: A subset of the Unicode character table including the Basic Lating characters as well as
some Simplified Chinese characters (简体中文) [364].

Best Practice 8

When defining a multi-line string literal, the double-quotation mark variant ("""...""") is
usually preferred over the single-quotation mark variant (’’’...’’’) [111, 328].

Figure 3.28 shows what happens if we print such a multi-line string. We first create the string by
writing the three lines This is a multi-line string. , I can hit enter to begin a new line. , and
This linebreak is then part of the string. . The first line begins with """ and the last one ends
with """ as well. Passing this text to the print function, well, prints exactly this three-line string.

We can also have multi-line f-strings. These then simply start with f""" . The example in Figure 3.28
presents such a multi-line f-string with two expressions for (string) interpolation which spans over three
lines.

3.6.6 Unicode and Character Representation

First Time Readers and Novices: This section is for readers who want to learn how text
is mapped to numbers in order to store it in a computer. First-time readers can safely skip
over it.

The memory of our computers basically stores chunks of bits of certain fixed sizes, say, bytes that
are composed of8 bit each. Usually, these are interpreted as integer numbers. While Python supports
arbitrarily large integers, usually we deal with integers composed of 8 bytes, i.e., 64 bits. The float
datatype in Python is also usually 8 bytes large, but these are interpreted differently in order to facilitate
fractional numbers (see, e.g., Figure 3.5). But how does this work with text?

Well, by mapping characters to numbers. A str is then nothing but a list of these numbers.
The system then knows how to interpret these numbers as characters. Maybe the most well-known
historical mapping is ASCII [6, 321], which, however, contained only latin characters, punctuation marks,

CHAPTER 1. INTRODUCTION 3

2014 2016 2018 2020 2022 2024
0.00

0.05

0.10

0.15

0.20

Fraction of GitHub Pushes

Year

Fr
ac

tio
n

of
 G

itH
ub

 P
us

he
s

Source: GitHut 2.0, https://github.com/madnight/githut/

Python
Java
JavaScript
C++
PHP
Ruby

TypeScript
HTML
C
Go
CSS
C#

Figure 1.1: The twelve most popular programming languages chosen based on the GitHub pushes over
the years. Source: [29].

languages in Figure 1.1. We find that Python became the leading languages at some point in 2018. In
the TIOBE index, which counts the number of hits when searching for a programming language using
major search engines, Python ranked one in January 2025 and was named the programming language
of the year for 2024 [148].

Python is everywhere nowadays, and it is the undisputed default language of choice
in many fields.

— Paul Jansen [148], 2025

If you will do programming in any future employment or research position, chances are that Python
knowledge will be useful. According to the 2024 annual Stack Overflow survey [356], Python was the
second most popular programming language, after JavaScript and HTML/CSS. In GitHub’s Octoverse
Report from October 2024 [109], Python is named the most popular programming language, ranking
right before JavaScript.

Second, Python is intensely used [50] in the fields of Artificial Intelligence (AI) [261], Machine
Learning (ML) [273], and Data Science (DS) [118, 197] as well as optimization, which are among the
most important areas of future technology. Indeed, the aforementioned Octoverse report [109] states
that the use in soft computing is one of the drivers of Python’s popularity.

Third, there exists a very large set of powerful libraries supporting both research and application de-
velopment in these fields, including NumPy [77, 124, 149, 213], Pandas [21, 183, 224], Scikit-learn [228,
248], SciPy [149, 333], TensorFlow [2, 173], PyTorch [225, 248], Matplotlib [139, 141, 149, 221],
SimPy [361], and moptipy [341]2, just to name a few. There are also many Python packages supporting
other areas of computer science, that offer, e.g., connectivity to databases (DBs) [330], or support for
web application development [3, 315]. This means that for many tasks, you can find suitable and
efficient Python libraries that support your work.

Fourth and finally, Python is very easy to learn [115, 324]. It has a simple and clean syntax and
enforces a readable structure of programs. Programmers do not need to declare datatypes explicitly3.
Python has expressive built-in types likes lists, tuples, and dictionaries. Thus, Python was also named
the language most popular for those who want to learn how to code in the aforementioned Stack
Overflow survey [356]. The fact that Python is an interpreted language makes it somewhat slower
compared to compiled languages like C. However, this also leads to a much easier workflow when
experimenting and programming, as sketched in Figure 1.2. It also is possible to interactively write
programs in an interpreter window. This means that you can execute commands in a terminal instead
of needing to compile and run programs. These features, in sum, make Python a good choice for
learning how to write programs.

2Yes, I list moptipy here, next to very well-known and widely-used frameworks, because I am its developer.
3at least during the first steps of learning

CONTENTS v

[book pdf] [course website]

https://thomasweise.github.io/programmingWithPython

This book was built using the following software:

1 Ubuntu 24.04
2 Linux 6.8.0-58- generic x86_64
3
4 python: 3.12.3
5 pytest: 8.3.5
6 pytest -timeout: 2.3.1
7 mypy: 1.15.0
8 ruff: 0.11.7
9 pylint: 3.3.6

10
11 latexgit_py: 0.8.27
12 latexgit_tex: 0.8.5
13 pycommons: 0.8.64
14 pdflatex: pdfTeX 3.141592653 -2.6 -1.40.25 (TeX Live 2023/ Debian)
15 biber: 2.19
16 makeglossaries: 4.53 (2023 -09 -29)
17 ghostscript: 10.02.1 (2023 -11 -01)
18
19 date: 2025 -04 -26 12:38:42 +0800

Programming with Python

Thomas Weise (汤卫思)

May 8, 2025

Abstract

The goal of this book is to teach practical programming with the Python language to high
school, undergraduate, and graduate students alike. Hopefully, readers without prior knowledge
can follow the text. Therefore, all concepts are introduced using examples and discussed compre-
hensively. All examples are available online in the GitHub repository associated with this book, so
that readers can play with them easily. Actually, the goal of the book is not just to teach pro-
gramming, but to teach programming as a part of the software development process. This means
that from the very beginning, we will attempt to push the reader towards writing clean code with
comments and documentation as well as to use various tools for finding potential issues. While
this book is work in progress, we hope that it will eventually teach all the elements of Python
software creation. We hope that it can enable readers without prior programming experience to
develop beautiful and maintainable software.

Figure 1.1: An example of an unstructured document data in form of some pages of the book Pro-
gramming with Python [437].

File Edit View Insert Format Styles Sheet Data Tools Window Help

Liberation Sans 10 pt

I4

Figure 1.2: An example of tabular data, namely a comma-separated values (CSV) file opened and
edited in LibreOffice Calc.

1

CHAPTER 1. INTRODUCTION 2

(1.3.1) An example of data stored in the
Extensible Markup Language (XML).

(1.3.2) An example of data stored in the
JavaScript Object Notation (JSON).

(1.3.3) An example of data stored in
the YAML Ain’t Markup Language™
(YAML).

Figure 1.3: Examples of the same dataset describing a course, its teachers, and the scores achieved by
some of its student, presented in the dataformats XML, JSON, and YAML.

For example, there is unstructured data, like texts, graphics, or this book, as illustrated in Fig-
ure 1.1. Such unstructured pieces of data are usually stored in single document files. An organization,
e.g., a company or a university, produces heaps of such documents. Every year, the students of our
university write Bachelor’s and Master’s theses. The different schools of our university submit reports,
presentations, budget plans, and so on. The university itself issues regulations and notices. There exist
common structures for the different document types in our university, such as templates for theses.
However, beyond such common structures, the data in the documents can vary enormously and there
is no way to unify it. Therefore, we “store” such data as singular documents and maybe organize these
documents in catalogs, e.g., by student ID, year, school, department, title, keyword, and so on. If we
want to retrieve the data from the theses, we can maybe search them by title or keyword. Once we
found the right document, we arrive at the end of what traditional technology can offer us and we have
to read them. Nowadays, maybe we can generate a summary using an Artificial Intelligence (AI), but
in the end, we still have unstructured information to digest.

Then, there is data that is tightly structured and self-contained. For data that can be stored in a
single table, there exist simple text formats like comma-separated values (CSV) [353] and applications
like Microsoft Excel [38, 167] and LibreOffice Calc [248, 348] tables are common. One example is
given in Figure 1.2. If the data is more complex, maybe hierarchically structured, formats like Extensible
Markup Language (XML) [46, 86, 230], JavaScript Object Notation (JSON) [45, 397], or YAML Ain’t
Markup Language™ (YAML) [85, 131, 230] may be more suitable. Examples of these formats are given
in Figure 1.3.

All of these formats have in common that they store data in singular documents. They offer clear and
strict rules how the data can be defined, structured, stored, and retrieved. They are open standards and
vendor-independent. With the exception of Microsoft Excel tables, they are also text-based formats.1

However, they are mainly suitable for data that, well, can be stored in single files efficiently. They are
not suitable for manipulating huge datasets. They are also not suitable for modelling more complex
relationships between different datasets.

For example, if we want to represent the personnel, schools, students, and assets of our university,
as sketched in Figure 1.4, we could try to do that in a single XML document. This document would
need to store which teacher belongs to which school, which student belongs to which school, which
student is supervised by which teacher, and so on. This can be done. Maybe a single person could
write such a document. The document will be huge. Finding something or changing something will
be incredibly tedious. If an error occurs, maybe a misplaced character, maybe an unescaped quotation
mark, then the whole document will no longer be valid. As soon as multiple people need to work on
such a document together, everything will collapse. Clearly, another way to work with relational data
is needed.

Welcome to the course book Databases. Here, we learn about exactly such a way. A way to deal
with structured and relational data. A way in which multiple users can concurrently work on a large
base of data while preserving data integrity. Before we begin to do that, let us clarify some simple
definitions:

1Today, Microsoft Excel tables are stored as compressed collections of XML documents.

CHAPTER 1. INTRODUCTION 3

teacher

workers_id

position

name

date_of_birth

school

name

student

student_id

name

date_of_birth

course

title

syllabus

equipment

type

price

number

belongs to

belongs to

supervises

teaches

takesowns

Figure 1.4: A diagram illustrating an example of the structure of data with more complex relations.

Definition 1.1: Database

A database (DB) is a computerized collection of interrelated stored data of potentially many
types, maybe accessed by many users and applications concurrently.

There exist many types of DBs. There are DBs for documents, DBs for complex objects, and DBs
geographical data. We, however, will mainly focus on DBs that store data in tables which may be
coupled by relationships:

Definition 1.2: Relational Database

A relational database is a DB that organizes data into rows (tuples, records) and columns (at-
tributes), which collectively form tables (relations) where the data points are related to each
other [81, 174, 175, 369, 389, 441].

Definition 1.3: Record

A record is a group of related data items treated as a unit by an application program.

For example, a record with student information could store the student’s name, Date of Birth (DOB),
ID number, and mobile phone number. Records are the basic units of data stored in relational databases.
A second key element of relational databases are the relationships between records. These relationships
guard the correctness and integrity of the data.

Before, we mentioned that a DB for our university could store “which student is supervised by which
teacher.” This would mean that each student record can be linked to teacher records. Does it have to
be linked to one? Maybe not, because when the student enrolls into the university, they may not yet
have a supervisor. So maybe it is OK if a student record is not linked to any supervisor record. But
if it is linked to a supervisor record, then it must be ensured that this record exists and is valid. Of
course, it may also be permissible that a student record is linked to more than one supervisor record.
Maybe the student has a primary supervisor and a secondary supervisor. As you can see, figuring out
how the records can be related alone can already be a bit challenging.

So now we have arrived at the kind of data that we want to talk about. We talk about data that
comprises entities of different types, say, student records, teacher records, course records, maybe even
teaching room records, schedule elements, grade records, and so on. Between such records, relations
exist that must not be violated. There could be arbitrarily many such records, record types, and
relationships. Indeed, DBs usually grow over time. And there often are many people (or programs)
who work with the DBs. It is easy to see that we will need some kind of software to manage all of
that.

CHAPTER 1. INTRODUCTION 4

Definition 1.4: Database Management System

The database management system (DBMS) is a software system for manipulating DBs. It
offers the ability to create, save, modify, and delete DBs, tables, and records, to add rows to
tables, and so on. It also manages and controls the access rights to the DB.

DBMSes can be arbitrarily complex pieces of software. If you think about what things we would like
to have when dealing with important data, it becomes immediately clear why.

First, there may be lots and lots of data and we want to access it. We want to find, add, remove, or
change certain records. And we want to do this reasonably quickly. So first, a DBMS provides efficient
access to the data. Thus, it needs to efficient and therefore complicated datastructures and access
algorithms. If you have learned Python programming [437], then you will know that finding records
in a sequential list is much slower than finding them in a hash table (a dict). but these data
structures exist in the RAM of a computer, and DBMSes need to work with files on the disk. Therefore,
the datastructures they implement become even more complicated.

Second, DBMSes also allow us to specify constraints on single data elements as well as the possible
relationships between data. Maybe we only permit DOBs between January 1st, 1900 and December 31,
2020, for all students and university employees. Maybe we strictly want to enforce that each university
employee record is assigned to one, exactly one, and only one school record. And they need enforce
that the data never violates the constraints and relationships.

Third, they also need to offer a user management and access rights management. In a DBs for
the human resources department (HR) in a big organization, for example, not every HR staff member
is allowed to access (and much less to modify) all the data. The same holds for the applications that
access the data and, maybe, present some of it on the website.

Fourth, a DBMSes also must take care to properly manage concurrent access, i.e., in situations
where multiple users and multiple programs work on the same DB at the same time, it must preserve
data integrity and consistency. It also has to offer functionality to create backups, i.e., copies of the
DBs that are preserved in case of errors, hardware faults, or other situations that could destroy the
original DBs. In some scenarios, DBs can become very huge, too big to be stored on a single computer.
Today’s DBMSes often allow us to partition the DBs and distribute them over a cluster of computers.

These are just some examples of the features that a DBMS must provide. We discuss more of
them in Section 1.1. From the fact that DBMSes need to take care of many complex tasks, it follows
that using, configuring, and maintaining them over many years is probably challenging, too. Working
with and maintaining DBs is a job that can require a lot of expertise. In many organizations, there are
specific positions for DB experts:

Definition 1.5: Database Administrator

A database administrator (DBA) is the person or group responsible for the effective use of DB
technology in an organization or enterprise.

And many organizations is an understatement. The HR departments for organizations like universities
and companies use relational databases to manage the members of the organization. The financial
departments keep track of salary payments, of budgets for projects, of funding, and benefits in relational
databases. Asset management departments maintain lists of, well, assets, like computers, furniture,
cars, tools, machines, expensive equipment, in relational databases. Banks manage accounts using
relational databases. The government manages tax payments using relational databases. Relational
databases store the information about the inventory and cashflow of online shops. Basically every
organization with a certain size uses multiple relational databases.And therefore, many have DBAs.

1.1 Features that we want from a Database

So far, we developed some rough ideas about what a DB is. We developed these ideas by contrasting
the requirements of organizations with the limitations of simple document files. To get maybe some
further ideas of what we want to accomplish with DBs, let us reiterate what requirements organizations
face when dealing with data. Let us work through this list of desired features by imagining that we

CHAPTER 1. INTRODUCTION 5

are building a DB for a bank. We can imagine that the DB is supposed to store customers, accounts,
transactions, and bank employees. Without getting too specific, we can explore our expectations based
on this idea. Our goal will be to compile some sort of wishlist of features.

1.1.1 Data Modelling and Representation

The most important capability that a DBMS needs to offer us is to create basic models, also called
schemas, of our data. These models can be understood as analog to the datastructures or classes that
imperative programming languages like Python offer to us. In Python, we can say: “This here is going
to be a list of integer numbers.” or “This is a class for students, each instance of it stores the name of
a student and their national ID number.” We also want something like this for DBs. So we need to be
able to make models define what can be stored and how it can be stored. In other words, the DBMS
must give us the tools into our hands to define and implement the structure of our data.

We here focus on the relational data model, whose basic primitives are tables, columns, the
datatypes of columns, constraints, and relationships between different tables. The so-called logical
schema for our DB (see Chapter 19) defines which tables exist, what the names and datatypes and
constraints of their columns are, and how the different tables are related.

In our bank example, we would maybe want to specify that there should be a table with customer
information, a table with bank employee information, a table for the accounts that exist, and a table
with all the transactions. We can define which information we want to store about customers, say
their name, ID number, mobile phone number, etc. This includes some basic validity constraints, e.g.,
names cannot be empty, ID numbers must follow the standard Chinese ID number (中国公民身份号
码) scheme [458], and so on. We must also be able to specify the relationships between these tables.
For example, each bank account must be associated with exactly one customer, but one customer may
have multiple accounts. Ideally, this can be done using a simple programming language.

But such a logical schema is only one of the aspects of data modelling that a DBMS must offer
us. There actually exist several different levels of abstractions which are involved in this process. For
example, it should be possible to separate this logical model from the way the data is actually organized
on the disk, i.e., the physical schema. The DBMSes should allow the DB designers to, for instance,
define indexes for tables to speed up the access. But it should not require the designer to deal with or
to necessarily understand the layout of the actual datastructures or the files on the disk.

1.1.2 Data Independence

The fact that the logical schema and a physical schema and data layout are different things is interesting.
When we think about this, we naturally arrive at the concept of data independence. When we design a
DB-based application, there will be different levels of abstraction which should be as independent from
each other as possible.

This is actually also similar to programming: If you write a program in Python, then you are using
high-level instructions and concepts, like loops, functions, classes, exceptions, and so on. All of these
concepts must somehow be realized in machine code. If you ever learned about assembly language
or actual machine code for CPUs, you know that this looks entirely different. Also, in Python, you
have datatypes like text strings which simply do not exist on the level of machine code and are instead
represented as blocks of bytes in memory. A Python programmer does not need to know or understand
this. But if they do, then they can probably become more efficient in their coding.

The application programs that access the data based on the logical schema should be independent
from the physical organization of the data on the disk. It should not really matter to them whether
records are stored or indexed in a hash, a B-tree, or as simple sequences in a file. If we create an
easy-to-use application as interface for our banking DB, this interface would interact with the logical
view of the data via the DBMS. How the data is actually stored does not matter to our application.
This is called physical data independence.

Rarely there exists only one single program that accesses a large DB. In our banking example,
let’s say that we create two applications: We create an application for the bank employees to manage
accounts and customers. We also create a web application through which the customers can log into
their bank accounts and make transfers. Both applications can have a different view on the data.
The first application may offer much more information and functionality only accessible to the bank
employees. The view on the data available second application may naturally be much more restrictive.

CHAPTER 1. INTRODUCTION 6

Conceptual/Logical Layer

External View 1 External View 2 External View...

Physical Layer
the actual way the data is stored

hidden from the applications

database

definition of the all the tables and

relationship in the database

different views on the data:

different applications get to see

different subsets of the data

database

Figure 1.5: The Three-Schema Architecture of databases (DBs) [6, 53, 343, 409].

It should work independently from the information outside of this view. If the structure of these
information (that it cannot see) is changed later, then this should have no impact on that program.
This is called logical data independence.

This means that a DBMSes should support designing DBs in the so-called three-schema architec-
ture [6, 53, 343, 409] illustrated in Figure 1.5: It should be possible to provide different views on the
data for different users and applications. At the bottom layer of the DB is the physical model managing
how data is stored. On top of that sits the conceptual (or logical) layer, where the structure of the
tables and the relationships between them are defined. On the highest level, different views on the data
can be provided for different applications.

In comparison, Microsoft Excel and LibreOffice Calc also offer us the ability to work with tables.
However, we cannot a priori define a model or structure of the data that we want to store in tables.
While we can create some relations between cells of different tables, enforcing relationships on new
rows that we are going to add is not possible. While we can format cells and columns to emulate
certain datatypes, we cannot strictly prevent that the user enters invalid data. So these applications
do not offer us any modeling capability on the logical level. We have no influence on the way the data
is stored and we cannot improve the performance by telling the applications to index the data in any
reasonable way. So there are no physical modeling capabilities either. Finally, any person who would
use a Microsoft Excel or LibreOffice Calc table as backend for different applications that have different
views on data shall be stripped of their degree and credentials as a software developer. Spreadsheets
therefore obviously do not have any schema design capabilities at all and most certainly do not support
anything resembling a three-schema architecture. A DBMS therefore needs to offer us data modeling
tools that are very far beyond spreadsheets.

1.1.3 Data Availability and Performance

The DBMS makes a collection of data is available to users and applications in a meaningful format
at a reasonable performance. We expect that the speed of reading, writing, changing, deleting, and
adding of data to the DB be high. A simple and reasonably abstract programming language should be
provided for querying and updating the DB. There should also be tools available that further simplify
the modeling, editing, and sorting of data as well as the generation of reports from data.

1.1.4 Data Integrity

The correctness and validity of the data is ensured. This includes several aspects: First, the modeled
relationships must be enforced. If it is stated each bank account is associated with exactly one customer,
then there must never be a bank account record that is not associated with an existing customer. Also,
there can never be two bank accounts with the same account ID. This property is called Consistency.

Let’s say that for each account, we store the current balance. If a customer deposits money, then
we can simply add the amount to their account’s balance. This is one operation where not much can
ge wrong. However, if money is transferred from one account of our bank to another account, then this
“looks like” two operations. But it actually is a single transaction. A DB should be consistent before
and after each transaction.

Atomicity means that such a transaction will either complete successfully in its entirety or fail. If
the transaction is completed successfully, i.e., commits, then all the changes become visible. If the

CHAPTER 1. INTRODUCTION 7

transaction is aborted, no change is performed. No transaction can complete partially, it is all-or-
nothing. This means that either the money is correctly subtracted from one account and added to
another or nothing happens. It must never happen that money is subtracted from one account but
does not arrive in another due to an intermediate error.

1.1.5 Concurrency Support and Isolation

Closely related to data integrity is the support for concurrency. Multiple users and multiple processes
can access and modify the DB at the same time. The DBMS preserves the integrity of the DB and of
all the views that the users and process have on the data.

Different concurrent updates to the same account must take place atomically and in isolation.
This means that if money is transferred from account A to account B while simultaneously money is
transferred from account B to account C, the two transactions should not influence each other. Both
transactions should be isolated. No money can be lost or appear from thin air.

Another aspect of concurrency is that in some cases, we want to distribute databases over cluster
of computers. Maybe the databases are too big. Maybe we want to increase the performance further
by dividing the data into several sets which are almost independent. Either way, an ideal DBMS should
offer us the functionality for doing that.

1.1.6 Durability and Data Safety

A basic feature that any DB needs to support is Durability : Once a transaction is committed, i.e., suc-
cessfully completed, its changes are permanent. The changes caused by the transaction are saved to
the DB permanently.

The DBMS has to ensure that data can be preserved in case of unforeseen situations. Indeed,
durability extends also to system crashes and failures. This includes the support of checkpoints and
recovery after restarts.

Of course, there are limits to this: At some lower layers, DBs are stored as files in the filesystem.
If the underlying hard disk fails, these files can be destroyed. There is no magical way a DBMS can
guard against this. No system can be entirely safe from hard disk failures and crashes.

Therefore, DBMSes need to offer methods to back up the data, i.e., to create copies of the DBs
and store them on other devices. Then, as long as reasonable backup strategies are employed, it must
be possible to re-create the data after the original DB was lost. It is clear that for a bank, the data
about its and its customers’ accounts is its business. If that data is lost, the bank is lost. So ensuring
that the DB is robust and that it can be recreated from backups is of paramount importance.

The features Atomicity, Consistency, I solation, and Durability together are often called ACID prop-
erties [163, 435].

1.1.7 Data Privacy and Security

The DBMS must enable the protection of data against access from unauthorized access from both
within and outside of the organization. It must be possible to specify roles for users and processes that
define which data they can access or modify. For example, the DBA of the bank’s DB needs to be able
to modify the structure of the DB, maybe add and modify tables. A normal bank employee should not
be able to do that. But they may be allowed to enter new records into certain tables of the the DB,
for instance, to add customers or to create new accounts. Thinking this through even further, a bank
employee may be assigned as manager to some customer’s accounts. The employees should only be
able to see the information in these accounts. All of this can be done by assigning roles to users and
processes and access rights to roles.

The aforementioned three-schema architecture goes hand-in-hand with security measures. At the
highest level, the applications, users can only see the data that they need to be able to see and nothing
more. This is ensured by the different views that are provided for them.

Additionally, all access to the DB should be password protected. Communication with the DB
happens over encrypted connections.

A DBMS should also support accounting and an audit trail. It must be possible to log information
regarding which user changed which dataset and when. This is required to pass certain government,
financial, or ISO certification audits.

CHAPTER 1. INTRODUCTION 8

1.1.8 Summary

It is quite obvious that the basic filesystem only offers very few of the properties discussed above. Using
simple data formats like CSV or even Microsoft Excel tables will not be a good choice either. While
one might realize concurrency by placing multiple interrelated such documents on a shared folder, there
certainly would not be any ACID guarantees. Multiple people editing them at the same time will wreak
havoc. Structured formats like JSON, XML, or YAML would allow us to represent complex data in
single documents, but this would make the multi-user access situation even worse. And none of these
solutions could provide any means to protect data integrity, let alone access control.

Instead, we require a software layer between the DB and the user processes. Honestly, we do not
even really care of this software layer actually stores the data, how the data is organized internally, or
how ACID is implemented. As long as this software, the DBMS, offers us the above features, we will
be happy.

1.2 History

We will now take a brief look at the history of DBs [1, 151, 254, 361, 450]. By understanding the
history of DBMSes, we can better understand the current behavior and features of DBs.

People began storing and processing information a very long time ago. A driving force to collect
and analyze data must have been the management of limited resources. Some of the earliest discovered
writings are Sumerian accounting and tax records on clay tablets from Mesopotamia, dating back four
thousand years [104, 229, 412], as illustrated in Figure 1.6. The collection and analysis of information
never stopped from then onwards.

When much data is stored, three big questions emerge: How do we store the information?, How
can I find a specific record?, and How can we condense and extract representative information from all
of this data?

Examples for the data organization include the Dewey Decimal Classification system for organizing
books in a libray, which emerged in the 1870s [66, 208]. This system and similar systems as the
one illustrated in Figure 1.7 are still in use today. Not much later, we enter the earliest stage of
data processing with machines. Data storage happened by using physical tools [179]. The punched
cards system by Hollerith, patented in the late 1880s [188, 189], was used in the 1890s US Census.
The automatic processing of these cards allowed the census to finish under budget and ahead of
time [396]. Hollerith’s Tabulating Machine Company eventually merged with three other companies into
International Business Machines (IBM). Punch cards similar to the latter model shown in Figure 1.8.2
made up 20% of the revenue of IBM as late as the mid-1950s [396].

In addition to punch cards, reels of punched tape emerged as data storages and later magnetic
tapes. The way data can be retrieved depends on how the data is stored. Punch cards can be
sorted, stacked, and otherwise cleverly be arranged to access information quickly. Tape-based storages

(1.6.1) Sumerian
school exercise
tablet, Cuneiform
tablet no. 10.
Between 2200
and 1900 BCE
LCCN2020741379.

(1.6.2) Old Baby-
lonian (Akkadian)
ledger of fish,
Cuneiform tablet
no. 20. Between
2200 and 1900 BCE
LCCN2020741389.

(1.6.3) Sumerian
cone inscription,
Cuneiform tablet
no. 22. Between
2200 and 1900 BCE
LCCN2020741391.

(1.6.4) Sume-
rian bill of sale,
Cuneiform tablet
no. 23. 2038 BCE
LCCN2020741392.

(1.6.5) Sumerian
votive plaque,
Cuneiform tablet
no. 25. Between
2144 and 2124 BCE
LCCN2020741394.

Figure 1.6: Several clay tablets dating back as far as 2200 before Common Era (BCE) from the collection
Cuneiform Tablets: From the Reign of Gudea of Lagash to Shalmanassar III [104].

https://www.loc.gov/item/2020741379
https://www.loc.gov/item/2020741389
https://www.loc.gov/item/2020741391
https://www.loc.gov/item/2020741392
https://www.loc.gov/item/2020741394

CHAPTER 1. INTRODUCTION 9

000 Computer Science, Informa�on & General Works 500 Science

010 Bibliographies 510 Mathema�cs

020 Libraries and Informa�on Sciences 520 Astronomy

030 Encyclopaedias and Books of Facts 530 Physics

040 Not Used/Unassigned 540 Chemistry

050 Magazines, Journals, and Serials 550 Earth Sciences and Geology

060 Associa�ons, Organiza�ons, and Museums 560 Fossils and Prehistoric Life (Palaeontology)

070 News Media, Journalism, and Publishing 570 Biology

080 General Knowledge 580 Plants (Botany)

090 Manuscripts and Rare Books 590 Animals (Zoology)

100 Philosophy and Psychology 600 Technology

110 Metaphysics 610 Medicine and Health

120 Epistemology 620 Engineering

130 Parapsychology and Occul�sm 630 Agriculture

140 Philosophical Schools of Thought 640 Home and Family Management

150 Psychology 650 Management and Public Rela�ons

160 Philosophical Logic 660 Chemical Engineering, Food Technology

170 Ethics 670 Manufacturing

180 Ancient, Medieval, and Eastern Philosophy 680 Manufacturing for Specific Uses

190 Modern Western Philosophy 690 Construc�on of Buildings

200 Religion 700 Arts and Recrea�on

210 Philosophy and Theory of Religion 710 Area Planning and Landscape Architecture

220 The Bible 720 Architecture

230 Chris�anity 730 Sculpture, Ceramics, and Metalwork

240 Chris�an Prac�ce and Observance 740 Design and Related Arts

250 Chris�an Pastorial Pracrice and Religious Orders 750 Pain�ng

260 Chris�an Organiza�on, Social Work and Worship 760 Printmaking and Prints

270 History of Chris�anity 770 Photography, Computer Art, Film, Video

280 Chris�an Denomina�ons 780 Music

290 Other Religions 790 Sports, Games, and Entertainment

300 Social Sciences 800 Literature

310 Sta�s�cs 810 American Literature in English

320 Poli�cal Science 820 English and Old English Literatures

330 Economics 830 German and Related Literatures

340 Law 840 French and Related Literatures

350 Public Administra�on and Military Science 850 Italian, Romanian, and Related Literatures

360 Social Problems and Social Services 870 Spanish, Portuguese, Galician Literatures

370 Educa�on 870 La�n and Italic Literatures

380 Commerce, Communica�ons, Transporta�on 880 Classical and Modern Greek Literatures

390 Customs, E�que�e, and Folklore 890 Other Literatures

400 Language 900 History and Geography

410 Linguis�cs 910 Geography and Travel

420 English and Old English Language 920 Biography and Genealogy

430 German and Related Languages 930 History of Ancient World (to ca. 499)

440 French and Related Languages 940 History of Europe

450 Italian, Romanian, and Related Languages 950 History of Asia

460 Spanish, Portuguese, Galician 960 History of Africa

470 La�n and Related Italic Lan guages 970 History of North America

480 Classical Greek and Related Languages 980 History of South America

490 Other Languages 990 History of Other Areas

519: Probabili�es and
Applied Mathema�cs

519: Probabili�es and
Applied Mathema�cs

519.6: Op�miza�on

00: Computer Science,
Knowledge & Systems

005: So�ware Development,
So�ware, Data, Security

005.1: Programming

005.13: Languages

005.133: General
Programming Languages

Python

005.7 Data

005.75 Specific
Databases and Data Files

005.756 Rela�onal
Databases

PostgreSQL

Figure 1.7: An illustration of the Melvil Decimal System [264], a free variant of the Dewey Decimal
System named after its inventor Melvil Dewey, and the steps needed to locate books on Python,
PostgreSQL, or optimization.

(1.8.1) Sketches of Hollerith’s tabulator machine that used punched bards
from his 1892 patent [189].

(1.8.2) An IBM 029 punched
card. Source: [387], licensed under
CC BY-SA 4.0.

Figure 1.8: A very early patented machine using punched cards and an IBM 029 punched card, which
was available in the 1960s to 1980s.

requires us to sequentially spool through the tape to find the data we are looking for. Either way,
efficient organization of data and media became more and more important. In 1958 the Electronic
Recording Machine Accounting (ERMA) Mark 1 was developed as automated system for organizing
banking records [23]. It had features of file system, although the term “files” was meant literally – they
organized paper-based documents, using a structure reminiscent of the aforementioned hierarchical,
number-based Dewey categorization method.

In 1956, the IBM 305 RAMAC came out: the first to use a random-access disk drive [319] as shown
in Figure 1.9. It could store five to ten megabytes. Its true innovation was that from now on, it was
no longer necessary to store and access data in a sequential order [63]. Instead, the data on its disks
could be accessed in any order (hence the name random-access disk drive).

The first file systems for computers appeared in the 1960s. The Atlas system in the UK had offered
a rudimentary file system functionality already in 1961 [222, 258], as sketched in Figure 1.10. The
Operating System (OS) Compatible Time-Sharing System (CTSS) [94] at the MIT had a flat filesystem

https://creativecommons.org/licenses/by-sa/4.0

CHAPTER 1. INTRODUCTION 10

Figure 1.9: Image from 1956: An IBM 305 RAMAC (right) with two of the (at that time) very new
IBM 350 hard disks (middle and left). Source: [158].

Figure 1.10: Images from the “Ferranti Computing Systems Atlas 1 Brochure: 1962” [258]. © UKRI
Science and Technology Facilities Council, available from https://www.chilton-computing.org.
uk.

Figure 1.11: Some screenshots of the terminal of Multics MR12.7 taken from [61], licensed under
CC BY-SA 4.0.

only one or two years later [283]. The hierarchical file system for the Multiplexed Information and
Computing Service (Multics) OS [61, 95], published in 1965, already had surprisingly many advanced
features that we know from today’s file systems: fine-grained access control for data privacy, backup
ability, links, and IO queue management. Inheriting from CTSS, it itself became the ancestor of Unix
which, in turn, inspired Linux. The ls command shown in Figure 1.11 also was a feature of Multics
(adapted from CTSS) and has survived all those years [149]. File systems are very good for organizing
documents and heterogeneous data. They are not very suitable to main the sort of relational data and
to achieve the features that would like DBs to have.

The need for systems that supported modern DB features became aparent. At the same time, it
was not really clear how that could be done. Different groups began developing concepts, ideas, and
prototypes.

The first version of the Integrated Data Store (IDS) was developed by Bachman in 1961/62 at
General Electric [13, 14]. IDS offered the first direct access DB, holding data in virtual memory. It may
have been the first real DBMS and Bachman won the 1973 A.M. Turing Award for this work [173]. IDS

https://www.chilton-computing.org.uk
https://www.chilton-computing.org.uk
https://creativecommons.org/licenses/by-sa/4.0

CHAPTER 1. INTRODUCTION 11

was based on a network model, further advancing data management by structuring complex relationships
in data. The programmer acted as navigator through the data. The idea to step-by-step navigate
through data, updating it if needed, is more complicated and slower compared to the relational approach
of today’s DBs. IDS and similar systems encode elements of the views of the data as part of the DB
structure, which make IDS less flexible. The Database Task Group of the Conference on Data Systems
Languages (CODASYL) [390], a standardization body for the data processing industry, took over many
of Bachman’s ideas for IDS in the late 1960s. CODASYL is best known for its creation of the COBOL
programming language [173].

Only slightly later than IDS, another DBMSes that could handle the structured storage of records
obeying datatype constraints appeared. IBM developed the Information Management System (IMS)
for the Apollo space program [225]. The system was launched 1965/1967 [31]. IMS is still sold as a
product and still exists today. Like IDS, it was not a DBMS for relational databases. Instead, it offered
hierarchically structured records. This system, too, had a set of disadvantages [233]: If your data is
not structured hierarchically, some records may need to be duplicated. For example, if we have a DB
that assigns students to courses, then a student would appear in each of the records of the courses
that she attends. The programming language offered by the IMS for the data access is also relatively
low-level and, for example, the search strategy has to be implemented. Finally, changes to the logical
schema will require us to perform cascading changes in the code accessing them.

Both IDS and IMS offered a strikingly new concept: The application code and the code for physical
data storage and retrieval were separated. Between them, the Data Language One (DL/I) was located
as interface in IMS. IDS offered the Data Description Language (DDL) to define types of logical
records and the Data Manipulation Language (DML) to manipulate and navigate the data. The DBMS
controls how the data is stored and loaded. Application programs can navigate through the data using
the much simpler interface languages. As we briefly mentioned before: DBMSes can become arbitrarily
complicated pieces of software, and one major part of this is the code to efficiently store and retrieve
data.

Just think about it: All data is eventually mapped/stored to sequential files on a hard disk or other
storage medium. You must be able to add new records and delete old records. You must also be able
to find them. This alone is not easy to implement, but all of that has to be efficient, so (today) one
would probably like to use datastructures like hashes, tress, and sorted lists . . . all of which are actually
located in sequential files. Before IDS and IMS, this had to be part of your application’s code. Actually,
it had to be part of the code of all applications that accessed the data, if multiple such applications
exist [31]. Now this is part of IDS and IMS, and the user can ignore this complexity and just use a
simple programming language where she can define which record to load, change, delete, or add.

Future users of large data banks must be protected from having to know how the
data is organized in the machine (the internal representation).

— Edgar Frank “Ted” Codd [81], 1970

In 1970, the seminal paper “A Relational Model of Data for Large Shared Data Banks” by Codd
appeared, starting with the above quote. He noticed the shortcomings of the IDS network model,
namely that the programmers accessing the data still need a lot of information about how the data is
actually represented and organized internally. Even Bachman himself mentioned that issues with IDS
arose when users did not consider how data is internally sorted [14].

Codd wanted to protect programmers against such errors. He models data as a relational view by
using tables, that he calls relations. Each column has a type that defines its permitted values. Each
row must be distinct. One set of columns per table (usually a single column), the primary key, is used
to uniquely identify the row. Rows in one table can references other rows of either the same table or
another table. Therefore, some column(s) of the table (called foreign key) then store the primary key
of the row to be reference. The data in the DB is then a collection of tables. He further describes a set
of operations that can work on the tables to extract information, which we will discuss later on. By the
end of the 1970s, over a dozen DBMSes had been implemented based on these new concepts [223].
Codd won the A.M. Turing Award for his work.

The semantic division between the physical storage representation of data and the logical layout and
access was a very important step in the development of DBs. This separation also became a physical
one: Computer networks as distributed systems began to emerge in the 1960s [238]. Baran had the
idea of routing messages over multiple network switches in 1960 [17–21]. In 1961, Kleinrock proposed
packet switched networks, where messages are split into multiple packages that each individually travel

CHAPTER 1. INTRODUCTION 12

U. Utah

ARPA Network Topology (example)

Lincoln Lab

Harvard U.Proj. MAC

BBN

B.T.L. Dartmouth

College

Carnegie

Mellon U.

Pentagon

U. Michigan

Washington
Univ.

SDC

UCLA

UC Santa
Barbara

SRI

RANDStanford U.

UC Berkeley

Univ. of

Illinois

Figure 1.12: 19 node example of the ARPANET structure in the Request for Quotations shipped to
vendors in 1968 [227].

1 SELECT name , student_id FROM table_students
2 WHERE date_of_birth >= ’2000 -01 -01’;

Figure 1.13: An example of an Structured Query Language (SQL) query.

their corresponding optimal paths [228]. This allows multiple users in a network to share the same data
path at the same time. This idea of packet switching was also independently developed by Baran [19]
and Davies [117–119].

Licklider proposed standardizing computer and networking languages to increase interoperability
and to allow researchers to build upon each other’s work in 1963 [249]. This could be considered as
the first description of the idea of the internet. In 1965/66, the TX-2 computer at MIT Lincoln Lab
in Massachusetts and the Q-32 in Santa Monica, California were connected, forming the first wide-
area network [332]. In 1967, ARPANET, the precursor of the internet was conceived by the Advanced
Research Projects Agency as a network connecting 35 computers at 16 sites in the USA [238, 332].
Figure 1.12 shows an 19 node example structure of the ARPANET shipped to vendors in 1968 [227]. In
1969, the first four nodes of the network became operational and in 1972, ARPANET was demonstrated
publically [238, 332].

Canaday, Harrison, Ivie, Ryder, and Wehr proposed putting a DBMS on a dedicated back-end
computer in 1974 [55]. Applications and users would access the DBMS from another computer via a
communication link. The first Ethernet was developed at the Xerox Palo Alto Research Center (PARC)
in 1976 by Metcalfe and Boggs [91], TCP/IP became deployed 1983, and in the 1990s, the internet
took off [238]. The term clients was coined in 1978 by Israel, Mitchell, and Sturgis [210]. From now
on, the notation of the client-server architecture [35, 284, 322, 331, 394], in which most DBMSes are
implemented today, was formalized. From then on, the development was unstoppable.

Another very important step forward for DBMSes was the SEQUEL language developed by Cham-
berlin and Boyce in 1974 [65] as part of the IBM System R project. The language was based on
Codd’s relational algebra, but wrapped it into an easy-to-understand language for data queries. Two
years later, it was extended by more features, such as methods for inserting, deleting, and updating
records [64]. In 1977, the SEQUEL name was shortened to SQL, an acronym for Structured Query
Language (SQL) [63]. An example of an SQL query is shown in Figure 1.13. At the same time where
SEQUEL was developed, the Interactive Graphics and Retrieval System (INGRES) group at the Uni-
versity of Berkeley in California, too, conducted research on DBs [381]. The open environment of
publishing latest research and collaboration between the researchers contributed significantly to their
success. They jointly received the ACM Software System Award in 1988 [63].

At about the same time where SQL emerged, better abstractions and tools for the design of relational
databases began appearing. Entity relationship diagrams (ERDs) like Figure 1.14 are charts that allow
us to model the relationship between different objects in a DB [71, 219]. They were proposed in 1975
by Chen [72] and became part of a US ANSI standard in the late 1980s [161, 291]. Chen’s work
extended the data structure diagrams introduced by Bachman [12] in 1969 and provided better ways

CHAPTER 1. INTRODUCTION 13

Student enrolls into Curriculum

Name Student ID Title

consists of Module

Title Syllabus

Figure 1.14: A simple example of an entity relationship diagram (ERD).

to model attributes and relationships. Chen was also inspired by his Chinese cultural heritage when
developing ERDs [69, 70]:

What does the Chinese character construction principles have to do with ER mod-
eling? The answer is: both Chinese characters and the ER model are trying to model
the world – trying to use graphics to represent the entities in the real world. Therefore,
there should be some similarities in their constructs.

— Peter Pin-Shan Chen [69], 1997

The Oracle Database, the first commercial SQL-based product, was released in 1979 [63] by the
company Software Development Laboratories (SDL), which later renamed itself to Oracle [282]. It was
an immediate success, because it was portable and could run cheaper hardware. IBM released its SQL
DBMS DB22 in 1983 [63, 75, 172]. SQL became a US ANSI standard in 1986 and an international
ISO standard in 1987 [108, 109]. The standard continues to evolve, with its latest version being released
in 2023 [202].

In the 1990s, several open source implementations of DBMSes became available for free [63]. We
will discuss them together with some commercial DBs in the next section.

1.3 Software

A wide range of DBMSes for relational databases exist. The DB-Engines Ranking of Relational
DBMS (June 2025) [121] lists 166 products. The “Stack Overflow 2024 Developer Survey” asked
the opinions of developers on 35 systems [377]. A selection of the mentioned systems in these yearly

2017 2018 2019 2020 2021 2022 2023 2024

1

2

3

4

5

10

20

PostgreSQL MySQL SQLite Microsoft SQL Server MongoDB

year

ra
n
k

Redis

MariaDB Elasticsearch Oracle Amazon DynamoDB Firebase Cloud Firestore

BigQuery Microsoft Access Supabase H2 Cosmos DB Snowflake

InfluxDB Cassandra Databricks SQL Neo4J IBM DB2 Clickhouse

Solr DuckDB Firebird Couch DB CockroachDB Couchbase

https://survey.stackoverflow.co/2017 ... https://survey.stackoverflow.co/2024https://survey.stackoverflow.co/2017 ... https://survey.stackoverflow.co/2024

Figure 1.15: A chart of a selection of the DBMSes with which developers have worked, according to
the StackOverflow Developer Surveys from 2017 to 2024 [377]. Not all of them are relational DBMSes.

CHAPTER 1. INTRODUCTION 14

(1.16.1) The MariaDB logo is under the copyright of its
owners.

(1.16.2) The PostgreSQL
logo is under the copyright
of its owners.

(1.16.3) The SQLite logo is un-
der the copyright of its owners.

(1.16.4) The LibreOffice logo is under the copyright of
its owners.

Figure 1.16: The logos of several important OSSes / DBMSes.

surveys since 2017 is illustrated in Figure 1.15. A few of these popular DBMSes were already mentioned
in our history section. We can distinguish two types of DB products:

• Open source software (OSS) is software whose source code is made availabe for free, usually
through the internet. Such software is often maintained by groups of volunteers, sometimes with
financial support of enterprises or governmental grants. The software does not cost money. Open
source projects are often hosted on collaborative platforms like GitHub and manage the evolution
of their code via Version Control Systemss (VCSes) like Git. According to Hoffmann, Nagle, and
Zhou the value of OSS exceeds eight trillion dollars in 2024 [186].

• Proprietary / commercial software is usually closed-source and developed by an enterprise which
sells it as product. These products are either sold on a per-version basis or via maintenance
contracts. The enterprises often offer good service and advanced support, however it is usually
not easy to change vendors and future pricing developments are hard to predict.

We here will discuss a small selection of products from either family, which, however, must remain brief
and incomplete.

1.3.1 Open Source Relational Database Management Systems

A very big chunk of the relational databases is managed by open source DBMSes. These systems
do not cost money and their source code is readily available in the internet. Large communities exist
around them that can offer all kinds of advise. This makes them very attractive for developers and
users. Several of these systems are around since the 1990s. In the early 2000s, they took off and began
being used in more and more applications and systems [295]. By now, they are mature and well-tested
products [63]. Figure 1.16 shows some of their logos.

MySQL is such an open source DBMS for relational databases [42, 138, 326, 391, 443]. It was
originally developed by Michael Widenius and David Axmark at the Swedish company MySQL AB and
released in 1996 [63]. It soon gained widespread use as part of the LAMP Stack, i.e., a system setup for
web applications based on the Linux OS, the Apache webserver, the MySQL database, and the server-side
scripting language PHP [56, 181]. Probably as the result of this, it ranked first in the Stack Overflow
Developer Surveys in the years 2017 to 2022 [377]. In the recent survey [286] of the code of 371 Java
open source projects on GitHub, MySQL was found to be the most-used relational DBMS. MySQL AB
was acquired by Sun Microsystems in 2008, which in turn was acquired by Oracle in 2010 [63]. MySQL
staied open source.

After the acquisition by Oracle, some of the original developers of MySQL, including Michael Wide-
nius, created a fork of MySQL: MariaDB [10, 11, 25, 138, 323]. They promise that MariaDB will stay
open source forever. In [286], MariaDB was already the fifth most popular relational DBMS.

PostgreSQL [146, 279, 309, 391] is an object-relational DBMS, meaning that it supports concepts
from Object-Oriented Programming (OOP), such as inheritance relationships between tables. It also
supports many additional types like JSON objects and geometric types. PostgreSQL emerged from the
POSTGRES project, the successor of the INGRES project at the University of Berkeley in California [63].

https://mariadb.org
https://www.postgresql.org
https://www.postgresql.org
https://sqlite.org
https://www.libreoffice.org

CHAPTER 1. INTRODUCTION 15

It may be the most fully-featured of the existing open source SQL database systems (DBSes) In the
“Stack Overflow 2024 Developer Survey”, it was the most popular DBMS [377] and in the open source
code survey [286], it ranked second.

The SQL DB with the widest distribution is SQLite [63, 153, 183, 445]. It breaks with the common
approach to offer access to the DB follwing a client-server architecture. Instead, it is directly loaded
as a library in the process that uses. Today, it is installed on nearly every smartphone, computer, web
browser, television, and automobile [63, 153, 445]. It was first released in 2000 and its core designer
Richard Hipp received the SIGMOD Systems Award in 2017 [63].

The concept of DBMSes that can work on stand-alone files is also implemented in the open source
office suite LibreOffice [154, 248, 348]: LibreOffice Base [145, 348]. LibreOffice Base is more than
a DBMS working on single file. Instead, it offers a powerful user interface that can also connect to
databases such as MySQL, MariaDB and PostgreSQL. The user interface allows you to conveniently
design tables, views, queries, forms, and reports for the DBs it connects to. LibreOffice Base is a
free alternative to the commercial product Microsoft Access [29, 77, 413], which offers a similar
functionality.

Many of the examples used in this book will be implemented based on PostgreSQL and we will also
play around with LibreOffice Base.

1.3.2 Commercial Relational Database Management Systems

There are many powerful commercial DBMSes. Different from the open source solutions, they do cost
money and their source code is closed, i.e., the user cannot access it and only has an installer and
program binaries to work with.

As already discussed, the first commercial SQL-based product was the Oracle Database [63, 282].
This product is still one of the most successful and widely used commercial DBs with many advanced
features [30, 235]. In June 2025, it ranked first as most popular DBMS in [121] and it was the fourth
most popular DBMS in [286]. How to migrate an Oracle Database to PostgreSQL is discussed in [237].

The third-ranking DBMS in [121] was the Microsoft SQL Server [5, 298, 442]. This DBMS dates
its roots back to 1988, when Microsoft, Ashton-Tate, and Sybase collaborated to create a variant of
Sybase SQL Server for the OS IBM OS/2 [395]. The first version of this new DB server was released
in 1989. Later versions were released for Microsoft Windows NT. Today, like Oracle Database, it also
runs on Linux. With Microsoft Access [240], Microsoft also offers a DBMS mainly used on single
computers by single users. It is an incredibly useful and convenient tool, which combines the features
of a relational database with advanced form design and reporting features [29, 77, 262, 413]. This
system is probably the role model after which LibreOffice Base was shaped. Most things that can be
done with LibreOffice Base that we will explore can just as well be done with Microsoft Access, in
many cases even more conveniently (but LibreOffice Base is free. . .).

IBM’s DB2 [16, 75] is another early relational DBMS [172]. It emerged as a software for power-
ful mainframe computers that IBM manufactured themselves. Mainframes are very powerful central
computers, often used by large organisations and businesses. While Oracle focussed on providing DBs
for normal computers, IBM focussed on powerful central servers. By 1989, half of all mainframe
customers had DB2 installed [172]. DB2 still ranked sixth in the DB-Engines Ranking of Relational
DBMS (June 2025) [121] and 23rd in the “Stack Overflow 2024 Developer Survey” [377].

Of course, we here can only give a very brief and very incomplete overview on the different open
source and commerical relational DBMSes on the market. The vast number of such systems and the
fact that they are core cash cows for huge companies such as Microsoft, Oracle, and IBM underline
the importance of this field. In our journey, we will use the free PostgreSQL as platform to experiment
with DBs, which makes sense because it is the top-ranking DBMSes in [377], ranks fourth in [121],
and is, well, free.

1.4 Further Reading

The author of this book is not really a DB buff. I did several DB projects, some for hobby an some
even in commercial use, but neither of them had a really large scale. And most of the things I did were
self-taught, mainly through technical manuals and documentation, complemented by classes I took at
the university. This book is an attempt to create a resource that can help students to learn about the
field of DBs on a practical level, with links to theory.

CHAPTER 1. INTRODUCTION 16

There are many resources, internet websites as well as physical books, that are of very high quality.
Actually, this book cites and builds upon several of these resources. They complement, extend, and
expand upon the topics that we discuss here. For every fact that we explain in this book, we try to
cite proper sources at the end the book. Please always feel free to supplement the reading of this book
with the following resources.

1.4.1 Lectures at Universities

Here we provide a list of lectures at different universities for which the slides are online available. When
we discuss some topics, where appropriate, we will also reference the corresponding slides of these
classes as easily-accessible and concise further reading.

• Yuriy Shamshin. Databases. ISMA University of Applied Sciences, May 2024. URL: https:
//dbs.academy.lv,

• Tim Kraska and Michael Cafarella. 6.5830/6.5831: Database Systems. Massachusetts Institute
of Technology (MIT), Aut. 2024. URL: https://dsg.csail.mit.edu/6.5830,

• Charles C. Palmer. COSC 61 Winter 2025: Database Systems. Dartmouth College, Jan.–Mar.
2025. URL: https://www.cs.dartmouth.edu/~cs61,

• Kevin Treu. CSC-341: Database Management Systems. Furman University, Spr. 2025. URL:
https://cs.furman.edu/~ktreu/csc341,

• Junghoo “John” Cho. CS143: Data Management Systems. University of California – Los Ange-
les (UCLA), Sept. 2016–Aut. 2021. URL: http://oak.cs.ucla.edu/classes/cs143,

• Saty Raghavachary. CSCI 585: Database Systems. University of Southern California (UCS), Spr.
2024. URL: https://bytes.usc.edu/cs585/s24-d-a-t-aaa/lectures,

• Todd J. Green, ed. ECS 165A Winter 2011 – Introduction to Database Systems. University of
California, Davis, Win. 2011. URL: https://web.cs.ucdavis.edu/~green/courses/ecs165
a-w11 as well as Todd J. Green, ed. ECS 165B Spring 2011 – Database System Implementation.
University of California, Davis, Spr. 2011. URL: https://web.cs.ucdavis.edu/~green/
courses/ecs165b-s11,

• Donnie Pinkston. CS101b – Introduction to Relational Databases. California Institute of Tech-
nology (Caltech), Win. 2006–Spr. 2007. URL: http://users.cms.caltech.edu/~donnie/
dbcourse/intro0607,

• Heinz Schweppe and Manuel Scholz. Einführung in die Datenbanksysteme. Datenbanken für
die Bioinformatik. Freie Universität Berlin, Apr.–Oct. 2005. URL: https://www.inf.fu-
berlin.de/lehre/SS05/19517-V, and

• Scott L. Vandenberg. CSE 594: Database Management Systems. University of Washington, Aut.
1999. URL: https://courses.cs.washington.edu/courses/csep544/99au.

1.4.2 Books on Databases in General

The following books may be useful for further reading:

• Christopher Painter-Wakefield. A Practical Introduction to Databases. Runestone Academy,
2022. URL: https://runestone.academy/ns/books/published/practical_db/index.
html,

• Abraham “Avi” Silberschatz, Henry F. “Hank” Korth, and S. Sudarshan. Database System Con-
cepts. 7th ed. McGraw-Hill, Mar. 2019. ISBN: 978-0-07-802215-9,

• Jeffrey A. Hoffer, Venkataraman Ramesh, and Heikki Topi. Modern Database Management.
13th ed. Pearson Education, Inc., Mar. 2021. ISBN: 978-0-13-477365-0,

• Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems. 7th ed. Pearson
Education, Inc., June 2015. ISBN: 978-0-13-397077-7,

https://dbs.academy.lv
https://dbs.academy.lv
https://dsg.csail.mit.edu/6.5830
https://www.cs.dartmouth.edu/~cs61
https://cs.furman.edu/~ktreu/csc341
http://oak.cs.ucla.edu/classes/cs143
https://bytes.usc.edu/cs585/s24-d-a-t-aaa/lectures
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11
https://web.cs.ucdavis.edu/~green/courses/ecs165b-s11
https://web.cs.ucdavis.edu/~green/courses/ecs165b-s11
http://users.cms.caltech.edu/~donnie/dbcourse/intro0607
http://users.cms.caltech.edu/~donnie/dbcourse/intro0607
https://www.inf.fu-berlin.de/lehre/SS05/19517-V
https://www.inf.fu-berlin.de/lehre/SS05/19517-V
https://courses.cs.washington.edu/courses/csep544/99au
https://runestone.academy/ns/books/published/practical_db/index.html
https://runestone.academy/ns/books/published/practical_db/index.html
https://isbnsearch.org/isbn/978-0-07-802215-9
https://isbnsearch.org/isbn/978-0-13-477365-0
https://isbnsearch.org/isbn/978-0-13-397077-7

CHAPTER 1. INTRODUCTION 17

• Alfons Kemper and André Eickler. Datenbanksysteme: Eine Einführung. Walter de Gruyter
GmbH, 2015. ISBN: 978-3-11-044375-2,

• Mana Takahashi, Shoko Azuma, and Tokyo, Japan: Trend-Pro Co, Ltd. The Manga Guide to
Databases. No Starch Press, Jan. 2009. ISBN: 978-1-59327-190-9,

• Michael J. Hernandez. Database Design for Mere Mortals: 25th Anniversary Edition. 4th ed.
Addison-Wesley Professional, Dec. 2020. ISBN: 978-0-13-678813-3,

• Bill Karwin. SQL Antipatterns: Avoiding the Pitfalls of Database Programming. Pragmatic
Bookshelf by The Pragmatic Programmers, L.L.C., June 2017. ISBN: 978-1-934356-55-5,

• Carlos Coronel and Steven Morris. Database Systems: Design, Implementation, & Management.
13th ed. Cengage Learning, Jan. 2018. ISBN: 978-1-337-62790-0,

• Christopher J. Date. An Introduction to Database Systems. 8th ed. Pearson Education, Inc.,
July 2003. ISBN: 978-0-321-19784-9,

• Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. 3rd ed. Mc-
Graw-Hill, Aug. 2002. ISBN: 978-0-07-246563-1,

• Jan L. Harrington. Relational Database Design and Implementation. 4th ed. Morgan Kaufmann
Publishers, Apr. 2016. ISBN: 978-0-12-849902-3,

• Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The Complete
Book. 2nd ed. Pearson Education, Inc., May 2008. ISBN: 978-0-13-187325-4,

• Terry Halpin and Tony Morgan. Information Modeling and Relational Databases. 3rd ed. Morgan
Kaufmann Publishers, July 2024. ISBN: 978-0-443-23791-1,

• Peter Bailis, Joseph M. Hellerstein, and Michael Stonebraker, eds. Readings in Database Systems.
5th ed. 2015. URL: http://www.redbook.io,

• Jim Melton and Alan R. Simon. SQL: 1999 – Understanding Relational Language Components.
Morgan Kaufmann Publishers, June 2001. ISBN: 978-1-55860-456-8,

• John Vincent Carlis and Joseph D. Maguire. Mastering Data Modeling: A User Driven Approach.
Addison-Wesley Professional, Nov. 2000. ISBN: 978-0-201-70045-9,

• Allen Taylor. Introducing SQL and Relational Databases. Apress Media, LLC, Sept. 2018.
ISBN: 978-1-4842-3841-7, and

• Ryan K. Stephens and Ronald R. Plew. Sams Teach Yourself SQL in 21 Days. 4th ed. Indianapolis,
IN, USA: SAMS Technical Publishing and Hoboken, NJ, USA: Pearson Education, Inc., Oct. 2002.
ISBN: 978-0-672-32451-2 and its German translation Ryan K. Stephens, Ronald R. Plew, Bryan
Morgan, and Jeff Perkins. SQL in 21 Tagen. Die Datenbank-Abfragesprache SQL vollständig
erklärt (in 14/21 Tagen). 6th ed. Markt+Technik Verlag GmbH, Feb. 1998. ISBN: 978-3-8272-
2020-2..

1.4.3 Books on Specific Database Technologies

The following books may be useful for further reading:

• Luca Ferrari and Enrico Pirozzi. Learn PostgreSQL. 2nd ed. Packt Publishing Ltd, Oct. 2023.
ISBN: 978-1-83763-564-1,

• Alkin Tezuysal and Ibrar Ahmed. Database Design and Modeling with PostgreSQL and MySQL.
Packt Publishing Ltd, July 2024. ISBN: 978-1-80323-347-5,

• Dušan Petković. Microsoft SQL Server 2019: A Beginner’s Guide. 7th ed. McGraw-Hill, Jan.
2020. ISBN: 978-1-260-45888-6,

• Dirk Angermann. T-SQL-Abfragen für Microsoft SQL-Server 2022. mitp Verlags GmbH & Co.
KG, June 2024. ISBN: 978-3-7475-0633-2,

https://isbnsearch.org/isbn/978-3-11-044375-2
https://isbnsearch.org/isbn/978-1-59327-190-9
https://isbnsearch.org/isbn/978-0-13-678813-3
https://isbnsearch.org/isbn/978-1-934356-55-5
https://isbnsearch.org/isbn/978-1-337-62790-0
https://isbnsearch.org/isbn/978-0-321-19784-9
https://isbnsearch.org/isbn/978-0-07-246563-1
https://isbnsearch.org/isbn/978-0-12-849902-3
https://isbnsearch.org/isbn/978-0-13-187325-4
https://isbnsearch.org/isbn/978-0-443-23791-1
http://www.redbook.io
https://isbnsearch.org/isbn/978-1-55860-456-8
https://isbnsearch.org/isbn/978-0-201-70045-9
https://isbnsearch.org/isbn/978-1-4842-3841-7
https://isbnsearch.org/isbn/978-0-672-32451-2
https://isbnsearch.org/isbn/978-3-8272-2020-2
https://isbnsearch.org/isbn/978-3-8272-2020-2
https://isbnsearch.org/isbn/978-1-83763-564-1
https://isbnsearch.org/isbn/978-1-80323-347-5
https://isbnsearch.org/isbn/978-1-260-45888-6
https://isbnsearch.org/isbn/978-3-7475-0633-2

CHAPTER 1. INTRODUCTION 18

• Darl Kuhn and Thomas Kyte. Expert Oracle Database Architecture: Techniques and Solutions
for High Performance and Productivity. 4th ed. Apress Media, LLC, Nov. 2021. ISBN: 978-1-
4842-7499-6,

• Ron McFadyen and Cindy Miller. Relational Databases and Microsoft Access. 3rd ed. Harper
College, 2014–2019. URL: https://harpercollege.pressbooks.pub/relationaldatabas
es,

• Laurie A. Ulrich and Ken Cook. Access For Dummies. For Dummies (Wiley), Dec. 2021.
ISBN: 978-1-119-82908-9,

• Christmas, FL, USA: Simon Sez IT. Microsoft Access 2021 – Beginner to Advanced. Packt
Publishing Ltd, Aug. 2023. ISBN: 978-1-83546-911-8,

• Ben Beitler. Hands-On Microsoft Access 2019. Packt Publishing Ltd, Mar. 2020. ISBN: 978-1-
83898-747-3,

• Raul F. Chong, Xiaomei Wang, Michael Dang, and Dwaine R. Snow. Understanding DB2®: Learn-
ing Visually with Examples. 2nd ed. IBM Press, Dec. 2007. ISBN: 978-0-7686-8177-2, and

• Jim Bainbridge, Hernando Bedoya, Rob Bestgen, Mike Cain, Dan Cruikshank, Jim Denton,
Doug Mack, Tom Mckinley, and Simona Pacchiarini. SQL Procedures, Triggers, and Functions
on IBM DB2 for i. IBM Redbooks, Apr. 2016. ISBN: 978-0-7384-4164-1.

1.4.4 Websites

Some websites that you might find useful are:

• PostgreSQL Documentation. 17.4. The PostgreSQL Global Development Group (PGDG), Feb.
2025. URL: https://www.postgresql.org/docs/17/index.html,

• Database Administrators. Stack Exchange Inc. URL: https://dba.stackexchange.com,

• Ben Brumm. Database Star. Elevated Online Services PTY Ltd., Dec. 2024. URL: https:
//www.databasestar.com,

• Adam “djeada” Djellouli. Database Notes. Feb. 2022–Mar. 2025. URL: https://adamdjellou
li.com/articles/databases_notes, and

• Peter Whyte. Microsoft SQL Server DBA Blog. 2018–2025. URL: https://peter-whyte.
com/sql-dba-blog.

https://isbnsearch.org/isbn/978-1-4842-7499-6
https://isbnsearch.org/isbn/978-1-4842-7499-6
https://harpercollege.pressbooks.pub/relationaldatabases
https://harpercollege.pressbooks.pub/relationaldatabases
https://isbnsearch.org/isbn/978-1-119-82908-9
https://isbnsearch.org/isbn/978-1-83546-911-8
https://isbnsearch.org/isbn/978-1-83898-747-3
https://isbnsearch.org/isbn/978-1-83898-747-3
https://isbnsearch.org/isbn/978-0-7686-8177-2
https://isbnsearch.org/isbn/978-0-7384-4164-1
https://www.postgresql.org/docs/17/index.html
https://dba.stackexchange.com
https://www.databasestar.com
https://www.databasestar.com
https://github.com/djeada
https://adamdjellouli.com/articles/databases_notes
https://adamdjellouli.com/articles/databases_notes
https://peter-whyte.com/sql-dba-blog
https://peter-whyte.com/sql-dba-blog

Part I

Getting Started

19

20

The goal of this course is to introduce DBs. However, this is a practical course. So we will work
on practical examples and create (more or less) “realistic” DBs on real DBMSes. This means that we
will look into several interesting topics. And for most topics, we will try to get practical hands-on
experience using a suitable software tool.

• We will work with an actual DBMS. So you need to install an actual DBMS. We choose
PostgreSQL [146, 279, 309, 391].

• DBMSes are usually just servers to which you can send SQL commands via a client terminal.
However, there exist also nicer tools offering rich graphical user interfaces (GUIs) that allow you
to design forms and reports. Forms are structured graphical masks for data entry. Reports are
documents that are automatically filled with data from a DB. We will try using such a tool as
well. We choose LibreOffice Base [145, 348].

• The DBMS is usually just the backend of a landscape of tools in an enterprise or organization.
Rarely will users work only with or directly on a DBMS. Instead, there may be several applications
that connect to DBs through unified Application Programming Interfaces (APIs). Since we will
also take a look at how that works, we need to install a programming language and corresponding
“DBMS-access library.” We chose the Python programming language [9, 195, 226, 244], because
we also provide a free book on it in [437]. As library to connect to the PostgreSQL DBMS, we
pick psycopg [428].

• An important step of the DBs design process is to create an abstract conceptual model of the
problem domain. This involves drawing graphical diagrams, so-called entity relationship diagrams
(ERDs), describing the real-world entities and their relationships that should be modeled in the
DB. The conceptual schema should be independent from any specific DBMS technology. As tool
for drawing such diagrams, we will use yEd [347, 451].

• Conceptual models need to eventually be mapped to logical schemas that are based on certain
data models and DB technologies. The logical model is how users and applications see the data.
They may be implemented directly using a language like SQL. Interestingly, technology-specific
conceptual models can also be designed using visual tools very similar to ERDs, which, this
time, are bound to specific technologies and can be translated to commands for a DBMS. In my
opinion, the best open source and free tool for drawing logical models for the PostgreSQL DBMS
is PgModeler [7]. So we will use it here as well.

Best Practice 1

A computer science professional is able and always keen to learn new tools. A computer science
professional should know dozens if not hundreds of different software tools for different tasks.
A software engineer is a craftsperson and their knowledge of software is their tool belt.

We will use some specific DBMS, some specific visualization tools, some specific programming library
to access the specific DBMS, and so on. One may wonder whether this is a good idea. If you would ever
work professionally with DBs, most likely you will use entirely different software. Will the knowledge
we learn be useless then?

No. First of all, we will discuss the fundamentals of DBs and just use the concrete technologies as
examples of how they play out in practice. So the knowledge about the fundamental concepts stays
valuable, regardless of which tool you use.

Second, theoretical knowledge is not very useful in a professional setting if you cannot actually apply
it. It does not help you if you have tried writing SQL code on paper but never actually executed it on a
real DBMS. You do not know how to connect to a DBMS, how to input commands, how to understand
error message. You would also never have searched for specific commands and documentation in the
internet. You maybe would never have dealt with installing software and get it to run properly. This
means that any practical application would still require you to learn lots of things and, most likely,
under time pressure. However, if you know how to install PostgreSQL, how to connect to it using the
psql client, if you actually have executed SQL commands, if you made mistakes and learned how to
figure out how to fix them . . . then most likely you can relatively quickly learn how to do that for
MySQL, MariaDB, or any other DBMS.

21

(1.17.1) The Python programming language logo is un-
der the copyright of its owners.

(1.17.2) The logo of the psycopg module, the Python li-
brary for accessing PostgreSQL. Copyright © Gabriella
Albano and the Psycopg team.

yEd

(1.17.3) The logo of the yEd graph editor. The yEd logo
is protected by copyright. yEd is a registered trademark
of yWorks GmbH. Unauthorized use, reproduction, or
distribution is strictly prohibited.

(1.17.4) The PgModeler logo is under the copyright of
Raphael Araújo e Silva.

Figure 1.17: The logos of several of the very nice and free tools that we are using.

If you have seen ERDs and can read them, this does not mean that you can efficiently draw some
if you are asked to do so. However, if you have drawn some using yEd or PgModeler, then at least you
know that such tools exists and how they are used. You can probably either adapt to a new tool or
find and install them if need be. But you would probably not start drawing such diagrams using a tool
not suitable for that, like, e.g., a general graphics program such as Inkscape.

All the struggle of installing software, using command line arguments, connecting clients to servers,
failing, and finding solutions will help you when you need to do similar things for entirely other software.
Usage paradigms and even fixes for errors are often similar over different tools, so the more tools you
use, the faster you become learning how to use other tools. Therefore, I strongly advocate not just
learning the fundamentals of DBs, but to actually try them out, exercise them, use tools.

Finally, all the tools that we consider here are free and, ideally, open source, software. We do not
use tools that cost money. Learning about DBs with this book should be free.

First Time Readers and Novices: In this part of the book, we have collected installation
instructions for all the tools that we use in those book. You do not need to install all of
them right away. Just be aware that we provide installation instructions for the tools that
we need here. When we eventually need the specific software tools at some time later on,
we will refer back to this part.

Either way, before we get into the necessary installation and setup steps for the software that we
eventually need to really learn about DBs, we face a small problem: Today, devices with many different
OS are available. For each OS, the installation steps and software availability may be different, so
I cannot possibly cover them all. Personally, I strongly recommend using Linux [24, 178, 403] for
programming, work, and research. If you are a student of computer science or any related field, then it
is my personal opinion that you should get familiar with this operating system.

https://www.python.org
https://www.psycopg.org
https://www.yworks.com/products/yed
https://www.yworks.com
https://pgmodeler.io

22

Best Practice 2

Any professional computer scientist, software developer, software architect, DBA, or system
administrator should be familiar with the Linux OS.

Maybe you could start with the very easy-to-use Ubuntu Linux [78, 181]. If you are a Microsoft
Windows[43] user, maybe you could install Ubuntu in a virtual machine. Either way, I strongly recom-
mend learning and using Linux.

It should also be clear that the instructions provided here will eventually be outdated. I am not
sure whether I will be able to keep updating them in the future. However, even a few years down the
road, they should still provide some basic guidance. In the following, I will try to provide examples and
instructions for both Ubuntu Linux [78, 181] and the commercial Microsoft Windows [43] OS.

Chapter 2

Installing PostgreSQL

For our course, we will use the open source DBMS PostgreSQL [146, 279, 309, 391] as the actual
system to experiment with DBs. Here, we briefly discuss how to install it on your machine. We will
then use PostgreSQL in Part II.

PostgreSQL follows the client-server architecture. It provides the DBMS implemented as server
program. It manages the DBs and stores and provides the data. Other programs and the users can
connect to it to access the DBs. PostgreSQL also offers a client program, psql, with which human
users can communicate with the DBMS server in a normal terminal. We want to install both pieces
of software. You can find more information about this process at the PostgreSQL download page
https://www.postgresql.org/download. Here, we provide step-by-step guides for Ubuntu Linux
and Microsoft Windows.

2.1 Installing PostgreSQL under Ubuntu Linux

The installation PostgreSQL on Ubuntu Linux is rather simple. First, we open a Bash terminal, i.e., a
window into which we can directly type commands, with Ctrl + Alt + T . Both the client and server
program are installed via sudo apt-get install postgresql-16 , as shown in Figure 2.1.1. Notice that
we chose to install PostgreSQL version 16, denoted by the -16 suffix, but you could probably also
pick other versions or just install postgresql without version specification. Either way, this installation
method requires super user privileges, which is why we have to start the command with sudo. In
Figure 2.1.2, we therefore need to provide our superuser password.

When this is entered and confirmed with Enter , the package manager checks what needs to be
installed. In Figure 2.1.3 it informs us about the package itself and the dependencies that are needed,
as well as how much download and space that requires. It asks us whether we are OK with that,
which we confirm by typing y + Enter in Figure 2.1.4. Then, the download of the required packages
starts. Once the download completes, the packages are installed. After this completes in Figure 2.1.5,
PostgreSQL is installed and running.

We now want to double-check whether everything went well. First, we need to investigate whether
the PostgreSQL DBMS server is indeed installed and running properly. We can do this by invoking
systemctl status postgresql in Figure 2.1.6. The output on my laptop computer, given in Fig-
ure 2.1.7, indicates that the service is up and running. Notice active means that the DBMS is started
everytime your computer boots and runs all the time (until you shutdown your computer, that is).
Running this program opens some sort of paginated mode, which we can leave by hitting q + Enter

in Figure 2.1.8.
If you do not want that, then you disable the service by the command

sudo systemctl disable postgresql in the terminal, which again requires sudo privileges. The
PostgreSQL server will then no longer start automatically. If you want to access it, you then would
start it manually via sudo systemctl start postgresql . After you are done with it, you can stop it
by typing sudo systemctl stop postgresql . If you ever want it to start automatically again, this can
be achieved by sudo systemctl enable postgresql .

Either way, after a successful installation, the PostgreSQL server service is activated and running.
We now also want to check whether the client program psql was installed correctly. The client can
be run in the terminal and allows us to communicate with the DBMS server. We therefore type
psql --version in Figure 2.1.9, which will print the version of this program after we hit Enter . The

23

https://www.postgresql.org/download

CHAPTER 2. INSTALLING POSTGRESQL 24

tweise@weise-laptop:~$ sudo apt-get install postgresql-16

tweise@weise-laptop: ~

(2.1.1) Installing PostgreSQL using the apt-get install command in a terminal
opened with Ctrl + Alt + T .

tweise@weise-laptop:~$ sudo apt-get install postgresql-16

[sudo] password for tweise:

tweise@weise-laptop: ~

(2.1.2) This command requires the super user password, which we type in and then
press Enter .

tweise@weise-laptop:~$ sudo apt-get install postgresql-16

[sudo] password for tweise:

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

The following additional packages will be installed:

postgresql-client-16 postgresql-client-common postgresql-common

Suggested packages:

postgresql-doc-16

The following NEW packages will be installed:

postgresql-16 postgresql-client-16 postgresql-client-common

postgresql-common

0 upgraded, 4 newly installed, 0 to remove and 2 not upgraded.

Need to get 17.0 MB of archives.

After this operation, 50.1 MB of additional disk space will be used.

Do you want to continue? [Y/n]

tweise@weise-laptop: ~

(2.1.3) We get asked whether we really want to install the required packages.

tweise@weise-laptop:~$ sudo apt-get install postgresql-16

[sudo] password for tweise:

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

The following additional packages will be installed:

postgresql-client-16 postgresql-client-common postgresql-common

Suggested packages:

postgresql-doc-16

The following NEW packages will be installed:

postgresql-16 postgresql-client-16 postgresql-client-common

postgresql-common

0 upgraded, 4 newly installed, 0 to remove and 2 not upgraded.

Need to get 17.0 MB of archives.

After this operation, 50.1 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

tweise@weise-laptop: ~

(2.1.4) We answer with y + Enter .

Figure 2.1: Installing PostgreSQL under Ubuntu Linux, checking its status, and setting a secure pass-
word.

CHAPTER 2. INSTALLING POSTGRESQL 25

The default database encoding has accordingly been set to "UTF8".

The default text search configuration will be set to "english".

Data page checksums are disabled.

fixing permissions on existing directory /var/lib/postgresql/16/main ... ok

creating subdirectories ... ok

selecting dynamic shared memory implementation ... posix

selecting default max_connections ... 100

selecting default shared_buffers ... 128MB

selecting default time zone ... Asia/Shanghai

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

Processing triggers for man-db (2.12.0-4build2) ...

tweise@weise-laptop:~$

tweise@weise-laptop: ~

(2.1.5) The installation proceeds and finishes.

The default database encoding has accordingly been set to "UTF8".

The default text search configuration will be set to "english".

Data page checksums are disabled.

fixing permissions on existing directory /var/lib/postgresql/16/main ... ok

creating subdirectories ... ok

selecting dynamic shared memory implementation ... posix

selecting default max_connections ... 100

selecting default shared_buffers ... 128MB

selecting default time zone ... Asia/Shanghai

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

Processing triggers for man-db (2.12.0-4build2) ...

tweise@weise-laptop:~$ systemctl status postgresql

tweise@weise-laptop: ~

(2.1.6) We want to check the status of the fresh PostgreSQL installation. We can do
this by typing in systemctl status postgresql and hit Enter .

selecting default shared_buffers ... 128MB

selecting default time zone ... Asia/Shanghai

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

Processing triggers for man-db (2.12.0-4build2) ...

tweise@weise-laptop:~$ systemctl status postgresql

● postgresql.service - PostgreSQL RDBMS

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

lines 1-8/8 (END)

tweise@weise-laptop: ~

(2.1.7) The output shows us that the PostgreSQL service is now running. It will
always start when we boot our system.

Figure 2.1: Installing PostgreSQL under Ubuntu Linux, checking its status, and setting a secure pass-
word.

CHAPTER 2. INSTALLING POSTGRESQL 26

selecting default shared_buffers ... 128MB

selecting default time zone ... Asia/Shanghai

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

Processing triggers for man-db (2.12.0-4build2) ...

tweise@weise-laptop:~$ systemctl status postgresql

● postgresql.service - PostgreSQL RDBMS

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$

tweise@weise-laptop: ~

(2.1.8) We press q + Enter to leave the status output page.

selecting default shared_buffers ... 128MB

selecting default time zone ... Asia/Shanghai

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

Processing triggers for man-db (2.12.0-4build2) ...

tweise@weise-laptop:~$ systemctl status postgresql

● postgresql.service - PostgreSQL RDBMS

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

tweise@weise-laptop: ~

(2.1.9) psql is the client program that can connect to the PostgreSQL server and
that gets installed as well. We can check its version by typing psql --version
and hitting Enter .

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

Processing triggers for man-db (2.12.0-4build2) ...

tweise@weise-laptop:~$ systemctl status postgresql

● postgresql.service - PostgreSQL RDBMS

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabl ed; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

psql (PostgreSQL) 16.6 (Ubuntu 16.6-0ubuntu0.24.04.1)

tweise@weise-laptop:~$

tweise@weise-laptop: ~

(2.1.10) At the time of this writing, I got version 16.6.

Figure 2.1: Installing PostgreSQL under Ubuntu Linux, checking its status, and setting a secure pass-
word.

CHAPTER 2. INSTALLING POSTGRESQL 27

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

Processing triggers for man-db (2.12.0-4build2) ...

tweise@weise-laptop:~$ systemctl status postgresql

● postgresql.service - PostgreSQL RDBMS

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

psql (PostgreSQL) 16.6 (Ubuntu 16.6-0ubuntu0.24.04.1)

tweise@weise-laptop:~$ sudo -u postgres psql

tweise@weise-laptop: ~

(2.1.11) In order to set a proper password for the PostgreSQL main user postgresql ,
we need to log into psql using sudo privileges, but under the newly created sys-
tem user postgres . We do this by writing sudo -u postgresql psql and
hit Enter .

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

Processing triggers for man-db (2.12.0-4build2) ...

tweise@weise-laptop:~$ systemctl status postgresql

● postgresql.service - PostgreSQL RDBMS

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

psql (PostgreSQL) 16.6 (Ubuntu 16.6-0ubuntu0.24.04.1)

tweise@weise-laptop:~$ sudo -u postgres psql

[sudo] password for tweise:

tweise@weise-laptop: ~

(2.1.12) We may or may not need to enter our super user password again. . .

tweise@weise-laptop:~$ systemctl status postgresql

● postgresql.service - PostgreSQL RDBMS

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

psql (PostgreSQL) 16.6 (Ubuntu 16.6-0ubuntu0.24.04.1)

tweise@weise-laptop:~$ sudo -u postgres psql

[sudo] password for tweise:

psql (16.6 (Ubuntu 16.6-0ubuntu0.24.04.1))

Type "help" for help.

postgres=#

tweise@weise-laptop: ~

(2.1.13) Starting psql like this connects us to the local PostgreSQL server.

Figure 2.1: Installing PostgreSQL under Ubuntu Linux, checking its status, and setting a secure pass-
word.

CHAPTER 2. INSTALLING POSTGRESQL 28

tweise@weise-laptop:~$ systemctl status postgresql

● postgresql.service - PostgreSQL RDBMS

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

psql (PostgreSQL) 16.6 (Ubuntu 16.6-0ubuntu0.24.04.1)

tweise@weise-laptop:~$ sudo -u postgres psql

[sudo] password for tweise:

psql (16.6 (Ubuntu 16.6-0ubuntu0.24.04.1))

Type "help" for help.

postgres=# ALTER USER postgres PASSWORD 'XXXXXXXXXXXXXXX';

tweise@weise-laptop: ~

(2.1.14) We can now communicate with the DBMS using SQL. We use the
ALTER USER postgres PASSWORD ’XXX’; command, where XXX is replaced
with a secure password. In the screenshot, the password is covered by a red rectangle
after I replaced it with many Xs.

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

psql (PostgreSQL) 16.6 (Ubuntu 16.6-0ubuntu0.24.04.1)

tweise@weise-laptop:~$ sudo -u postgres psql

[sudo] password for tweise:

psql (16.6 (Ubuntu 16.6-0ubuntu0.24.04.1))

Type "help" for help.

postgres=# ALTER USER postgres PASSWORD 'XXXXXXXXXXXXXXX';

ALTER ROLE

postgres=#

tweise@weise-laptop: ~

(2.1.15) After we hit Enter , the system confirms the change by showing the command
ALTER ROLE back to us. From now on, the server main user has a secure password.

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; prese>

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

psql (PostgreSQL) 16.6 (Ubuntu 16.6-0ubuntu0.24.04.1)

tweise@weise-laptop:~$ sudo -u postgres psql

[sudo] password for tweise:

psql (16.6 (Ubuntu 16.6-0ubuntu0.24.04.1))

Type "help" for help.

postgres=# ALTER USER postgres PASSWORD 'XXXXXXXXXXXXXXX';

ALTER ROLE

postgres=#\q

tweise@weise-laptop: ~

(2.1.16) We quit psql by typing \ + q + Enter .

Figure 2.1: Installing PostgreSQL under Ubuntu Linux, checking its status, and setting a secure pass-
word.

CHAPTER 2. INSTALLING POSTGRESQL 29

tweise@weise-laptop: ~

tweise@weise-laptop:~$

Active: active (exited) since Fri 2025-01-17 15:00:28 CST; 1min 34s ago

Main PID: 63621 (code=exited, status=0/SUCCESS)

CPU: 1ms

1⽉ 17 15:00:28 weise-laptop systemd[1]: Starting postgresql.service - PostgreS>

1⽉ 17 15:00:28 weise-laptop systemd[1]: Finished postgresql.service - PostgreS>

tweise@weise-laptop:~$ psql --version

psql (PostgreSQL) 16.6 (Ubuntu 16.6-0ubuntu0.24.04.1)

tweise@weise-laptop:~$ sudo -u postgres psql

[sudo] password for tweise:

psql (16.6 (Ubuntu 16.6-0ubuntu0.24.04.1))

Type "help" for help.

postgres=# ALTER USER postgres PASSWORD 'XXXXXXXXXXXXXXX';

ALTER ROLE

postgres=#\q

(2.1.17) We are finished.

Figure 2.1: Installing PostgreSQL under Ubuntu Linux, checking its status, and setting a secure pass-
word.

result in Figure 2.1.10 shows that the psql client version on my system: 16.6.

Let us now connect to the PostgreSQL server via the client for the first time. The goal of this
exercise will be to set a proper password for the administrative user of our instance the PostgreSQL
DBMS. The installation process created both a Linux system user named postgres as well as a user
of the same name in the DBMS. The DBMS needs to have its own user and rights management
implemented, because we need to be able to grant different programs and users different read and
write privileges for a DB (remember Section 1.1.7). Thus, we would like the administrative account
postgres of the DBMS to have some secure password.

We therefore connect the psql client to the PostgreSQL server as superuser impersonating the
postgres system user. This sounds very strange. I am not even sure whether I explained it correctly.
Either way, we type sudo -u postgres psql into the terminal and hit Enter in Figure 2.1.11. We may
get asked to provide the superuser password for our computer again in Figure 2.1.12, in which case we
simply provide it and hit Enter .

For the first time, we are now in the psql client and are connected to the PostgreSQL server. We
see the prompt postgres=# in Figure 2.1.13.

To set the password for the user (or role) postgres , we type in
ALTER USER postgres PASSWORD ’XXX’; in Figure 2.1.14. (This is equivalent to
ALTER ROLE postgres PASSWORD ’XXX’; in PostgreSQL.) This is actually an SQL command
and we may (or may not) learn later what this exactly means (once and if I get to write such a
chapter). This would set the password to XXX . Obviously, this is not the secure password that we are
going to use. Instead, you will not type XXX but a secure password of your choosing. A password that
you shall remember well. We hit Enter .

In Figure 2.1.15, we see that this prints ALTER ROLE back to us. It shows us the command that was
performed. We did alter the role (or user) postgres . The new password is set. You will learn how to
use that another time.

For now, we will happily exit the psql client by typing \ + q + Enter . In Figure 2.1.16, we quit
the client this way. In Figure 2.1.17, we then are back in our normal Bash terminal. We have finished
and validated the PostgreSQL installation. And we have set a proper password for the administrator
account postgres .

2.2 Installing PostgreSQL under Microsoft Windows

We want to install and properly configure PostgreSQL on a Microsoft Windows system. To do this,
we first visit the official download page at https://www.postgresql.org/download, as shown in
Figure 2.2.1. There, we click on the large Windows q menu. This leads to a page with more text and
the link download the installer (Figure 2.2.2). This, in turn, takes us to https://www.enterprisedb.
com/downloads/postgres-postgresql-downloads, as shown in Figure 2.2.3.

On this website, a wide variety of different versions of PostgreSQL for different OSes can be

https://www.postgresql.org/download
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

CHAPTER 2. INSTALLING POSTGRESQL 30

(2.2.1) We visit the website https://www.postgresql.org/download and click
on Windows .

(2.2.2) We click on the link download the installer, which takes us to https://www.
enterprisedb.com/downloads/postgres-postgresql-downloads.

(2.2.3) A wide variety of versions for different OSes are available. We choose the
newest (top-most) one for Microsoft Windows, at the time of this writing, this is
version 17.2. We click the download icon.

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows.

https://www.postgresql.org/download
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

CHAPTER 2. INSTALLING POSTGRESQL 31

(2.2.4) The download begins.

(2.2.5) After the download completes, we need to find it. . .

(2.2.6) . . . and execute it by clicking on Open file .

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

downloaded. We choose the newest version for Microsoft Windows, which can be found in the top-
most row of the list presented to us. At the time of this writing, this is version 17.2. We click the
corresponding download icon.

The download begins, as shown in Figure 2.2.4. Once it completes, we need to find the downloaded
file, as shown in Figure 2.2.5. I downloaded the software using the Microsoft Edge browser, so I need
to click on the . . . button and then on Downloads , or press Ctrl + J . Regardless how you downloaded
the installer file, once you found it, you need to execute it. As shown in Figure 2.2.6, this can be
accomplished by clicking on Open file in my case. The OS will now ask us whether we want to permit
the downloaded program to make changes on our device. We certainly want that, because we want to
use it to install PostgreSQL. So we click Yes in Figure 2.2.7.

Then, the installer begins its work with a small splash screen shown in Figure 2.2.8. In the following

CHAPTER 2. INSTALLING POSTGRESQL 32

(2.2.7) When asked whether we want to allow the down-
loaded program to make changes on our device, we
click Yes .

(2.2.8) Then, the installer begins its work.

(2.2.9) In the welcome screen, we simply click Next . (2.2.10) We can select the directory in which PostgreSQL
should be installed. Let’s leave it at the default setting
and click Next .

(2.2.11) We now get to the selection of what to install.
Let’s leave it at the default setting and click Next .

(2.2.12) We also leave the directory where the DBs will
be stored at the default setting and click Next .

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

CHAPTER 2. INSTALLING POSTGRESQL 33

(2.2.13) We need to provide a secure password for the
PostgreSQL DBMS. Please carefully choose one, enter it
into both form fields, and click Next .

(2.2.14) We can select the port at which the PostgreSQL
server will listen for incoming connections. We leave it at
the default 5432 and click Next .

(2.2.15) The locale allows us to select country- or culture-
specific default settings, e.g., for currency or number for-
matting. We leave it at the system default and click Next .

(2.2.16) We get informed about the components that will
be installed. We click Next .

(2.2.17) We get asked whether we are ready to install. We
are, so we click Next .

(2.2.18) The installation begins.

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

CHAPTER 2. INSTALLING POSTGRESQL 34

(2.2.19) The installation proceeds. (2.2.20) Once the installation completes, we get asked
whether we want to use the Stack Builder software to set
up additional components. We do not want that, so we
make sure that the checkbox is not checked. Then we
click Finish . PostgreSQL is now installed.

(2.2.21) To validate the installation, we need to open a
terminal. We therefore press q + R .

(2.2.22) We type in cmd and hit Enter .

(2.2.23) A new terminal window opens up.

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

CHAPTER 2. INSTALLING POSTGRESQL 35

(2.2.24) We need to enter the bin folder in the directory into where the PostgreSQL
DBMS was installed. If we used the default settings, we can do that by typ-
ing cd "C:\Program Files\PostgreSQL\bin" and hitting Enter .

(2.2.25) We are now in that directory.

(2.2.26) First, we want to print the version of psql, the client program of PostgreSQL.
We can do this by typing psql -V and pressing Enter .

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

welcome screen, we simply click Next (Figure 2.2.9). We now work our way through setting up the
installation options step-by-step. First, we can select the directory in which PostgreSQL should be
installed in Figure 2.2.10. I chose to just leave it at the default setting and click Next . This is what I
will do for most of the rest of the installation, too.

We now get to the selection of what to install. I left this at the default setting, too, and simply
click Next in Figure 2.2.11. Then, in Figure 2.2.12, we can also leave the directory where the DBs will
be stored at the default setting and click Next .

In the following screen, we do need to provide a secure password for the PostgreSQL DBMS. Here
we need to carefully choose a password and remember it well. We enter it into both form fields, and
click Next in Figure 2.2.13.

We can now select the port at which the PostgreSQL server will listen for incoming connections.
If we imagine a computer network as a transportation system, then the network protocol would be

CHAPTER 2. INSTALLING POSTGRESQL 36

(2.2.27) In my case, the output shows that version 17.2 was installed.

(2.2.28) We now want to also see which version of the PostgreSQL server was installed
and, by doing so, also confirm that the server is up and running correctly. We therefore
launch psql -U postgres , i.e., start psql using the user (or role) postgres .

(2.2.29) When the program starts, it requires us to enter the password for the user
postgres . This is the password that we specified during the installation in Fig-
ure 2.2.13. We enter it and press Enter . We are now in the psql console, and see
the postgres=# prompt.

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

the means of transportation, e.g., bus, airplaine, or train. The network address would identify the
station, e.g., Hefei Station or Beijing Station. Then the port would be something like the platform
inside the station. Well, that is a very loose and very wrong analogy. Basically, the port is a number
that identifies a communication partner relative to the network protocol and network address. Here, we
specify the port at which the PostgreSQL server will expect incoming connections. We do not touch
this parameter. We leave it at the default 5432 and click Next in Figure 2.2.14.

We directly encounter the next odd configuration parameter. We can choose the so-called locale. A
locale identifies, basically, a region or country with specific cultural properties. This identifier is used to
decide how numbers or currency or dates should be displayed. For instance, there is a crucial difference
in British English and American English in how dates are written in numerical form: the former uses

CHAPTER 2. INSTALLING POSTGRESQL 37

(2.2.30) We enter the SQL command SELECT * FROM VERSION(); and
press Enter .

(2.2.31) The result gets printed. In my case, it shows that the PostgreSQL server also
has version 17.2.We now type in \ + q + Enter , which will exits psql.

(2.2.32) Let us now explore how the PostgreSQL server is run on our Microsoft Windows
machine: It is executed as a service. We press q , type in services , and click on
the “gears” symbol named Services that appears.

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

CHAPTER 2. INSTALLING POSTGRESQL 38

(2.2.33) The Services system setup window opens. Search for a service named something like
PostgreSQL, in my case, it is postgresql-x64-17 . Right-click on it.

(2.2.34) In the Pop-up menu that appears, click on Properties .

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

CHAPTER 2. INSTALLING POSTGRESQL 39

(2.2.35) The service properties dialog appears. (2.2.36) Click on the drop-down box for Startup type: . It
will be set to Automatic , which means that the PostgreSQL
DBMS server will be started automatically whenever your
system starts.

(2.2.37) The following is completely optional. You do
not have to do that. If you do not want that, because
it may make booting slower and maybe you only need
the service studying for this course, you can turn off this
automated startup. You would therefore select Manual
as Startup type: and click the Apply button.

(2.2.38) The service is currently still running after that
change, but it will not start automatically anymore. If you
want it to start automatically again, just select Automatic
as Startup type: . If you want to stop the currently-running
service, click the Stop button.

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

CHAPTER 2. INSTALLING POSTGRESQL 40

(2.2.39) Then, the service will be stopped. (2.2.40) It is now no longer running. Let’s start it again
by clicking the Start button.

(2.2.41) The service is now starting again. (2.2.42) We click OK to leave the dialog.

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

the month/day/year scheme, whereas the latter uses day/month/year. If PostgreSQL is supposed to
print dates in the form · · / · ·/ · · · ·, it has to know whether it is running on an American or British
English PC. Well, we leave it at the system default, which should be OK for use on our own PC, and
click Next in Figure 2.2.15.

Now we get informed about the components that will be installed. We click Next in Figure 2.2.16.
We get asked whether we are ready to install. We are, so we click Next in Figure 2.2.17. The installation
begins and proceeds, as sketched in Figures 2.2.18 and 2.2.19.

Once the installation completes, we get asked whether we want to use the Stack Builder software
to set up additional components. We do not want that, so we make sure that the checkbox is not
checked. Then we click Finish in Figure 2.2.20. At this point, both the DBMS server and the client

CHAPTER 2. INSTALLING POSTGRESQL 41

(2.2.43) We see that the service is Running and in mode Manual (if we changed it to that mode).
When you shutdown your system, the DBMS is stopped. It does not start automatically when
you boot (unless you set Automatic as Startup type). So if you need it, you would again enter
the Services system setup program and manually start it.

Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

psql of PostgreSQL are installed.

To validate the installation, we need to open a terminal. We therefore press q + R , type in cmd ,
and hit in Figures 2.2.21 and 2.2.22. A new terminal window opens up in Figure 2.2.23. We here
can write text-based commands and execute programs in this window.

To work with our new PostgreSQL installation, we first need to change into its installation folder and
then into the folder where its executables are located. In other words, we need to enter the bin folder
in the directory into where the PostgreSQL DBMS was installed. If we used the default settings, we
can do that by typing cd "C:\Program Files\PostgreSQL\bin" and hitting Enter in Figure 2.2.24. We
are now in that directory in Figure 2.2.25.

First, we want to print the version of psql, the client program of PostgreSQL. psql is the tool
that we will use to communicate with the DBMS. We can get its version by typing psql -V and
pressing Enter in Figure 2.2.26. In my case, the output shows that version 17.2 was installed, as
illustrated in Figure 2.2.27.

We now want to also see which version of the PostgreSQL server was installed. By getting this
information, we will also confirm that the server is up and running correctly. We therefore launch
psql -U postgres , i.e., start psql using the user (or role) postgres in Figure 2.2.28. postgres is the
username for the administrative account of our DBMS.

When the program starts with these parameters, it requires us to enter the password for this
user (postgres). This is the password that we specified during the installation in Figure 2.2.13.
We enter it and press Enter . We are now in the psql console, and see the postgres=# prompt in
Figure 2.2.29.

We enter the SQL command SELECT * FROM VERSION(); and press Enter in Figure 2.2.30. This
is actual a command in the SQL language mentioned in the history section before. We will learn lots
and lots of that later on. For now, you do not need to understand it. You only need to know that
this line will print the version of the server for us. And the version gets indeed printed: In my case, it
shows that the PostgreSQL server also has version 17.2. We now type in \ + q + Enter , which will
exits psqlin Figure 2.2.31. This will take us back to the normal Microsoft Windows terminal. We no
longer have any use for it and can close it.

We now have a PostgreSQL DBMS server running on our system. What does that mean? How is
it running? What if I restart my computer? Will it still be running? Will it always be running? Let us

CHAPTER 2. INSTALLING POSTGRESQL 42

investigate these questions.

The PostgreSQL server is executed as a service in our OS. So we will switch over to the Services
configuration window of Microsoft Windows. We therefore press q , type in services , and click on
the “gears” symbol named Services that appears in Figure 2.2.32. The Services system setup window
opens. We scroll down and search for a service named something like PostgreSQL, in my case, it
is postgresql-x64-17 . We right-click on this service, i.e., we click with the mouse button on the right,
in Figure 2.2.33. In the Pop-up menu that appears, click on Properties in Figure 2.2.34.

This opens the service properties dialog for PostgreSQL in Figure 2.2.35. We click on the drop-down
box for Startup type: in Figure 2.2.36. Here we see the different options regarding whether and how a
service is started. Right now it is set to Automatic , which means that the PostgreSQL DBMS server
will be started automatically whenever your system starts.

The following is completely optional. You do not have to do that. If you do not want that the
service always starts automatically, because it may make booting slower and maybe you only need the
service studying for this course, you can turn off this automated startup. Maybe you want that the
server is normally turned off. Whenever you need it, you want to turn it on by yourself. If that is your
goal, then you would probably want to select Manual as Startup type: and click the Apply button, as
shown in Figure 2.2.37. This means that, the next time your system boots, PostgreSQL will not be
started automatically anymore.

The service is currently still running after we made that change, but it will not automatically start
anymore. If you want it to start automatically start again, just select Automatic as Startup type: . If you
want to stop the currently-running service, click the Stop button, as shown in Figure 2.2.38. Then,
the service will be stopped, as you can see in Figure 2.2.39. After that, it is no longer running

Let’s start it again by clicking the Start button in Figure 2.2.40. The service is now starting again,
as illustrated in Figure 2.2.41. We click the OK button to leave the dialog in Figure 2.2.42. We see
that the service is Running and in mode Manual (if we changed it to that mode) in Figure 2.2.43.
When you shutdown your system, the DBMS is stopped. If it is in Manual mode, the DBMS does not
start automatically when you boot. It you set it back to Automatic as Startup type, then it will start
automatically again. So if you need it, you would again enter the Services system setup program and
manually start it.

With this we depart from the magical world of PostgreSQL server installation under Microsoft
Windows. Our work here is done.

Chapter 3

Installing LibreOffice

In our excursion on the available DBMS in Section 1.3, we mentioned that the open source office
suite LibreOffice provides program named LibreOffice Base. LibreOffice Base can be used as either
a stand-alone DBMS or as a nice user interface that can connect to other DBs [145, 348]. It has a
functionality similar to Microsoft Access [29, 77, 413], but it is free. We will therefore use this software
to connect to PostgreSQL, for example in Chapter 13. Let us therefore discuss how LibreOffice [154,
248, 348] can be installed.

tweise@weise-laptop:~$ libreoffice --version

LibreOffice 24.2.7.2 420(Build:2)

tweise@weise-laptop:~$

tweise@weise-laptop: ~

(3.1.1) Open a terminal via with Ctrl + Alt + T , then type
libreoffice --version and hit Enter . On my system, LibreOffice 24.2.7.2 is
installed.

tweise@weise-laptop:~$ libreoffice --version

LibreOffice 24.2.7.2 420(Build:2)

tweise@weise-laptop:~$ libreoffice --base

tweise@weise-laptop: ~

(3.1.2) We can start LibreOffice Base from the terminal by typing
libreoffice --base and hitting Enter .

(3.1.3) Or we can open the dash by hitting q , type libreoffice , and then
clicking on the symbol for LibreOffice Base.

(3.1.4) We can also open the dash by
clicking on the little Ubuntu symbol at
the bottom-left corner of the screen.

Figure 3.1: Starting LibreOffice Base under Ubuntu if it is already installed.

43

CHAPTER 3. INSTALLING LIBREOFFICE 44

(3.1.5) The startup screen appears.

Select database

Save and proceed

Firebird External

Connect to an existing database

Open

Recently used: New Database

Open an existing database �le

Embedded database: HSQLDB Embedded

Create a new database

What do you want to do?

Use the Database Wizard to create a new database, open an existing database �le, or

connect to a database stored on a server.

Welcome to the LibreO�ce Database Wizard

Help FinishCancelNext >< Back

(3.1.6) The initial form of LibreOffice Base appears. We are done for now and close the program.

Figure 3.1: Starting LibreOffice Base under Ubuntu if it is already installed.

3.1 Installing LibreOffice under Ubuntu Linux

If you are a user of Ubuntu Linux, then LibreOffice and, hence, LibreOffice Base, come already pre-
installed on your machine. You do not actually need to do anything.

To confirm that LibreOffice is indeed installed, we open a terminal via with Ctrl + Alt + T . We
type libreoffice --version and hit Enter . On my system, the result in Figure 3.1.1 shows that
LibreOffice 24.2.7.2 is installed.

We can also start LibreOffice Base directly from the terminal by typing libreoffice --base and
hitting Enter , as show in Figure 3.1.2. Alternatively, we can open the dash by hitting q , type
libreoffice , and then clicking on the symbol for LibreOffice Base, as illustrated in Figure 3.1.3. If
you do not want to use a hotkey to open the dash, you can also click on the little Ubuntu symbol at the
bottom-left corner of the screen (see Figure 3.1.4). Regardless of whether you opened LibreOffice Base
via a terminal or the dash, the startup screen given in Figure 3.1.5 will appears. Then, the initial form
of LibreOffice Base is displayed as shown in Figure 3.1.6. We are done for now and close the program.

In the unlikely case that LibreOffice was not installed on your system, the above will
obviously not work. However, Figure 3.2.1 shows that we can easily install it by typing
sudo apt-get install libreoffice into a terminal window that we opened with Ctrl + Alt + T

CHAPTER 3. INSTALLING LIBREOFFICE 45

tweise@weise-laptop:~$ sudo apt-get install libreoffice

tweise@weise-laptop: ~

(3.2.1) In the unlikely case that LibreOffice was not installed, we can install it by
typing sudo apt-get install libreoffice into a terminal window that we
opened with Ctrl + Alt + T and hit Enter .

tweise@weise-laptop:~$ sudo apt-get install libreoffice

[sudo] password for tweise:

tweise@weise-laptop: ~

(3.2.2) This requires sudo privileges, so we need to enter the super user password.

tweise@weise-laptop:~$ sudo apt-get install libreoffice

[sudo] password for tweise:

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

libreoffice is already the newest version (4:24.2.7-0ubuntu0.24.

04.1).

0 upgraded, 0 newly installed, 0 to remove and 4 not upgraded.

tweise@weise-laptop:~$

tweise@weise-laptop: ~

(3.2.3) Now LibreOffice could be installed. On my system, it is already installed. So
nothing happens.

Figure 3.2: Installing LibreOffice under Ubuntu.

and hit Enter . This requires sudo privileges, so we need to enter the super user password in Fig-
ure 3.2.2. Now you would probably be told how much data will need to be downloaded, then asked
whether you are OK with that, and then LibreOffice would be installed. Since it is already installed on
my system, nothing happens. as shown in Figure 3.2.3.

The gist is that LibreOffice is usally already installed on Ubuntu Linux or if not, can easily be
installed.

3.2 Installing LibreOffice under Microsoft Windows

Installing LibreOffice under Microsoft Windows requires us to first download the software and then to in-
stall it. We therefore open a web browser and go to https://libreoffice.org in Figure 3.3.1. There,
we click on DOWNLOAD . A drop-down menu opens in Figure 3.3.2. We click on Download LibreOffice .
This takes us to the download page, where we, again, click on DOWNLOAD in Figure 3.3.3. On this
page, we could probably select the operating system of our choice. Unless you are using some other
operating system, the default choice, Windows (64-bit) , is probably correct and we can leave it as is. This
takes us to yet another download page in Figure 3.3.4, where we click the big button for downloading
LibreOffice. Finally, the download starts in Figure 3.3.5.

After the download completes, we click Open file in Figure 3.3.6. A Microsoft Windows loading
screen appears in Figure 3.3.7. You see, we downloaded a new program from the internet and not the
Microsoft Store. So this worries our Microsoft Windows installation, and it asks whether we really want
to install this program in Figure 3.3.8. In Figure 3.3.9, we click on Install anyway .

The installation wizard window appears and we click Next in Figure 3.3.10. On the next screen,
we can choose whether we want to customize the installation of LibreOffice or, instead, would prefer a
“typical”. We indeed prefer the “typical installation” and click Next in Figure 3.3.11. In the next screen
in Figure 3.3.12 we confirm that we are also OK with a shortcut on our desktop and click Install .

Now The installation begins (see Figure 3.3.13). Since the installer tries to modify our system,
Microsoft Windows asks us whether we would like to permit the installer to make changes to our
system. We indeed are OK with that, so we click Yes in Figure 3.3.14. The installation continues in

https://libreoffice.org

CHAPTER 3. INSTALLING LIBREOFFICE 46

(3.3.1) We open a web browser and go to https://libreoffice.org. There, we
click on DOWNLOAD .

(3.3.2) In the menu that opens, we click on Download LibreOffice .

(3.3.3) This takes us to the download page, where we click DOWNLOAD . (We can
leave the operator system at the default Windows (64-bit) setting.)

Figure 3.3: Installing LibreOffice under Microsoft Windows.

https://libreoffice.org

CHAPTER 3. INSTALLING LIBREOFFICE 47

(3.3.4) This takes us to yet another download page, where we click the big button
for downloading LibreOffice.

(3.3.5) The download starts.

Figure 3.3: Installing LibreOffice under Microsoft Windows (Continued).

Figure 3.3.15.

Under some circumstances, e.g., if you have the Acrobat Reader installed, it may be necessary that
the installer does some complex updating. It is best to keep the option Do not close applications. A
reboot will be required to complete the setup. I also tried the other option, but that leads to errors
down the line. It is best to leave this at the default setting. So we just click OK in Figure 3.3.16.
On your system, maybe this screen does not appear. Maybe you do not have Adobe Acrobat installed,
maybe you have a different version or setup. Thus, maybe you will never see this screen and, as a
result, do not need to reboot later. If so, good for you. If you see the screen, then just accept that you
will need to reboot eventually.

Either way, the installation continues in Figure 3.3.17. And eventually, it is completed and we
click Finish in Figure 3.3.18. At this stage, if you did see the screen from Figure 3.3.16, it becomes
necessary to reboot. If so, you should close all other programs and click Yes , as shown in Figure 3.3.19
Then, the restart screen appears in Figure 3.3.20.

Regardless whether you needed to reboot or not, we can now find a LibreOffice icon on the desktop,
as shown in Figure 3.3.21. We click on it. The LibreOffice splash screen appears in Figure 3.3.22. We
may get asked to set LibreOffice as default program to open some file types. In order to not mess with

CHAPTER 3. INSTALLING LIBREOFFICE 48

(3.3.6) After the download completes, we click Open file .

(3.3.7) A Microsoft Windows loading
screen appears.

(3.3.8) We get asked whether we really
want to install this program. . .

(3.3.9) . . . and we click Install anyway .

(3.3.10) The installation wizard window appears and we click Next .

Figure 3.3: Installing LibreOffice under Microsoft Windows (Continued).

CHAPTER 3. INSTALLING LIBREOFFICE 49

(3.3.11) We are totally fine with a “typical” installation and click Next .

(3.3.12) We are also OK with a shortcut on our desktop and click Install .

(3.3.13) The installation begins.

Figure 3.3: Installing LibreOffice under Microsoft Windows (Continued).

CHAPTER 3. INSTALLING LIBREOFFICE 50

(3.3.14) Microsoft Windows asks us whether we would like to permit
the installer to make changes to our system. Yes, we are, so we
click Yes .

(3.3.15) The installation continues.

(3.3.16) Under some circumstances, e.g., if you have the Acrobat Reader installed, it
may be necessary that the installer does some complex updating. It is best to keep
the option Do not close applications. A reboot will be required to complete the setup.
So we just click OK . On your system, maybe this screen does not appear.

Figure 3.3: Installing LibreOffice under Microsoft Windows (Continued).

CHAPTER 3. INSTALLING LIBREOFFICE 51

(3.3.17) The installation continues.

(3.3.18) The installation is completed. We click Finish .

(3.3.19) It may be necessary to reboot (see Figure 3.3.16). If so,
close all other programs and click Yes .

(3.3.20) The restart screen appears

Figure 3.3: Installing LibreOffice under Microsoft Windows (Continued).

CHAPTER 3. INSTALLING LIBREOFFICE 52

(3.3.21) We can now find a LibreOffice icon on the desktop and click on
it.

(3.3.22) The LibreOffice splash screen appears.

(3.3.23) We may get asked to set LibreOffice as default program to open some file
types. In order to not mess with your existing system configuration, we un-check the
Perform check on startup box and click Cancel .

Figure 3.3: Installing LibreOffice under Microsoft Windows (Continued).

CHAPTER 3. INSTALLING LIBREOFFICE 53

(3.3.24) We click on the Base Database icon in the menu bar on the left-hand side
and arrive in the LibreOffice Base welcome screen. We are done here for now and
close the program.

Figure 3.3: Installing LibreOffice under Microsoft Windows (Continued).

your existing system configuration, we un-check the Perform check on startup box and click on Cancel

in Figure 3.3.23.
We now click on the Base Database icon in the menu bar on the left-hand side and arrive in the

LibreOffice Base welcome screen in Figure 3.3.24. We are done here for now and close the program.
We have downloaded and installed LibreOffice Base and can use it for our experiments later.

Chapter 4

Installing Python, PyCharm, and Psycopg

With the software we installed so far, we have two options to work with DBs: We can use a command
line client (like psql) or we can use a convenient GUI (like LibreOffice Base). Nevertheless, the maybe
most likely method to work with a DB is programmatically. Very often, high-level functionality and
logic is implemented in program code on top of the SQL queries that drive the DBs. Applications can
form a middle tier or top tier of an enterprise software architecture.

Therefore, in this book, we will also learn how to access and work with a DB from normal program
code. If you are reading this book as part of the Databases course [436] at our Hefei University (合
肥大学), then you may be aware that I am also teaching a course Programming with Python [437].
Then it will not be a surprise that we will use Python [195, 244, 437] as the programming language of
choice for accessing a DB. The book [437] that accompanies the Programming with Python course is
also free and open source. It too comes with examples available in a GitHub repository.

If you want to install the Python programming language on your system, you can follow the in-
structions given in [437]. In [437], we also recommend using PyCharm as Integrated Development
Environment (IDE) for writing code. Of course, we also describe how to install that IDE. We will
not reproduce these installation instructions here. You can look them up in [437]. In that book, we
also discuss how to work with Git repositories and how to even download the sources of our book right
here from https://github.com/thomasWeise/databasesCode. We even describe how to install the
required packages to run this code!

Our example codes for accessing PostgreSQL DBs from Python do require one pack-
age: psycopg [428]. This library provides a bridge between the Python programming language and
PostgreSQL. It implements the Python DB API 2.0 specification [246], which means that code written
using psycopg for accessing PostgreSQL may be reusable with another library and DBMS, given a few
necessary changes. Either way, if you follow the instructions in Programming with Python [437] in the
chapter on cloning Git repositories using PyCharm, you will directly learn how to install this library. We
will use Python and psycopg in Chapter 12.

4.1 Installing Psycopg

Since the installation of the programming language Python and the IDE PyCharm is already covered
in [437], we will not reproduce this information here. The download of our examples and the setup of
the required psycopg library in a virtual environment in PyCharm is also covered in [437]. For the sake
of completeness, we will therefore only briefly iterate over the installation of psycopg using pip at this
stage. It is assumed, however, that you have read [437] at least to a point where you know what pip
is and what virtual environments are. We also cover the installation only under Ubuntu Linux, as the
installation steps under Microsoft Windows will be analogous (see again [437]).

The most common way to use external packages in Python is to install them into virtual environ-
ments. A virtual environment is essentially something like a directory hosting a stand-alone Python
installation separate from the Python setup of the computer. This allows you to have different versions
of different libraries installed (in different virtual environments).

Imagine that you have one program that requires the Python package NumPy in version 2.0 or above
to run. You also need to use another application, which can only run with NumPy below version 2.0.
This is a very common scenario. It would be impossible to realize, because you can only have one
version of NumPy installed in your system. However, you can use both applications if each is installed

54

https://github.com/thomasWeise/databasesCode

CHAPTER 4. INSTALLING PYTHON, PYCHARM, AND PSYCOPG 55

tweise@weise-laptop:/tmp$ mkdir .venv

tweise@weise-laptop:/tmp$

tweise@weise-laptop: /tmp

(4.1.1) We first open a terminal using Ctrl + Alt + T . We navigate to the directory
where our programming will take place. We now create a directory .venv to host a
new virtual environment by typing mkdir .venv and hitting Enter .

tweise@weise-laptop:/tmp$ mkdir .venv

tweise@weise-laptop:/tmp$ python3 -m venv --upgrade-deps .venv

tweise@weise-laptop: /tmp

(4.1.2) We now set up a new and empty virtual environment in this directory by
writing python3 -m venv --upgrade-deps .venv and hitting Enter .

tweise@weise-laptop:/tmp$ mkdir .venv

tweise@weise-laptop:/tmp$ python3 -m venv --upgrade-deps .venv

tweise@weise-laptop:/tmp$ source .venv/bin/activate

tweise@weise-laptop: /tmp

(4.1.3) The virtual environment has been created. We now activate it by writing
source .venv/bin/activate and hitting Enter .

tweise@weise-laptop:/tmp$ mkdir .venv

tweise@weise-laptop:/tmp$ python3 -m venv --upgrade-deps .venv

tweise@weise-laptop:/tmp$ source .venv/bin/activate

(.venv) tweise@weise-laptop:/tmp$

tweise@weise-laptop: /tmp

(4.1.4) The virtual environment .venv is now active, which we can see by the
changed prompt.

tweise@weise-laptop:/tmp$ source .venv/bin/activate

(.venv) tweise@weise-laptop:/tmp$ pip install psycopg

Collecting psycopg

Using cached psycopg-3.2.4-py3-none-any.whl.metadata (4.3 kB)

Collecting typing-extensions>=4.6 (from psycopg)

Using cached typing_extensions-4.12.2-py3-none-any.whl.metadata (3.0 kB)

Using cached psycopg-3.2.4-py3-none-any.whl (198 kB)

Using cached typing_extensions-4.12.2-py3-none-any.whl (37 kB)

Installing collected packages: typing-extensions, psycopg

Successfully installed psycopg-3.2.4 typing-extensions-4.12.2

(.venv) tweise@weise-laptop:/tmp$

tweise@weise-laptop: /tmp

(4.1.5) We install psycopg into this environment by writing pip install psycopg
and hitting Enter .

(.venv) tweise@weise-laptop:/tmp$ pip install psycopg

Collecting psycopg

Using cached psycopg-3.2.4-py3-none-any.whl.metadata (4.3 kB)

Collecting typing-extensions>=4.6 (from psycopg)

Using cached typing_extensions-4.12.2-py3-none-any.whl.metadata (3.0 kB)

Using cached psycopg-3.2.4-py3-none-any.whl (198 kB)

Using cached typing_extensions-4.12.2-py3-none-any.whl (37 kB)

Installing collected packages: typing-extensions, psycopg

Successfully installed psycopg-3.2.4 typing-extensions-4.12.2

(.venv) tweise@weise-laptop:/tmp$ deactivate

tweise@weise-laptop:/tmp$

tweise@weise-laptop: /tmp

(4.1.6) Once we have finished programming, we can deactivate the virtual environ-
ment by writing deactivate and hitting Enter . The prompt changes back to
normal.

Figure 4.1: Installing the Python package psycopg into a virtual environment under Ubuntu Linux
using pip in a Bash shell terminal.

CHAPTER 4. INSTALLING PYTHON, PYCHARM, AND PSYCOPG 56

into its own virtual environment. Because each virtual environment can have its own version of NumPy.

Therefore, we will explore this route of installing packages, and we will do so under Ubuntu Linux
in the Bash terminal in Figure 4.1. For Microsoft Windows, you can find a similar procedure discussed
in [437]. The commands there are almost the same.

We begin by open a Bash terminal using Ctrl + Alt + T . Then we navigate to the directory where
our programming will take place. In my example, I chose the temporary directory /tmp because I will
delete everything once I am done taking screenshots. You would choose a more sensible location. Inside
this directory, we now create a new directory .venv to host a new virtual environment. In the Bash
shell, we can do this by typing the command mkdir .venv and hitting Enter in Figure 4.1.1

After this empty new directory is created, we can instruct Python to prepare it for use as a virtual
environment in Figure 4.1.2. We set up a new and empty virtual environment in this directory by writing
python3 -m venv --upgrade-deps .venv and hitting Enter . The new virtual environment has been
created. We now activate it by writing source .venv/bin/activate and hitting Enter in Figure 4.1.3.
Once a virtual environment is active, all package installations will go into that environment. Also, if
we run a Python program, it will search for installed packages in this environment. And our virtual
environment .venv is now active, which we can see by the changed prompt in Figure 4.1.4. Notice that
the environment is only active in the current terminal. If you open another terminal using Ctrl + Alt +

T , our virtual environment is not active in it (but we can activate it exactly as shown in Figure 4.1.3).
We install psycopg into this environment by writing pip install psycopg and hitting Enter . This

invokes the pip installer, which looks the package up in PyPI and downloads it. In Figure 4.1.5, you
see that it downloads psycopg in version 3.2.4 . When you do the same thing, you will probably get a
newer version installed.

If we run a Python program that uses psycopg, like Listing 12.1, it will find this version of the
package in our virtual environment. Once we have finished programming and running programs, we
can deactivate the virtual environment by writing deactivate and hitting Enter . The prompt changes
back to normal in Figure 4.1.6. Whenever we need psycopg again, we would activate the virtual
environment again as shown in Figure 4.1.3. Of course, we can also install more packages into this
environment. And we can also create more environments if we want to, in the same way as discussed
here.

Chapter 5

Installing yEd

yEd is a free and platform-independent editor for graph data [347, 451]. It is useful when we learn
about ERDs when modelling the conceptual schema of a DB, which we will discuss in Chapter 18 (and
where we will also use yEd). While it is not open source software (OSS), yEd is free and works on each
OS for which Java is available.

5.1 Installing yEd on Ubuntu Linux

In order to draw technology-independent ERDs, we want to install yEd on our Ubuntu Linux machine.
yEd is written in Java. We will download the Java jar archive with the yEd application together with
the dependencies. This archive can then be executed on any system that has Java installed and it does
not require any installation. We therefore need a Java installation on our machine and we then we can
download the yEd application.

For installing Java, there exist many tutorials, so we will not cover this in detail. Installing Java
under Ubuntu is fairly easy. You would open a console terminal by pressing Ctrl + Alt + T . First,
you type in java --version to see if you already have Java installed. If this command is found and
produces some output, then you are done here and can directly continue with downloading yEd.

If not, then you would type sudo apt-get install openjdk-xx-jre , where xx is to be replaced
with the version that you wish to install. On my Ubuntu version, I can choose between 8 , 11 , 17 ,
and 21 . To see which options are available on your system, type sudo apt-get install openjdk- into
your terminal and then press . This shows you a list of available installation options. You always
will want to use one that ends with -jre , i.e., a runtime environment (you do not need a -jdk , i.e.,
developer kit, unless you want to write programs in Java, too – which is fairly cool, so maybe you want
to try this as well. . .). I suggest to always going with the newest -jre version, so 21 it is in my case.
You install the newest Java jre version on your machine. Either way, I will assume that you have Java
installed.

So now all we have to do is to download yEd. In Figure 5.1.1, we use our browser to access
the website https://www.yworks.com/products/yed. On this website, we click on the Download

button. In Figure 5.1.2, we click on More yEd downloads. And in Figure 5.1.3, we click on on Show
all yEd downloads.

What we want is the jar archive with the yEd application. Therefore, we choose to download
the Zipped yEd jar file. . . which is suitable for all systems that have Java installed. We click
Download .zip file in Figure 5.1.4.

Once we clicked the download button, we get taken to the license screen. We carefully read the
license and if we are OK with it, select I accept the license terms in Figure 5.1.5. After we OKed the
license, we can click on Download in Figure 5.1.6. The download starts in Figure 5.1.7.

Eventually, the download completed. We can click to open the folder where the file was stored in
Figure 5.1.8. We find a zip archive in that folder. You need to unpack this file into a proper installation
location. Notice that the zip archive may contain a folder inside, and inside this folder, you will find
the actual application. The actual applications is the file yed.jar , and it is bundled with several other
files that you need. So unpack the zip archive and copy the files into the place where we want them
in Figure 5.1.9.

Since I just make these screenshots for demonstration purposes and have yEd already installed

57

https://www.yworks.com/products/yed

CHAPTER 5. INSTALLING YED 58

(5.1.1) We will download yEd from the website https:
//www.yworks.com/products/yed. On this website, we
click on the Download button.

(5.1.2) We then click on More yEd downloads. . .

(5.1.3) . . . and then on Show all yEd downloads. (5.1.4) We want to download the Zipped yEd jar file,
which is suitable for all systems that have Java in-
stalled. (If Java is not installed on your machine, install it
via sudo apt-get install openjdk-xx-jre , where
xx can be replaced with the version, say 8 or 21 .) We
click Download .zip file .

Figure 5.1: Installing yEd under Ubuntu Linux.

elsewhere, I here choose to place the files into /tmp/yed . This is not the correct location for your
installation. You will want to choose something more permanent.

Anyway, we open a console by pressing Ctrl + Alt + T . We go to the folder which contains the
unpacked data and the file yed.jar . In my case, this is /tmp/yed in Figure 5.1.10. We start the
program by typing java -jar yed.jar in Figure 5.1.11.

A splash screen appears when the program loads in Figure 5.1.12. Finally, Figure 5.1.13, the program
has started.

https://www.yworks.com/products/yed
https://www.yworks.com/products/yed

CHAPTER 5. INSTALLING YED 59

(5.1.5) Once we clicked the download button, we get taken
to the license screen. We carefully read the license and if
we are OK with it, select I accept the license terms.

(5.1.6) After we OKed the license, we can click on
Download .

(5.1.7) The download starts. (5.1.8) Eventually, the download completed. We can click
to open the folder where the file was stored.

Figure 5.1: Installing yEd under Ubuntu Linux (Continued).

CHAPTER 5. INSTALLING YED 60

(5.1.9) We find a zip file in that folder. We unpack it to
the installation location, i.e., to the place where we want
to store yEd.

tweise@weise-laptop:~$ cd /tmp/yed

tweise@weise-laptop:/tmp/yed$

tweise@weise-laptop: /tmp/yed

(5.1.10) We open a console by pressing Ctrl + Alt + T .
We go to the folder which contains the unpacked data and
the file yed.jar . In my case, this is /tmp/yed .

tweise@weise-laptop:~$ cd /tmp/yed

tweise@weise-laptop:/tmp/yed$ java -jar yed.jar

tweise@weise-laptop: /tmp/yed

(5.1.11) We start the program by typing
java -jar yed.jar .

(5.1.12) A splash screen appears when the program loads.

(5.1.13) The program has started.

Figure 5.1: Installing yEd under Ubuntu Linux (Continued).

CHAPTER 5. INSTALLING YED 61

5.2 Installing yEd on Microsoft Windows

Installing yEd under Microsoft Windows is very easy. We basically just have to download and run the
installer. We will download yEd from the website https://www.yworks.com/products/yed. We surf
to this website in Figure 5.2.1 and then need to scroll down. We locate the Download button on the
website and click on it in Figure 5.2.2.

On the next page, we get to choose for which OS we want to install yEd. We click on yEd for Windows

in Figure 5.2.3. In order to download the program, we have to accept the license agreement. We
carefully read the agreement. If we agree to it, we can tick the corresponding box and then we can
click on Download in Figure 5.2.4.

Once the download completes, we click Open file or the equivalent option in your browser in Fig-
ure 5.2.5. The installation wizard begins the setup in Figure 5.2.6. Shortly thereafter, Microsoft
Windows asks us whether we want to permit the program to make changes on your computer, i.e., to
install yEd. We click Yes in Figure 5.2.7.

The installer’s welcome screen appears. We click Next in Figure 5.2.8. In order to install yEd, we

(5.2.1) We will download yEd from the website https://
www.yworks.com/products/yed. We surf to this website
and scroll down.

(5.2.2) We locate the Download button and click on it.

(5.2.3) We click on yEd for Windows . (5.2.4) In order to download the program, we have to
accept the license agreement. Then we can click on
Download .

(5.2.5) Once the download completes, we click Open file
or the equivalent option in your browser.

(5.2.6) The installation wizard begins the setup.

Figure 5.2: Installing yEd under Microsoft Windows.

https://www.yworks.com/products/yed
https://www.yworks.com/products/yed
https://www.yworks.com/products/yed

CHAPTER 5. INSTALLING YED 62

(5.2.7) Microsoft Windows asks us whether we want to per-
mit the program to make changes on your computer (= in-
stall something). We click Yes .

(5.2.8) We click Next in the installer’s welcome screen.

(5.2.9) In order to install yEd, we must agree to the license
agreement. If you are OK with it, accept the agreement
and click Next .

(5.2.10) We do not change the installation destination and
click Next .

(5.2.11) We do not change the start menu settings and
click Next .

(5.2.12) We do not change the file type associations and
click Next .

Figure 5.2: Installing yEd under Microsoft Windows (continued).

CHAPTER 5. INSTALLING YED 63

(5.2.13) We do not change the additional task settings and
click Next .

(5.2.14) The installation begins.

(5.2.15) The installation completes. We mark “Run yEd
Graph Editor” and click on Finish .

(5.2.16) The yEd spash screen appears.

(5.2.17) yEd is installed and running.

Figure 5.2: Installing yEd under Microsoft Windows (continued).

CHAPTER 5. INSTALLING YED 64

must agree to the license agreement. If you are OK with it, accept the agreement, tick the corresponding
box, and click Next , as shown in Figure 5.2.9.

Then we can choose where to install yEd. We do not change the installation destination and
click Next in Figure 5.2.10. The option whether and where we want to add buttons to the start
menu if Microsoft Windows appears. We do not change the start menu settings and click Next in
Figure 5.2.11. The installer asks which files should be associated with yEd. We do not change the file
type associations and click Next in Figure 5.2.12. In the screen for additional tasks, we could decide
not to add a desktop icon, for instance. However, in Figure 5.2.13, we do not change the additional
task settings and click Next . The installation begins in Figure 5.2.14.

Soon thereafter, the installation completes. In the final screen shown in Figure 5.2.15, we make
sure that “Run yEd Graph Editor” is marked and click on Finish .

Now, the yEd spash screen appears in Figure 5.2.16. yEd is installed and running and we can begin
to use it, as illustrated in Figure 5.2.17.

Chapter 6

Installing PgModeler

The PgModeler [7] is a free open source tool with which we can create logical DB models for the DBMS
PostgreSQL. PgModeler allows us to draw logical models in form of ERDs while annotating attributes
with SQL-based types and constraints. It stores all files in an XML format and allows us to export our
logical models to SQL, which we could then feed to the PostgreSQL DBMS via, e.g., the psql client.
We will use the PgModeler in Section 19.2.1 of this book, for instance.

6.1 Installing PgModeler under Ubuntu Linux

Under Ubuntu Linux, we can install the PgModeler via apt-get . We therefore first open a Bash
terminal via Ctrl + Alt + T . In Figure 6.1.1, we then type in sudo apt-get install pgmodeler and
hit Enter . Installing software this way requires the sudo permission. In Figure 6.1.2, we thus get asked
for the sudo password. We type it in, and hit Enter .

The system now tells us the packages that need to be installed and asks us whether we are OK
with that. We are, because we need the PgModeler. So we type Y and hit Enter in Figure 6.1.3.In
Figure 6.1.4, the PgModeler gets downloaded and installed.

After the installation is completed, we can run the PgModeler by typing pgmodeler into the Bash
terminal and hitting Enter in Figure 6.1.5. The PgModeler will start up. Usually only at the first time
you start it, it may or may not display an error notification window as shown in Figure 6.1.6. If this
notification pops up, we can simply ignore it and click on OK .

The PgModeler window opens in Figure 6.1.7. For this book, I will use the PgModeler in light
mode. If you also want to use the light mode, you would click on ≡ Edit Settings , as shown in
Figure 6.1.8. In the Appearance menu, we change the theme the Light in Figure 6.1.9. We then click
on Apply in Figure 6.1.10. The PgModeler is now installed and ready to use.

65

CHAPTER 6. INSTALLING PGMODELER 66

tweise@home:~$ sudo apt-get install pgmodeler

tweise@home: ~

(6.1.1) Open a Bash terminal via with Ctrl + Alt + T . Type in
sudo apt-get install pgmodeler and hit Enter .

tweise@home:~$ sudo apt-get install pgmodeler

[sudo] password for tweise:

tweise@home: ~

(6.1.2) We get asked for the sudo password, type it in, and hit Enter .

tweise@home:~$ sudo apt-get install pgmodeler

[sudo] password for tweise:

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

The following additional packages will be installed:

libb2-1 libqt6core6t64 libqt6dbus6t64 libqt6gui6t64

libqt6network6t64 libqt6opengl6t64

libqt6printsupport6t64 libqt6qml6 libqt6qmlmodels6

libqt6quick6 libqt6svg6 libqt6waylandclient6

libqt6waylandcompositor6

libqt6waylandeglclienthwintegration6

libqt6waylandeglcompositorhwintegration6

libqt6widgets6t64 libqt6wlshellintegration6

libts0t64 pgmodeler-common qt6-gtk-platformtheme

qt6-qpa-plugins qt6-translations-l10n qt6-wayland

Suggested packages:

qt6-qmltooling-plugins

The following NEW packages will be installed:

libb2-1 libqt6core6t64 libqt6dbus6t64 libqt6gui6t64

libqt6network6t64 libqt6opengl6t64

libqt6printsupport6t64 libqt6qml6 libqt6qmlmodels6

libqt6quick6 libqt6svg6 libqt6waylandclient6

libqt6waylandcompositor6

libqt6waylandeglclienthwintegration6

libqt6waylandeglcompositorhwintegration6

libqt6widgets6t64 libqt6wlshellintegration6

libts0t64 pgmodeler pgmodeler-common

qt6-gtk-platformtheme qt6-qpa-plugins

qt6-translations-l10n qt6-wayland

0 upgraded, 24 newly installed, 0 to remove and 1 not upgraded.

Need to get 22.6 MB of archives.

After this operation, 88.6 MB of additional disk space will be used.

Do you want to continue? [Y/n] Y

tweise@home: ~

(6.1.3) The system tells us the packages that need to be installed and asks us whether
we are OK with that. We type Y and hit Enter .

Figure 6.1: The installation steps for PgModeler under Ubuntu Linux.

CHAPTER 6. INSTALLING PGMODELER 67

Setting up libqt6printsupport6t64:amd64 (6.4.2+dfsg-21.1build5) ...

Setting up libqt6quick6:amd64 (6.4.2+dfsg-4build3) ...

Setting up libqt6wlshellintegration6:amd64 (6.4.2-5build3) ...

Setting up libqt6waylandcompositor6:amd64 (6.4.2-5build3) ...

Setting up libqt6waylandeglcompositorhwintegration6:amd64 (6.4.2-5build3)

...

Setting up libqt6waylandeglclienthwintegration6:amd64 (6.4.2-5build3) ...

Setting up pgmodeler (1.1.0~beta1-1build2) ...

Setting up qt6-wayland:amd64 (6.4.2-5build3) ...

Processing triggers for man-db (2.12.0-4build2) ...

Processing triggers for libc-bin (2.39-0ubuntu8.4) ...

tweise@home:~$

tweise@home: ~

(6.1.4) The PgModeler gets installed.

Setting up libqt6printsupport6t64:amd64 (6.4.2+dfsg-21.1build5) ...

Setting up libqt6quick6:amd64 (6.4.2+dfsg-4build3) ...

Setting up libqt6wlshellintegration6:amd64 (6.4.2-5build3) ...

Setting up libqt6waylandcompositor6:amd64 (6.4.2-5build3) ...

Setting up libqt6waylandeglcompositorhwintegration6:amd64 (6.4.2-5build3)

...

Setting up libqt6waylandeglclienthwintegration6:amd64 (6.4.2-5build3) ...

Setting up pgmodeler (1.1.0~beta1-1build2) ...

Setting up qt6-wayland:amd64 (6.4.2-5build3) ...

Processing triggers for man-db (2.12.0-4build2) ...

Processing triggers for libc-bin (2.39-0ubuntu8.4) ...

tweise@home:~$ pgmodeler

tweise@home: ~

(6.1.5) We now run the PgModeler by typing pgmodeler into the Bash terminal and
hitting Enter .

(6.1.6) The program may or may not display an error notification window.
If this notification pops up, we can simply ignore it and click on OK .

Figure 6.1: The installation steps for PgModeler under Ubuntu Linux (continued).

CHAPTER 6. INSTALLING PGMODELER 68

(6.1.7) The PgModeler window opens.

(6.1.8) For this book, I will use the PgModeler in light mode, so we click on ≡
Edit Settings .

(6.1.9) In the Appearance menu, we change the theme
the Light . . .

(6.1.10) . . . and click on Apply .

Figure 6.1: The installation steps for PgModeler under Ubuntu Linux (continued).

CHAPTER 6. INSTALLING PGMODELER 69

6.2 Installing PgModeler under Microsoft Windows

PgModeler is a software leaning heavily to the Linux side. Installing it under Microsoft Windows as-is
is not possible (at least not for free). The PgModeler website recommends to first install the Minimal
SYStem 2 (MSYS2) build environment under Microsoft Windows and then to build the program’s binaries
from its sources in MSYS2. This is very tedious an also error-prone, as there may be issues with package
incompatibilities, issues with using the right paths, etc. Also, it requires quite some disk space. Luckily,
if we install MSYS2, we can also download and install PgModeler via the package manager pacman [330,
431] used by MSYS2. This is much less work and we will therefore follow this path here.

Therefore, we first want to download MSYS2. The download is available directly at the web-
site https://msys2.org, but the link provided there goes to the GitHub releases page of the project,
which is not always stable. Thus, we instead visit the website https://repo.msys2.org/distrib
with out web browser. Most Microsoft Windows systems are 64 bit computers of the x86 architec-
ture. If this is the case for your system – which it most likely is – then you want to download
msys2-x86_64-latest.exe . We click on the corresponding link in Figure 6.2.1.

The download starts. After the it is completed, we run the installer by clicking Open file or whatever
option your web browser offers to run a downloaded program in Figure 6.2.2.

The welcome screen of the installer opens in Figure 6.2.3. We click on Next . Then, we get to choose
the installation location. The installer wants to install MSYS2 into the default location C:\msys64 . We
have no reason to disagree. We leave it at this default setting and click on Next in Figure 6.2.4. In
the following screen, we can choose the start menu location. We again have no reason to change this.
We leave the start menu settings as-is and click Next in Figure 6.2.5.

The installation process begins with unpacking the archive in Figure 6.2.6. In my case, when the
installer reached about 50% as shown in Figure 6.2.7, it stalled for quite some time. It looked like
nothing happens and maybe the installer hung. However, this was not the case: The installation
process is just doing something time consuming here. If it seems that the installer is hanging in your
system too – simply ignore it. Go and drink a cup of tea. It will be OK. Do not stop the process.

Eventually the installation is done. In the final screen, we can mark “Run MSYS2 now.” and click
on Finish , as shown in Figure 6.2.8. From now on, we can also run the MSYS2 terminal manually. We
therefore enter MSYS2 in the start menu launcher of Microsoft Windows. The icon group for MSYS2 will
appear, as shown in Figure 6.2.9, and we simply click on it.

Either way, the MSYS2 terminal is now running in Figure 6.2.10. As stated before, MSYS2 uses the
pacman package manager [330, 431]. We want to use this package manager to install PgModeler. There-
fore, we first search for existing PgModeler packages that we could install by typing pacman -Ss pgmodeler
and hitting Enter as shown in Figure 6.2.11.

Indeed, we can find several such packages. We want the mingw64-one, but not the plugins pack-
age. The suitable package in Figure 6.2.12 therefore is mingw64/mingw64-w64-x86_64-pgmodeler . If
you want to avoid typing this long name or if the name is different in your list, you simple select the
text most similar to that. Then you can right-click into the terminal and click on Copy . as shown in
Figure 6.2.13. Then we type pacman -S and right-click into the terminal and click on Paste in Fig-
ure 6.2.14. This means that we wrote, in total, pacman -S mingw64/mingw64-w64-x86_64-pgmodeler .
This is the command to instan PgModeler under MSYS2 in Microsoft Windows using pacman . We
hit Enter in Figure 6.2.15.

The system now shows us the package itself and the required dependencies that would be installed.
It asks us whether we are OK with downloading and installing them. Unfazed, we type Y and hit Enter

in Figure 6.2.16. The packages are now downloaded and installed. We get back to the terminal prompt
in Figure 6.2.17.

It is now important to close and re-open the MSYS2 terminal. After the terminal is opened again,
we can type pgmodeler and hit Enter . The PgModeler is starting up in Figure 6.2.18.

The PgModeler main window has opened in Figure 6.2.19. If you want, you can change its color
theme to light, as done in Figures 6.1.8 to 6.1.10. At this stage, the program is running and usable.

https://msys2.org
https://repo.msys2.org/distrib

CHAPTER 6. INSTALLING PGMODELER 70

(6.2.1) We first want to download Minimal SYStem 2 (MSYS2). We therefore
visit the website https://repo.msys2.org/distrib. We click and download
msys2-x86_64-latest.exe , if we have a 64 bit x86 system (which usually should
be the case).

(6.2.2) After the download has completed, we run the installer by clicking Open file
or whatever option your web browser offers to run a downloaded program.

(6.2.3) We click Next on the installer welcome screen.

Figure 6.2: Installing PgModeler under Microsoft Windows using the MSYS2 environment.

https://repo.msys2.org/distrib

CHAPTER 6. INSTALLING PGMODELER 71

(6.2.4) The installer wants to install MSYS2 into C:\msys64 . We agree and click
Next .

(6.2.5) We leave the start menu settings as-is and click Next .

(6.2.6) The installation process begins with unpacking the archive.

Figure 6.2: Installing PgModeler under Microsoft Windows using the MSYS2 environment (continued).

CHAPTER 6. INSTALLING PGMODELER 72

(6.2.7) When the installer reaches about 50%, it can happen that it stalls for a long
time. Just wait. It will be OK. Do not stop the process.

(6.2.8) Eventually the installation is done. We can mark “Run MSYS2 now.” and click
on Finish .

(6.2.9) From now on, we can also run MSYS2 by entering MSYS2 in the start menu
launcher and click on the MSYS2 icon.

Figure 6.2: Installing PgModeler under Microsoft Windows using the MSYS2 environment (continued).

CHAPTER 6. INSTALLING PGMODELER 73

(6.2.10) The MSYS2 terminal is now running.

(6.2.11) MSYS2 uses the pacman package manager. We can search for existing
PgModeler packages by typing pacman -Ss pgmodeler and hitting Enter .

(6.2.12) Indeed, we can find several! We want the mingw64 -one (but not the plug-
ins). Next, we select the text mingw64/mingw64-w64-x86_64-pgmodeler .

Figure 6.2: Installing PgModeler under Microsoft Windows using the MSYS2 environment (continued).

CHAPTER 6. INSTALLING PGMODELER 74

(6.2.13) So we select the text mingw64/mingw64-w64-x86_64-pgmodeler . We
right-click into the terminal and click on Copy .

(6.2.14) Then we type pacman -S and right-click into the terminal and click
on Paste .

(6.2.15) This means that we wrote, in total,
pacman -S mingw64/mingw64-w64-x86_64-pgmodeler . We hit Enter .

Figure 6.2: Installing PgModeler under Microsoft Windows using the MSYS2 environment (continued).

CHAPTER 6. INSTALLING PGMODELER 75

(6.2.16) We get a list of packages that will be installed and are asked whether we are
OK with installing them. Devoid of emotion, we type Y and hit Enter .

(6.2.17) The packages are downloaded and installed. We get back to the terminal
prompt.

(6.2.18) We close and re-open the MSYS2 terminal. We type pgmodeler in the
terminal and hit Enter .

Figure 6.2: Installing PgModeler under Microsoft Windows using the MSYS2 environment (continued).

CHAPTER 6. INSTALLING PGMODELER 76

(6.2.19) The PgModeler main window opens! We could now change the theme to
light, as done in Figures 6.1.8 to 6.1.10.

Figure 6.2: Installing PgModeler under Microsoft Windows using the MSYS2 environment (continued).

Part II

A Simple Example: The Factory Database

77

78

Before we step-by-step learn about the features and intricacies of DBs, let us look into a simple
self-contained example as a teaser. So far, you have learned about the history of DBs. Many courses
that I know then, from here on, focus on several quite useful things: First, an outline of the DB design
process is given. Second, you will learn about modeling data, how to draw ERDs. Third, you will learn
about normalization of data. Fourth, you will learn the so-called σ-algebra, which is an mathematical
notation abstracting from the technological aspects of relational databases. Fifth, they will tell you how
to select, insert, and remove data using SQL. Some will give really practical examples and let you explore
how to work with a DB via homeworks. Sixth and finally, you are taught how DBs work internally,
what datastructures they use, and how they achieve efficient storage and high query performance.

I agree that it is a good didactic method to approach DBs from several different angles as an
abstract subject. However, when I learned something as a student, I never really learned it this way.
I learned it by doing it. I am a believer that practical ability is nine tenth of mastering a field. And
practical ability comes easiest by playing around with the basic tools.

Also, as far as I can see, quite a few courses seem to treat DBs as something “single,” something
that exists “separately” from other things. But this is not necessarily true. Many of the subjects you
learn elsewhere may be connected to DBs. For example, you often have programming classes, where
you learn a programming language like Python [437]. What is the connection here? You will learn
that, yeah, DBs are often accessed from program code, maybe by so-called application servers, that
implement the business logic of an enterprise. How does that work? Often, you will not learn that.

Then again, DBs are also often accessed from GUIs. They maybe allow us to enter information via
convenient forms. Because users like office workers would feel puzzled if asked to enter and retrieve
information using SQL queries. Maybe we can also print reports with information extracted from the
data in the DB.

So far, for you, a DB is just a nondescript thing to store data. But you may have no idea about
all the cool things that you could do with a DB. That you could use a DB for your own personal
purposes, ranging from keeping track of your finances over managing a bibliography of papers to
storing information about your music collection.

Long story short: We will now explore a small and self-contained example not to teach you how
exactly to do things, but to show you what is possible. And that many things are possible without
in-depth knowledge and lots of work. To make you curious. To invite you to explore things out of
your own interest and to circle back to this book to combine practical experience with background
information when you like. It is important that this is a learning by doing example. When reading the
text, please reproduce the example step-by-step on your own computer.

Our example is a DBs for a small company that produces shoes and handbags. Imagine that you
were hired to build an information technology (IT) department for the company. On you first day, your
boss enters and tells you Make an application for storing all our product variants and customer orders.

We use a concrete technological environment for our work. In particular, we rely on the PostgreSQL
ecosystem. We chose it because it is a very mature open source DBMS. It is widely adopted and was
the most popular DBMS in the “Stack Overflow 2024 Developer Survey” [377] and in the open source
code survey [286], it ranked second.

Useful Tool 1

PostgreSQL [146, 279, 309, 391] is an advanced relational DBMS. It is free and open source
and the basis for all hands-on examples in our course.

Chapter 7

Creating a User and the Database

Our boss has asked us to create an application for managing products, customers, and demands. Since
these are different types of entities with different properties, managing with an Microsoft Excel or
LibreOffice Calc spreadsheet makes little sense. We will need a DB.

The first step to fulfill this request would thus be to create a new and empty DB. We already
installed PostgreSQL (see Chapter 2). It is running on a dedicated server computer in our small IT
department / office. This DB server will host all the DBs of the company, probably ranging from payroll
data to fancy business analytics.

However, when we discuss the idea for a new DB application with our boss, they state that they want
to have full access to the new DB. Of course, they are not a trained database administrators (DBAs).
Many things could go wrong if we would design a nice DB and then unleash untrained personnel onto
it. We would be even more reluctant to give them administrative access to the complete DBMS server.
This server could house many different DBs for different purposes. We want to keep it under our
control and, at least, limit the “full access” of our boss to only this one single new DB.

In a first step, we would therefore create a new role or user account on our DBMS. This account
should only be able to access the new factory DB. If they make a mistake, this mistake will only affect
this single DB. If some outside attacker can obtain their password, then the impact will only be limited
to this DB and not affect, e.g., payroll data or other confidential data in other DBs. After such a user
account is created, we can then create the actual DB and have the new user be its owner.

7.1 Creating a User

For the sake of simplicity, assume that we are locally logged in the DB server computer and that the
password to the administrator user postgres is set to XXX . As illustrated in Figure 7.1.1, we first open
a terminal (console). This can be done via Ctrl + Alt + T under Ubuntu Linux, while under Microsoft
Windows, you need to press q + R , type in cmd , and hit . We want to start the client program
psql with the proper connection Uniform Resource Identifier (URI) [90] to access our PostgreSQL
server.

Useful Tool 2

psql is a text-based console program that can be used to connect to a PostgreSQL server.
From the psql console, we can send SQL commands to the PostgreSQL server and receive its
answers.

We can connect to the PostgreSQL server on our local machine by providing the connection URI
postgres://postgres:XXX@localhost . This URI is constructed as follows [90]:

• The postgress:// tells psql that this is, indeed, a connection URI.

• The second occurrence of postgres is actually the user name. As you may remember from the
installation, the administrator user for the whole PostgreSQL server has the name postgres .

• The colon “ : ” separates the user name from the password XXX . Of course, you should not
actually use a password like XXX . Please replace it with a password you deem reasonable. Let

79

CHAPTER 7. CREATING A USER AND THE DATABASE 80

tweise@weise-laptop:~$ psql postgres://postgres:XXX@localhost

tweise@weise-laptop: ~

(7.1.1) We open a console via Ctrl + Alt + T under Ubuntu Linux or by press q + R , type in cmd , and hit under
Microsoft Windows. We type in the command to connect the psql client to the PostgreSQL server listening at the default
port on our current computer (localhost) and tell it to log in as user postgresql with the password XXX (which you
need to replace with whatever password you are using) and hit Enter .

tweise@weise-laptop:~ $ psql postgres://postgres:XXX@localhost

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, comp

ression: off)

Type "help" for help.

postgres=#

tweise@weise-laptop: ~

(7.1.2) psql is now running and we can enter commands.

tweise@weise-laptop:~ $ psql postgres://postgres:XXX@localhost

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, comp

ression: off)

Type "help" for help.

postgres=# CREATE USER boss WITH ENCRYPTED PASSWORD 'superboss123';

tweise@weise-laptop: ~

(7.1.3) We type in the command CREATE USER to create the new user boss with the password superboss123 . We
hit Enter .

tweise@weise-laptop:~ $ psql postgres://postgres:XXX@localhost

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, comp

ression: off)

Type "help" for help.

postgres=# CREATE USER boss WITH ENCRYPTED PASSWORD 'superboss123';

CREATE ROLE

postgres=#

tweise@weise-laptop: ~

(7.1.4) The command is executed successfully and prints its output CREATE ROLE .

Figure 7.1: Creating the new user/role boss with password superboss123 on the PostgreSQL server
via the psql client.

CHAPTER 7. CREATING A USER AND THE DATABASE 81

 $ psql postgres://postgres:XXX@localhost

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, comp

ression: off)

Type "help" for help.

postgres=# CREATE USER boss WITH ENCRYPTED PASSWORD 'superboss123';

CREATE ROLE

postgres=# SELECT usename FROM pg_catalog.pg_user;

tweise@weise-laptop: ~

tweise@weise-laptop:~

(7.1.5) To confirm whether the command has succeeded, we now list all users on the PostgreSQL server. We therefore
select all user names (uname) from the system table pg_catalog.pg_user .

ression: off)

Type "help" for help.

postgres=# CREATE USER boss WITH ENCRYPTED PASSWORD 'superboss123';

CREATE ROLE

postgres=# SELECT usename FROM pg_catalog.pg_user;

usename

 postgres

 boss

(2rows)

postgres=#

tweise@weise-laptop: ~

(7.1.6) Besides the DBMS administrator user postgresql , there now also exists a new user named boss .

ression: off)

Type "help" for help.

postgres=# CREATE USER boss WITH ENCRYPTED PASSWORD 'superboss123';

CREATE ROLE

postgres=# SELECT usename FROM pg_catalog.pg_user;

usename

 postgres

 boss

(2rows)

postgres=# \q

tweise@weise-laptop: ~

(7.1.7) We quit this session by typing in the commant \q and hit Enter .

Type "help" for help.

postgres=# CREATE USER boss WITH ENCRYPTED PASSWORD 'superboss123';

CREATE ROLE

postgres=# SELECT usename FROM pg_catalog.pg_user;

usename

 postgres

 boss

(2rows)

postgres=# \q

tweise@weise-laptop :~$

tweise@weise-laptop: ~

(7.1.8) The psql session has ended and we are back in the terminal.

Figure 7.1: Creating the new user/role boss with password superboss123 on the PostgreSQL server
via the psql client. (Continued)

CHAPTER 7. CREATING A USER AND THE DATABASE 82

Listing 7.1: Using SQL to create a the user boss with password superboss123 . (stored in
file create_user.sql ; output in Listing 7.2)

1 /* In this example , we create a new user for our database. */
2
3 -- On PostgreSQL , there is a table ‘pg_catalog.pg_user ‘ with all users.
4 -- We print the column ‘usename ‘ with the user names.
5 SELECT usename FROM pg_catalog.pg_user;
6
7 -- Create the user ’boss ’.
8 -- He will be the owner of the database that we will create.
9 CREATE USER boss WITH ENCRYPTED PASSWORD ’superboss123 ’;

10
11 -- Now there is a new user: ’boss ’.
12 SELECT usename FROM pg_catalog.pg_user;

Listing 7.2: The standard output stream (stdout) resulting from the SQL statements
in create_user.sql given in Listing 7.1.

1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf
↪→ create_user.sql

2 usename
3 ----------
4 postgres
5 (1 row)
6
7 CREATE ROLE
8 usename
9 ----------

10 postgres
11 boss
12 (2 rows)
13
14 # psql 16.9 succeeded with exit code 0.

me stress again: Never use something like XXX as a password. I am also not doing that. For the
examples in the book, I just replaced the actual password with XXX .

• After an “@” comes the network address or host name where the PostgreSQL server is running.
We write localhost, which stands for the current machine itself. It corresponds to the IP ad-
dress 127.0.0.1 . Basically, it means that we want to connect to the PostgreSQL server running
directly on the very machine in front of which we are sitting.

• After this, we could add a port. Since we left the port 5432 at the standard setting during
the installation, we do not need to provide it. We could write :5432 directly after localhost, or
replace 5432 with whatever port at which the PostgreSQL server is listening.

• If we would like to connect to a specific DB, say with the name dbname then we would then write
/dbname . But we do not want to do this, because we did not create any DB yet. So we do not
specify any DB in the connection URI.

Hence, as illustrated in Figure 7.1.2, our connection URI is postgres://postgres:XXX@localhost . The
complete command to launch the psql client is thus psql postgres://postgres:XXX@localhost . Once
the psql terminal is open, we can begin typing commands in the SQL language.

First Time Readers and Novices: Yes, we now use some SQL commands. You did not yet
learn anything about SQL. Do not let that bother you too much. Most of these commands
are relatively close to the natural English language. We will explain the commands and
datatypes that we use while we are using them. Remember when we said learning by doing
at the beginning of Part II? We really mean it. You can read more about SQL, for example,
in [108, 109, 115, 202, 265, 373, 379, 380, 389].

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_user.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_user.sql

CHAPTER 7. CREATING A USER AND THE DATABASE 83

We want to create a new user for the psql server. As username, we pick “boss”. The password shall
be “superboss123”. Obviously, this is a very unsafe password. The boss will have to change it as soon
as possible.

As illustrated in Figure 7.1.3, in order to create the new user with that password, we write
CREATE USER boss WITH ENCRYPTED PASSWORD ’superboss123’; . The first part of the command,
CREATE USER xyz , tells the server to create a new user account under the name xyz . The second
part, WITH ENCRYPTED PASSWORD ’abc’ , tells the server that the password abc should be used for this
user.

Passwords are always stored in an encrypted way anyway in PostgreSQL, but it never hurts to specify
this clearly. Maybe we want to run the same commands later on another DBMS where it is necessary
to explicitly say that passwords shall be encrypted. You can read more about SQL commands in the
PostgreSQL reference [373].

Best Practice 3

Keywords in SQL may always be written completely in uppercase [116]. Well, technically, SQL
keywords are not case sensitive, so WHERE and where work the same. It is most important to be
consistent in your casing, regardless whether you prefer upper- or lowercase [51]. Nevertheless,
I prefer uppercase and the PostgreSQL documentation does so too [308].

Anyway, we type in the command and hit Enter . The command is executed successfully. The system
signals this to us with the output CREATE ROLE in Figure 7.1.4. psql always signals success by typing
the command back to us, and under PostgreSQL, CREATE ROLE and CREATE USER are (almost) the
same.

But how can we confirm the user “boss” has really been created successfully? How do we know
that it exists now? We can simply list all users. You see, a fully-fledged relational DBMS stores
all information in tables, not just the actual data, but also the names of databases, users, and tables
themselves (as we will learn later in Section 19.1.3). The result of this is that we can access information
about users in the same way as normal data – via SQL queries. OK, as said, you do not yet really know
how that works, but for now, just bare with us.

In PostgreSQL, all users are stored in the table named pg_catalog.pg_user .1 So we can just query
this table. The SQL command SELECT usename FROM pg_catalog.pg_user; will list the value of the
column usename for all rows in the table pg_catalog.pg_user . We type it in Figure 7.1.5 and hit Enter .
If we had run this command before creating the user, on a fresh PostgreSQL installation, it would only
list the single user postgres , i.e., the administrator of the whole DBMS. But if we run it again now,
after creating the new user, it will also list boss . You can see this in Figure 7.1.6.

We can now close this psql session by typing \q and hitting Enter . As shown in Figure 7.1.7, this
takes us back to our normal OS terminal shown in Figure 7.1.8.

Actually, there are two ways to use psql: We can either open an interactive session. In such a
session, we type in the SQL commands, execute them by pressing Enter , and then read their output.
After that, we can type in the next command, execute it, read its output, and so on. Eventually, we
quit by executing \q .

The other way to use psql is to simply tell it to open a session, execute all the commands in a file (a
so-called script), and then to close the session. This second way is illustrated in Listings 7.1 and 7.2.
Listing 7.1 is the SQL script with the commands to be executed. As you can see, in this script, we first
list all the existing users on the DBMS. The only user existing right after the PostgreSQL installation
should be postgres . So the output of that first command should be only this single value. Then we
create the new user via CREATE USER . The output of this command, if executed successfully, should be
CREATE USER printed back to us. Then we query the existing users again, which now should return a
table with two values, postgres and boss . The second listing, Listing 7.2, is the captured output (the
so-called stdout) of this non-interactive, script-executing psql session. It contains exactly the text
that we expect. However, its first and last line are different.

The first line in output listings like Listing 7.2 is always marked with dark red color and begins
with $. It contains the actual psql execution parameters, which are explained in detail in Table 7.1

1On other DBMSes, the users may be stored differently.

CHAPTER 7. CREATING A USER AND THE DATABASE 84

Table 7.1: The parameters of psql, as defined in [314] and used in executions such as Listing 7.2.

psql "postgres://user:password@host:port/database"-v ON_ERROR_STOP=1 -ebf script.sql

psql The SQL binary, i.e., the program that is executed.
Connection URI The connection URI, often written inside quotation marks ("...").

• postgres:// indicates that this is, in fact, a connection URI.
• user:password are the user name and password.
• host is the network address or host name of the computer where the

PostgreSQL server is waiting for incoming connections. We usually use
localhost, which is the current computer on which psql is executed.

• port is the port at which the server is listening, which can be omitted if
it is equal to 5432 , which is our default setting.

• database is the name of the DB to access, which can be omitted if we
work on the system itself.-v ON_ERROR_STOP=1 Tells the program to stop and exit immediately if an error happens. In some

examples, we intentionally causer errors to demonstrate problems.
-e Print all (successful) queries back to the stdout.
-b Print failed queries to the standard error stream (stderr).

-f filename Read all commands from the file filename .
-ebf filename Equivalent to -e -b -f filename .

and [314]. The last line in the output listings is always marked with dark blue color and begins
with #. It signifies the version of the software and the exit code. Notice that you can download
the whole example and run exactly the commands (the red text after the $) from our repository
https://github.com/thomasWeise/databasesCode.

7.2 Creating a new Database

Having created the new user “boss”, we can now create the DB “factory” to be owned and worked on
by that user boss . For this, we first open a new psql session in Figures 7.2.1 and 7.2.2. Notice that we
still need to execute this command under the DBA role postgres . Also, we can put the connection URI
inside of quotes ("..."), which is useful if, for example, the password contains strange characters. This
user has the right to create DBs for other users which can then work with them.

Then, all we have to do is to type the SQL command CREATE DATABASE factory OWNER boss; in
Figure 7.2.3. This command pretty much explains itself. It will create a new DB with the name
factory . The user boss will be owner of this DB, i.e., they will have full access to add and manipulate
its data. The command completes successful. No error message appears and the command is printed
back to us in Figure 7.2.4.

Documentation is a very important task in the whole field of software engineering. It is always a
good idea to store lots of comments that explain each DB, table, column, constraint, role, user, view,
stored procedure, and whatever other object could exist on a DBMS. Usually, to keep the examples
small enough to fit on single pages, we will not have enough space for that. However, here, at our very
first DB, let’s do it right: In Figure 7.2.5, we use the COMMENT ON command to store a comment that
describes the purpose of our DB factory . This command also succeeds and is printed back to us in
Figure 7.2.6.

We can also get a list of all the DBs in our system. For this purpose, we write
SELECT datname FROM pg_database; in Figure 7.2.7. See, all the names of all DBs inside the
PostgreSQL DBMS are stored in the column datname of the table pg_database .2 If we run this
command before creating the new DB on a fresh PostgreSQL installation, we find that it will list some
standard DBs, which we will ignore here.

On the installation where I executed it, there were some more DBs, so the command found seven
DBs. Sometimes, if a lot of data is returned by an SQL command, psql will change into a paginated
mode, as shown in Figure 7.2.8. There, we can see the DBs. We can then exit this mode simply by
pressing q in Figure 7.2.9.

2On other DBMSes, the DBs may be stored differently.

https://github.com/thomasWeise/databasesCode

CHAPTER 7. CREATING A USER AND THE DATABASE 85

tweise@weise-laptop :~$ psql "postgres://postgres:XXX@localhost"

tweise@weise-laptop: ~

(7.2.1) As in Figure 7.1.1, we open a console via Ctrl + Alt + T under Ubuntu Linux or by press q + R , type in cmd ,
and hit under Microsoft Windows. We connect the psql client to the PostgreSQL server listening at the default port
on our current computer (localhost) and tell it to log in as user postgresql with the password XXX and hit Enter .
Notice: We can also put the URI in quotes, which is good if the password contains strange characters.

tweise@weise-laptop :~$ psql "postgres://postgres:XXX@localhost"

tweise@weise-laptop: ~

(7.2.2) As in Figure 7.1.2, the psql session is now open.

tweise@weise-laptop :~ $ psql "postgres://postgres:XXX@localhost"

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression:

off)

Type "help" for help.

postgres=# CREATE DATABASE factory OWNER boss;

tweise@weise-laptop: ~

(7.2.3) We type in the command CREATE DATABASE factory OWNER boss which will create the DB facory . The
parameter OWNER boss sets the new user boss to be the owner of this DB.

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compres

sion: off)

Type "help" for help.

postgres=# CREATE DATABASE factory OWNER boss;

CREATE DATABASE

postgres=#

tweise@weise-laptop: ~

(7.2.4) To indicate success, psql prints the command back to us.

Figure 7.2: Creating a new DB, adding a comment to it, and checking whether it really was created,
all via psql.

This takes us back into our psql terminal session, which we now will leave by typing in \q in
Figure 7.2.10. This ejects us back into the normal terminal in Figure 7.2.11.

All of the above commands are combined into a single script in Listing 7.3. Listing 7.4 shows their
output when being executed on a clean and fresh PostgreSQL installation (but after the user boss was
created, obviously).

CHAPTER 7. CREATING A USER AND THE DATABASE 86

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compres

sion: off)

Type "help" for help.

postgres=# CREATE DATABASE factory OWNER boss;

CREATE DATABASE

postgres=# COMMENT ON DATABASE factory IS 'This data base holds all data ab

out our factory and products.';

tweise@weise-laptop: ~

(7.2.5) We can add comments to many of the elements that we create. Comments are good for documenting the
meaning and reasons of the DB elements. Therefore, by using the COMMENT ON ... IS command, we add some
documentation to our new DB.

Type "help" for help.

postgres=# CREATE DATABASE factory OWNER boss;

CREATE DATABASE

postgres=# COMMENT ON DATABASE factory IS 'This data base holds all data ab

out our factory and products.';

COMMENT

postgres=#

tweise@weise-laptop: ~

(7.2.6) To indicate success, psql prints the command back to us.

Type "help" for help.

postgres=# CREATE DATABASE factory OWNER boss;

CREATE DATABASE

postgres=# COMMENT ON DATABASE factory IS 'This data base holds all data ab

out our factory and products.';

COMMENT

postgres=# SELECT datname FROM pg_database;

tweise@weise-laptop: ~

(7.2.7) We now want to see the list of all DBs in our DBMS. We therefore type the command
SELECT datname FROM pg_database; . pg_database is a system table holding all DBs, and its column datname
contains their names.

datname

postgres

template1

template0

violation

fixed

factory

test

(7rows)

~

~

(END)

tweise@weise-laptop: ~

(7.2.8) The command will print all DBs on the current system. On this installation, there are 7 DBs, on your fresh
installation, there will be fewer. The command may enter a paginated view, as is the case here.

Figure 7.2: Creating a new DB, adding a comment to it, and checking whether it really was created,
all via psql. (Continued)

CHAPTER 7. CREATING A USER AND THE DATABASE 87

tweise@weise-laptop:~ $ psql "postgres://postgres:XXX@localhost"

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compres

sion: off)

Type "help" for help.

postgres=# CREATE DATABASE factory OWNER boss;

CREATE DATABASE

postgres=# COMMENT ON DATABASE factory IS 'This data base holds all data ab

out our factory and products.';

COMMENT

postgres=# SELECT datname FROM pg_database;

postgres=#

tweise@weise-laptop: ~

(7.2.9) If the paginated view was entered, you can leave it by pressing q . If it was not entered, the command will
directly return.

tweise@weise-laptop:~ $ psql "postgres://postgres:XXX@localhost"

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compres

sion: off)

Type "help" for help.

postgres=# CREATE DATABASE factory OWNER boss;

CREATE DATABASE

postgres=# COMMENT ON DATABASE factory IS 'This data base holds all data ab

out our factory and products.';

COMMENT

postgres=# SELECT datname FROM pg_database;

postgres=# \q

tweise@weise-laptop: ~

(7.2.10) We left the paginated result view and now want to leave this psql session, by typing \q and hitting Enter .

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compres

sion: off)

Type "help" for help.

postgres=# CREATE DATABASE factory OWNER boss;

CREATE DATABASE

postgres=# COMMENT ON DATABASE factory IS 'This data base holds all data ab

out our factory and products.';

COMMENT

postgres=# SELECT datname FROM pg_database;

postgres=# \q

tweise@weise-laptop:~$

tweise@weise-laptop: ~

(7.2.11) We are back in the normal terminal.

Figure 7.2: Creating a new DB, adding a comment to it, and checking whether it really was created,
all via psql. (Continued)

CHAPTER 7. CREATING A USER AND THE DATABASE 88

Listing 7.3: Using SQL to create a database for user boss . (stored in file create_database.sql ; output
in Listing 7.4)

1 /* In this example , we create a new database named ’factory ’. */
2
3 -- On PostgreSQL , there is a table ‘pg_databases ‘ listing all databases.
4 -- We print the column ‘datname ‘ with the names of the databases.
5 SELECT datname FROM pg_database;
6
7 -- Create the database ’factory ’, owned by user ’boss ’.
8 CREATE DATABASE factory OWNER boss;
9

10 -- Store a comment about the purpose of our database.
11 COMMENT ON DATABASE factory is
12 ’This database holds all data about our factory and products.’;
13
14 -- Now there is a new database in the list , namely ’factory ’.
15 SELECT datname FROM pg_database;

Listing 7.4: The stdout resulting from the SQL statements in create_database.sql given in List-
ing 7.3.

1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf
↪→ create_database.sql

2 datname
3 -----------
4 postgres
5 template1
6 template0
7 (3 rows)
8
9 CREATE DATABASE

10 COMMENT
11 datname
12 -----------
13 postgres
14 factory
15 template1
16 template0
17 (4 rows)
18
19 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_database.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_database.sql

Chapter 8

Downloading the Example Codes

In the previous two sections, we discussed how a new DB user and how a new DB can be created, using
SQL on the PostgreSQL DBMS server via the psql client. There, we mentioned that there are two
ways to do that with psql: We can either type in the commands manually in an interactive session.
Or we can tell psql to execute an SQL script on the server.

The latter way is maybe more convenient. For all the examples that follow in this book, we provide
such scripts. So you do not need to type in the examples from the book.

All these examples are provided in the repository databasesCode on GitHub. You can either

(8.1.1) We use a webbrowser to visit the website https://github.com/thomasWeise/databasesCode. On the website,
we click on the green Code menu.

(8.1.2) A small popup-menu appears, where we click on Download ZIP .

Figure 8.1: Downloading the examples from this book.

89

https://github.com/thomasWeise/databasesCode

CHAPTER 8. DOWNLOADING THE EXAMPLE CODES 90

(8.2.1) Once the file is downloaded, we open it.

(8.2.2) In the opened archive, we can find all the examples of this book. In folder factory , we find the simple factory
example.

Figure 8.2: Downloading the examples from this book. (Continued)

clone this repository using Git, which is explained in our book Programming with Python [437]. Our
you can just visit this repository at https://github.com/thomasWeise/databasesCode with your
webbrowser and download the files. This is illustrated in Chapter 8.

As shown in Figure 8.1.1, you would use your webbrowser to visit the website https://github.
com/thomasWeise/databasesCode. Once the website has loaded, you click on the green Code menu.
Then, in Figure 8.1.2, a small popup-menu appears, where you click on Download ZIP . This will
download a so-called ZIP-archive, i.e., a file that contains a compressed folder structure with all files
in our examples repository. After the download completes, as illustrated in Figure 8.2.1, you then can
open the archive. In the opened archive, you can find all the examples of this book in a folder called
databasesCode-main . This folder contains another folder called factory , where you can find all the
files belonging to our present example, as shown in Figure 8.2.2.

Additionally, each source code listing has a headline containing some text like “(stored in file
myfile ;.” myfile then is a clickable link that would take you directly to the file on GitHub.

https://github.com/thomasWeise/databasesCode
https://github.com/thomasWeise/databasesCode
https://github.com/thomasWeise/databasesCode

Chapter 9

Creating Tables and Filling them with
Data

Let us now design the actual DB. Normally, you would do this in a fancy process where you would draw
ERDs and deeply think about the structure of the data, the performance requirements, and so on. Be
that as it may, we are here operating on a learning-by-doing level. We will just go ahead and build
something that looks reasonable, without worrying too much about design principles.

In a relational database, all the data is stored in tables. You are maybe familiar with spreadsheet
software such as Microsoft Excel. There, data is organized in tables, too. In a relational database,
however, the columns are strongly typed, i.e., you cannot “write” a text into a field for numbers. Also,
there can be multiple tables, where a record (row) in one table can be linked to one or multiple records
in other tables. This format allows us to nicely divide into our data according to different semantic
aspects.

9.1 The Table “product”

Let us begin with storing the the information about the products that our company produces and sells.
We want to store all information that may be relevant to customers and the delivery department. We
will give our first new table the name product .

Best Practice 4

Table names should be singular nous written in lowercase without any prefix (i.e., no “tbl_” in
front) [51].

9.1.1 Creating the Table

So let us create the table product . As we have already learned, there are two ways for doing this: We
can either start a psql session and type in the necessary commands one by one, which is illustrated in
Figure 9.1Or we can send a SQL script with all the commands to the PostgreSQL server directly via
psql. The script that we would use for this is shown in Listing 9.1 and its output is given in Listing 9.2.
For the last time in this book, we will discuss both methods side-by-side and afterwards, we will only
work with the script-based approach.

If we chose the manual step-by-step method, then we first start a new psql session in Figure 9.1.1.
This time we do this as user boss with password SQLsuperboss123. This user is the owner of our DB
factory and has the right to create tables and insert data.

We can create a new table using the command CREATE TABLE , followed by the table name, followed
by the attributes that we want to store [99]. We typed this command in Figure 9.1.3. As you can see,
this is a bit cumbersome, because the command is long. Writing it as a script and then sending this to
the PostgreSQL DBMS is more convenient, which is why we will prefer this method later on. Anyway,
the command is a bit long, because it contains the whole description of the data that we will store in
the table later.

For example, each product must have a name. The names could be long or short, but 100 charac-
ters per product should suffice. SQL provides the datatype VARCHAR , which refers to a variable-length

91

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 92

tweise@weise-laptop :~ $ psql "postgres://boss:superboss123@localhost/factory"

tweise@weise-laptop: ~

(9.1.1) We open a console via Ctrl + Alt + T under Ubuntu Linux or by press q + R , type in cmd , and hit
under Microsoft Windows. We type in the command to connect the psql client to the PostgreSQL server listening at the
default port on our current computer (localhost) and tell it to log in as user boss with the password superboss123
and hit Enter .

tweise@weise-laptop :~ $ psql "postgres://boss:superboss123@localhost/factory"

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)

Type "help" for help.

factory=>

tweise@weise-laptop: ~

(9.1.2) The session has started.

tweise@weise-laptop :~ $ psql "postgres://boss:superboss123@localhost/factory"

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)

Type "help" for help.

factory=> CREATE TABLE product (

 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,

 name VARCHAR(100) NOT NULL UNIQUE,

 price DECIMAL(10,2) NOT NULL,

 weight INT NOT NULL,

 width INT NOT NULL,

 height INT NOT NULL,

 depth INT NOT NULL);

tweise@weise-laptop: ~

(9.1.3) We enter the CREATE TABLE command for the new table product with all the column specifications and
press Enter .

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)

Type "help" for help.

factory=> CREATE TABLE product (

 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,

 name VARCHAR(100) NOT NULL UNIQUE,

 price DECIMAL(10,2) NOT NULL,

 weight INT NOT NULL,

 width INT NOT NULL,

 height INT NOT NULL,

 depth INT NOT NULL);

CREATE TABLE

factory=>

tweise@weise-laptop: ~

(9.1.4) The command succeeds and is printed back to us.

Figure 9.1: Creating a new table in our DB.

string, whose maximum length is specified in parentheses [67]. We could thus choose VARCHAR(100)
for the column name for our table product . We thus write name VARCHAR(100) when defining this
column. The names must also be unique. We can never have two different products with the same
name. So we add the keyword UNIQUE [92]. If, later, someone tries to enter a record into our ta-
ble whose name value already exists in another record, then this will fail with an error. We also
want to enforce that every single record indeed has a name value set. There must never be any row
in the table without a properly set name. Therefore, we add the NOT NULL specification and write
name VARCHAR(100)UNIQUE NOT NULL [92]. Nice, we just defined our very first own column.

Additionally, we should store the price at which we sell the product. The price is clearly a number.
Computers usually provide two fundamental types of numbers on the hardware level, integer numbers
and floating point numbers (a subset of R). These types also exist in many programming languages.
Python [437], for example, offers us the two very basic datatypes int and float corresponding to
integers and floating point numbers, respectively. Which one should we use? Now prices naturally
are values with fractions, something like $99.99 or 17.75元, so at first glance, the SQL equivalent of

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 93

psql (16.9 (Ubuntu 16.9-0ubuntu0.24.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)

Type "help" for help.

factory=> CREATE TABLE product (

 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,

 name VARCHAR(100) NOT NULL UNIQUE,

 price DECIMAL(10,2) NOT NULL,

 weight INT NOT NULL,

 width INT NOT NULL,

 height INT NOT NULL,

 depth INT NOT NULL);

CREATE TABLE

factory=> SELECT tablename FROM pg_catalog.pg_tables WHERE tableowner = 'boss';

tweise@weise-laptop: ~

(9.1.5) We want to get a list of all tables belonging to user boss with this SELECT command.

 name VARCHAR(100) NOT NULL UNIQUE,

 price DECIMAL(10,2) NOT NULL,

 weight INT NOT NULL,

 width INT NOT NULL,

 height INT NOT NULL,

 depth INT NOT NULL);

CREATE TABLE

factory=> SELECT tablename FROM pg_catalog.pg_tables WHERE tableowner = 'boss';

tablename

product

(1row)

factory=>

tweise@weise-laptop: ~

(9.1.6) There is now exactly one such table, namely product .

 name VARCHAR(100) NOT NULL UNIQUE,

 price DECIMAL(10,2) NOT NULL,

 weight INT NOT NULL,

 width INT NOT NULL,

 height INT NOT NULL,

 depth INT NOT NULL);

CREATE TABLE

factory=> SELECT tablename FROM pg_catalog.pg_tables WHERE tableowner = 'boss';

tablename

product

(1row)

factory=> \q

tweise@weise-laptop: ~

(9.1.7) We end this session by typing in \q and hitting Enter .

product

(1row)

factory=> \q

tweise@weise-laptop :~$

tweise@weise-laptop: ~

(9.1.8) The session is terminated and we are back in the normal terminal.

Figure 9.1: Creating a new table in our DB. (Continued)

Python’s float seems a reasonable choice here. However, it is actually not, because in [437], we
write:

Best Practice 5

Always assume that any float value is imprecise. Never expect it to be exact [27, 311, 437].

Indeed, using double precision IEEE Standard 754 floating point numbers [187, 200], the expres-
sion 0.1 + 0.1 + 0.1 - 0.3 may yield 5.551115123125783e-17 as result. Thus, if we stored 0.3元 as
a price in our DB using floating point numbers and a customer transferred three times一毛钱, then the
bank may encounter problems if we want to transfer 5.551115123125783 ∗ 10−17元 back as change. . .

Best Practice 6

Never represent monetary data with floating point numbers [339, 440].

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 94

Listing 9.1: Creating the table product to store the products we produce and sell. (stored in
file create_table_product.sql ; output in Listing 9.2)

1 /* We create the new table ’product ’ in our factory database. */
2
3 -- List all tables of the user ’boss ’ in database ’factory ’
4 -- There are no tables yet.
5 SELECT tablename FROM pg_catalog.pg_tables
6 WHERE tableowner=’boss’;
7
8 -- The table ’product ’ stores all the produces that we can produce.
9 -- Each row of this table identifies one such product.

10 CREATE TABLE product (
11 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 name VARCHAR (100) NOT NULL UNIQUE , -- must exist , must be unique
13 price DECIMAL (10, 2) NOT NULL , -- price (RMB): 10 digits , 2 after .
14 weight INT NOT NULL , -- the weight of the product , in grams
15 width INT NOT NULL , -- the width of the product , in mm
16 height INT NOT NULL , -- the height of the product , in mm
17 depth INT NOT NULL -- the depth of the product , in mm
18);
19
20 -- List all tables of the user ’boss ’ in database ’factory ’
21 -- Now we see the table ’product ’.
22 SELECT tablename FROM pg_catalog.pg_tables
23 WHERE tableowner=’boss’;

Listing 9.2: The stdout resulting from the SQL statements in create_table_product.sql given in List-
ing 9.1.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf create_table_product.sql

2 tablename
3 -----------
4 (0 rows)
5
6 CREATE TABLE
7 tablename
8 -----------
9 product

10 (1 row)
11
12 # psql 16.9 succeeded with exit code 0.

We could use integer numbers representing the number of cents instead, but then we would always
need to use some arithmetics to properly display prices, which also creates a potential for errors [440].
Actually neither integers nor floating point numbers are the right choice! Instead, we will use the
datatype DECIMAL , which can represent a fractional number with a pre-defined number of digits exactly.
Writing price DECIMAL(10, 2) allows us to store values with 10 digits, 2 of these 10 digits are after
the comma [275]. This means that we can store values between -99 999 999.99 and 99 999 999.99. This
should be enough for prices of products in our shoe and handbag factory. Of course, each product must
have a price, so we add again the NOT NULL keyword.

Best Practice 7

Store monetary data using the DECIMAL datatype [57, 440].

We will sell each product in a box. Therefore, we also want to store the width, height, and depth as
well as the weight of the packaged box. For the height, width, and depth, we will use millimeter as unit

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_table_product.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_table_product.sql

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 95

and for the weight we use grams. We can store values using the datatype INT , which is a shorthand for
INTEGER and can hold values from -2 147 483 648 to +2 147 483 647. Each product must have values
specified for all four dimensions, so we again mark them as NOT NULL .

Tables in a DB do not exist in an isolated manner. Instead, they will reference each other. For
example, later we will create a table where we store which customer bought which product. For this, we
will need at least three tables: A table of customers (which we do not yet have), the table of products
(that we are creating right now), and a table for the customer orders. Each record in that last table
will reference one row in the customers table and one row in the products table.

For allowing the latter, we need a unique way to identify each row in our table. Now our table
already has a column with unique values, namely name . However, these are of type VARCHAR , i.e., they
are potentially long strings. This would mean that each record in the orders table would also need to
store the long name string. This would probably be inefficient [191]. Also, maybe later we have many
other records referencing a certain product by its name . . . but the marketing department chooses to
change the name of the product. This could wreak havoc to our DB. It is better to use an automatically
generated unique value as key that will never change even if we change the name of a product [51].

We therefore add another column that we are going to call id , which should hold a unique
integer value. We define it as id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY . The
GENERATED BY DEFAULT AS IDENTITY [157, 198] means that we do not need to specify values for this
column when storing data. The system will automatically choose the next integer value that was not
yet used. Here, BY DEFAULT tell the system that we can specify values for id if we want to, which
then take precedence over the generated values. This could be useful if we want to keep the values
of id if backup parts of the table elsewhere and then want to reinsert them. Alternatively, we could
also have written ALWAYS , in which case the id values will always be generated automatically. We will
use this column as the so called PRIMARY KEY , i.e., as the value that should be used by other tables
to reference rows in our product table. The annotation with PRIMARY KEY also automatically enforces
that only unique values can be stored.

Best Practice 8

Prefer using surrogate primary keys based on automatically incremented integers [51]. See also
Definition 18.16.

Best Practice 9

Whenever using an automatically incremented integer as primary key for a table, name it id .
While there is some controversy about this topic [193], anybody accessing your DB will immedi-
ately understand the meaning of the id columns and this practice is used in many sources [51,
308].

This completes the SQL command for creating our very first table. If we had typed it into the psql
console, then it would succeed and print CREATE TABLE back to us, as shown in Figure 9.1.4.

If instead we had written the command into a script, then we would also fire up psql again. Since the
DB belongs to the user boss , we now log in as boss using their password superboss123 . We also want
to work on the DB factory . The PostgreSQL connection URI for the DB server running on our current
computer (identified by localhost) and therefore is postgres://boss:superboss123@localhost/factory .
Assume that the script with the command was stored in a file called create_table_product.sql , then
we would write -ebf create_table_product.sql after the connection URI parameter of psql. List-
ing 9.2 shows what happens if we execute the script Listing 9.1 this way.

Well, actually the script contains more commands: We also want to check whether the commands
worked correctly. Before creating the new table, we thus print the list of tables owned by user boss . All
of them are stored in table pg_catalog.pg_tables in the PostgreSQL server. We only print the table
names, which are in column tablename . We only want to see those owned by boss , so we add the
statement WHERE tableowner = ’boss’ . The name of the user owning each table is stored in column
tableowner , and only if it equals boss , we print the table name.

This results in the query SELECT tablename FROM pg_catalog.pg_tables with the clause
WHERE tableowner = ’boss’; [349]. As you can see, before executing the CREATE TABLE command,

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 96

this query returns nothing. Afterwards, one new table exists, namely product . This output is also
illustrated in Figures 9.1.5 and 9.1.6.

9.1.2 Inserting some Data

Now the table product exists, but it is empty. Let us fill it with data. Our factory has two prod-
ucts: “Shoe” and “Purse.” The shoes come in sizes 36 to 43. Their prices start at 150.99元 for size 36
and increase by 2元 per size. They all fit into the same box. The smallest shoes weight 1300g and the
weight increases by 25g per size. Purses come in sizes small, medium, and large, at prices of 100元,
120元, and 150元, respectively. They weight 500g, 750g, and 1500g, respectively. The smallest purse
fits into a shoebox, but the bigger ones require bigger boxes.

We store this data into the table product by an INSERT INTO statement. Here, we first need to
provide the table name (product) and the attributes that we want to store in parentheses, i.e., “ (...)”.
We will store values for the fields name , price , weight , width , height , and depth . We do not need to
store values for id , because they will be automatically generated for us. After saying what we want to
store, we specify the VALUES to store. Each row is written in parentheses, values and rows are separated
by commas. The complete command for storing all the data is shown in Listing 9.3.

There, we first print all the data currently in the table by typing SELECT * FROM product; [349].
This prints nothing, because the table is empty. Then we insert the eleven products via one single
INSERT INTO command. Afterwards, we try SELECT * FROM product; again – and now it prints 11 rows.

Before we continue, let us briefly check what the UNIQUE constraint that we have defined on
column name does. Basically, it says that there cannot be two records in our table with the same value
of name . Therefore, if we would try to insert another product with name ’Shoe, Size 36’ into the
table, this should fail. Because we already have a row with this value. We test this in Listing 9.5.
Indeed, Listing 9.6 shows that this fails with an error and the data remains unchanged.

9.1.3 Selecting Data

Now we have stored data in the table product . But how can we get it out again? Well, you already
learned a good part of how to do that: SELECT * FROM product; . This query lists basically all of the
data in the table. You have seen it its output at the bottom of Listing 9.4.

Yet, most often, we do not want to retrieve all of the data in a table. Usually, we only want some
part of the data. Maybe we only want to see the rows (records) that match certain criteria. Maybe we
only want to see a subset of the columns. Maybe we even want to compute some statistics. How can
we do that? A large part of the answer is “With the SELECT statement.”

This is a seduce-to-use example, something to play around with. So we will play around with the
data for a bit in Listing 9.7.

First, let’s say that we want a list of the names and prices of all types of purses that we sell. Let
us amend the original query SELECT * FROM product; for this purpose. The * here means that all
columns should be printed. Naturally, we would replace it with the columns that we want, namely,
name and price . We write SELECT name, price FROM product; . This gives us the names and prices
of all products in our table. We need to narrow this down to purses. We can add a WHERE clause
at the end of the query where we can supply a condition. Only the records that match the condition
will be shown. What condition can we use? SQL offers us some pattern matching methods [293].
The pattern LIKE ’%Purse%’ will match any string that contains the text “Purse”. The condition
name LIKE ’%Purse%’ therefore requires that the product name contains the text “Purse”. Our first
real query thus becomes SELECT name, price FROM product WHERE name LIKE ’%Purse%’; . As you
can see in Listing 9.8, it will return three rows of purse-related data.

Assume now that you are a lady who wants to purchase some fashion accessory to accentu-
ate your beauty. Naturally, you would want to buy the product that gives you the best deal in
terms of product weight per monetary unit, i.e, g per 元. Therefore, for each product, we would
like to divide the weight by the price and give this new value the name g_per_yuan . Luckily,
SQL supports mathematical expressions [259], so it is possible to write weight / price . The query
SELECT name, weight / price AS g_per_yuan from product; would return the product name and the
weight-cost ration. weight / price AS g_per_yuan means that the ratio of weight and price will be
computed and given the name g_per_yuan .

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 97

Listing 9.3: Storing some products in the table product . (stored in
file insert_into_table_product.sql ; output in Listing 9.4)

1 /* Store some data into the table ’product ’. */
2
3 -- Print all the contents from table ’product ’: Nothing.
4 SELECT * from product;
5
6 -- Insert 11 products into our table.
7 INSERT INTO product (name , price , weight , width , height , depth)
8 VALUES (’Shoe , Size 36’, 150.99 , 1300, 350, 250, 130),
9 (’Shoe , Size 37’, 152.99 , 1325, 350, 250, 130),

10 (’Shoe , Size 38’, 154.99 , 1350, 350, 250, 130),
11 (’Shoe , Size 39’, 156.99 , 1375, 350, 250, 130),
12 (’Shoe , Size 40’, 158.99 , 1400, 350, 250, 130),
13 (’Shoe , Size 41’, 160.99 , 1425, 350, 250, 130),
14 (’Shoe , Size 42’, 162.99 , 1450, 350, 250, 130),
15 (’Shoe , Size 43’, 164.99 , 1475, 350, 250, 130),
16 (’Small Purse’, 100, 500, 350, 250, 130),
17 (’Medium Purse’, 120, 750, 400, 300, 200),
18 (’Large Purse’, 150, 1500, 600, 300, 250);
19
20 -- Now there are 11 rows.
21 SELECT * from product;

Listing 9.4: The stdout resulting from the SQL statements in insert_into_table_product.sql given
in Listing 9.3.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf insert_into_table_product.sql

2 id | name | price | weight | width | height | depth
3 ----+------+-------+--------+-------+--------+-------
4 (0 rows)
5
6 INSERT 0 11
7 id | name | price | weight | width | height | depth
8 ----+---------------+--------+--------+-------+--------+-------
9 1 | Shoe , Size 36 | 150.99 | 1300 | 350 | 250 | 130

10 2 | Shoe , Size 37 | 152.99 | 1325 | 350 | 250 | 130
11 3 | Shoe , Size 38 | 154.99 | 1350 | 350 | 250 | 130
12 4 | Shoe , Size 39 | 156.99 | 1375 | 350 | 250 | 130
13 5 | Shoe , Size 40 | 158.99 | 1400 | 350 | 250 | 130
14 6 | Shoe , Size 41 | 160.99 | 1425 | 350 | 250 | 130
15 7 | Shoe , Size 42 | 162.99 | 1450 | 350 | 250 | 130
16 8 | Shoe , Size 43 | 164.99 | 1475 | 350 | 250 | 130
17 9 | Small Purse | 100.00 | 500 | 350 | 250 | 130
18 10 | Medium Purse | 120.00 | 750 | 400 | 300 | 200
19 11 | Large Purse | 150.00 | 1500 | 600 | 300 | 250
20 (11 rows)
21
22 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/insert_into_table_product.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/insert_into_table_product.sql

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 98

Listing 9.5: Showing how the UNIQUE constraint on column name prevents us from insert-
ing a product with the same name as an already existing one into table product . (stored in
file insert_into_table_product_error.sql ; output in Listing 9.6)

1 /* Show how the UNIQUE constraint protects our table ’product ’ */
2
3 INSERT INTO product (name , price , weight , width , height , depth)
4 VALUES (’Shoe , Size 36’, 151.99 , 1300, 350, 250, 130);

Listing 9.6: The stdout resulting from the SQL statements in insert_into_table_product_error.sql
given in Listing 9.5.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf insert_into_table_product_error.sql

2 psql:factory/insert_into_table_product_error.sql:4: ERROR: duplicate key
↪→ value violates unique constraint "product_name_key"

3 DETAIL: Key (name)=(Shoe , Size 36) already exists.
4 psql:factory/insert_into_table_product_error.sql:4: STATEMENT: /* Show how

↪→ the UNIQUE constraint protects our table ’product ’ */
5 INSERT INTO product (name , price , weight , width , height , depth)
6 VALUES (’Shoe , Size 36’, 151.99 , 1300, 350, 250, 130);
7 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/insert_into_table_product_error.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/insert_into_table_product_error.sql

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 99

Listing 9.7: Selecting information from the table product . (stored in
file select_from_table_product.sql ; output in Listing 9.8)

1 /* Extract information from the table product. */
2
3 -- List the names and prices of all purses.
4 SELECT name , price FROM product WHERE name LIKE ’%Purse%’;
5
6 -- Order anything that is not a shoe in terms of grams per yuan.
7 SELECT name , weight / price AS g_per_yuan from product
8 ORDER BY g_per_yuan DESC LIMIT 5;
9

10 -- Get the average price per product type.
11 SELECT ’Shoe’ AS kind , AVG(price) AS mean_price
12 FROM product WHERE name LIKE ’%Shoe%’
13 UNION ALL SELECT ’Purse ’ AS kind , AVG(price) AS mean_price
14 FROM product WHERE name LIKE ’%Purse%’;

Listing 9.8: The stdout resulting from the SQL statements in select_from_table_product.sql given
in Listing 9.7.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf select_from_table_product.sql

2 name | price
3 --------------+--------
4 Small Purse | 100.00
5 Medium Purse | 120.00
6 Large Purse | 150.00
7 (3 rows)
8
9 name | g_per_yuan

10 ---------------+---------------------
11 Large Purse | 10.0000000000000000
12 Shoe , Size 43 | 8.9399357536820413
13 Shoe , Size 42 | 8.8962513037609669
14 Shoe , Size 41 | 8.8514814584756817
15 Shoe , Size 40 | 8.8055852569343984
16 (5 rows)
17
18 kind | mean_price
19 -------+----------------------
20 Shoe | 157.9900000000000000
21 Purse | 123.3333333333333333
22 (2 rows)
23
24 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_table_product.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_table_product.sql

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 100

Suppose that our table product contains hundreds of entries. It would be very hard to spot good
deals in that heap of data. Luckily, SQL also allows to sort data. We would like to see our list sorted
based on g_per_yuan from large to small values. This way, the best deals will come first. We can
do that by simply adding ORDER BY g_per_yuan DESC . ORDER BY sorts the rows of the query result by
the fields listed afterwards. If just write ORDER BY or, optionally, add ASC , then it sorts the data in
ascending order. This means that small values coming first. We want a descending order, so we also
write DESC .

Finally, we may realize that there are still way to many entries returned. We only care about the
best five or so deals, the rest does not matter anyway. All we have to do to limit the number of rows
returned to five is to, well, add LIMIT 5 to our query. With this, the query is completed. It is the
second one in Listing 9.7.

Its result in Listing 9.8 shows us that the large purse is definitely the best deal here. For every
single 元, we can get 10g of product! Indeed, the purse weights 1.5kg and costs 150元, so the result is
correct. The second-best deal would be the largest shoe in stock. At size 43, we can 8.94g of product
per 元.

What else can we find out about the data in this table? What if we wanted to know whether shoes
or purses costed more on average? First, let’s figure out how to compute arithmetic means in SQL.
It is rather easy. We could write SELECT AVG(price)FROM product; to get the arithmetic mean over
all values in the column price in the table product [4]. This query would return a single row with a
single value named avg . That value would be 148.5381818181818182 if you want to try it by yourself.

Let’s give the value a better name. Let’s try SELECT AVG(price)AS mean_price FROM product; The
result would still be pretty much the same, but now the returned column is named mean_price (and
there still only a single row).

As the next step, let’s compute the average price for purses. We
can reuse the condition WHERE name LIKE ’%Purse%’ from before and write
SELECT AVG(price)AS mean_price FROM product WHERE name LIKE ’%Purse%’; This returns a single
column named mean_price and a single row. The value in that row is now 123.3333333333333333 ,
which indeed is the arithmetic mean of 100, 120, and 150. To make clear that this is
the purse price, we can simply add an artificial column named kind with value ’Purse’ .
SELECT ’Purse’AS kind, AVG(price)AS mean_price FROM product WHERE name LIKE ’%Purse%’; .
Now we got two columns, kind and mean_price , and one row with the values Purse and
123.3333333333333333 .

We can, of course, do the same for shoes. All we have to do is to
replace ’%Purse%’ with ’%Shoe%’ and change the kind column accordingly.
SELECT ’Shoe’AS kind, AVG(price)AS mean_price FROM product WHERE name LIKE ’%Shoe%’;
returns also a single row with values Shoe and 157.9900000000000000 . Indeed, the average price of
all of our shoes is 157.99元.

So we have two queries that each return two values with the same names. At this point, we already
know that purses are cheaper than shoes in average. But having two queries is somehow unsatisfying.
We want to package both results together, so that we get the two rows as the result of a single SQL
command.

Nothing easier than that! We just have to remove the trailing ; from the first query and write a
UNION ALL directly in front of the second query [87]! The UNION ALL statement effectively appends
the results of the second query to the results of the first query. The combined statement is shown at
the bottom of Listing 9.7 and its result is given in Listing 9.8.

At this point, please notice the beauty of queries: We can continue to add data to our table. We
can change values or delete values. But the queries will still work all the same and always give us the
up-to-date results.

9.2 The Table “customer”

Next, we design a table for managing customer data.

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 101

Listing 9.9: Creating the table customer to store the information about our factory’s customers. (stored
in file create_table_customer.sql ; output in Listing 9.10)

1 /* We create the new table ’customer ’ in our factory database. */
2
3 -- The table ’customer ’ stores all the customers that we have.
4 -- Each row of this table identifies one such a customer.
5 CREATE TABLE customer (
6 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
7 name VARCHAR (100) NOT NULL , -- must exist
8 phone VARCHAR (11) NOT NULL UNIQUE , -- the phone number
9 address VARCHAR (255) NOT NULL , -- the address

10 CONSTRAINT customer_name_ok CHECK (name ~ ’^\w.*\w$’),
11 CONSTRAINT customer_phone_ok CHECK (phone ~ ’^\d{10,11}$’)
12);
13
14 -- List all tables of the user ’boss ’ in database ’customer ’
15 -- Now we see the table ’customer ’.
16 SELECT tablename FROM pg_catalog.pg_tables
17 WHERE tableowner=’boss’;

Listing 9.10: The stdout resulting from the SQL statements in create_table_customer.sql given
in Listing 9.9.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf create_table_customer.sql

2 CREATE TABLE
3 tablename
4 -----------
5 product
6 customer
7 (2 rows)
8
9 # psql 16.9 succeeded with exit code 0.

9.2.1 Creating the Table

We create the table customer using the CREATE TABLE command in Listing 9.9.
The first column again should be the primary key id , which we again define as
INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY .

Customers have names, so we again need a name column. Names can have different length, but
100 characters seems to be a reasonable limit. Therefore, we will again use VARCHAR(100) . For each
customer, a name must be specified, so we again also write NOT NULL . Do names need to be unique?
No they don’t. There can easily be two different customers with the same name. Therefore, we will
not require this column to be UNIQUE .

However, when thinking about names, we realize that NOT NULL is not really a good bottom line
for valid names. Actually, if we go back to our previous table product , we find that we could easily
enter a product with the name ’ bla blab ’ , ’ ’ , or even an empty name ’’ . We just demanded
that the name be set, not that it cannot be empty. What would be a good bottom line for valid
names? Well, it should probably start with a “word character”, say, “A”, “b”, or even “张” and end with
one. Inbetween, we would allow arbitrary characters. This does not prevent anybody from entering
“sgjw9345 s熊猫fki345Q” as name, but at least we would prevent the user from accidentally entering
leading or trailing space characters or entering an empty name. How can we accomplish that?

SQL offers the mechanism of constraints [92]. Actually, NOT NULL and UNIQUE are short-
hands for two constraints. But we can also define more fancy ones. Constraints can be writ-
ten directly after declaring the columns in the CREATE TABLE command. The syntax for this is
CONSTRAINT constraint_name CHECK (expression) . In other words, we give the constraint a name
and provide an expression that should be checked whenever data is entered or changed in the table.
Only if the expression is TRUE the insertion or change is permitted.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_table_customer.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_table_customer.sql

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 102

This means that we have to figure out how we can define “ name must start and end with a ‘word
character’ and can have arbitrary characters inbetween.” as such an expression. This is a bit beyond
what we can do with LIKE . Luckily, regular expressions (regexes) come to the rescue. Regexes are text
patterns that can be matched against text strings. They are supported by many tools and programming
languages (such as Python [437]), and also by SQL and, hence, PostgreSQL [306]. Regexes are a whole
different kind of subject that you can read about in [306]. Here we will just briefly introduce and directly
use them.

For the name column, we will use the regex ’^\w.*\w$’ . The ^ matches the beginning of a text,
\w stands for a single “word character”, . matches to any single character, * means that the expression
item directly before the * can occur any number of times, from zero to infinity, and the $ matches to
the end of the text. In other words, we say: The beginning of the text, i.e., the very first character,
must be a “word character”, e.g., “A”, “b”, or “李”. Then, there can be an arbitrary number of other
characters, including spaces, numbers, signs, whatever. At the end of the text, we again demand a
word character. This means that we demand that names consist of at least two word characters. We
could refine this to also allow single-character names, to prevent characters such as “@” from occurring,
etc., but let’s keep it at this for now.

Having a reasonable limitation for the name, we now define the rule customer_name_ok as
CONSTRAINT customer_name_ok CHECK (name ~ ’^\w.*\w$’) . The CONSTRAINT marks the beginning
of a constraint, customer_name_ok is the name, and CHECK tell us that we will next define an expres-
sion (as opposed to simply NOT NULL). (name ~ ’^w.*w$’) says that the field name must match the
regex ’^\w.*\w$’ . Here, ~ stands for regex-based pattern matching. With this, the names “S” and “
schwipschawp ” are prohibited, but “Thomas Weise” and “熊猫先生” are OK.

Each customer also needs to have a phone number, so we add a column phone . While phone
numbers may appear to be integer numbers, they could have leading zeros. Therefore, we will store
them as text strings. In China, landlines have 10 digits and mobile numbers have 11 digits [459].
Therefore, we choose VARCHAR(11) as the datatype. The phone numbers must be NOT NULL and this
time, we also insist on them to be UNIQUE . While there might be two different customers with the
same name, we do not permit two different customers having the same phone number. Indeed, if our
sales department wants to enter a customer’s information into the DB and there is already one record
with the same phone number, then most likely this would be the same customer and they are in the
process of creating a duplicate entry by accident.

Now we want to limit the phone number text to represent valid phone numbers. ’ABC’ , for example,
is not a valid phone number and neither is 1 . We want to only permit numbers consisting of ten to
eleven digits. We can do this in exactly the same way in which guarded our name field: by defining a
constraint. We write CONSTRAINT customer_phone_ok CHECK (phone ~ ’^d{10,11}$’) . The name of
the constraint will be customer_phone_ok . We again match a regex via ~ , but this time we match the
value of phone .

The regex ’^\d{10,11}$’ reads as follows: At the start of the text (denoted by ^), there is a
sequence of 10 to 11 digits, and then comes the end of the text (denoted by $). Here, \d stands
for a single character that is a digit. The {10,11} specfies between 10 and 11 repetitions of this
pattern. Therefore, our constraint requires that any value of phone to be stored consists of ten to
eleven digits (and only digits). This rules out phone numbers containing other characters, as well as
customers registering under number 110.

Finally, each customer should have a shipping address. Here we will just settle for VARCHAR(255) .
A length of at most 255 characters seems reasonable, as 255 is also used in many other systems as the
limit. We require the address to be NOT NULL , but it does not have to be UNIQUE . For laziness sake
I will not specify a CONSTRAINT that sanity-checks addresses . . . maybe you could do this as a small
exercise when reproducing the example?

Either way, the full SQL command for creating our table customer is given in Listing 9.9. Notice
that we, again, use the boss user with password superboss123 to execute these commands. We create
the table and, afterwards, check whether a new table appeared in the pg_catalog.pg_tables . It does:
the user boss now owns two tables, product and customer , as you can see in Listing 9.10.

9.2.2 Inserting some Data

We now enter the data of the four (imaginary) customers of our company. We can do this again with the
INSERT INTO command. We first need to specify the table, which is customer , and then the columns,

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 103

Listing 9.11: Storing some customer records in the table customer . (stored in
file insert_into_table_customer.sql ; output in Listing 9.12)

1 /* Store some data into the table ’customer ’. */
2
3 -- Print all the contents from table ’customer ’: Nothing.
4 SELECT * from customer;
5
6 -- Insert 4 customers into our table.
7 INSERT INTO customer (name , phone , address)
8 VALUES (’Bibbo’, ’99999999999 ’, ’Hefei , Jinxiu Dadao 99, China’),
9 (’Bebbo ’, ’55555555555 ’, ’Rathaus , Chemnitz , Germany ’),

10 (’Bebba ’, ’33333333333 ’, ’Times Square , NY, USA’),
11 (’Bobbo ’, ’44444444444 ’, ’Eiffel Tower , Paris , France ’);
12
13 -- Now there are 4 rows.
14 SELECT * from customer;

Listing 9.12: The stdout resulting from the SQL statements in insert_into_table_customer.sql
given in Listing 9.11.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf insert_into_table_customer.sql

2 id | name | phone | address
3 ----+------+-------+---------
4 (0 rows)
5
6 INSERT 0 4
7 id | name | phone | address
8 ----+-------+-------------+-------------------------------
9 1 | Bibbo | 99999999999 | Hefei , Jinxiu Dadao 99, China

10 2 | Bebbo | 55555555555 | Rathaus , Chemnitz , Germany
11 3 | Bebba | 33333333333 | Times Square , NY, USA
12 4 | Bobbo | 44444444444 | Eiffel Tower , Paris , France
13 (4 rows)
14
15 # psql 16.9 succeeded with exit code 0.

namely name , phone , and address . We do not need to provide values for the id column, because it
will automatically be set. The customer names are Bibbo, Bebbo, Bebba, and Bobbo. Bibbo lives in
the south campus of our Hefei University (合肥大学), Bebbo lives in the town hall of Chemnitz city in
Germany, Bebba lives on Times Square in New York, and Bobbo resides on top of the Eiffel Tower in
Paris, France. Their phone numbers are similarly probable. Either way, we can insert these values by
specifying them row-for-row, using commas to separate rows. Each row is given in parentheses and the
values are listed in the same sequence as we specified the columns and separated by comas as well.

Listing 9.11 and the corresponding psql output in Listing 9.12 show that, first, the table is empty.
SELECT * from customer; yields 0 rows. Then we execute the INSERT INTO command. Afterwards
SELECT * from customer; prints the four expected rows.

9.2.3 Selecting Data

Let us complete this exercise by extracting some data from the new table customer in Listing 9.13.
First, we want to have a list of all customers from France. This can be done with the query
SELECT name, address FROM customer WHERE address LIKE ’%France%’; The query prints the name
and address of all customers whose address field contains, somewhere, the text France .

Next, we want to know how many domestic Chinese customers we have and how many customers
purchase our products from abroad, i.e., not from China. We first need to decide whether a customer is
based in China or not. We can do this by address ILIKE ’%china%’as domestic . Notice that we this
time wrote ILIKE instead of LIKE . ILIKE works basically the same as LIKE , with the exception that it

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/insert_into_table_customer.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/insert_into_table_customer.sql

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 104

Listing 9.13: Obtaining information from our new table customer . (stored in
file select_from_table_customer.sql ; output in Listing 9.14)

1 /* Extract information from the table customer. */
2
3 -- Try to find customers who may be living in France.
4 SELECT name , address FROM customer WHERE address LIKE ’%France%’;
5
6 -- Count how many domestic and foreign customers we have.
7 SELECT COUNT (*), address ILIKE ’%china%’ as domestic FROM customer
8 GROUP BY domestic;

Listing 9.14: The stdout resulting from the SQL statements in select_from_table_customer.sql
given in Listing 9.13.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf select_from_table_customer.sql

2 name | address
3 -------+-----------------------------
4 Bobbo | Eiffel Tower , Paris , France
5 (1 row)
6
7 count | domestic
8 -------+----------
9 3 | f

10 1 | t
11 (2 rows)
12
13 # psql 16.9 succeeded with exit code 0.

compares text case-insensitive. For LIKE , China and china are two different strings. For ILIKE , they
are the same. By writing SELECT address ILIKE ’%china%’as domestic from customer; , we would
get a one-column result which contains the value TRUE for every customer from China and FALSE for
every customer from abroad.

We can now divide the customers into groups based on this column domestic by
adding GROUP BY domestic to the query. We count the number of customers in each
group by also selecting the new value COUNT(*) . COUNT(*) counts the rows in the
current group and returns the result as integer number. The complete query is
SELECT COUNT(*), address ILIKE ’%china%’as domestic FROM customer GROUP BY domestic; . It
produces two rows. The first row has domestic as f , which means FALSE . In its count column,
we see the value 3. The second row has domestic as t , which means TRUE . In its count column, we
see the value 1. Indeed, there are three foreign customers and one domestic one in our DB.

If you looked at this example carefully, then you noticed that the method of deciding whether a
customer is from China or not, as well as the method of detecting french customers, are not very precise.
For example, if a customer would have specified their country as 中国, i.e., China written in Chinese,
we would have considered them a foreigner. Then again, if the director of the imaginary Donut Factory
Vive la France in Shanghai would order shoes from us, we would consider his address to be french and
domestic at the same time.1 Maybe we should have had another column country? In this case, we
would most likely need a table with countries and link that table to our customer table. . . Next, we will
explore how tables can be “linked” together.

9.3 The Table “demand”

We now have two tables. In the first table, we have the products that we can sell. In the second table,
we have a list of customers. Now we want to store the actual orders, the sales of our company: A

1This situation arises because we here violate the first normal form (1NF), which we will discuss much much later,
in Section 19.3.1. Indeed, dividing the address column into multiple columns would be part of the solution.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_table_customer.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_table_customer.sql

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 105

Listing 9.15: Creating the table demand to store the orders of our customers. (stored in
file create_table_demand.sql ; output in Listing 9.16)

1 /* We create the new table ’demand ’ in our factory database. */
2
3 -- The table ’demand ’ stores all the customer orders.
4 CREATE TABLE demand (
5 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 customer INT NOT NULL REFERENCES customer(id),
7 product INT NOT NULL REFERENCES product(id),
8 amount INT NOT NULL ,
9 ordered DATE NOT NULL ,

10 CONSTRAINT ordered_amount_ok CHECK (
11 (amount > 0) AND (amount < 1000000)),
12 CONSTRAINT ordered_date_ok CHECK (
13 (ordered > ’2024 -10 -01’) AND (ordered < ’3000 -01 -01’))
14);
15
16 -- List all tables of the user ’boss ’ in database ’factory ’
17 -- Now we see the table ’demand ’.
18 SELECT tablename FROM pg_catalog.pg_tables
19 WHERE tableowner=’boss’;

Listing 9.16: The stdout resulting from the SQL statements in create_table_demand.sql given in List-
ing 9.15.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf create_table_demand.sql

2 CREATE TABLE
3 tablename
4 -----------
5 product
6 customer
7 demand
8 (3 rows)
9

10 # psql 16.9 succeeded with exit code 0.

customer can buy a certain amount of one product.

9.3.1 Creating the Table

Naturally, we would like to call this table, which stores orders, something like order (as we always use
singular table names as stated in Best Practice 4). Unfortunately, we already learned that ORDER is a
reserved keyword in SQL.

Best Practice 10

Never use SQL keywords or reserved words as names, e.g., for columns or tables [51].

OK, fine, so we go with a synonym and call the table demand in Listing 9.15. Like in the other
two tables, each demand record must have a unique primary key id . This should be an inte-
ger number which is automatically generated by the DB for us. Therefore, we define the column
id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY , in the same way we already did before.

Now, however, comes something really cool: Only customers can make orders. Therefore, every
record in the table demand must be linked to exactly one record in the table customer . How can we
do that? Via so-called foreign keys [152]. You see, in both of our existing tables, we have defined a

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_table_demand.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_table_demand.sql

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 106

PRIMARY KEY . We used auto-generated integers, as we also do in the new table. We can now define a
column which also is of type INT and that references the primary key of another table.2

We can write customer INT NOT NULL REFERENCES customer(id) to define such a file. The name
of this new column in our table demand will be customer . We declare it as an INT which must be
NOT NULL . Now we write REFERENCES customer(id) , which basically is a constraint. This constraint
is called foreign key. For any value of customer in our new table, makes sure that there always is a
row in table customer whose id value is the same. You cannot add a row to our table demand if the
customer value does not match to an id of one row in table customer . You also cannot delete a
record from customer if its id is used somewhere in table demand . This means every single record in
our table demand will definitely be linked to one record in table customer . Of course, a record in table
customer can be linked to many records in table demand .

Now, the customer makes a purchase. So we want to link this purchase also to a product. For
the sake of simplicity, we only allow the customer to purchase one product at a time. Otherwise we
need yet another table . . . and this example will get too exhausting. So after linking the demand
records to customer records, we also need to link them to product records. We therefore add another
column that we will call product by writing product INT NOT NULL REFERENCES product(id) . As you
can see, we again mark this column as foreign key by specifying a REFERENCES constraint. This time,
it references the column id of table product . In other words, every single record that we will put into
the table demand will be linked to exactly one record in table customer and to exactly one record in
table product .

So the customer has ordered one product. Next we want to specify the amount of the product that
the customer orders. We create the column amount INT NOT NULL . For each demand, we must specify
an amount (NOT NULL) and that amount must be an integer, hence the INT . Having learned about
constraints a while ago, we want to protect our data a bit better. For example, we want to make sure
that amount is always positive, i.e., greater than zero. Also, orders for over one million units of any
product are unrealistic. If we are about to insert a record into our demand table where someone orders
a million shoes, chances are that something went wrong. So we want to define a constraint enforcing
amount to stay in 1..999 999.

We can write CONSTRAINT ordered_amount_ok CHECK (amount > 0) . This will create the con-
straint ordered_amount_ok which will check that amount is greater than zero. We can also write
CONSTRAINT ordered_amount_ok CHECK (amount < 1000000) . This would instead make sure that the
ordered amount is less than one million. We can combine both conditions into one and simply write
CONSTRAINT ordered_amount_ok CHECK ((amount > 0)AND (amount < 1000000)) . Indeed, SQL sup-
ports logical operators such as AND , OR , and NOT . With this, we prevent any order for less than
one or more than 999 999 items.

Of course, we also want to store when a customer issued the demand. For storing dates, SQL offers
the DATE type. It allows us to specify dates in the Gregorian calendar [184, 305]. As notation, the
ISO standard format “ YYYY-MM-DD” [111] is used, where YYYY is the four-digits of the year, MM stands
for the number month in two digits, and DD is the day specified with two digits as well. We then can
compare dates and do all sorts of arithmetics with them. Like the type DECIMAL being the canonical
datatype to be used for monetary things, DATE is the right type for dates. It is also a reserved word,
so we cannot call our new column date and we also cannot call it when , as this is also reserved. Lets
use ordered as name for the column storing date when the customer ordered our product. We write
ordered DATE NOT NULL as column definition, because we want to enforce that it is NOT NULL , i.e., the
order date must always be specified.

Let us also insert a sanity check constraint to make sure that dates make sense. Assume
that we built our database in October 2024, then no order with a date before 2024-10-01
can exist. Furthermore, it would be unlikely that our software was still running in a thou-
sand years, so let’s also not except any date greater than or equal to 3000-01-01 . We write
CONSTRAINT ordered_date_ok CHECK ((ordered > ’2024-10-01’)AND (ordered < ’3000-01-01’)) to
combine both constraints. As you see, arithmetic comparisons have been implemented for the DATE
datatype.

The table is created using the completed command in Listing 9.15. In Listing 9.16 we see the result
– there is now a new table demand in our DB.

2Much later, we will formalize the concept of foreign keys in Definition 19.5.

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA 107

Listing 9.17: Storing some order records in the table demand . (stored in
file insert_into_table_demand.sql ; output in Listing 9.18)

1 /* Store some data into the table ’demand ’. */
2
3 -- Print all the contents from table ’demand ’: Nothing.
4 SELECT * from demand;
5
6 -- Insert 8 orders into our table.
7 INSERT INTO demand (customer , product , amount , ordered)
8 VALUES (1, 7, 12, ’2024 -11 -21’), (2, 3, 2, ’2024 -12 -09’),
9 (3, 2, 7, ’2024 -12 -16’), (2, 5, 7, ’2024 -12 -30’),

10 (1, 5, 3, ’2025 -01 -05’), (2, 6, 4, ’2025 -01 -12’),
11 (3, 11, 10, ’2025 -01 -16’), (2, 3, 6, ’2025 -02 -05’);
12
13 -- Now there are 8 rows.
14 SELECT * from demand;

Listing 9.18: The stdout resulting from the SQL statements in insert_into_table_demand.sql given
in Listing 9.17.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf insert_into_table_demand.sql

2 id | customer | product | amount | ordered
3 ----+----------+---------+--------+---------
4 (0 rows)
5
6 INSERT 0 8
7 id | customer | product | amount | ordered
8 ----+----------+---------+--------+------------
9 1 | 1 | 7 | 12 | 2024 -11 -21

10 2 | 2 | 3 | 2 | 2024 -12 -09
11 3 | 3 | 2 | 7 | 2024 -12 -16
12 4 | 2 | 5 | 7 | 2024 -12 -30
13 5 | 1 | 5 | 3 | 2025 -01 -05
14 6 | 2 | 6 | 4 | 2025 -01 -12
15 7 | 3 | 11 | 10 | 2025 -01 -16
16 8 | 2 | 3 | 6 | 2025 -02 -05
17 (8 rows)
18
19 # psql 16.9 succeeded with exit code 0.

9.3.2 Inserting and Selecting some Data

Inserting data into our new table demand , however, is a bit annoying. We need to refer to the customers
and the products by their id . In Listing 9.17, we use an INSERT INTO command to insert eight orders
into the table. We need to specify the value of customer , product , amount , and the ordered date
for each of them. The first row is (1, 7, 12, ’2024-11-21’) . It means that customer 1, namely
Mr. Bibbo orders twelve units of product 7, i.e., “Shoe, Size 42.” He did this on November 21, 2024.
The second row is (2, 3, 2, ’2024-12-09’) , meaning that customer 2, i.e., Mr. Bebbo, ordered
2 units of product 3, namely “Shoe, Size 38.” This happened on December 9, 2024. We insert several
rows like this. For instance, row (3, 11, 10, ’2025-01-16’) identifies Mrs. Bebba (customer 3) as
the purchaser of ten large purses (product 11) on January 16, 2025.

Listing 9.17 shows the effect of this command. Querying SELECT * FROM demand; will show us all
the rows of this table. Making sense of this data is, however, not straightforward. Luckily, SQL does
not just offer us the ability to link records between tables in order to maintain data integrity. It also
provides us means to connect the information from different tables together.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/insert_into_table_demand.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/insert_into_table_demand.sql

Chapter 10

Join-based Select and Views

So far, things are going well. On the positive side, we have learned that we can divide the data of
factory into separate aspects and then store it into different tables. This is nice. We also learned that
we can ensure the integrity of the data inside a single table in various ways. For example, we can
use datatypes that strictly enforce their domains. DECIMAL , for example, makes sure that numbers are
represented exactly without loss of precision to a fixed number of decimals [275]. DATE ensures that
valid dates based on the Gregorian calendar are entered [184, 305]. We can also define constraints,
ranging from ensuring that all columns are entered (NOT NULL) over preventing name clashes (UNIQUE)
to sanity checks (via CHECK constraints) [92]. We also learned that we can even ensure the consistency
of the data in our DB across different tables via the REFERENCES constraint [152]. So we cannot just
have tables, they can have strongly-typed columns and the data integrity can be enforced throughout
the complete DB. This puts relational databases well ahead the spread sheets produced by the likes of
Microsoft Excel or LibreOffice Calc.

However, on the negative side, we have to admit that using DBs is more complicated. And we are
certainly losing in terms of readability of our data. Indeed, the meaning of the demand data shown in
Listing 9.18 is not obvious without knowing the contents of the other tables. Now we will see that we
can also use these contents of other tables directly in our queries, to produce clear and human-readable
output.

10.1 Joining Tables

We now want to have a list of all of our customers, and for each customer we want to see the id
values of all of the demands (orders) they have issued. We now step-by-step build the query used
in Listing 10.1. So the result of our query should have two columns. The first column should hold
the customer names. Let’s call it customer . The second column should hold the id of the order the
customer made. Let’s call this column demand_id . Now if a customer issued multiple orders, then
they should appear multiple times in this table, once for each demand. If a customer did not issue any
orders, then they should still appear, but only once and with a NULL value in the demand_id column.

This means that first, we need all the customer names. A SELECT name FROM CUSTOMER; would do
this for us. Now we need to cross-reference the customer id values in table customer with the column
customer in table demand . We also want to list the customers who did not issue any order.

What we want to do is to apply a so-called LEFT JOIN , also called , of the
table customer to the table demand [212]. The syntax of a left join is basi-
cally SELECT <something> FROM table_1 LEFT JOIN table_2 ON (table_1.a = table_2.b) . Here
<something> can be any column from table_1 or table_2 . The columns from table_1 that we
want need to be prefixed by table_1. . The columns from table_2 that we want need to be prefixed
by table_2. . The important part of the LEFT JOIN is the ON condition. It can be an arbitrarily complex
condition, involving AND and OR and whatnot. However, in the simplest form, it just picks a column
from table_1 , here table_1.a and says that its value must be the same as a column in table_2 , here
table_2.b .

We apply this to our situation. table_1 is obviously customer and table_2 is demand . The thing
that we want to select is customer.name and the corresponding values of demand.id . The fields that
need to match are customer.id and demand.customer .

In Listing 10.1, we SELECT customer.name, demand.id and we do so

108

CHAPTER 10. JOIN-BASED SELECT AND VIEWS 109

Listing 10.1: Get the per-customer demands. (stored in file select_customer_demand.sql ; output
in Listing 10.2)

1 /* Get the number of demands per customer. */
2
3 -- List all demand IDs for each customer.
4 -- LEFT JOIN: ’Bobbo ’ also appears once , with a NULL demand.
5 SELECT customer.name as customer_name , demand.id as demand_id FROM
6 customer LEFT JOIN demand ON (customer.id = demand.customer)
7 ORDER BY customer_name;
8
9 -- Now we count the demands.

10 SELECT customer.name as customer_name , COUNT(demand.id) as demands FROM
11 customer LEFT JOIN demand ON (customer.id = demand.customer)
12 GROUP BY customer_name ORDER BY customer_name;

Listing 10.2: The stdout resulting from the SQL statements in select_customer_demand.sql given
in Listing 10.1.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf select_customer_demand.sql

2 customer_name | demand_id
3 ---------------+-----------
4 Bebba | 7
5 Bebba | 3
6 Bebbo | 8
7 Bebbo | 4
8 Bebbo | 2
9 Bebbo | 6

10 Bibbo | 1
11 Bibbo | 5
12 Bobbo |
13 (9 rows)
14
15 customer_name | demands
16 ---------------+---------
17 Bebba | 2
18 Bebbo | 4
19 Bibbo | 2
20 Bobbo | 0
21 (4 rows)
22
23 # psql 16.9 succeeded with exit code 0.

FROM customer LEFT JOIN demand ON (customer.id = demand.customer) . When executed, this
query goes through the table customer . For each record, it will take the field id , i.e., customer.id .
It will then search for any row in the table demand whose field customer , i.e., demand.customer has
the same value. For any such row, it will write a row to the output with the name of the customer and
the id of the row in demand . If and only if no such row exists for a customer, i.e., if the customer did
not yet make any purchase, it writes a row to the output with the name of the customer and NULL as
the demand id. This means that we get the demands associated with each customer name. We also
see which customer did not make any purchase.

To clean up the output, we rename customer.name AS customer_name and demand.id AS demand_id
to make it clearer which name and id values will be displayed. We also add an ORDER BY customer_name
to sort the output by customer name.

The result of this query, shown in Listing 10.2, has nine rows. We have eight demands, which are
associated with customers Bebba, Bebbo, and Bibbo. Bobbo did not yet make any purchase, so he
appears as a single row with NULL associated as demand_id . The psql client just leaves demand_id
blank in the output.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_customer_demand.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_customer_demand.sql

CHAPTER 10. JOIN-BASED SELECT AND VIEWS 110

We now have cross-referenced two tables! Let us take this a step farther and ask “How many orders
did each customer make so far?” We again answer this question in Listing 10.1. Doing this is rather
easy: First, we replace demand.id AS demand_id in the query with COUNT(demand.id)as demands . We
already learned that COUNT just counts rows over groups. But in order to let it count meaningfully,
we need to create these groups. All we have to do for this is to add a GROUP BY customer_name to
the query. All rows that share a customer_name go into the same group. COUNT now counts the rows
in these groups. The output in Listing 10.2 shows us that Bebba made two orders, Bebbo four, and
Bibbo also two. Bobbo so far has zero orders in his name.

With this, we now know how to cross-reference tables. We have essentially solved the basic an-
noyance mentioned before: Yes, our data is distributed over different tables and without knowing what
product a product id refers to and which customer corresponds to which customer id, it is hard to
understand anything. However, we can just join tables pull all the information together in a query.

10.2 Views as Virtual Tables

We are now able to cross-reference different tables and to pull data together. What we want to do is
to create a query where, for each demand, we see the customer name, the product name, the product
price, the ordered amount, and the order date. The result of this query would then be a clear and
human readable overview of the business transactions of our company. Based on the previous example,
where we joined the table customer with the table demand , we anticipate that we will need two “joins”
now. We will need to combine the demand table with the customer table and with the product table.
The query will therefore probably be more complicated.

Moreover, it is likely that we will need this query structure several times. For example, we probably
want to be able to query all the orders that were made in a specific year. This would basically extend
the same query with a WHERE clause where we limit the demand dates. Or maybe we want to sum up
the cash flow per customer, to see who our most lucrative customers are and to maybe make them
some special offers Or maybe we want to summarize the total sales per product. This would tell us
which of our products sell well and which don’t.

Every time we would re-write the query, just a bit differently. Of course, this is not a good approach.
On one hand, every time we write a query, there is a chance that we introduce a mistake. On the other
hand, if we ever decided to change the structure of DB, maybe by allowing multiple items per demand,
then we are stuck with a heap of queries that all need to be changed.

Luckily, the SQL language and relational databases offer us a tool for this situation: We can store
the query as so-valled view [100]. A view is basically a stored query that we can work with exactly as
if it was a table. We can apply other SELECT queries on top of it.

Thus, we now will perform two steps: First, we design the new query that joins three tables. Second,
we store this query as view so that we can re-use it whenever it pleases us.

Let us construct the new query. We first define what we want in a way more close to SQL. “For each
row in demand , we need the corresponding row in customer and the corresponding row in product .” We
know that there always exists exactly one customer row, because we defined the foreign key REFERENCES
constraint that enforces this. We also know that there always exists exactly one product row, because
we defined the foreign key REFERENCES constraint that enforces this. So it cannot be that we have
a row demand but no corresponding row in customer or product . We already know that it is totally
possible the other way around, i.e., that there is a row in customer without any related row in demand
– but this is not important here.

Given this information, we could use the LEFT JOIN from before. It would generate rows also for
rows of demand that do not match to any customer or product . But such rows do not exist anyway.
However, what we actually would like to use here is an INNER JOIN . The INNER JOIN only creates
output rows when the rows of all involved tables match each other.

But how do we go about joining three tables? Well, let’s begin by doing ba-
sically the same thing as before: We SELECT <something> FROM demand and then
INNER JOIN customer ON (customer.id = demand.customer) . For each row in demand , this gives us
the corresponding row in customer . It also would drop each row in demand for which no row in customer
exists from the output, but that cannot happen anyway. Now we simply chain the next INNER JOIN
by writing it directly after that! We write INNER JOIN product ON (product.id = demand.product) .
This will also select the corresponding row from table product . If such a row does not exist, then the

CHAPTER 10. JOIN-BASED SELECT AND VIEWS 111

Listing 10.3: Creating a view, i.e., a stored SQL query that can be treated like a table, to list the
demands in human-readable form. (stored in file create_view_sale.sql ; output in Listing 10.4)

1 /* Create a view showing the sales information. */
2
3 -- We combine the three tables customer , product , and demand.
4 -- Basically , for each row in ’demand ’, we find the corresponding rows
5 -- in the ’customer ’ and ’product ’ tables (via the INNER JOIN).
6 -- This gives us one long row with all the information for one ’demand ’.
7 -- We now choose only some elements of this long row and rename them.
8 -- We extract the name of the customer combined with their phone number
9 -- and refer to it "customer_name ".

10 -- We extract the name of the product and refer to it as "product_name ".
11 -- We also print the "amount" from each customer demand and the price.
12 -- We also print when the purchase as made
13 CREATE VIEW sale AS
14 SELECT customer.name || ’, ’ || customer.phone AS customer_name ,
15 product.name AS product_name , product.price AS price ,
16 demand.amount AS amount , demand.ordered as ordered
17 FROM demand INNER JOIN customer ON (customer.id = demand.customer)
18 INNER JOIN product ON (product.id = demand.product)
19 ORDER BY customer_name , ordered , product_name , price , amount;
20
21 -- We can use the view as if it was a table!
22 SELECT * from sale;

Listing 10.4: The stdout resulting from the SQL statements in create_view_sale.sql given in List-
ing 10.3.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf create_view_sale.sql

2 CREATE VIEW
3 customer_name | product_name | price | amount | ordered
4 --------------------+---------------+--------+--------+------------
5 Bebba , 33333333333 | Shoe , Size 37 | 152.99 | 7 | 2024 -12 -16
6 Bebba , 33333333333 | Large Purse | 150.00 | 10 | 2025 -01 -16
7 Bebbo , 55555555555 | Shoe , Size 38 | 154.99 | 2 | 2024 -12 -09
8 Bebbo , 55555555555 | Shoe , Size 40 | 158.99 | 7 | 2024 -12 -30
9 Bebbo , 55555555555 | Shoe , Size 41 | 160.99 | 4 | 2025 -01 -12

10 Bebbo , 55555555555 | Shoe , Size 38 | 154.99 | 6 | 2025 -02 -05
11 Bibbo , 99999999999 | Shoe , Size 42 | 162.99 | 12 | 2024 -11 -21
12 Bibbo , 99999999999 | Shoe , Size 40 | 158.99 | 3 | 2025 -01 -05
13 (8 rows)
14
15 # psql 16.9 succeeded with exit code 0.

whole current combined row from demand and product would be dropped from the output. Thanks
to our REFERENCES constraints in table demand , this can never happen anyway.

We now have nicely pulled the customer and product data for each demand order. We now
choose the columns that we want to output and replace the <something> we first nonchalantly
wrote when beginning to design the query. First, we want to get the customer name, so we write
customer.name AS customer_name . Like we did in the the last query we designed.

However, this time, suddenly a problem occurs to us: As we discussed before, customer names are
not necessarily UNIQUE in our DB design. This would be a flaw of this query, as it does not distinguish
two different customers with the same name. In real systems, you have customer numbers, unique
usernames, or phone numbers to avoid this issue. Actually, we do have phone numbers here, too, and
they are UNIQUE . Then again, just displaying the phone number is probably confusing to whoever reads
the result of the view.

So what are we going to do? Shall we display the customer names, which are not unique? Then,

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_view_sale.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/create_view_sale.sql

CHAPTER 10. JOIN-BASED SELECT AND VIEWS 112

if we add up sales per customer name, people with the same name will be grouped together and the
result may be wrong. Or should we display phone numbers? This would render the output close to
unreadable for human operators.

Let’s go all the way: We simply concatenate the customer name and their phone number. We do
SELECT customer.name ||’, ’||customer.phone as customer_name The a || b operator con-
catenates two strings a and b [382]. Thus ’Hello ’|| ’Word!’ will result in the string ’Hello World!’ .
Our third customer, Mrs. Bebba, would be displayed as ’Bebba, 33333333333’ . Since the phone num-
bers are UNIQUE in our DB, names plus phone numbers must also necessarily be unique. As the
result, the data is readable, because the operator can see the names. And if ever another Mrs. Bebba
would become our customer, maybe she has phone number 77777777777, then it would be impossi-
ble to mix up the two Bebbas. One would show up as ’Bebba, 33333333333’ and the other one as
’Bebba, 77777777777’ .

We also want to get the product name, so we write product.name AS product_name . Product
names are UNIQUE , so we can use them as-is. Notice how both the table customer and the table
product have a column called name . However, there can never be any confusion here, because we refer
to these columns as customer.name and product.name , respectively. Next we want the list product price
and amount associated with an order, i.e., product.price AS price and demand.amount AS amount .
Finally, we also return the order date and therefore add column demand.ordered as ordered .

For good measures, we add an ORDER BY clause and sort the output by customer_name . If two
entries have the same customer_name , then we sort the one with the earlier order date (ordered)
first. If two entries have the same customer_name and ordered date, then we sort the one with the
lexicographically smaller product_name first. We try to resolve further draws by price and amount .

The second thing we wanted to do was to save this query into the DB as a view. This way, we can
re-use it whenever we want. Storing it as a view is very very simple. We first need to pick a name for it.
Let’s call it sale . Then, we just need to write CREATE VIEW sale AS right before our new query [100].
If we do this, the query is not actually executed. It is stored under the name sale as a view. We do
this in Listing 10.3.

What if we want to actually execute the query? Well, we treat sale as if it was a table. We write
SELECT * FROM sale; . We do this as well in Listing 10.3.

The result is shown in Listing 10.4. Eight beautiful human readable rows of data.

10.3 Using our View

Above, we said that the view sale can be used like a table. SELECT * FROM sale; looks very much
like that. But we can do a lot more. We now want to answer the questions “Which customer bought
products for the most money for us?” and “Which product sold for the most money?”

The data we need to answer these questions is already available in the view sale . For each demand,
we have the price of one unit of the ordered product as well as the amount , the number of product
units purchased, in our table. If we multiply them with each other, i.e., compute amount * price we
know how much the customer paid. All we need to do is to sum up this quantity per customer and we
know how much money each customer sent to us. We can also sum amount * price for each product
and we get how much money came in on a per-product basis.

In the former case, we would GROUP BY customer_name and then
SELECT customer_name, SUM(amount * price) SUM from sale . We could give the sum the
name customer_sale . To directly see who purchased most from us, we could also add a
ORDER BY customer_sale DESC . The DESC enforces sorting in descending order, i.e., larger values
come first.

We can do pretty much the same for products, in which case we would GROUP BY product_name .
We could compute SUM(amount * price)AS product_sale and we would know for how much money
each product sold. On a per-product basis, it makes also sense to look at the total units sold, so we
could additionally compute SUM(amount)AS total_amount . Of course, we could sort the data by the
product sale in descending order, i.e., write ORDER BY product_sale DESC .

The complete queries can be seen in Listing 10.5. Their result is given in Listing 10.6. We find
that Bebbo is our most valuable customer. He purchased products for over 2996元 from us. Bebba
purchased for over 2570元 and Bibbo sent about 2433元 to us.

The top-selling product, by far, is our famous “Shoe, Size 42.” We sold 12 pairs of it for about

CHAPTER 10. JOIN-BASED SELECT AND VIEWS 113

Listing 10.5: Compute the per-customer and per-product sales based on the view sale . (stored in
file select_from_view_sale_1.sql ; output in Listing 10.6)

1 /* Extract some information from our database using the view ’sale ’. */
2
3 -- Get the total sales per customer.
4 SELECT customer_name , SUM(amount * price) AS customer_sale FROM sale
5 GROUP BY customer_name ORDER BY customer_sale DESC;
6
7 -- Get the total sales per product.
8 SELECT product_name , SUM(amount) AS total_amount ,
9 SUM(amount * price) AS product_sale FROM sale

10 GROUP BY product_name ORDER BY product_sale DESC;

Listing 10.6: The stdout resulting from the SQL statements in select_from_view_sale_1.sql given
in Listing 10.5.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf select_from_view_sale_1.sql

2 customer_name | customer_sale
3 --------------------+---------------
4 Bebbo , 55555555555 | 2996.81
5 Bebba , 33333333333 | 2570.93
6 Bibbo , 99999999999 | 2432.85
7 (3 rows)
8
9 product_name | total_amount | product_sale

10 ---------------+--------------+--------------
11 Shoe , Size 42 | 12 | 1955.88
12 Shoe , Size 40 | 10 | 1589.90
13 Large Purse | 10 | 1500.00
14 Shoe , Size 38 | 8 | 1239.92
15 Shoe , Size 37 | 7 | 1070.93
16 Shoe , Size 41 | 4 | 643.96
17 (6 rows)
18
19 # psql 16.9 succeeded with exit code 0.

1956元. Figuratively speaking, “Shoe, Size 42” is the runner up (hehe) with 1590元 for ten pairs sold.
Many of our customers also liked to by “Large Purse.” No wonder that customers love it, as it offers
10g of product per 元 (see Listing 9.8).

It is interesting to briefly think about how the above works. On the top level, we have an SQL query
that selects from data from the view sale . Fine, you already have a feeling about how such queries
work. But remember: sale is not a table. It itself is just a query! So what happens here is that
the query stored as view sale is executed. Its results are taken and then on top of these results, the
new query that sums up the customer purchases (or the product purchases) is executed. The results
of sale are not stored. sale is not a table. Instead, whenever we access it, the query it represents is
executed. And we can work with its results as if it was a table. Isn’t that cool?

Assume that your DB is now used for several years. Queries like the above one would take into
consideration the whole history of data. Maybe we are only interested in the present year, which, at
the time of this writing, is 2025. So what we would like to do is to limit our query from Listing 10.5
to only consider data from 2025.

For this, we add the clause WHERE (ordered >= ’2025-01-01’)AND (ordered < ’2026-01-01’) to
our queries. ordered is the date when the customer made the order. We only want to consider records
for which the date is greater then or equal to January 1st, 2025. Also, the date must be less than
January 1st, 2026. So we combine (ordered >= ’2025-01-01’) and (ordered < ’2026-01-01’) with
AND and put them into a WHERE clause. The updated queries can be found in Listing 10.7.

Their results in Listing 10.8 show us that Mr, Bebbo is still our most valuable customer in 2025,

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_view_sale_1.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_view_sale_1.sql

CHAPTER 10. JOIN-BASED SELECT AND VIEWS 114

Listing 10.7: Compute the per-customer and per-product sales based on the view sale . (stored in
file select_from_view_sale_2.sql ; output in Listing 10.8)

1 /* Extract information from ’sale ’ but limit the date range. */
2
3 -- Get the total sales per customer in 2025.
4 SELECT customer_name , SUM(amount * price) AS customer_sale FROM sale
5 WHERE (ordered >= ’2025 -01 -01’) AND (ordered < ’2026 -01 -01’)
6 GROUP BY customer_name ORDER BY customer_sale DESC;
7
8 -- Get the total sales per product in 2025.
9 SELECT product_name , SUM(amount) AS total_amount ,

10 SUM(amount * price) AS product_sale FROM sale
11 WHERE (ordered >= ’2025 -01 -01’) AND (ordered < ’2026 -01 -01’)
12 GROUP BY product_name ORDER BY product_sale DESC;

Listing 10.8: The stdout resulting from the SQL statements in select_from_view_sale_2.sql given
in Listing 10.7.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf select_from_view_sale_2.sql

2 customer_name | customer_sale
3 --------------------+---------------
4 Bebbo , 55555555555 | 1573.90
5 Bebba , 33333333333 | 1500.00
6 Bibbo , 99999999999 | 476.97
7 (3 rows)
8
9 product_name | total_amount | product_sale

10 ---------------+--------------+--------------
11 Large Purse | 10 | 1500.00
12 Shoe , Size 38 | 6 | 929.94
13 Shoe , Size 41 | 4 | 643.96
14 Shoe , Size 40 | 3 | 476.97
15 (4 rows)
16
17 # psql 16.9 succeeded with exit code 0.

and that Mrs. Bibba still bought products for more money than Mr. Bibbo. However, in 2025, “Large
Purse” is our best-selling product with a margin of about 600元 over the runner up. “Shoe, Size 42”
did not even make the list in 2025.

At this stage, we have again become more powerful. We now have effectively solved the problem
that our data is hard to understand. We now have tools, namely the JOIN queries, that allow us to
pull together the data from different tables. We originally separated the data to enforce cleanliness
without redundancy. We stored the information about Mr. Bebbo only once, even though he made four
purchases. The downside was that, in the purchase records for Mr. Bebbo, the name “Bebbo” did not
appear. Instead, it was referenced by pointing to another table via its id 2. This made the data hard
to read. But now we know how we can put the records back together.

Admittedly, the sales query that pulls all the data together (given in Listing 10.3) is not very easy to
read if you are new to SQL. On one hand, once you are more familiar with SQL, such queries become a
joy to write. On the other hand, we also can simply store the query in the DB as a so-called view. We
can re-use this view whenever we want. We can also plug other queries on top of it. So we basically
have to do the hard work of designing a good query to pull the data together only once.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_view_sale_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_view_sale_2.sql

Chapter 11

Updating and Deleting Records

11.1 Updating Records

We have seen how new data can be inserted into a DB row-by-row in Chapter 9. Often, we also want
to modify or delete data. This can be done similarly easily.

Assume that our factory found another producer for shoe boxes. The new boxes are 5mm less
higher and therefore cheaper. In Listing 11.1 we want to change the package size for all products in
shoe boxes accordingly. We do this with an UPDATE <table> SET <fields> statement [416]. The table
is clearly product . There is only a single field that we want to change, namely height .

The shoe box that we used so far were 350mm × 250mm × 130mm in size. For each product that

Listing 11.1: Modifying some records in the table product . (stored in file update_table_product.sql ;
output in Listing 11.2)

1 /* We change entries in the table ’product ’ in our factory database. */
2
3 -- We want to reduce the height of all show boxes by 5mm.
4 -- We know what product comes in a shoe box by the box dimensions of
5 -- 350mm * 250mm * 130mm. If it has this size , it’s a shoe box.
6 UPDATE product SET height = height - 5 -- new height = old height - 5
7 WHERE (width = 350) AND (height = 250) AND (depth = 130)
8 RETURNING *; -- Same as SELECT * from product; *after* update
9

10 -- Now the shoe boxe are 245mm high. Before they were 250mm high.

Listing 11.2: The stdout resulting from the SQL statements in update_table_product.sql given
in Listing 11.1.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf update_table_product.sql

2 id | name | price | weight | width | height | depth
3 ----+---------------+--------+--------+-------+--------+-------
4 1 | Shoe , Size 36 | 150.99 | 1300 | 350 | 245 | 130
5 2 | Shoe , Size 37 | 152.99 | 1325 | 350 | 245 | 130
6 3 | Shoe , Size 38 | 154.99 | 1350 | 350 | 245 | 130
7 4 | Shoe , Size 39 | 156.99 | 1375 | 350 | 245 | 130
8 5 | Shoe , Size 40 | 158.99 | 1400 | 350 | 245 | 130
9 6 | Shoe , Size 41 | 160.99 | 1425 | 350 | 245 | 130

10 7 | Shoe , Size 42 | 162.99 | 1450 | 350 | 245 | 130
11 8 | Shoe , Size 43 | 164.99 | 1475 | 350 | 245 | 130
12 9 | Small Purse | 100.00 | 500 | 350 | 245 | 130
13 (9 rows)
14
15 UPDATE 9
16 # psql 16.9 succeeded with exit code 0.

115

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/update_table_product.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/update_table_product.sql

CHAPTER 11. UPDATING AND DELETING RECORDS 116

Listing 11.3: Deleting a row from the table product . (stored in file delete_from_table_product.sql ;
output in Listing 11.4)

1 /* We delete an entry from the table ’product ’ in our factory database. */
2
3 -- We got 11 products.
4 SELECT COUNT (*) as number_of_products from product;
5
6 -- Delete the ’Shoe , Size 36’ ... nobody ever bought it.
7 DELETE FROM product WHERE id = 1; -- The id of ’Shoe , Size 36’ is 1.
8
9 -- We now we got only 10 products.

10 SELECT COUNT (*) as number_of_products from product;

Listing 11.4: The stdout resulting from the SQL statements in delete_from_table_product.sql given
in Listing 11.3.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf delete_from_table_product.sql

2 number_of_products
3 --------------------
4 11
5 (1 row)
6
7 DELETE 1
8 number_of_products
9 --------------------

10 10
11 (1 row)
12
13 # psql 16.9 succeeded with exit code 0.

ships in such a box, we want to change the height as height = height - 5 , i.e., we set the “new”
height to be the “old” height minus 5mm. We could write height = 245 just as well, but in the example
I wanted to show that we can use arbitrary expressions when updating column.

However, we do not want to change all the rows in the table. Only those that used the shoe boxes
of the aforementioned dimensions. So we use an WHERE condition the selects only the rows for which
width = 350 , height = 250 , and depth = 130 hold.

Finally, we want to see the result of our update query. The UPDATE statement allows us to supply,
basically, a SELECT query that chooses data only from the changed rows. This query is written at the
end of the statement as RETURNING . We return all the data from the changed rows.

As you can see Listing 11.2, nine rows are affected. Their height indeed changed to 245 .

11.2 Deleting Records

After running our company for some time, we realized that our stock of “Shoe, Size 36” is never
declining. Indeed, nobody ever purchased these smallest-size shoes. Brokenheartedly, we decide to
discontinue this product. This means that we somehow need to remove it from the table product , as
it will no longer be sold.

In Listing 11.3, we do this with the command DELETE FROM product WHERE id = 1; [125]. This
command is pretty self-explanatory. It deletes all the rows from table product where the field id has
value 1 . Only one such row exists, namely the one with “Shoe, Size 36”. It is deleted.

To see whether this really worked, we print SELECT COUNT(*)as number_of_products from product;
before and after the DELETE FROM query. Indeed, Listing 11.4 shows that we originally had 11 products
in our palette. After deleting the smallest-sized shoes, only ten products are left.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/delete_from_table_product.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/delete_from_table_product.sql

Chapter 12

Connecting from Python

When we look at what we have achieved so far, we find that it is all pretty nice. However, there is
one general problem we did not really consider yet: The data is entirely inside the DB. At first glance,
this is where it belongs. Giving this a second thought, a realization strikes us: Nobody except us (the
DBAs and developers) can really work with this. Yes, we created the user account boss for our boss
so that they can log in and work with the data. But are we really going to explain to them that they
will have to use SQL for this? Will a sales manager really insert customer orders into our DB by firing
up the SQL client and then typing INSERT INTO demand (...? Probably not.

The data is in the DB, where it belongs. The DBMS can protect it by enforcing our constraints
and via its user and rights management. But only cool people like us can really work with that.
Unsophisticated personnel will gaze at psql puzzled.

We need a way to access and work with the data from the outside. For this, several possible choices
exist.

1. We can write a our own client program, which offers the user comfortable methods to enter and
visualize data. The program then communicates with the DB. The user is never bothered with
SQL and that alike.

2. We can also write the front end in form of a web application, maybe based on the Flask server.
The user then can access our front end via the web browser. Our program again does the heavy
lifting in terms of SQL and DB interaction.

3. We use a general interface such as LibreOffice Base and connect with it to our DB. In such a
tool, we can conveniently design forms for entering the data and reports for visualizing it. Users
can use this front end and still have full access to SQL and the entrails of our DB.

Here, we will look at the first and third choice. The second choice involves maybe a bit too much
background knowledge for this stage of “playing with a DB” example.

So let us begin by writing a program that accesses a PostgreSQL DB. We will use the Python
programming language [437]. I strongly recommend to read our course book Programming with
Python [437] on this subject either before or in parallel. Things like how to install or work with
packages are described there, as well as for loops and such and such.

For this part of the example, we need the Python programming language and the psycopg library
installed. It would probably also be useful to have the PyCharm IDE ready. How these pieces of software
can be obtained is discussed in Chapter 4 and in [437].

Python is a programming language. It allows us to write almost arbitrary programs using datatypes
such as int , float , str . We can use control flow statements like if...then...else , for loops, and
while loops. We can define functions using def . It supports OOP and we can create classes using the
class keyword. The language does not have any built-in connection with PostgreSQL.

However, Python can use packages, which are libraries that offer additional functionality. Some
Well-known packages are NumPy [126, 176, 211, 276], Pandas [28, 247, 290], Scikit-learn [296, 321],
SciPy [211, 432], TensorFlow [2, 241], or PyTorch [292, 321]. Such packages are offered in the central
PyPI repository and can be installed using pip. Usually, we will install them into a virtual environment
and then use them with our application. More on this can, again, be found in [437].

117

CHAPTER 12. CONNECTING FROM PYTHON 118

Listing 12.1: A Python program connecting to our factory DB, using INSERT INTO to add some records,
and executing a SELECT statement. (stored in file connect_insert_and_select.py ; output in List-
ing 12.2)

1 """ Connect to our factory database , insert and select some records."""
2
3 from typing import LiteralString
4
5 from psycopg import connect
6 from psycopg.rows import dict_row
7
8 # The insert statement has to be a literal string.
9 statement: LiteralString = "INSERT INTO demand (customer , product , amount ,

↪→ ordered) VALUES (%s,%s,%s,%s)"
10
11 # Connect to the database and create a cursor to interact with the db:
12 with (connect("postgres :// boss:superboss123@localhost/factory") as conn ,
13 conn.cursor(row_factory=dict_row) as cur): # SELECT returns dicts
14 print("Executing a single INSERT statement.")
15 cur.execute(statement , # Insert one new demand record.
16 (3, 4, 5, "2025 -03 -05"))
17
18 print("Executing three INSERT statements at once.")
19 cur.executemany(statement , (# Insert three new demand records.
20 (3, 5, 2, "2025 -03 -16"), (2, 7, 1, "2025 -03 -29"),
21 (1, 10, 5, "2025 -04 -05")))
22
23 print("Now performing a SELECT request for customer Bebbo (id 2).")
24 cur.execute("SELECT * FROM demand WHERE customer=%s", (2,))
25 for record in cur: # Iterate over the records in the cursor.
26 print(record) # Print them as-is.
27
28 print("All done.")

↓ python3 connect_insert_and_select.py ↓

Listing 12.2: The stdout of the program connect_insert_and_select.py given in Listing 12.1.
1 Executing a single INSERT statement.
2 Executing three INSERT statements at once.
3 Now performing a SELECT request for customer Bebbo (id 2).
4 {’id ’: 2, ’customer ’: 2, ’product ’: 3, ’amount ’: 2, ’ordered ’: datetime.

↪→ date (2024, 12, 9)}
5 {’id ’: 4, ’customer ’: 2, ’product ’: 5, ’amount ’: 7, ’ordered ’: datetime.

↪→ date (2024, 12, 30)}
6 {’id ’: 6, ’customer ’: 2, ’product ’: 6, ’amount ’: 4, ’ordered ’: datetime.

↪→ date (2025, 1, 12)}
7 {’id ’: 8, ’customer ’: 2, ’product ’: 3, ’amount ’: 6, ’ordered ’: datetime.

↪→ date (2025, 2, 5)}
8 {’id ’: 11, ’customer ’: 2, ’product ’: 7, ’amount ’: 1, ’ordered ’: datetime.

↪→ date (2025, 3, 29)}
9 All done.

The important thing is that there is also a Python package for connecting with the PostgreSQL
DBMS. This package is called psycopg [428]. We briefly outline how to install and use this package
in Section 4.1.

From here on, let us assume that psycopg is installed and you have opened Listing 12.1 in the
PyCharm IDE. When you read this listing, you notice a lot of interesting or strange things. It begins
by importing the type LiteralString from the standard typing package. This type is provided by
Python for security reasons [375]: It helps preventing SQL injection attacks (SQL), especially if used
together with static type checking tools. We will not discuss this here any further, but you should really

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/connect_insert_and_select.py
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/connect_insert_and_select.py

CHAPTER 12. CONNECTING FROM PYTHON 119

read [375, 430] to learn more about this issue. Moving on, you see that we import two functions from
the package psycopg, which we will use later on, namely connect and dict_row .

We now get to the meat of the example. One thing that we want to do with this program is
to insert some new demand records into our DB. Therefore, we will use the INSERT INTO statement.
However, we will not start the psql client and type the commands in. Instead, we will send them from
our Python program via psycopg.

Now the full INSERT INTO statement is rather long and does not fit on a single line in Listing 12.1.
To make using it twice (as we will) a bit less cumbersome, we store it in a variable statement . This
variable is annotated with type hint LiteralString that we mentioned before, because it represents
a string that was typed in as-is, that is not the result of (string) interpolation, concatenation, or any
other operation. Either way, we store our statement in this variable. A bit later we will discuss the
meaning and structure of this statement. For now, just accept it as is.

We now enter a with statement, which you also find discussed in [437]. The sessions and cursors
to the DB are implemented as context managers [447], which means that they will automatically be
closed at the end of the with block. At the beginning of the block, a connection conn is opened to the
PostgreSQL DBMS [426] by using the connect function. For this purpose, the same connection URI
that we already used with psql needs to be specified. It defines the where the PostgreSQL server can
be found, which user and password to use for logging in, and which DB we want to work on. Once the
connection is open, the second line in the with block header opens a cursor [427] in the connection.

Cursors are the objects for sending commands to the PostgreSQL server via a connection. They
are created with the cursor method of the connection object. If a curser is used return results from
queries, one may optionally specify a row_factory parameter. We here pass in the dict_row function,
which returns each row resulting from a query as a dict . The cursor is stored in a variable named cur .
Like the connection object, it will be closed at the end of the with block.

The cursor object cur has a method execute which we can use to, well, execute
an SQL command. The first parameter of the function is the SQL statement that
should be executed. The second parameter is a sequence or mapping with parameters of
the statement. Now let us circle back to our statement string constant. We wrote
"INSERT INTO demand (customer, product, amount, ordered)VALUES (%s,%s,%s,%s)" . The first
part of this statement is pretty clear: We will insert a new row into the table demand by using the
INSERT INTO command. We specify the name of the table (demand) and the names of the columns
that we will set, i.e., customer , product , demand , and sqlilordered. So far, the command is the same
as used in Listing 9.17. The difference is in the second part. After specifying the fields to be set,
the original SQL command in Listing 9.17 gave the rows to be stored in parentheses with field values
separated by commas after the VALUES keyword. Here, we instead write "VALUES (%s,%s,%s,%s)" .

This is because of the aforementioned security concerns. The "%s" are placeholders for parameter
values of the query. These parameter values are supplied as the aforementioned second parameter of
the execute function. They will be substituted into the query string in a safe fashion that prevents
SQLi attacks.

This means that cur.execute(statement, (3, 4, 5, "2025-03-05")) inserts one new row into our
table demand . The customer id for this row is 3, the product id is 4, the product amount is 5, and the
ordered date is March 5th, 2025.

After inserting this one row, we use the executemany method in exactly the same way. The
difference is that this method lets the cursor perform several invocations of a SQL command. The
second parameter is a sequence of parameter sequences or mappings. We use this command to insert
three rows into the demand table. If you read the code in Listing 12.1, you find that it is very self-
explanatory. The command looks pretty similar to our normal SQL commands, except that we issue it
from Python code instead of the psql client.

Finally, we also want to query some data from the DB. We use the cursor cur to issue the command
"SELECT * FROM demand WHERE customer=%s" via the execute method. As parameter to the query we
provide a tuple with the single value 2. This means that the 2 will replace the %s in the constructed
query. This, in turn, means that we will list all the orders issued by the customer with the id 2.

This customer is Mr. Bebbo. Compared to Listings 9.18 and 10.2, where Mr. Bebbo had four orders
in his name, we can now expect five orders, since we just added one using the executemany method.
Once the query is issued, the cursor can be used as Iterator [452] in a for loop. We can write
for record in cur: and this will return the query result row by row. And since we specified dict_row

CHAPTER 12. CONNECTING FROM PYTHON 120

Listing 12.3: Repeating the query from Listing 10.5 after inserting the records using our Python program
from Listing 12.1. (stored in file select_from_view_sale_3.sql ; output in Listing 12.4)

1 /* Extract again information from our database using the view ’sale ’. */
2
3 -- Get the total sales per customer.
4 SELECT customer_name , SUM(amount * price) AS customer_sale FROM sale
5 GROUP BY customer_name ORDER BY customer_sale DESC;
6
7 -- Get the total sales per product.
8 SELECT product_name , SUM(amount) AS total_amount ,
9 SUM(amount * price) AS product_sale FROM sale

10 GROUP BY product_name ORDER BY product_sale DESC;

Listing 12.4: The stdout resulting from the SQL statements in select_from_view_sale_3.sql given
in Listing 12.3.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf select_from_view_sale_3.sql

2 customer_name | customer_sale
3 --------------------+---------------
4 Bebba , 33333333333 | 3673.86
5 Bebbo , 55555555555 | 3159.80
6 Bibbo , 99999999999 | 3032.85
7 (3 rows)
8
9 product_name | total_amount | product_sale

10 ---------------+--------------+--------------
11 Shoe , Size 42 | 13 | 2118.87
12 Shoe , Size 40 | 12 | 1907.88
13 Large Purse | 10 | 1500.00
14 Shoe , Size 38 | 8 | 1239.92
15 Shoe , Size 37 | 7 | 1070.93
16 Shoe , Size 39 | 5 | 784.95
17 Shoe , Size 41 | 4 | 643.96
18 Medium Purse | 5 | 600.00
19 (8 rows)
20
21 # psql 16.9 succeeded with exit code 0.

as row_factory when creating the cursor, each row will be a dict . This dict will have the column
names keys and the values as, well, values.

Once all these dicts are printed to the stdout, the for loop terminates. Then, the with block is
over, too, which means that first the cursor is closed and then the connection to the DB. You can find
the output of our program in Listing 12.2.

Let us now verify that the changes really reached and a are stored in the DB. For this purpose, we
fire up psql and repeat the query from Listing 10.5. The result in Listing 12.4 the expected increase
in sales for customers and products.

At first glance, what we did here is not very spectacular. We have basically written SQL commands,
like before. The difference is that we issued them from Python instead of the psql client shipping with
PostgreSQL. This difference, however, is very significant. With psql, we can execute SQL commands,
but that’s basically it. With Python, we can write arbitrarily complex programs.

We could have a user interface with windows and buttons for entering data. Or we could read data
from CSV or XML files and send them to the DBMS. In the other direction, we can also do lots of
sophisticated stuff with data that we pull from the DB. We could statistically evaluate, or use it to
train a Machine Learning (ML) or AI model that predicts which customer will order which product and
when. We thus now have a new and infinitely powerful tool in our hand to both generate and analyze
data.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_view_sale_3.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/select_from_view_sale_3.sql

CHAPTER 12. CONNECTING FROM PYTHON 121

And Python is not the only programming language. Connectors similar to psycopg exist for
Java [310] and C [307] as well, and probably for many other programming languages, too. The power
to efficiently store and retrieve data and to maintain the data integrity of a DBMS can therefore be
used from arbitrary programs.

Useful Tool 3

psycopg [428] is a library that allows us to connect to the PostgreSQL DBMS from Python
code. This way, we can design complex applications in Python that interact with a PostgreSQL
DB.

Chapter 13

Accessing the Database from LibreOffice
Base

A completely different way to work with DBs on a professional DBMS is to connect to them from GUIs.
Typical examples for such a GUI are the commercial Microsoft Access and the free and open source
LibreOffice Base. Both allow you to create DB tables in single files and work on them on your local
computer, as they treat DBs as local files for the current user to work on. As you can infer from the
things we have already seen and done, a “real DBMS” offers us the ability to store the DB on one
compute and to connect to this computer from other computers using multiple clients to work on the
centrally managed data. So neither Microsoft Access nor LibreOffice Base can be recommended as
DBMS for a complex application going beyond simple hobbiest tasks or small-office scenarios.

However, they both offer some pretty cool tools, such as reports and forms. And instead using them
as DBMS, they can be used as GUIs to connect to a DB inside another DBMS. And then we can use
these cool tools to work with the DB maintained by a professional DBMS. And that is what we are
going to do right now, using the free LibreOffice Base. Please refer to Chapter 3 if you have not yet
installed it on your machine.

13.1 Connect to the Database

We first need to connect from LibreOffice Base to the PostgreSQL server and our factory DB. We
therefore open LibreOffice Base as discussed back in Chapter 3. In the opening screen, we choose
“Connect to existing database” as shown in Figure 13.1.1, because that is what we want to do. We
need to select the PostgreSQL connector. So we click on the driver drop-down box in Figure 13.1.2.
We select PostgreSQL as DB connection driver in Figure 13.1.3. Now that PostgreSQL is selected, we
can click Next as shown in Figure 13.1.4.

In the next screen, we need to enter the information about the DBMS and DB we want to connect
to. The name of the DB is factory . As server, we select localhost, because the DBMS is running
on our local computer. Of course, if the DBMS was running on another computer, we could enter
its IP address here. As port, we select the standard PostgreSQL port 5321. Then we click Next in
Figure 13.1.5.

In the following screen, we enter the authentication information. This is how LibreOffice Base
will log into the DBMS. We can enter the user name, which is boss . We had set the password
superboss123 for this user, but we cannot enter it here. It has to be entered explicitly everytime
we open this connection. This is probably in order to avoid storing sensible data, like a password, in
the LibreOffice Base document. This way, credentials cannot get lost or accidentally published when
sharing the document with other users. Either way, for this reason we need to select Password required ,
because, yes, we have to authenticate the user boss via password. In Figure 13.1.6, we then click
Test Connection .

In the authentication window that pops up in Figure 13.1.7, we enter the password superboss123
and click OK . As you can see in Figure 13.1.8, the connection succeeded. We close this dialog by
clicking OK .

Back in the authentication screen in Figure 13.1.9, we can now click Next in the authentication
menu. That takes us to the final screen of the DB document creation dialog. We choose that we do
not want to register the DB. We choose that we want to open it for editing. Finally, we click Finish in

122

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 123

(13.1.1) In the LibreOffice Base opening screen, we choose
“Connect to existing database.”

(13.1.2) We then click on the DB driver drop-down box.

(13.1.3) We select PostgreSQL as DB driver. (13.1.4) Once PostgreSQL is selected, we can click Next .

(13.1.5) We enter factory as DB name, localhost as
server, 5321 as port, and then click Next .

(13.1.6) As user name we enter boss and select
Password required . Then we click Test Connection .

Figure 13.1: Connecting to our example factory DB using LibreOffice Base.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 124

(13.1.7) In the authentication window, we enter the pass-
word superboss123 and click OK .

(13.1.8) We get notified that the connection succeeded. We
click OK .

(13.1.9) We now can click Next in the authentication menu. (13.1.10) We do not want to register the DB, we want to
open it for editing, and click Finish .

(13.1.11) We now save the LibreOffice Base document to a
suitable file.

scroll down

in this pane

(13.1.12) In the newly opened screen, we go into the Tables
pane and scroll down.

we �nd our tables under

point "public"

(13.1.13) If we scroll down to the public node, we can find
our three tables and the view sale .

Figure 13.1: Connecting to our example factory DB using LibreOffice Base.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 125

Figure 13.1.10.

We now have to save the LibreOffice Base document to a suitable file. The file type is odb , which
is basically a zip-compressed collection of XML documents. Be that as it be, we choose factory.odb
as file name in Figure 13.1.11.

Finally, the DB GUI opens up. We can see lots of stuff. First, let us look for the DB objects
we already have created. In the newly opened screen, we go into the Tables pane and scroll down in
Figure 13.1.12. If we scroll down to the public node, we can find our three tables and the view sale ,
as shown in Figure 13.1.13. We successfully have connected to our example DB and can now work
with it from the LibreOffice Base GUI.

13.2 Adding Rows to a Table and Executing Views

We now can use LibreOffice Base as a simple GUI to enter data into our DB. For trying this, we select
the table demand in the “Tables” pane and double-click on it in Figure 13.2.1. A new window opens. In
this window, we see the contents of the table. We can edit them there. For example, we can place the

double click

(13.2.1) We double-click on the table demand in the “Ta-
bles” pane.

click here

(13.2.2) The table demand opens in a separate window,
displaying the table content. Click into the second cell in
the empty row at the bottom.

we enter a new row,

then press Tab after

entering the 'ordered'

value

(13.2.3) We enter a new row of data, leaving the id column
empty. When reaching the end of row, i.e., after entering
all the data, we press .

(13.2.4) The row has now been sent to the DBMS. It has
not been loaded back from the DBMS, so the id is still 0.
We click on the “reload” option.

Figure 13.2: Adding a row to the table demand and executing the view sale from LibreOffice Base.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 126

(13.2.5) After refreshing the data by pressing , the id
field is now 13 as it should be.

double click

(13.2.6) We now double-click on the view sale in the “Ta-
bles” pane.

(13.2.7) The view is executed as expected. The newly en-
tered demand also showed up: There now is a sale for
Mr. Bobbo.

Figure 13.2: Adding a row to the table demand and executing the view sale from LibreOffice Base.

cursor into the second field of the empty row at the bottom Figure 13.2.2. (We skip the id column,
because its value can automatically be set by the DBMS.) As data, we choose customer id 4, which
refers to Mr. Bobbo in Figure 13.2.3. One April 12, 2025, he ordered 11 units of the product with id 7,
i.e., shoes of size 37.

After entering this data, when our cursor is in the last cell of the row, we press . The new record
is sent to the DBMS in Figure 13.2.4. Notice that, at this stage, the window displays the id field of
the new row as 0. The reason is that we did not enter any value here. The system has sent the new
row to the DBMS. The DBMS then sets the id field automatically. However, the LibreOffice Base GUI
does not know this. In order to see the actual value of the field id , we have to reload the data.

We therefore click on the refresh button in Figure 13.2.5. Indeed, now the id field has the new
and correct value 13. We close the table window and go back to the main window.

Back to the “Tables” pane we now double-click on the view sale in Figure 13.2.6. This again opens
a new window in Figure 13.2.7. We now see the results of the query in a nice tabular form. It may
be that the customer_name column is displayed a bit odd on your computer. In this case, just resize it
and make it a bit wider by dragging its right border to the left with the mouse. Then all the data will
appear correctly.

Remember that above, we just added a new demand into our table? Back in Listing 12.4, there
was not a single order for Mr. Bobbo in our system. But now one appears in the view window, at the
bottom row. In other words, the view has been executed and led to the expected results, also proving
that our changes to the DB were indeed persistently stored.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 127

(13.3.1) To get to the ERD view, we click on Tools and
then Relationships .

(13.3.2) An ERD view of the tables in our DB appears. It
is a bit cluttered, so we drag the tables around and resize
them a bit.

(13.3.3) The ERD now looks very clean and illustrates the relationships between the
tables in our DB.

Figure 13.3: Viewing an ERD of the tables and their relations in our DB in LibreOffice Base.

13.3 Relationship Diagrams

An important tool in DB design are entity relationship diagrams (ERDs). ERDs are normally used when
we design a DB. They are visual representations of the objects and the relationships between them. In
the domain of DBs, the objects could be tables and the relationships could be foreign key relationships.
It makes a lot of sense to first create a model of the real-world objects or information that we want to
store in the DB. Once we have modeled a “customer” and a “product”, we can model the information
what consitutes a “demand” and how it is related to the previous two concepts. This model, maybe
drawn as ERD, can then be translated to a DB schema. We can then construct the DB based on this
design.

In this example, we did not do that. We wanted to see action as quickly as possible and disregarded
any concern about efficient design. This example is not about fancy stuff, it is about exploring the
world of DBs.

Let’s say that we did indeed design a DB based on entities modeled in a ERD. The DB is created
via SQL commands. The tables correctly represent the model painted as ERD. Then, the information
in the ERD is also present in the DB. It is reflected the structure of the tables and the foreign keys. If
this is true, then we should be able to reconstruct the ERD at least partially from a DB. Of course, we
cannot reconstruct the semantics, i.e., the meaning behind the relationships and objects. But we can
well reconstruct the objects and relationships on a purly syntactical level.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 128

LibreOffice Base can do that. Assume that we still have our LibreOffice Base GUI open, connected to
our factory DB. We open the menu Tools and then click on Relationships , as illustrated in Figure 13.3.1.
This opens a very cluttered diagram view. This view includes all three tables that we designed in our
DB, but in Figure 13.3.2 they are not neatly arranged.

We can click on them, though, and drag them around. We can also drag the bottom edges of the
tables and expand them. After some re-arranging, we get indeed a very nice overview on our DB in
Figure 13.3.2.

We can see that the id columns are the primary keys of the tables, because they are marked with
key icons . Furthermore, we see that each id value in table customer can be related to n customer
values in table demand . The same holds for each id value in table product , which can be related to
n product values in table demand . This ERD is a really overview on the structure of our DB. And it
is automatically generated for us by the LibreOffice Base GUI. If our DB was more complex, with more
tables and relationships, this illustration could be quite helpful. Imagine that we designed the DB and
a few years later we would move to another department and hand over the administration of this DB
to a new DBA. They could then very quickly get an idea about the structure and relationships in the
DB, without the need to dig through our SQL scripts.

13.4 Forms

At some point in this example, we realized that entering data into a DB via a SQL client like psql is
maybe not a very convenient way. In Section 13.2, we found that we can also enter data into tables
in a much more convenient way by typing it in a table-based GUI. This is a big step forward, because
it does not require any understanding of SQL. We, as the DBAs, can create and manage a DB using
SQL. Then we can connect a frontend like LibreOffice Base to it and give this as client to a secretary.
They can then enter the data in a form that is more natural to them, while our DB will stay consistent
and the data integrity is preserved by its constraints. This is much better than an Microsoft Excel
sheet or that alike, because multiple people can work with DB concurrently using the clients on multiple
computers and it is impossible to create invalid data.

However, entering demand records into the demand table this way is still a total buzzkill. The user
needs to keep the tables product and customer open, too. They need to look up customer ids and
product ids and use them manually. And there is no protection against entering the id of the wrong
customer or product. While we can pull the data together nicely in the view sale once it is entered. . .
. . . we do not have a way to enter it comfortably. Not yet.

Because now we learn an easy way to do so. Via forms. Both Microsoft Access and LibreOffice Base
allow us to develop so-called forms. Forms are entry masks that can be designed in different ways. We
can place different controls onto forms, and the controls may take their data from different tables in
the DB. This is what we are after. So we will now design a form for entering customer demands into
our DB from LibreOffice Base.

In the Database pane on the right-hand side of the LibreOffice Base window, we select Forms . Then,
under Tasks , we click on “Create Form in Design View. . . ” in Figure 13.4.1. Then, in Figure 13.4.2,
a new and empty form opens in the design view. Now there are several different possible structures in
which we can create a form. Forms can look like the classical dialogs that we used so far in LibreOffice.
Or they can look more like the tables-based view that we used to enter demand orders manually in
Section 13.2. We want to design a form following this structure, but we want to make it more easy
to use, of course. Therefore, we will insert a table control, which can be reached by the button .
Depending on your screen size, this button may be directly located on the control palette on the left-
hand side of the screen. Or, as is the case on my screen, may be hidden behind double-angle button
near the bottom of the control palette. In Figure 13.4.3, we click on that button, a small window with
additional controls opens, and then we click on on the table control button .

We now click into the empty form body and drag the mouse to span a reasonably sized area before
releasing the button in Figure 13.4.4. A dialog opens in Figure 13.4.5. It asks about the data we want
to use in the table control. In other words, we now need to link our table control to a table in our DB.
There are lots of tables we can select from. Most of them are storing some meta-data about the DB
and are not for us to meddle with. All of “our” tables are available under the prefix public We scroll
down all the way in the view on the right side and select public.demand . Then we click Next .

In the next dialog depicted in Figure 13.4.6 we can select columns to insert. We only choose amount

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 129

(13.4.1) In order to create a new form, we click on “Create
Form in Design View. . . ”

(13.4.2) A new and empty form opens in the design view.
We want to insert a tabular structure. The corresponding
option is most likely hidden behind double-angle button
near the bottom on the pane on the left side.

(13.4.3) Click on the Table Control control . (13.4.4) We click into the empty form body and drag the
mouse to draw the table area. The we release the mouse.

(13.4.5) A dialog opens. It asks about the data we want to
use in the table. We scroll down all the way in the view on
the right side and select “public.demand.” We click Next .

(13.4.6) In the next dialog we can select columns to insert.
We choose amount and ordered . We click Finish .

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 130

right-click

(13.4.7) The table is now inserted in draft form. We want
to add more columns. Right-click at the left corner of the
amount column.

(13.4.8) In the menu that opens, click Insert Column and
then List Box .

right-click

(13.4.9) A new column “List Box 1” has been added. We
right-click on it.

(13.4.10) In the menu that opens, click Column... .

(13.4.11) First, we select the General tab in the dialog that
opens. We want to change the name and label of the new
column.

(13.4.12) We change the label and the name of the column
to “customer”. Then we click on the Data pane.

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base (Continued).

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 131

(13.4.13) We first need to choose the data field of our
demand table that should be set via this form field. We
type in customer .

(13.4.14) Next we want to change the Type of list contents
and Input Required . . .

(13.4.15) We change Input Required to Yes . We set Type
of list contents to Sql [Native] . We click on the small wedge
next to List content.

(13.4.16) We need to enter a SQL SELECT query that re-
turns two values. We select both from table customer ,
as follows: (1) the one that should be displayed. We
choose name ||’, ’ || phone , i.e., a concatenation of
the name and phone number string, separated by a comma.
(2) the one to be stored in the customer field of the
demand table. We choose the customer id .

right-click

(13.4.17) After we clicked OK and closed the dialog, the
name of the new column has changed to customer . It
appears to be a bit small for the information that it will
contain, so we right-click on it. . .

(13.4.18) . . . and select Column width. . . in the menu that
pops up.

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base (Continued).

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 132

(13.4.19) We write 4cm as Width and click OK .

right-click

(13.4.20) The column is wider now. We right-click between
it and the amount column.

(13.4.21) In the menu that opens, we again click
Insert Column and then List Box .

right-click

(13.4.22) A new “List Box 1” column appears. We right-
click on it.

right-click

(13.4.23) In the menu that opens, we click on Column. . . . (13.4.24) In the General properties pane, we set both the
name and label to product and the width to 1.57 inches.

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base (Continued).

and ordered . As said, we want to be able to enter the customer and product field not as numbers.
Therefore, we will not include them here. We will design specialized controls for them later. We click
Finish .

The table control is now inserted in draft form in Figure 13.4.7. It has the two columns amount
and ordered as prescribed. Now we want to add columns for customer and product . Therefore, we
right-click at the left corner of the amount column.

In the menu that opens, click Insert Column and then List Box in Figure 13.4.8. Indeed, back to the
draft of our form in Figure 13.4.9, we can see that a new column named “List Box 1” has been added.
We right-click on it. In the menu that opens in Figure 13.4.10, we click on Column... . A new dialog
opens up in which we can configure the new column. As shown in Figure 13.4.11, we first select the
General tab in this dialog. We change both the label and the name of the column to “customer” in
Figure 13.4.12. Then we click on the Data pane. Here we will make our column clever.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 133

(13.4.25) In the Data pane, we again enter a SQL query.
This time, we select from table product . The name col-
umn should be displayed to the user, while the id column
should be stored in the form.

(13.4.26) The id from the selected product should be
stored in the product field of the demand record. There-
fore, we select product as Data field. . .

(13.4.27) We close the dialog. The form design is now fin-
ished. We unselect the pencil symbol in the bottom bar.

(13.4.28) This opens our form. It now displays the data to
us in a form similar to the sale view.

(13.4.29) However, it is a form, not a view. We can edit the
data and insert new data. We scroll down to the empty row
at the very bottom. We click on the small wedge symbol in
the customer column.

(13.4.30) A drop-down list opens from which we can se-
lect the customer in clearly readable form. We choose
Mr. Bibbo.

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base (Continued).

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 134

(13.4.31) We now click on the small wedge in the product
column.

(13.4.32) In the drop-down list that opens, we select “Shoe,
Size 39”.

(13.4.33) We can now enter the amount. (13.4.34) We enter the number 7 as amount. We move on
to the ordered date field.

(13.4.35) As order date, we type 05/07/25 , corresponding
to May 7th, 2025. We press . The cursor jumps to a
new row as our record is inserted into the demand table.

(13.4.36) We are unhappy with the way amounts and dates
are displayed. We want to edit the form and thus click on
the pencil symbol in the bottom bar.

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base (Continued).

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 135

right-click

(13.4.37) The design view of the form opens again. We
right-click on the amount column.

(13.4.38) We click Column. . . in the drop-down menu that
opens.

(13.4.39) In the General tab, we want to change the minimal
value, the decimal accuracy, and the thousand separator
setting.

(13.4.40) The minimum gets set to 0. We do not allow
fractions, so the decimal accuracy becomes 0. For the case
that someone orders thousands of shoes, we would display
a thousand separator. We close this dialog.

right-click

(13.4.41) We now right-click on the ordered column. (13.4.42) In the drop-down menu that opens, we click
Column. . . .

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base (Continued).

We first need to choose the data field of our demand table that should be set via this form field in
Figure 13.4.13. We type in customer . Next we want to change the Type of list contents and Input
Required . . . in Figure 13.4.14. For Type of list contents, we choose Sql [Native] . We change Input
Required to Yes in Figure 13.4.15.

We now need to enter a SQL query that should reflect the content for this control by clicking
on the small downward facing wedge symbol at the right of the “List content” field. This query
must return two columns: The first column should contain the text that the user sees. The second
column should contain the value that will be stored in the customer field. We could simply query
SELECT name, id FROM customer . This means that if a user later works with our column, all they
would see are the customer names. However, the values that our form would actually store would be

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 136

(13.4.43) In the General pane, we want to change the Date
format and not use this awful short US format.

(13.4.44) We set the date format to “YYYY-MM-DD”,
which is the same format used in our SQL queries. We
close the dialog.

(13.4.45) We also want to make the form a bit wider. We
click on the green handle in the middle of the right side of
the table area and drag it outwards. After releasing it, we
again click on the pencil symbol to leave the design view.

(13.4.46) The form is again displayed “in action.” It looks
very nice now. We are done with our work.

(13.4.47) We close the form. We get asked whether want
to save it. We of course click on Save .

(13.4.48) We choose the name demand for our form and
type into into the File name: box. We click Save .

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base (Continued).

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 137

(13.4.49) We are back in the main window of LibreOf-
fice Base. Let’s click again on our new demand form to
see whether it is still there and whether it still works.

(13.4.50) The form opens in all of its beauty.

Figure 13.4: Creating a form for entering demand orders into our DB in LibreOffice Base (Continued).

the corresponding customer ids. We can make the whole thing a bit nicer by adding an ORDER BY name
clause. Then, if a user would click on the customer field of our view, they could select the customer
from an alphabetically ordered list.

At this point, we again remember that customer names are not UNIQUE in the table customer .
The phone fields are. Thus, a user could easily confuse two customers who happen to have the same
name. In our sale view, we solved this by concatenating the customer name with the customer phone
numbers. We can simply do the same thing again. We design the query to return data in the form
“name, phone”. Then, the user can comfortably work with names and sees the phone numbers, too,
making each row unique. So we choose name ||’, ’ || phone , i.e., a concatenation of the name and
phone number string, separated by a comma, as the first column of our query. We call this column
name_and_phone and we modify the ORDER BY clause accordingly in Figure 13.4.16. We click on OK

and close the dialog.
The name of the new column has changed to customer in Figure 13.4.17. We see that this column

appears to be a bit small, i.e., not wide enough, for the contents that it will contain. As a small exercise,
we want to make it wider. So we right-click on it again. In the menu that pops up in Figure 13.4.18,
we this time click on Column width. . . . A small dialog appears. We write 4cm as Width and click OK

in Figure 13.4.19.
As the dialog disappears, we see that the column is now indeed wider in Figure 13.4.20. We now

want to add the product column in the same way. We right-click between it and the amount column.
The same menu we have seen already a few times opens in Figure 13.4.21. We again click

Insert Column and then List Box . A new “List Box 1” column appears (again) in Figure 13.4.22. We
right-click on it. In the menu that opens, we click on Column. . . in Figure 13.4.23.

The dialog for configuring the new column opens again. We first go to the General properties
pane. We set both the name and label to product . We also set the width to 1.57 inches in Fig-
ure 13.4.24. Then we move over to the Data pane. We again enter a SQL query and therefore click
on the small downward facing wedge symbol on the right-hand side of the “List content” field. This
time, we select our data from table product . The name column should be displayed to the user,
while the id column should be stored in the form. Therefore, in Figure 13.4.25, we enter the query
SELECT name, id FROM product ORDER BY name; . After clicking on OK , we also need to bind the form
column to an actual column of the table demand . The id from the selected product should be stored in
the product field of the demand record. Therefore, we select product as Data field in Figure 13.4.26.
We close the dialog.

The form design is now finished in Figure 13.4.27. We unselect the pencil symbol in the bottom
bar. As long as this symbol is selected, we are in the “Design Mode” and can edit the form. By
unselecting it, we change into the actual usage mode of the form.

This opens our form in Figure 13.4.28. It now displays the data to us in a form similar to the sale
view. Different from this view, however, it makes sure that we get to see unique customer values.

While it looks like the sale view, it is a form, not a view. We can edit the data and insert new
data! We scroll down to the empty row at the very bottom. We click on the small wedge symbol in

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 138

the customer column in Figure 13.4.29.

A drop-down list opens from which we can select the customer in clearly readable form. In Fig-
ure 13.4.30, we choose Mr. Bibbo. We now click on the small wedge in the product column in
Figure 13.4.31. In the drop-down list that opens, we select “Shoe, Size 39” in Figure 13.4.32. Next,
in Figure 13.4.33, we can enter the amount. We enter the number 7 as amount. We move on to the
ordered date field in Figure 13.4.34. As order date, we type 05/07/25 , corresponding to May 7th,
2025. We press . The cursor jumps to a new row as our record is inserted into the demand table in
Figure 13.4.35.

From now on, the user can enter demand records in a much more convenient way. They do not
have to look up customer ids or product ids anymore. They only need to work with human-readable
names. It becomes much faster to enter data. And mixing up customers or products becomes much
less likely.

However, we are a bit unhappy with the way amounts and dates are displayed. Amounts are displayed
as fractional numbers, our 7 has become a 7.00 . This is not OK for us, as amounts are integers and
should also be displayed as integers. Also, we find the date format confusing. The MM/DD/YY format is
odd. We want dates to be displayed in our beloved ISO format YYYY-MM-DD [111].

Therefore, we want to go back to editing the form. We thus click on the pencil symbol in the
bottom bar in Figure 13.4.36.

The design view of the form opens again. We right-click on the amount column in Figure 13.4.37
We click Column. . . in the drop-down menu that opens in Figure 13.4.38. In the General tab shown in
Figure 13.4.39, we want to change the minimal value, the decimal accuracy, and the thousand separator
setting. The minimum gets set to 0.1 We do not allow fractions, so the decimal accuracy becomes 0.
For the case that someone orders thousands of shoes, we would display a thousand separator. We close
this dialog in Figure 13.4.40.

Next, we right-click on the ordered column in Figure 13.4.41. In the drop-down menu that opens,
we again click Column. . . in Figure 13.4.42. In the dialog that opens, we again select the General pane.
We want to change the Date format and not use this awful short US format in Figure 13.4.43. We set
the date format to “YYYY-MM-DD”, which is the same format used in our SQL queries. We close the
dialog in Figure 13.4.44.

We also want to make the form a bit wider. Therefore, we click on the green handle in the middle
of the right side of the table area and drag it outwards. After releasing it, we again click on the pencil
symbol to leave the design mode in Figure 13.4.45.

In Figure 13.4.46, the form is again displayed “in action.” It looks very nice now. We are done with
our work. We close the form.

We get asked whether want to save it. We of course click on Save in Figure 13.4.47. We choose
the name demand for our form and type into into the File name: box. We click Save in Figure 13.4.48.

We are taken back to the main window of LibreOffice Base. To see whether our new demand form
was properly saved and still works, we double-click on it in Figure 13.4.49. The form opens in all of its
beauty in Figure 13.4.50. We close it again. We are done for now.

13.5 Reports

The last common facette in small-scale DB applications that we will consider are reports. A report is
basically a nicely-styled document created from the data in a DB. While forms are a convenient way to
enter data, reports are a convenient way to display it. If the secretary managing the customer orders
wants to compose a overview on the business transactions, then they could look at the output of our
view sale . While its output is indeed nicely readable, it is not exactly something that we would print
and put on the table of manager. Now they could copy the data into a document and then print it, but
this would mean that, everytime such overview is needed, the same copy-paste-format-print workflow
needs to be applied. Reports offer pre-formatted automated workflows for presenting data from a DB.

LibreOffice Base also offers the functionality to construct some basic reports. To explore feature
this at least a little bit, we select Reports in the Database pane and click on “Use Wizard to Create
Report. . . ” in the LibreOffice Basemain window as shown in Figure 13.5.1.

1We actually should set it to 1, but well, I entered 0 and I will not take another screenshot.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 139

(13.5.1) We select Reports in the Database pane and click
on “Use Wizard to Create Report. . . ”

(13.5.2) We need to choose the data source for the new
report. We click on “Tables or queries.”

(13.5.3) In the table list that pops up, we scroll down all
the way an select “Table: public.sale.”

(13.5.4) We get shown all the available columns and select
them all. Then we click the double greater-than button »
to add them to the “Fields in report” pane.

(13.5.5) Now that the columns are set up, we click Next . (13.5.6) We get asked how we want to label the fields. We
will enter some more appropriate names.

Figure 13.5: Creating and executing DB reports in LibreOffice Base.

In the dialog that opens up, we need to choose the data source for the new report. We click on
“Tables or queries” in Figure 13.5.2. In the table list that pops up, we scroll down all the way an select
“Table: public.sale.” We will use the data from our view sale , as shown in Figure 13.5.3.

In the next step, the dialog shows us all the columns of this view in Figure 13.5.4. We select them
all and click on the double greater-than button » to add them to the “Fields in report” pane. Now
that the columns are set up in Figure 13.5.5, we click Next .

Now the dialog asks us how we want to label the fields in Figure 13.5.6. The column titles of our
view are pre-entered for us and while their meaning is clear, text like customer_name does not look
nice in a printed document. We will enter some more appropriate names. After choosing some more
appropriate labels and click Next in Figure 13.5.7.

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 140

(13.5.7) We have chosen more appropriate labels and click
Next .

(13.5.8) We now can divide the data into groups. We want
to divide it into one section per customer in Fields . So we
select customer_name and click the greater-than button
> to move it to Groupings .

(13.5.9) It appears in Groupings . We click Next . (13.5.10) Now we can sort the data. It will be sorted by
customer, but inside the customer sections, we want to order
the sales demands by date, product (in case of tied dates),
and amount.

(13.5.11) We have added the fields. (Ordering in descend-
ing fashion means bigger values first, ordering in ascending
fashion means smaller values first.) We click Next .

(13.5.12) We can now choose the layout. We are OK with
the standard tabular look, but want the report be in portrait
format.

Figure 13.5: Creating and executing DB reports in LibreOffice Base (continued).

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 141

(13.5.13) After changing the layout, we click Next . (13.5.14) As report name, we think sale will be better
than public.sale .

(13.5.15) We also do not just want to print the report right
away, but we want to “Modify report layout.”

(13.5.16) We can now click Next .

(13.5.17) The report is create in design view. It looks a bit
clunky. For example, the customer field takes way too much
space. And it does not need a label. So we click the label
and press Del. .

(13.5.18) We also dragged the left corner of the customer
field to the left border. We now want to drag its bottom
edge up, because it does not need so much space.

Figure 13.5: Creating and executing DB reports in LibreOffice Base (continued).

The basic building block of a report is a nicely formatted list of all the records in an SQL query. Now
the rows can just be printed one by one, or we can structure the report by grouping the data based on
the values in certain columns. In the next step, we can define such a division of the data into groups.
We want to divide the data into one section per customer. In the Fields pane, we select customer_name
in Figure 13.5.8. Then, we click the greater-than button > to move it to the Groupings pane. The
column now appears in the Groupings pane. We click Next in Figure 13.5.9.

The second aspect concerning the linear representation of the data is the ordering. Since we group
the data based on customer_name , it will automatically be sorted by the customer names. But we can
additionally sort the data based on more columns in Figure 13.5.10. So our data will be sorted by
customer. However, inside each customer section, it is unsorted. This does not suit our taste. We
want to order the sales demands by ordered date. We want the newest orders to come first, so we
will choose descending order. If multiple demands are issued by a customer on the same date, then we
want to break the sorting ties by the product name (ordered in ascending fashion). Any remaining ties
should be broken by order amount. We enter this information in Figure 13.5.11 and click Next .

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 142

(13.5.19) Now it has an appropriate size. Next we want to
move all the table headers upward.

(13.5.20) We right-click and drag a selection box around the
table header and the horizontal line. Then we press the
key a few times to move the header up.

(13.5.21) The header is now moved up. (13.5.22) We now want to make the group header field of
the report a bit smaller, so we click on the “customer_name
Header” pane and then into the Height property.

(13.5.23) We make it nice and small. Finally, to create some
space between customer groups, we want to move all the
header controls down a bit again.

(13.5.24) To move them all down, we select them first. We
right-click into the report and drag a selection box over
them.

(13.5.25) Then we press the key a few times. We are
done and close the report.

(13.5.26) Upon closing the report, we get asked whether
want to save it. We click on save . We save it under the
name sale .

Figure 13.5: Creating and executing DB reports in LibreOffice Base (continued).

We can now choose the layout of the report. We are OK with the standard tabular look, but want
the report be in portrait format. When printing documents portrait format means that the format is
higher than wide, like the pages in this book. The landscape format pre-selected in Figure 13.5.12
format means wider-than-high, i.e., similar how you would paint or take a photo of a landscape. After
changing the layout, we click Next in Figure 13.5.13.

As report name, we think sale will be better than public.sale in Figure 13.5.14. We also do
not just want to print the report right away, but we want to “Modify report layout” so we make the
corresponding selection in Figure 13.5.15. We can now click Next in Figure 13.5.16.

The report is create and opened in design view. We can see all the controls and data fields placed,
but it is not yet clear how the thing will look like when actually printed. Before we open it, let us make

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 143

(13.5.27) And it appears under this name in the Reports
pane. We double-click on it.

(13.5.28) A new document opens in LibreOffice Write. It
contains all the data in a very nicely formatted fashion. We
can even export it to PDF by clicking the PDF symbol .

Bebba, 33333333333

Product Price Amount Date

Shoe, Size 40 158.99 2 03/16/25

Shoe, Size 39 156.99 5 03/05/25

Large Purse 150.00 10 01/16/25

Shoe, Size 37 152.99 7 12/16/24

Bebbo, 55555555555

Product Price Amount Date

Shoe, Size 42 162.99 1 03/29/25

Shoe, Size 38 154.99 6 02/05/25

Shoe, Size 41 160.99 4 01/12/25

Shoe, Size 40 158.99 7 12/30/24

Shoe, Size 38 154.99 2 12/09/24

Bibbo, 99999999999

Product Price Amount Date

Shoe, Size 39 156.99 7 05/07/25

Medium Purse 120.00 5 04/05/25

Shoe, Size 40 158.99 3 01/05/25

Shoe, Size 42 162.99 12 11/21/24

Bobbo, 44444444444

Product Price Amount Date

Shoe, Size 42 162.99 11 04/12/25

(13.5.29) The exported PDF document.

Figure 13.5: Creating and executing DB reports in LibreOffice Base (continued).

CHAPTER 13. ACCESSING THE DATABASE FROM LIBREOFFICE BASE 144

a few small changes to beautify it (you will thank me later).
Anyway, currently, the report looks a bit clunky. For example, the customer field takes way too

much space. And it does not need a label. So we click the label and press Del. in Figure 13.5.17.
The label disappears. This creates more space on the left side of the customer field. So we now also
dragged the left corner of the customer field to the left border of the report. We now want to drag its
bottom edge up, because it does not need so much space in Figure 13.5.18. Now it has an appropriate
size, but lots of useless space is reated below it.

Next we want to move all the table headers upward in Figure 13.5.19. We therefore right-click and
drag a selection box around the table header and the horizontal line. Then we press the key a few
times to move the header up in Figure 13.5.20. The header is now moved up in Figure 13.5.21.

We now want to make the group header field of the report a bit smaller. We therefore click on the
“customer_name Header” pane on the left-hand side. We then click into the Height property in the
form on the right in Figure 13.5.22. We make it value nice and small in Figure 13.5.23.

This, however, will make the report look cluttered because now all the data and groups will stick
together. Finally, to create some space between customer groups, we want to move all the header
controls down a bit again. To move them all down, we select them first in Figure 13.5.24. We right-
click into the report and drag a selection box over them. Then we press the key a few times. This
creates the needed space in Figure 13.5.25. We are done and close the design view of the report.

Upon closing the report, we get asked whether want to save it. Of course we want to. We click on
save in Figure 13.5.26.

The report now appears under this name in the Reports pane. We double-click on it in Figure 13.5.27
to finally see how it looks like in action.

A new document opens in LibreOffice Write. It contains all the data in a very nicely formatted
fashion. We can even export it to PDF by clicking the PDF symbol in Figure 13.5.28. The exported
PDF document is shown in Figure 13.5.29.

This looks quite nice. Of course, we just quickly clicked this report together. There is much much
more that can be done. For example, reports often support the ability to compute and present statistics.
We could present the total sales income per customer, for example. We could just as well as the display
overall total income of our company in the report.

Reports often also allow us to include diagrams. It is totally possible to include a chart per customer
showing when they made purchases and for how much money. LibreOffice Base has this functionality
. . . but on my computer it crashes the program. Well, you can play around a bit and see if you get it
to work on your machine.

Either way, the important point is that you now also got to take a glimpse on what reports are
in the field of DBs. They are a very common tool in many small and mid-scale applications. They
are supported by tools such as LibreOffice Base or Microsoft Access. There exist whole software
libraries that can generate reports. For example, there probably are Python libraries that can produce
beautiful reports, maybe in conjunction with Matplotlib and all the other functionality that the Python
ecosystem can offer us. And since you already learned how to access a PostgreSQL DB from Python,
you can also roughly guess how you would get such a report library to work with our DB.

Useful Tool 4

LibreOffice Base [145, 348] offers us a simple GUI that can connect to a DBMS and provides
capabilities such as executing SQL queries as well as designing and executing forms and reports.

Chapter 14

Cleanup After the Example

We are now approaching the end of this brief journey crisscrossing the domain of relational databases
to get a rough impression what they are. To finish it, let us delete all the things we created. Of course,
we have to do that in the opposite order in which we created them.

In Listing 14.3, we first delete the view sale . We can do this by the command DROP VIEW sale; [135].
The DROP is the SQL command for deleting things. The VIEW is specified to make clear what type of
object we want to delete, to prevent us from accidentally deleting something else. Then we give the
name of the view to delete, in our case, that is sale . However, we make this command a bit more
handy: We insert an IF EXISTS inbetween the object type and the view’s name. This condition is
self-explanatory: If a view of the provided name exists, then it is deleted. If not, then nothing happens.
Without the IF EXISTS , this would cause an error.

Well, we do know that the view exists, so why are we mentioning this condition here? Because it
has some interesting use cases. If we wanted to create a backup copy of our entire DB, then one thing
we could do is to export the whole DB as a single large SQL script [374]. This script could, basically,
be the concatenation of all of our listings. Running this script would re-create the DB in exactly its
present state.

Except that it won’t. If the DB already exists, it will fail. Or maybe if we had a crash or a user issued
some faulty SQL commands wreaking havoc, then the DB maybe now exists only partially. Maybe some

Listing 14.1: User boss deletes all tables and views inside the database, in the inverse order of their
creation. (stored in file cleanup_inside_database.sql ; output in Listing 14.2)

1 /* Cleanup after the example: Delete all Tables and Views. */
2
3 -- This must be run inside the database , by user ’boss ’.
4
5 -- Delete the views.
6 DROP VIEW IF EXISTS sale;
7
8 -- Delete the tables , in the inverse order of creation.
9 DROP TABLE IF EXISTS demand;

10 DROP TABLE IF EXISTS product;
11 DROP TABLE IF EXISTS customer;

Listing 14.2: The stdout resulting from the SQL statements in cleanup_inside_database.sql given
in Listing 14.1.

1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1
↪→ -ebf cleanup_inside_database.sql

2 DROP VIEW
3 DROP TABLE
4 DROP TABLE
5 DROP TABLE
6 # psql 16.9 succeeded with exit code 0.

145

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/cleanup_inside_database.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/cleanup_inside_database.sql

CHAPTER 14. CLEANUP AFTER THE EXAMPLE 146

Listing 14.3: Delete the database factory and the user boss . This must be executed by the adminis-
trator account postgres . (stored in file cleanup_database_and_user.sql ; output in Listing 14.4)

1 /* Cleanup after the example: Delete the Database and User */
2
3 -- This must be run by the administrative user ’postgres ’.
4
5 -- If the database ’factory ’ exists , we delete it.
6 DROP DATABASE IF EXISTS factory;
7
8 -- If the user ’boss ’ already exists , we delete it.
9 -- We can only delete the user after all objects associated with it,

10 -- e.g., the databases , have been deleted.
11 DROP USER IF EXISTS boss;

Listing 14.4: The stdout resulting from the SQL statements in cleanup_database_and_user.sql given
in Listing 14.3.

1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf
↪→ cleanup_database_and_user.sql

2 DROP DATABASE
3 DROP ROLE
4 # psql 16.9 succeeded with exit code 0.

tables or views have disappeared, maybe some rows in some tables are missing. One method to make
the “backup SQL script” robust to deal with such issues is to add DROP ... IF EXISTS clauses before
the commands for re-creating each table or view. Then we can even restore the DB while the DB still
exists.

Anyway, we use the same method to delete the three tables. We issue
the commands DROP TABLE IF EXISTS demand; , DROP TABLE IF EXISTS product; , and
DROP TABLE IF EXISTS customer; [133]. Notice that we delete demand before we delete customer
and product because of the REFERENCES constraints.

All of these deletion steps are done by using the user boss and their password superboss123 .
Let us finally also get rid of the entire DB and of that user as well in Listing 14.3. First, we
delete the DB by executing DROP DATABASE IF EXISTS factory; [132]. Then we remove the user
via DROP USER IF EXISTS boss; [134]. Notice that we log in as the DBA user postgres to do that.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/cleanup_database_and_user.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/factory/cleanup_database_and_user.sql

Chapter 15

Summary

With this, we have reached the end of our simple introductory example.
What did we learn? First of all, we got some hands-on experience using one of the world’s leading

DBMS, PostgreSQL. We connected to the PostgreSQL server using the psql client software. We
issued commands in the SQL language to the DBMS.

What kind of commands did we issue? Well, we created a new user (or role), we created a DB, we
created tables inside the DB, we issued queries to read data back from tables, we used queries to join
data from different tables, we created a view and we built queries on top of that view, and we learned
how to modify the data in tables. Finally, we deleted everything again. This means that we have seen
several of the most important SQL commands that exist. Surely, we only have played with them. We
are not even close to really understand their full behavior, special cases, performance issues, nor do we
have a clear picture of what happens behind the scenes.

But one thing is clear: If somebody would come and ask us to create a DB for some certain
application, we could probably do it. We could stitch together something that does the trick. Would it
be an efficient DB? Definitely not. We did not yet learn anything about how to design nice DBs. We
have no experience whatsoever.

Even more so, we also understand how to access a DB from outside, from a programming language
like Python. Based on what we learned, we have a rough feeling of what a DBMS can and probably
cannot do. This allows us to, in principle, develop ideas for even more complex applications. The
things that the DBMS can do should go into the DB. The things that it cannot, like displaying forms,
processing data from some source like sensors or files, or training ML models on the data would go
into the Python program code. The two parts of our application would communicate via a library like
psycopg.

Then again, maybe we are a small-scale business where only three or four people have to actually
work with the DB. In such a situation, we probably still want the power of PostgreSQL. But making
a whole separate program to work with the data may just not be worth the effort. Plugging a GUI
like LibreOffice Base in front of the DB may then be fully sufficient. At least entering, viewing, and
changing the data will be much much easier compared to using the psql client. It also does no longer
require any understanding of SQL to work with the data. While we, the DBAs, can still use the full
features of PostgreSQL, the secretary in the sales office can now enter new customer data and orders
in a way much more natural to them.

For entering data into tables that have complex relationships with other tables, we learned about
forms. Forms allow us to deal with the problem of fields that reference rows in other tables via their
primary keys. A customer, for example, is represented only by their id value in our demand table.
Such value is basically meaningless to a salesperson and they would need to look it up in the customer
table to enter the right value. We can, however, make forms where this looking-up is automated: The
secretary entering the data sees the real customer name but what is stored is the customer id .

The second abstract tool we learned about are reports. While it is nice to read and process data in
either the table view of LibreOffice Base (or Microsoft Access for that matter), this is not the kind of
format we would use when printing the data. A form is also not suitable for this purpose, because forms
are designed for entering data. Reports are the tool exactly designed for this use case: They allow us to
create nicely formatted documents that are automatically filled with data whenever we execute them.

After reading this part of our book, you now have seen several of standard tools and abstractions

147

CHAPTER 15. SUMMARY 148

when working with DBs in action. You do not have any in-depth or theoretical foundation . . . but
probably a good hunch of what is what and what tool may be suitable for which kind of question. At
this stage, I hope that your curiosity is tickled. Maybe you even have some problems or application ideas
for which you might want to design your own DB. Maybe to catalog your books or music collection,
maybe to construct your ancestry tree, maybe to store your bibliographic references. Nothing will help
you more in learning about DBs than doing your own little pet projects. The second-best thing you
can do is to read the rest of this book (or maybe any other book).

Part III

Database Design and Modeling

149

150

In the introductory example in the previous book part, we had some idea about how a DB should
look like and then just implemented it. Of course, this is not how that works. In the real world,
DBs are much more complicated. There are not just three tables. The interactions between objects,
processes, and people are much more complex. While we now do have some rough idea about what
kind of technological tools we have available to work with DBs, we have very little understanding of
the practical process of DB design.

The process of designing a DB will, at its core, involve the creation of three models (also called
schemas) [143]:

Definition 15.1: Conceptual Model

The conceptual model (or conceptual schema) of a DB is a model of the real-world entities with
which the system will interact and/or about which we store data as well as the relationships
between them.

The conceptual model is the high-level view on our application scenario. The purpose of this model
is to provide a clear concept of the application that is understandable by project stakeholders. Such a
model can be seen as a formalization of the the data-related part of the requirements as well as a vital
part of the project documentation. It is independent from any concrete data model or DB technology.
It represents entities, the attributes of entities, as well as the relationships among them.

Definition 15.2: Logical Model

The logical model (or logical schema) of a DB is a model of the data grounded to a specific
type of technology (e.g., relational databases, hierarchical DB, NoSQL DB, . . .). It represents
the entities, their attributes, and relationships as well as constraints using concrete datatypes
and a structured, formal format.

The logical model is the level on which the users and applications interact with the DB. Here, the
conceptual model is translated to a technical specification. This model is often specified in a common
DB language like SQL. It may be grounded to a specific DBMS or type of DBMS.

Definition 15.3: Physical Model

The physical model (or physical schema or internal schema) is the specification of the concrete
technological realization of the logical model. It is bound to a concrete DBMS and specifies
exactly how the data is stored and accessed. The physical model impacts performance and
system requirements, but not the way users and applications access the DB.

In many trivial DB applications, the logical model can be used as physical model. The logical model
may specified in a language like SQL, in which case we have a clear definition how tables are created
and accessed via queries and views. However, to achieve high performance, the physical model can add
further specifications: How should large records be stored? Should the data be sorted in any particular
way? Or should there be indexes, i.e., additional data structure for speeding up certain queries? These
specifications are invisible to the applications and users that access our DB. The users access the DB
by using, for example, SQL. Their queries do not change in any way if the physical model changes.
However, the physical model has an impact on the query performance and the storage requirements of
the data. For larger DBs, this can make a huge difference.

The design of DBs is large concerned with getting these models correct. There are different chal-
lenges at each step, from discussing with the future users to fine-tuning a DBMS. We will explore
these steps on a second example. We will look a bit more closely at the process and the steps involved
in creating a reasonably elaborate DB application. We want to design a DB for managing students,
teachers, and courses in a university.

Chapter 16

The Database Lifecycle

The design of DBs is not a straightforward process of “idea → design → finished.” Instead, designing
good DBs involves several steps. We need to clearly understand the requirements for the DB. We should
create a rough sketch of what things will be included. We need to decide what tables and relations
should exist. This conceptual model (information about the types of data and their relationships) must
then be mapped to a physical model (concrete implementation instructions for a selected DBMS). There
should be some sort of prototype, where we and the users can enter a subset of the data to test whether
everything works as predicted. At this stage, we may uncover some problems and may need to improve
our design. The actual application must then be tested. Then, once we are happy with everything,
the application and DB enter the productive environment. They need to be maintained and backed up
regularly. Due to the longevity of DBs, eventually, new features and changes may become necessary, at
which point we may need to revise our design. Interestingly, differently from normal software projects,
DB applications do not seem to grow in complexity during their evolution [367], but they do indeed
evolve over time after their initial development. There exist several general approaches on how to
manage or conduct the DB design process, how to bring this process into some structure [171].

DBs are software artifacts, so we could use one of the many available Software Development Life
Cycles (SDLCs) [205, 272]. Yet, DBs are also special. They are objects with a comparatively long
lifetime [343]. The hardware in your computer stays the same maybe for three to five years. Software
programs often change every five to ten years. Every two years, a new long term support (LTS) version
of the Ubuntu operating system comes out [400]. LibreOffice releases every six months [392]. Major
versions of Microsoft Windows come out every two to six years [156]. Once new major versions of such
important software appear, the old versions usually fade out of support within five years and need to
be replaced.

DBs, however, may stay in use for several decades. Indeed, a long time ago, I designed a DB
that was used by a branch office of a midsized company for well over a decade. Therefore, DBs and
the applications built on top of them are important assets of en organization. They contain valuable
information, both historical data as well as the data required by the current operation.

DBs are not just used to store data, the data they store mirrors real-world entities and processes.
In our small factory example, the data mirrors the products, the customers, and the interactions of the
customers with the factory. Any of them may well change over time. For example, maybe the company
eventually changes from selling products with a fixed name and configuration to configurable products.
Maybe one day a customer can decide the color and size of the shoes they want to order together with
the cloth to be used as well as the material of the sole. This could yield so many possible combinations
that the current way to store products is no longer feasible. Maybe the scope of the DB is eventually
expanded to also keep track of the product stock in the warehouse.

All of the above together lead to several demands on the DB development lifecycle. This lifecycle is
very similar to the software development lifecycle. It often even is either the backend or the foundation
of software development. However, there are two aspects that make the DB development special: First,
the longevity of DBs. Second, there is the “low-levelness” of DBs. Since the DB is the very foundation
upon which other applications like reports, forms, and websites are developed, they are the first point
of contact between project stakeholders and developers. The DB development process is where the
basic understanding of the data and processes in an organization is built. This is where the situation is
most uncertain, where most of the misunderstandings will happen.

The foremost and obvious requirement to the DB design process is that it guides us to translate

151

CHAPTER 16. THE DATABASE LIFECYCLE 152

the information from the stakeholders to a fully functional and running DB application. It should allow
us to plan how to do the project, i.e., to create a timeline defining when we will reach which milestone,
how many work hours may be needed, and how much things are going to cost.

More often than not, the stakeholders are initially not entirely clear about their processes and data.
During the first few discussions about what the DB should store and do, several important details
may be missed. For example, “Each product has a name.” seems to be a reasonable statement when
designing a DB for a factory. The DB designer thus may just assume that this is true and not double-
check or discuss this aspect in-depth. However, sometimes we may be in for a surprise, maybe the
following could happen: “Ah, indeed, we use different product names for different customers. This
customer, for example, is a big company that uses our screws to build cars. When we offer them
our ‘Screw 3B’ we call it ‘double-inch screw,’ because this is how they refer to it in their production
processes.” Obviously, such a situation could not be captured with a single table per product anymore.

Also, many real-world processes are not entirely formally specified. Processes that modify the ata
may have a very clear core, e.g., “We send the product to the customer’s address once they paid.” But
there might be fuzzy edges, like “Very few of our customers have been with us for many years or buy
lots of products, they can pay after receiving the product.” If we design a DB for managing students, it
may be that the school says: “A student can repeat an exam at most twice after failing it.” In reality,
there might be special circumstances under which some students may be granted a third trial, maybe
a student arrived late to an exam due to traffic and was marked as failure, but the exam commission
decides to given them another chance. Therefore, problems may be discovered early in the DB design
process but could just as well be encountered a year after the DB application has been deployed.

Sometimes, the customer may also just assume that some things are common knowledge. “Of
course, for customers with a delivery address outside of the European Union, we add an export tax. All
businesses do that. Everybody knows that.” The DB designer may not know that, though.

Therefore, a DB design process should also allow us to progressively enhance our design in response
to uncovered issues [171, 438]. At the same time, it should avoid scope creep, i.e., a situation where
progressive enhancements keep modify the project structure, adding more and more features, and
drifting away from the originally planned project [171, 438].

16.1 Classical Software Engineering Design Processes

Several different design methods, i.e., SDLCs, have been proposed in the field of software engineering.
The simplest is the waterfall model [171, 312] illustrated in Figure 16.1. The waterfall model is
a sequential process of project planning, requirements definition, design, development, testing, and
installation and project acceptance. Each step produces deliverables as output which become the input
for the next phase. During the requirements definition phase, the project scope is restricted based on
the discussions with the stakeholders. The waterfall model specifies which activities should be carried
out in each phase as well as the deliverables that should be produces. The waterfall model is simple and
easy to implement. It allows the developers to work their way along a well-known structure. At each
phase of the project, we know where we are standing and there thus will be few misunderstandings.

However, the model is strictly sequential. It does not anticipate that there can still be misun-
derstandings and that we may still discover unexpected issues. There is no feedback and return to
previous phases built-in. The requirements are specified early in the process and there is no predefined

Project Planning

Requirements De�nition

Design

Development

Integration and Testing

Installation and Acceptance

Figure 16.1: The waterfall model [171, 205, 272, 312].

CHAPTER 16. THE DATABASE LIFECYCLE 153

Requirements De�nition Design Evaluation by Stakeholders

Prototyping

Review and Update

Integration and Testing Development

Stakeholders

are satis�ed

Maintenance

Figure 16.2: The prototyping model [171, 299].

Concept of

Require-

ments

Concept of

Operation

Re-

quire-

ments

Plan

1. Determine Objectives 2. Identity and Resolve Risks

Prototype 1

Risk

Analysis

Risk

Analysis

Risk

Analysis

Prototype 2

Operational

Prototype

Requirements Draft Detailed

Design

Code

Integration

Test

Implementation

Veri�cation and

Validation

Veri�cation and

Validation

Release

Test Plan

Development

Plan

4. Plan Next Iteration 3. Development and Test

Cumulative

Costs

Review

Figure 16.3: The spiral model [171, 338].

mechanism to introduce changes later in the project.

Another idea is to embrace that both the stakeholders and the developers do not clearly know what
the final product should look like and to put a cycle of prototypes and discussions into the center of the
development process. This prototyping process is illustrated in Figure 16.2 [171, 299]. First, a limited
version of the requirements are collected and a prototype of the DB and software is designed right away.
The prototype may even be a mockup which only shows the basic functionality of the project and does
not interact with other tools. It serves as basis for discussions and may need to be redesigned. The
final product may look different from the prototype, which creates some uncertainty. The prototyping
model provides the ability of iterative enhancement of the project specification, but sacrifices some
clarity of process sequence. In the prototyping model, the requirements are still finalized early on. The
iterative part is focused on the design, prototyping, evaluation by the stakeholders, and reviews.

This spiral model illustrated in Figure 16.3 is a combination of the prototyping and waterfall
model [171, 299]. Here, the development process begins with the requirements analysis and a develop-
ment plan. An initial pass through a standard waterfall lifecycle based on a subset of the requirements
is performed to develop a first prototype. The prototype is evaluated and then the cycle begins again
in order to add new functionality and to create the next prototype. In each iteration, a risk analysis is
performed before the prototype is developed. Each new prototype thus helps to reduce the risks. One

CHAPTER 16. THE DATABASE LIFECYCLE 154

Rapidly Created Prototype Changed Requirements

Analysis

Design

Implementation

Post-Delivery Maintenance

Retirement

Figure 16.4: The Rapid Application Development (RAD) model [171, 205, 272, 338].

idea of the spiral model is that requirements are of hierarchical nature. In each iteration, additional
requirements are built on top of the first set of requirements implemented. This is not very suitable
when we design a DB, where different functions can be more or less independent from each other while
using the same data (e.g., keeping track of stock in a warehouse and booking customer orders). The
problem to be solved is defined at the project start and therefore the project scope is limited. However,
since the requirements are finalized early, the model does not encourage progressive enhancement of
the design. Also, the risk analysis steps can be quite complex and so is the overall structure of the
spiral model, which are downsides of the method [171, 338].

Rapid Application Development (RAD), as illustrated in Figure 16.4, lets the user try the application
before it is delivered [171, 261, 338]. If stakeholders can play around with a live system, then they can
probably give much better feedback compared to a situation where they only work with specification
documents. Thus, a prototype is created and installed as soon as possible and made available to the
user. RAD-based projects tend to have a lower level of rejection when the application is placed into
production. The downside is that they are also likely to exhibit scope creep: The stakeholders perceive
modifying the application as easy and therefore are more likely to ask for more features. The final goal
of having a fully operational product may drift out of focus and the projects may overdraw budget and
schedule.

16.2 Databases Design Processes

DB systems differ from normal software applications. On one hand, they usually are the foundation
for several software projects. A student management DB for a university, for example, may offer the
students to log in and join modules or view their grades. It may also allow the administrative staff to
create new modules and even manage the module structure of curricula. It may furthermore handle the
room planning for classes. And it may even help to manage the important dates in the semester, such as
times for exams, the schedule for students. These things may be handled by different applications with
different user interfaces. But all of these applications would access the same DB backend. Additionally,
DBs are long-living artifacts, which must be managed, maintained, and improved over many years.

As a result, a wide variety of design processes and life cycle management structures for DBs have
been developed. They often are adaptations of different SDLC models and can offer different levels of
detail to the project managers.

Personally, I like the comprehensive approach proposed by Gupta, Mata-Toledo, and Monger [171]
and illustrated in Figure 16.5. It shows us all of the activities that a good DB architect needs to
consider. In this model, the lifecycle begins with a planning stage. Initially, there often are too many
uncertainties to lay out a realistic timeline for the project. Therefore, the goal of this first phase is to
plan two activities: (1) the collection of the necessary information about the organizational processes
that should be mirrored by the DB application and (2) the requirements analysis. The result of this
phase is a plan document.

In the next stage, we collect all the data and information about the organization. The developers
and designers interact with all stakeholders in the project at all levels, from the intended users of
the DB applications up to the management of the organization. The documents and processes in
the organization are explored, as well as the flow of data through the organization. We check which
systems and frameworks already exist, what input they require, what output the produce, who uses

CHAPTER 16. THE DATABASE LIFECYCLE 155

1) organizational objectives

2) organizational operations

3) organizational structure

Organizational Data Analysis

1) Feasibility and Costs

2) Scope and Boundaries

3) Design Model

4) Performance

5) Security

6) Portability

7) Maintenance

Requirements Analysis

Project Planning

Requirements De�nition and

Organizational Data Collection

(initial requirements documentation)

Application Design

Application Implementation

Maintenance

Installation

Requirements Re�nement

Problems and Constraints

Timeline Planning

Evaluation

Database Implementation

and Loading

Integration and Testing

Conceptual Design

Logical Design

Database Model Selection

Database Design

Physical Design

Figure 16.5: The lifecycle model by Gupta, Mata-Toledo, and Monger [171].

them and how and why. Interviews and questionnaires can be used to gather more data. The activities
of personnel at all levels of the organization can directly be observed and documented. The present
needs and potential future expansions of the DB project are documented. A software requirement
specification is produced.

In the requirements analysis, we can now analyze the collected data to find out whether the project
is feasible and to approximate the costs. The goals of the project and the objectives of all proposed
systems are specified. The scope and boundaries (budget, equipment, available software) of the project
are defined, as well as requirements regarding performance, security, portability, and maintenance. All
of these issues are very important for both the short term and long term success of the project.

As the result, potential problems and constraints that could arise later will be identified. After
the requirements collection and analyses are completed, a timeline for the rest of the project can be
established.

DBs and the applications working on the data cannot be entirely separated. The DB and the
application(s) are therefore designed as two parallel strands of a project. Both process update each
other. The internal DB design block then follows the steps also given in [143]. The first step of the
DB design is to create a conceptual design, i.e., a high-level and technology-independent overview of
the the DB. The goal is to outline the big picture at an abstract level. The model is based on the
worldview and processes of the stakeholders. This design can be visualized using ERDs [22, 439]. It is
common to not just draw one single huge ERD, which would be overwhelming and hard to understand.
Instead, often, several smaller and easily readable ERDs are drawn with no more than ten or so entity
types [439].

Then, the DB model is chosen. In the context of this book, our focus is on relational databases,
where data is store in tables that can reference each other. This may not always be the right choice.

CHAPTER 16. THE DATABASE LIFECYCLE 156

For example, maybe we have to deal with images or video data, maybe we have to deal with results of
simulations or computational experiments. Then, other formats or DB paradigms may be more suitable.
Nevertheless, let us assume that relational databases are what we decide to use. At this stage, we may
also decide which DBMS to use. This decision may be based on aspects such as costs, maintenance
aspects, licenses, and available training. In our book, we chose PostgreSQL, simply because it is a
free (open source) and very mature SQL DBMS.

In the next step, the conceptual design is converted into a logical design. This can mean to map the
entity types from the ERDs in the conceptual models to tables and the relationships between them [341,
343]. Here, we may sometimes split one entity type from the ERDs into multiple tables or use different
primary keys (e.g., sequential integers instead of a multi-part key constructed of strings. . .). In other
words, we map the conceptual model to the internal structures provided by the DBMS. At this stage,
we basically have an unoptimized design of the DB.

The logical design is then translated to a physical design. This stage emphasizes the internal
aspects of the database, e.g., the creation of access paths, indexes, the creation of partitions, and the
implementation of business rules. At this stage, we have a complete DB design, optimized for the
planned operations.

The division in conceptual, logical, and physical design is not always defined like this. Some ap-
proaches only distinguish the conceptual and the physical model [159, 424]. In this case, the conceptual
model is also called logical model and focuses on the specifications of the entity types and relations of
the data. The physical model then comprises the two aspects that called physical and logical design
above, i.e., the definition of tables, relations, and access paths. From my perspective, which of the two
approaches are chosen does not really matter. Whether we have three-step or a two-step design method
– the important point is that we first model the data in an technological-independent and abstract way
and later map this abstract model to a concrete design.

During the DB design phase, it is important to communicate and interact with the project stake-
holders. At this stage, the requirements may change again, which must be properly documented in
the specifications. While the DB is being designed, the user-facing applications are design in parallel.
Here, too, changes may be found necessary during discussions with the future users.

After the design phase, the database is implemented based on the physical design documents
developed earlier. The DB tables are created, populated with data, and constraints and queries are
implemented.

Now that the DB exists, the application(s) can be implemented as well. They are then integrated
with the DB. The system is tested.

Finally, the system is installed. The users can now evaluate it. The stakeholders can try the
applications and judge its functionality and performance. After the system has been accepted and
enters the productive stage, the maintenance phase is entered. The system is continuous upgraded,
improved, and extended until it eventually reaches its end of life.

The method by Gupta, Mata-Toledo, and Monger [171] sketched in Figure 16.5 is a comprehensive
approach for DB and software co-design in a large-scale project. The main goal is to make DB projects
more projectable.

Most lectures on DBs focus more on the core of the development process, labeled Database Design in
Figure 16.5 and often combine several of the framework activities such as installation and maintenance
into one activity.

In the context of this book, we, too, use a model with fewer steps. It is illustrated in Figure 16.6
and combines ideas from several sources [128, 341, 343]. Indeed, we will hinge the more comprehensive
DB design example project discussed in this part of our book on this process.

This approach to the DB development life cycle begins with a phase of requirements gathering
and analysis. Then, the three models (conceptual, logical, and physical) are designed one after the
other [143]. We start with the conceptual model: The entities and their relationships are sketched
with ERDs. It makes sense to discuss this model with the stakeholders and, if any inconsistencies are
discovered, to adapt the requirements specification. In this step, we also choose the proper data model.

The entities in the conceptual model are then translated to fit to the data model in the logical
model design process. In case of a relational data model (as used here), this means to create tables,
define keys, attributes, and relations, and to normalize the data. This model can be defined either in
SQL or using any other suitable formal mechanism. It could be bound to a specific DBMS or to a
group of similar DBMSes. Finally, the logical model, i.e., the perspective of the users on the data, is

CHAPTER 16. THE DATABASE LIFECYCLE 157

Physical Schema Design

- de�ne access path

- optimize storage

- de�ne indexes

- optimize queries

- con�gure DBMS settings

Logical Schema Design

- normalize data

- de�ne tables and keys

- de�ne attributes

- de�ne constraints and relations

Conceptual Schema Design

- Entity Relationship Diagrams

- Database Model Selection

Requirements Gathering and Analysis

- group meetings

- interviews

- questionnaires

- direct user observation

- existing documentation

- ...

- business requirements

- functional requirements

- non-functional requirementss

- constraints

- identify entities

- de�ne relatioships

- loading with data

- administration and tuning

- maintenance, reorganization

Production

- review with stakeholders

- prototype testing

- requirement veri�cation

Validation

Figure 16.6: A simpler DB lifecycle model.

mapped to a physical model. The physical model is the internal representation of the data as provided
by the DBMS. The logical model defines how the data is accessed. The physical model defines how
the access is made efficient and can contain information about the physical layout of the data as well
as the use of indexes and other performance tweaks.

Now a prototype can be developed and verified with the stakeholders. Finally, the DB enters the
production stage. From here on, the focus is on maintenance, regular backups, fine-tuning, and the
addition of features and adaptations to changed situations. The last two stages can create feedback to
the earlier stages, i.e., lead to changes in the physical or logical models as well as the requirements.

In the following, we will work our way step-by-step through this lifecycle. By doing so, we will not
just explore the different steps in more detail, but also discuss several important topics, such as ERDs,
normalization, and σ-algebra based on a (more or less) realistic scenario.

Chapter 17

Requirements Analysis

The requirements analysis is one of the most important steps of the DB development lifecycle. It is
this point where we gain the understanding of the project. Requirements engineering mediates between
the users and customers of a project on one side and the developers and suppliers on the other [384].
The results of the requirements analysis are Software Requirements Specification (SRS) documents
enable an agreed understanding of all stakeholders (acquirers, users, customers, operators, developers,
and suppliers), have been validated against the real-world needs, can be implemented, and provide a
reference for verifying designs and solutions [384].

On one hand, during the requirements analysis, we build a clear understanding of the purpose,
goals, and limits of the project. On the other hand, we also need to learn about the organizational data
and processes that should be embodied by our DB and the applications on top of it. Indeed, studies
show that for many companies, more than half of the problems of systems [455] and costs of software
development [54] are based on poor requirements definition. Inefficient requirements management
is considered a top-cause for project failure [140]. Good requirements engineering can increase the
developer productivity and lead to improved project planning [107]. Fixing errors in the requirement
cost 10 to 200 times as much to fix once the application is deployed compared to discovering during
the requirements analysis [39, 260, 334].

17.1 Types of Requirements

Requirements can roughly be divided into business requirements, functional requirements, non-functional
requirements, and constraints [205].

First, the business requirements are the high-level goals, objectives, and sought outcomes of the
project. They define the motivation of the organization for why the system is being developed [384].
An organization usually has some overall initiative or plan to improve some of its metrics. The project
is initiated to support this initiative. These requirements are more general and abstract.

Second, the functional requirements are more concrete and define what the system should do. They
concern the features and the behavior that the system must offer to fulfill the business requirements.
They may be defined as the input given to the system, the expected operation to be performed by the
system on that input, and the expected output to be produced.

Third, the non-functional requirements define how the system should perform. They define the
service quality that the system should offer, the performance, usability, scalability, reliability, etc. This
includes the computational environment in which it must be possible to execute the system.

Fourth and finally, the constraints are the factors that limit which solutions are viable. They define
the boundaries in which we operate. While requirements define properties that our system should have,
the constraints rule out methods to get there. They can appear in form of budget or time limits. They
may appear in the form of “your system must work with version XYZ of software ABC.”

17.2 Requirements Gathering

Several different methods exist that can be used to collect requirements [455].
The first method, interviewing stakeholders to gather information about the system that we will

design, is considered one of the most efficient requirements gathering techniques [120, 455]. For each

158

CHAPTER 17. REQUIREMENTS ANALYSIS 159

interview, careful preparation is needed, which includes making an appropriate appointment. While
stakeholders may spontaneously share information on some topics, they may not discuss others unless
explicitly prompted with questions [52]. Each interview meeting should therefore have a proper agenda,
pre-prepared questions, and follow a checklist [434]. If possible and if the interview partner(s) consent,
then the meeting should be recorded. The recordings and notes should be evaluated within two days
after the interview. The interviews should neutral, not push the interviewee into any direction. The
goal is to collect diverse views on the project.

A second, more standardized method to collect information are questionnaires [388, 455]. This
way, we can collect much data from many stakeholders within a brief time. Questionnaires are easy
to evaluate and process, but designing them properly is important. Different types of stakeholders
will use different parts of our system. Therefore, it may be necessary to design several different
questionnaires, one for each group of future users. The questions should be clear an unambiguous.
For some aspects, multiple-choice questions or range-based ratings are good, while others may require
open-ended questions where the users can fill in their opinions.

The third method is to directly observe users doing their work [352, 455]. Stakeholders may not
always be able to accurately describe their function and how they fulfill it. Observing them performing
their day-to-day processes can thus provide helpful additional information. It is also possible to record
such real-world examples instead of personally observing them [177]. Of course, under observation,
people may behave somewhat differently from normal, so such information is to be taken with a grain
of salt.

Fourth, we can also analyze both organization-internal and external regulations, as well as published
procedures, processes, and other documents [334, 455]. Usually, an organization will have their own
written regulations, announcements, and otherwise standardized procedures. Additionally, there are
regulations and laws imposed upon an organization and the processes within. Gathering such informa-
tion can be crucial and complements our understanding of what the system is supposed to do, and why
current systems work the way they do. Sometimes, the official documentation of organization-internal
methods and the practical realization of processes may differ, though.

A fifth method are group meetings and workshops [455]. Here, under the guidance of a session
leader, stakeholders at all levels meet, from management to end user, from system analyst to data
entry personnel. The group then jointly discusses the current situation and the planned system, which
can be a highly efficient way to gather requirements. Different variants of this method exist since the
1970s, under names such as Joint Application Development (JAD) [59, 261] and Participatory Design
(PD) [59, 150].

Several of these techniques can be combined, often with other approaches such as brainstorming
sessions, surveys, reverse engineering of existing systems, or prototyping [205, 455]. In the context of
DBs, it is particularly important to properly define the data structures and entities when analysing the
requirements and, later, when developing the conceptual model [256].

17.3 Requirements Specification Document

After the requirements have been collected, they are stored in a formal specification document, the
so-called Software Requirements Specification (SRS) document [362, 448]. The SRS is the most
important document in the software development process. The document structure should follow
the IEEE 830-1998 [199] standard or the newer ISO/IEC/IEEE 29148-2018 [384] standard. While
the lifecycle of software or systems in general can be managed by ISO/IEC/IEEE 15288 [385] and
ISO/IEC/IEEE 12207 [383], respectively, ISO/IEC/IEEE 29148 [384] provides the guidelines for their
requirements-related processes. Generally, it would be a good idea to simply follow these standards
when gathering and analyzing requirements for software or DB projects.

17.4 Example: Teaching Management Platform

We will now analyze the requirements for our example project: a teaching management platform for
a university. Sadly, doing this at a realistic level would go far beyond what we can do as a rea-
sonable example in the context of a course book. We cannot really implement complete outline of
ISO/IEC/IEEE 29148-2018 [384]. We cannot even specify the complete and exact requirements of
any realistic system without exceeding reasonable time and length limits. Therefore, we will try to

CHAPTER 17. REQUIREMENTS ANALYSIS 160

discuss the requirements partially, picking some more or less interesting issues while leaving others to
the imagination of the reader.

17.4.1 Business Requirements

Our imaginary university has several goals that it wants to achieve by introducing a new teaching
management platform. Imagine that, at the start of our project, we had several meetings with the
university during which we gathered and understood the business purpose as well as a rough idea about
the roles of the stakeholders involved in the project.

17.4.1.1 Business Purpose

First, by migrating processes into a DB and designing applications to access them via the web, all
stakeholders will benefit: The students can more easily access their courses, obtain transcripts, reg-
ister for classes, etc. The professors can manage their classes more efficiently. The workload of the
management can significantly be reduced and simplified.

Second, the administrative personnel so far does all the management of its students and courses
using Microsoft Excel sheets and pen and paper. This has several drawbacks, such as the lack of
centrally controlled backups, the possibility of errors, the lack of traceability of processes, problems
when this duty is eventually handed over from one teacher to another, and so on. By developing a
centralized system, the imaginary university wants increase the control over as well the accountability,
traceability, and documentation of its processes. This could be seen as a tool for supporting quality
management, maybe along the lines of ISO 9001 [315, 316].

Third, the long term goal is the digital transformation of our whole imaginary university. All
processes inside the imaginary university would be managed by online platforms. This would significantly
reduce administrative efforts and costs. All processes would automatically be documented and backed
up. The quality of the services rendered to students would improve. Auditing becomes easier. The
teaching management platform is the first building block of this digital transformation. It will allow
the university to gather experience with systems that are not handled just by a few administrative
personnel (such as the HR or financial accounting system), but accessed by thousands of users in
different roles.

17.4.1.2 Major Stakeholders

There are five main groups of stakeholders on the university side of our imaginary university management
system.

First, there are the students. The students need to register for modules (courses and exercises).
They want to print their schedule, which includes which courses they will attend at which days and
times and in which rooms. They want to view their scores and progress.

Second, there are the faculty members, i.e., the professors and teachers. A professor can chair a
module, meaning that they will teach a certain class. Other faculty members, say lecturers or assistant
professors, may teach lab classes or practice classes. They have access to the list of students in their
respective modules.

Third, the university administration can create new curricula. The university administration also
manages the professors, teachers, and students.

Fourth, there is the administration of the different schools of the university. They school administra-
tion assigns professors to modules, lecturers to practice classes. They are allowed to create and schedule
exams and major deliverables. They manage their rooms. They manage the students belonging to their
school.

Fifth and finally, there are system administrators, the DBAs. Their most important task is to keep
the system running. This means that they will run regular backups. They also need to update all the
involved components, such as the operating system, the DBMS, the web servers, and so on.

17.4.2 Functional Requirements

After the stakeholders and motivation of the project have been reasonably clarified, we begin by inter-
viewing several involved personnel. We visit the education department of the university. We interview

CHAPTER 17. REQUIREMENTS ANALYSIS 161

the deans, vice deans for teaching, and secretaries of three different schools. We discuss with five pro-
fessors. We also meet with the students union and several students at different academic performance
levels. Our goal is to understand the academic processes from the points of view of different sides.
What is the basic functionality that we need to provide? What features could we offer that, currently,
are unavailable? Based on our findings, we create different questionnaires and distribute them more
widely among the above peer groups. Finally, we collect all the information and present them in work-
shops where, again, members of all the above groups take part. It is our goal to build a view on the
requirements that can be agreed to by all stakeholders. We then continue writing our SRS document
as follows.

The system has to be available through one or multiple websites. Several processes must be
supported, for example:

17.4.2.1 Person Management

Only the university administration can create a student record in the system. Such a record must store
information such as name, ID, mobile phone number, gender, highest academic degree, academic rank,
role (student, staff, . . .)etc. The university administration must be able to change these information.
They can assign the people to schools. The administration of a school can access (only) the people
assigned to them.

17.4.2.2 Date Management

The university administration sets dates such as semester begin and end, begin and end of the exam
period, holidays, etc. The university administration provides ranges for special dates such as the start
of a graduation project presentations (开题), the graduation project midterm evaluations (中期), or
the graduation project defenses (毕业).

17.4.2.3 Curriculum Management

The university administration can create and change curricula. Each curriculum contains different
modules at different semesters. Modules can be compulsory or optional. Modules can consist of only
lectures, of lectures and practical training, only practical training, or deliverables (such as BSc and MSc
theses). The university administration then assigns curricula to schools. The school administration can
enroll their students to curricula.

17.4.2.4 Module Management

The school administration can, in each semester, create implementations of the modules. An imple-
mentation assigns a teacher to course and has an upper limit for student enrollment. Teachers are
notified about their assigned courses. Teachers can print their teaching schedule.

17.4.2.5 Room Management

The university administration manages, creates, changes, or deletes records for lecture rooms. Rooms
have locations in buildings, a capacity for students, and features such as equipment (overhead projectors,
blackboards, lab equipment for computer science, chemistry, biology, . . .). The university administration
can assign rooms to schools for a semester. The school administration can assign courses to rooms
and timeslots.

17.4.2.6 Module Enrollment

Students can enroll to the modules in their respective curricula. For compulsory modules that are not
offered by different teachers, they are automatically assigned. Otherwise, the school administration
can manually assign them. For any module in their curriculum for which they are not assigned by the
school, they can choose by themselves. Students are notified automatically about enrollment options.
Students can print their schedule.

17.4.2.7 Exams and Deliverables

The school administration can create exams for each module. A final exam has an assigned room and
time in the exam period.

CHAPTER 17. REQUIREMENTS ANALYSIS 162

Professors can also request the school to schedule midterm exams, if they want. A midterm exam
has an assigned room and time outside the exam period. Special dates like 开题, 中期, or 毕业 are
also managed like this.

For each module they teach, professors can also create deliverable records, for example for homework.
They can then assign scores for the students for the exams and deliverables.

Students are automatically notified about exam dates and locations for their modules. Students
can print their current transcripts as well as the scores of all deliverables for each module they take at
any time.

17.4.2.8 Communication

The system offers a facility for communication between students, teachers, and their school. The
communication records are preserved. While this channel is likely not used often, it may be useful for
things such as reminders, notifications, but also warnings or objections.

17.4.2.9 Administration and Backup

The DBAs of the university can create backups of the platform. They can update the platform. They
can install the platform on a new computer and load the backups.

17.4.3 Non-Functional Requirements

The websites must render correctly and be usable both on desktop computers as well as mobile phones.
They must work under the out-of-the-box default web browsers provided by Microsoft Windows, Linux,
macOS, iOS, iPadOS, and Android.

The system must handle 50 000 student records, 2000 staff records, 200 curricula, 4000 modules,
and 1 000 000 exam/deliverable results per year. It must be able to handle this load over 10 years,
i.e., ten times the above. After ten years, we assume that either the hardware is upgraded or that
old records are removed from the system and backed up elsewhere. For each of the applications, the
response time must never exceed 2 seconds.

Communication should be secured over Hypertext Transfer Protocol Secure (HTTPS). Proper data
protection must be offered, i.e., people can only access data relevant to them and this access is secured.

17.4.4 Constraints

The system must be set up as a set of Docker containers in the computational center of the university.
The system should be composed entirely of open source software, in order to increase reliability, avail-
ability, and to reduce costs. The computational center of the university will provide three computational
nodes, each with a 32 core processor and 64 GiB of RAM, as well as 10 TiB of storage space. A first
prototype must be developed within six months, the system must enter thorough test and validation
within one year. The project budget is limited to 500 000 RMB.

17.4.5 Summary

From this requirements analysis, we learned a lot. We understand that this is actually quite a compli-
cated system. We also see that it involves a lot of different aspects.

There is not just the DB. There also are web-based graphical user interfaces (GUIs). Our course
and book, however, are not about user interface design. We will just assume that we are part of a
team here, and somebody else will take care of the GUI. We also do not really care about the Docker
software environment structure either. We also just assume that the budget, the other constraints, and
the non-functional requirements are OK. In the following, we will focus entirely on the DB part of this
project.

This project would be immensely more complicated than our simple example from back in Part II (A
Simple Example: The Factory Database). However, if you think back on what we have already touched,
SQL, forms, and reports . . . then you may have some rough idea on how this project here could be
tackled. OK, the tables that we are going to need will be more complicated. But the JOIN and
REFERENCES keyword probably would do the trick here, too. Of course, the system should have a web-
based GUI, but we could imagine to use LibreOffice Base to construct at least some raw prototype,

CHAPTER 17. REQUIREMENTS ANALYSIS 163

where data could be entered and where schedules could be printed as reports. Clearly, this undertaking
will require much more brain power from our side. But if we tackle this in a well-structured way
step-by-step . . . then maybe we do have a decent chance.

Chapter 18

Conceptual Model Design

Let us now begin with the conceptual modelling of our application. From the requirements analysis,
we know the entities of the student management platform and how they interact. However, so far, we
discussed them only very informally. It is now time to put them together into consistent models. At
the conceptual design step, these models will be independent from any concrete technology. This step
is called entity relationship modeling [22, 164, 340, 341, 423].

It should be noted that creating such models makes a lot of sense for larger DB applications like
our example here. However, there are also many possible smaller situations where we may want to use
a DB, say, to manage our literature reference, to manage a collection of books or musical records. For
such smaller projects, one may directly skip this step and move on to the logical model [355]. Either
way, we are now working on a beautiful and big project, so we definitely want to take this step.

18.1 Entities and Attributes

The first major component to model are the datastructures to be stored inside the DB. For this purpose,
the following modeling primitives have emerged. The most basic elements for conceptual modeling are
entities, attributes, and entity types.

Definition 18.1: Entity

An entity is an object or thing with an independent existence in the world. It can be distin-
guished from all other objects.

Examples of entities are maybe the student Mr. Bibbo, the module Programming with Python [437],
the professor Mrs. Bebba 教授, room #36 305, or the curriculum Computer Science and Technology.
Entities can be spotted easily in the requirement specification or when viewing the meeting or interview
notes: They correspond to proper nouns [69], i.e., nouns that actually name one specific thing and
that are usually capitalized [88].

Definition 18.2: Attribute

An attribute a is characterized by a name and a domain dom(a) of values that it can take on.

Attributes are features or characteristics of an entity. Entities in our model are represented by the values
of their attributes. A student could be defined by their name, ID, student ID, mobile phone number,
home address, date of birth, etc. A module could be described by its title, syllabus, and abstract.
Additionally to such features, adjectives in the requirements text often can be interpreted as attribute
values [69], e.g., red, young, successful, heavy, fast.

Definition 18.3: Domain

The domain dom(a) of an attribute a is the set of possible values that it can take on.

164

CHAPTER 18. CONCEPTUAL MODEL DESIGN 165

It is important to distinguish the concepts of domain and datatype in the context of conceptual mod-
els [357]. A datatype is a mathematical concept whereas a domain is a logical concept. For example,
VARCHAR(100) , SMALLINT , and REAL are datatypes. The name of a student, while being represented
as a text string, is a logical concept. The mobile phone numbers and IDs are maybe also represented
as text strings, but probably are of a fixed length and limited to certain character ranges at certain
positions. The DOB, on the other hand, is a date. The score in an exam may be an integer number
between 0 and 100. The attribute domain therefore can be considered as the combination of a datatype
with semantics limiting its valid range.

Definition 18.4: Entity Type

The set of all entities that have the same attributes is called an entity type.

So while the entity Mr. Bebbo is a single student, the set of all possible students would form an entity
type. While the module Programming with Python [437] is a single entity, the set of all possible modules
would form an entity type. Mrs. Bebba 教授 is a single entity, but the set of all possible professors
represents an entity type. Entity types are common nouns that stand for groups or types of things [69]
and that are usually written with lowercase letters [88].

Also notice the plural attributes in Definition 18.4:

Best Practice 11

Only things with multiple attributes should become entity types.

Indeed, it makes little sense, for example, to consider year as an entity type, because it does not have
multiple attributes.

Best Practice 12

Each entity (type) should model one (type of) object from reality (and not more than one) [344].

If we model the setup of, let’s say, a car race, then drivers and cars should be separate entity types.
If instead we would include the name of the driver and the type and features of a car into a single
entity type, then we would likely encounter redundancy: If multiple cars of the same type participate in
the race, we would store information about them several times (each time together with other driver
data).

Definition 18.5: Entity Set

An entity set is a subset of an entity type. It is a set of some entities of a type that exist at
one point in time.

For example, Mr. Bebbo is a single student entity, the set of all possible student entities forms an
entity type, but the students Mr. Bebbo, Mr. Bibbo, and Mr. Bobbo together form an entity set. The
modules Programming with Python [437] and Databases [436] form an entity set, because they are a
subset of an entity type for modules. Notice that the mathematical notion of set is indeed correct here:
All entities have a unique identity and, hence, can be differentiated from all possible other objects.
There are no two identical Mr. Bibbos. Therefore, students can be grouped in a set and entity types
are sets, too.

Viewing the conceptual design of DBs through this lense, we notice a few things. First, we always
model only a tiny window to the real world. When we talk about students, modules, and curricula
as entity types, this only concerns our particular application. Of course, in our real big wide world,
students exist in other universities and in other countries. These students may have completely different
attributes from ours. They do not matter in the model of our small part of the world.

Second, if you attended or do attend a course on programming, then you will feel that this way of
modeling things is a bit related to OOP. Entity types could be thought of as classes , entities could be

CHAPTER 18. CONCEPTUAL MODEL DESIGN 166

their instances and attributes could be their, well, attributes. While DB theorists may dislike this way
of thinking, I believe that it is not wrong. It is a viable analogy. However, later, when we model the
relationships between entities, it may no longer be helpful.

We now know that entity types with their attributes basically correspond to datastructures in
programming. They form one element of the conceptual model. But how do we actually write them
down? How do we specify them?

For this, a graphical notation has been introduced: Entity relationship diagrams (ERDs) are the
most commonly used tool to model the entity types and their relationships in a DB [22, 70–72, 219,
439]. There exists a wide variety of graphical notations that can be used for ERDs. The original
notations by Bachman [12] and Chen [71, 72] are still in use, the Crow’s Foot notation [58, 144] is very
common, the more comprehensive and standardized Integration Definition for Information Modeling
(IDEF1X) syntax [47, 203], and the Unified Modeling Language (UML) [41, 280, 414]. Indeed, there
are many different flavors of diagrams that can serve as ERDs. Shamshin [355], for example, presents
nine slightly different variations. Schweppe and Scholz [341] has two baseline variants, including
several slight variations of a UML-based approach (which is not listed in [355]). The notation used by
Vandenberg [423] is yet again slightly different. Therefore, ERDs may look slightly different depending
on who drew them and which tools they used. However, understanding them is not really hard, so
these differences are not that important.

In the following sections, we will look at several different ERDs. The goal of this course is to
teach you actionable knowledge. So, while we will look at ERDs, we will also draw them. That is
fairly easy: Once you understand the basic syntax, you can draw them with almost arbitrary drawing
software. Then again, this can also become tedious. You could, for example, use the Draw program
which is part of LibreOffice, or a vector graphics program like Inkscape. This would mean that you
have to draw all the shapes of the diagrams independently, which would yield inconsistent designs and
be generally tedious. Then there are programs like PgModeler or MySQL Workbench which offer much
better capabilities to draw ERDs, These tools, however, are bound to certain technologies, such as
PostgreSQL and MySQL, respectively. They would be useful for the development of logical models, but
it feels awkward to apply them at a conceptual level, which should be technology agnostic. There exists
many possible tools that we could use. Brumm lists over 70 in [48].

After searching for a while, I have settled for yEd [347, 451]. yEd is a free graph editor that offers
a convenient ability to draw and layout ERDs while being entirely independent from any data model.
In Chapter 5, we provide instructions on how to obtain and install this program. I will use it for all
of the conceptual-level ERDs in the rest of the book. As an example on how to use yEd, we will give
some instructions on how to draw the most simplest ERD with only a single entity inside in Figure 18.1.
This program is rather easy to use, so after that example, we will assume that you can figure out how
to draw more advanced ERDs on your own. . . At least we do not just paint some ERDs and leave you
entirely to your own devices when the time comes where you should draw some as well.

Before we really get into this, just a quick note: In the context of ERDs, an entity type are often
called a entity. In other words, the meaning of the term entity is shifted. But let this not bother us
too much.

The very first thing that we want to model is the entity (type) Student. From our requirements
analysis, we know that students have names, they have an ID (issued by the government), they have
a student ID (issued by our university), they have a mobile phone number, they have an address, and
they have a DOB. So let us model this.

After installing yEd as discussed in Chapter 5, we open it. We scroll down the Palette pane on
the right-hand side until we find the Entity Relationship tab. We click on the tab and it opens in
Figure 18.1.1, offering us all the symbols and connectors commonly used in ERDs. Entity (types) in
ERDs are represented by rectangles. We can now click on the Entity symbol and drag it into the empty
document in Figure 18.1.2. We dragged the entity symbol into the diagram document in Figure 18.1.3.

Inside the rectangle, the name of the entity (type) is written. Let’s change it to “Student”. We
therefore double-click into the new entity symbol in order to edit its name in Figure 18.1.4. The text
inside is marked. We change the entity name to “Student” and press Enter in Figure 18.1.5. The name
has changed.

Let us now add the attributes of the Student entity step by step. Attributes are represented as
oval bubbles in ERDs that are connected to their owning entities by straight lines. We now click on
the Attribute symbol in the element palette in Figure 18.1.6. We drag the attribute symbol into our

CHAPTER 18. CONCEPTUAL MODEL DESIGN 167

(18.1.1) We open the yEd editor and click on the
Entity Relationship tab in the Palette view on the right-
hand side.

(18.1.2) We can now click on the Entity symbol and drag
it into the empty document.

(18.1.3) We dragged the entity symbol into the diagram
document.

(18.1.4) We double-click into the new entity symbol in
order to edit its name.

(18.1.5) We change the entity name to “Student” and press
Enter .

(18.1.6) The name has changed. We now click on the
Attribute symbol in the element palette.

Figure 18.1: Drawing an ERD for the Student entity using yEd.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 168

(18.1.7) We drag the attribute symbol into our document. (18.1.8) We double-click into it to change its name.

(18.1.9) We want its name to be, well, “Name.” (18.1.10) We changed the attribute name. Now we click
on the connection symbol in the palette and drag it right
onto the attribute.

(18.1.11) We drop the connection symbol onto the Name
attribute.

(18.1.12) We then click into the entity to connect the at-
tribute Name to the Student entity.

Figure 18.1: Drawing an ERD for the Student entity using yEd (Continued).

CHAPTER 18. CONCEPTUAL MODEL DESIGN 169

(18.1.13) The Name attribute is now connected to the
Student entity.

(18.1.14) We add an attribute ID in exactly the same way.

(18.1.15) We add several more attributes. Next, we click
on the File menu.

(18.1.16) It is now time to save our document. We click
on Save As .

(18.1.17) We save the diagram under the name
erd_student_1 in the graphml format by entering this
name and clicking Save .

(18.1.18) We can also store the diagram in a format that we
can use in other documents. For this, we click on Export
in the File menu.

Figure 18.1: Drawing an ERD for the Student entity using yEd (Continued).

CHAPTER 18. CONCEPTUAL MODEL DESIGN 170

(18.1.19) We choose to expert in the Scalable Vector
Graphics (SVG) format an click Save .

(18.1.20) We leave all settings as-is and click OK .

Student

Name ID

Student-ID

Address

Mobile Phone
Date of Birth

(18.1.21) This produces this beautiful ERD.

Figure 18.1: Drawing an ERD for the Student entity using yEd (Continued).

document in Figure 18.1.7.

Of course, in Figure 18.1.8, we want to change its name as well. So we double-click into it to
change its name. We want its name to be, well, “Name,” i.e., we want to create an attribute that
represents the name of the student in Figure 18.1.9. We successfully changed the attribute name in
Figure 18.1.10. The attribute, however, is still floating in the diagram all by itself. Attributes belong
to entities, so we need to attach it to the entity Student.

We thus now we click on the connection symbol in the palette and drag it right onto the attribute.
We drop the connection symbol onto the Name attribute in Figure 18.1.11. Our mouse cursor now
marks the end of a connecting line and we can drag the connection to whatever object we want to. We
click into the entity rectangle to connect the attribute Name to the Student entity in Figure 18.1.12.
The Name attribute is now connected to the Student entity in Figure 18.1.13.

We add an attribute ID in exactly the same way in Figure 18.1.14. We then go on and add several
more attributes, Student-ID, Address, Mobile Phone, DOB, in Figure 18.1.15. Notice that these are
names that contain dashes and spaces, i.e., things that we would normally avoid when working with
SQL. But we are not working with SQL. We are making a conceptual model. We want this model to be
easily readable and beautiful. And it has to be. Because we want to discuss it with our stakeholders.
So we do not need to heed to restrictions of a particular technology at this point in time. Instead, we
focus on readability.

Having finished drawing our very first ERD, it is time to save it. Next, we click on the File menu.
We click on Save As in Figure 18.1.16. We save the diagram under the name erd_student_1 in the
graphml format by entering this name and clicking Save in Figure 18.1.17

We can open this file later in order to keep editing it. However, we often want to also place the
diagram into some document. For this purpose, it makes sense to convert it to an image. For this
purpose, we click on Export in the File menu in Figure 18.1.18. We choose to expert in the Scalable

CHAPTER 18. CONCEPTUAL MODEL DESIGN 171

Student

ID

Student-ID

Address

Mobile Phone
Date of Birth

Name

Full Name Salutation

Figure 18.2: A new version of the Student ERD from Figure 18.1.21, this time with Name as composite
attribute and Mobile Phone as multivalued attribute.

Vector Graphics (SVG) format an click Save in Figure 18.1.19. In the dialog that pops up, we leave
all settings as-is and click OK in Figure 18.1.20.

This produces this beautiful ERD graphic shown in Figure 18.1.21. Notice that we can also open the
SVG graphic in other programs, such as Inkscape, to further edit and beautify it. With this, we have
completed our very first ERD. (Although we did not yet really touch the Relationship part symbolized
by the R in ERD.)

Useful Tool 5

yEd [347, 451] is a free graph editor that can be used to draw ERDs. It is useful for the
conceptual modeling stage in DB design as discussed in Chapter 18. Installation instructions
are provided in Chapter 5 and a small hands-on tutorial is given in Section 18.1.

Anyway, let us continue our modeling adventure. We take our ERD from Figure 18.1.21 to our partners
in the university, say, an administrator of one of the schools. We want to discuss whether this model
for students is appropriate. During our discussion with the administrators, a few issues come up.

First, Names are more complicated than we thought. Students have a given name, a family name,
and a salutation. For example, the name of Mr. Bebbo would actually be Mr. Fred Bebbo, where
“Bebbo” is the family name, “Fred” is the given name. To accommodate this, Name attribute should
not be a single attribute. We could turn it into a composite attribute, consisting of given name,
family name, and a salutation. The system then could combine these components appropriately when
addressing the student or when issuing documents.

Definition 18.6: Composite Attribute

A composite attribute is an attribute which consists of several parts with their own names and
domains.

Definition 18.7: Simple Attribute

A simple attribute is an attribute that only has a single name and domain. Simple attributes
do not have any components.

When thinking about this, we encounter a problem: In Western culture, the full name is composed by
first writing the given name and then the family name. This is why the full name of Mr. Bebbo is Fred
Bebbo. In Eastern cultures, it is the other way around: The name of the famous Chinese mathematician
刘徽 is transcribed as LIU Hui in the Latin alphabet. LIU (刘) here is the family name and it comes
first. Hui (徽) is the given name and it comes second. Depending on the cultural background, the

CHAPTER 18. CONCEPTUAL MODEL DESIGN 172

system would need to decide how to compose the name correctly. This sounds a like an awful problem
that would probably become the source of many interesting errors or, at least, complaints.

We decide to not compose the name of given name and family name. Instead, we provide two
values as part of the Name attribute: The Full Name will be the complete and official name, as written
on the ID card. This would be something like 刘徽 for a Chinese person and Fred Bebbo for the
Westerner Mr. Bebbo. As second component, we store the Salutation. For 刘徽, this could be 刘教
授 and for Fred Bebbo, it could be Mr. Bebbo. Maybe we could later permit the students to change
their salutation in the system to whatever they feel comfortable with. The full name, however, would
be entered by an administrator exactly as it is spelled on the student’s ID document. If our system
would ever sent an automated message to Mr. Bebbo, it will use the salutation. If we print the name
on a certificate, we will use the full name. A composite attribute in the ERD is simply drawn with the
components as attributes connected to the attribute.

We also notice that a student may have multiple mobile phone numbers. Such multivalued attributes
can be modeled by ellipses with small ellipses inside.

Definition 18.8: Multi-Valued Attribute

An entity may have multiple values for a multivalued attribute.

Definition 18.9: Single-Valued Attribute

An entity has (at most) one value for a single-valued attribute.

Definition 18.10: Optional Attribute

An entity may or may not have a value for an optional attribute. If an attribute has no value,
this is often represented as NULL .

A single-valued optional attribute has either one value or no value. A single-valued non-optional
attribute has exactly one value. A multi-value optional value has either no value, one value, or multiple
values. A multivalued non-optional attribute has one value or multiple values.

Upon closer inspection, we notice that the mobile phone number attribute should probably be
modeled as optional multivalued attribute. While it seems very unlikely nowadays, there may be
students who do not have a mobile phone number. Well, maybe a foreign exchange student, i.e., a 留
学生, who enters China does not yet have a mobile phone number when enrolling into our university.
So making this attribute optional is reasonable.

While we are on the subject of foreign exchange students: They probably do not have a Chinese ID.
So we turn ID into an optional single-valued attribute. Optional attributes can be signified by small
empty bubbles at the end of the lines connecting them to the entity types.

We update our ERD in Figure 18.2. The DBS could now decide whether to fully spell out the
name, e.g., in graduation certificates, or whether to just print the salutation and family name, e.g.,
when sending messages addressed to the students. Now we also are able to represent that fact that a
student can have no or multiple mobile phone numbers. They also can have no or one ID.

While we are at this, we realize that Address should also be a composite attribute. An address is
not just a line of text, but consists of components such as country, province, city, district, postal code,
street and street number, quarter, building, and flat number. Modeling that would be cumbersome.
We propose that everything after the postal code could simply be merged into one string named street
address, because an automated system probably cannot really handle information at a finer granularity
than postal code in any meaningful way. While discussing the subject with our partners, we also realize
that Address should be a multivalued attribute, i.e., a student can have multiple addresses. This is
illustrated in Figure 18.3.

Finally, there are also so-called derived attributes.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 173

Student

ID

Student-ID

Mobile PhoneDate of Birth

Address

Country

Province

City

District

Street

Address

Postal Code

Name

Full Name Salutation

Figure 18.3: A new version of the Student ERD from Figure 18.2, this time with Address as multivalued
and composite attribute.

Student

ID

Student-ID

Mobile PhoneDate of Birth

Address

Country

Province

City

District

Street

Address

Postal Code

Name

Full Name Salutation

Age

Figure 18.4: A new version of the Student ERD from Figure 18.3, where we added the derived attribute
Age.

Definition 18.11: Derived Attribute

A derived attribute is calculated based on the values of other attributes.

Derived attributes do not need to be stored in the DB. A typical example is the age of person. If we
know the DOB and the current date, the age can directly be calculated. This can be done very quickly.
There is no reason to store the age in the DB. Derived attributes are illustrated by ellipses with dashed
lines around thei perimeter, as shown in Figure 18.4.

At this stage, we have learned several things about entities and attributes. An entity models some
real-world object, person, thing, location, event, or concept. An entity does not just exist. It is the
merger of its attribute values.

Attributes can have different properties as well [355]: Attributes can be simple, which means that
they have atomic values that cannot be subdivided any further, like phone numbers. Attributes can
be composite, which means that they consist of parts. An address, for example, can be divided into
country, province, city, etc.

It is not always immediately clear how an attribute could be modeled. For example, our students
have the attribute Date of Birth (DOB). Technically, we have learned back in Section 9.3 (The Table
“demand”) that dates are atomic datatypes in SQL. So naturally, we would model the DOB as an

CHAPTER 18. CONCEPTUAL MODEL DESIGN 174

atomic attribute. Of course, we could also model it as a composite attribute consisting of year, month,
and day. Then again, an address could also be represented as a single string of text instead of using a
composite attribute.

The decision of how to model attributes probably depends on which data we need. For example, if
we store dates as, well, atomic dates, then it is extremely easy and fast to calculate the year of birth or
the age of a person. Storing years separately would be useless and just complicate and slow down the
DB. For an address, however, extracting the country from an address string could be tedious and error
prone. And we would probably need the country in almost any use case where an address is required.

Anyway, besides being either simple or composite, attributes can also be single-valued or multi-
values. Students can have multiple addresses, multiple phone numbers, but only a single DOB.

18.2 Keys

In Definition 18.1, we stated that an entity can be distinguished from all other entities in the world.
This means that it must be unique. The only way it can be unique is because of its attributes.

These unique identifiers are called keys [355].

Definition 18.12: Super Key

A super key is an attribute or set of attributes of an entity type that unique identifies an entity
in an entity set [164, 355].

A student entity, for example, can uniquely be identified by the student ID. It can also be uniquely
identified by the combination of the address and mobile phone number. Or just by the mobile phone
number. Or the email address. Or by the government-issued ID. Or we could try using the name,
address, and DOB.

Definition 18.13: (Candidate) Key

A key (or candidate key) of an entity type is a minimal super key, i.e., a super key that either
consists of a single attribute or that would lose its unique property is a single attribute was
removed from it [164, 346, 355].

This does not necessarily mean that all candidate keys have the same number of attributes. For
example, when identifying a person, one candidate key could be the government issued ID number.
Another possible candidate key could be a combination of the name, place of birth, and DOB. Both
would be minimal in the sense of the above definition. The government-issued ID, however, would
consist of a single attribute whereas the other choice consists of three. The combination of all four
attributes would be a super key, but not a candidate key.

We have at least three different candidate keys for students: the student ID, the government-issued
ID, and the mobile phone number.

Definition 18.14: Primary Key

The primary key of an entity type is a candidate key that is used as the identifying attribute
or group of attributes of an entity when modeling relationships between different entity types.

Definition 18.15: Prime Attribute

An attribute is referred to as prime if it is part of the primary key.

Later in our DB design, we will also model how students enroll into modules. Then we will have
another entity type for modules. It will be necessary to establish relationships between student and
module entities. We will need one primary key that is used to uniquely identify students. Which of the
candidate keys makes the most sense?

CHAPTER 18. CONCEPTUAL MODEL DESIGN 175

Phone numbers may change. Primary keys should never change. Also, a student may have multiple
phone numbers. This would feel awkward to use a primary key. Actually, some students might not
have a mobile phone number. This may be rare, but it could happen, as we already discussed before.
Primary keys should never be NULL . So we rule out phone numbers as primary keys. This leaves us the
government-issued ID and the student ID that the university itself issues.

We would naturally prefer the student ID. The reason is as follows: A student joins a curriculum,
maybe studies in the Bachelor Program “Computer Science and Technology” at our university. For
this process, they receive a student ID. This student ID does not just represent them as a person, but
it represents them “as a person in the function ‘BSc student of Computer Science and Technology.’”
Later, after graduation, they may join a Master’s program and get a new, different student ID. This
realization makes us feel a bit anxious about or concept of modeling students. . .

But there is another compelling and potentially more alarming reason to not use the ID number
as primary key: Foreign exchange students, so-called 留学生, do not have IDs issued by the Chinese
government. As said, primary keys should never be NULL , so we rule out government-issued IDs as well.

Another criterion for primary keys is that they should be reasonably small. For example, composite
attributes or attributes that consist of longer texts are not very suitable. The reason is that much later,
in our logical DB design step, we will often create tables to represent the relationships between entity
types. Recall, for example, our demand table from back in Section 9.3. This means that primary keys
are not just stored as part of their original entities, but also as part of all of the relations they are
involved in. While this is a technological aspect that does not really belong into the conceptual model
design stage, it is something that we should keep in mind: Huge keys are bad. In summary:

Best Practice 13

Primary keys should:

1. be unique for each entity (obviously),

2. be immutable over the lifetime of an entity,

3. not be optional, i.e., they should never be allowed to be NULL ,

4. not be derived attributes,

5. always be single-valued attributes, i.e., not be multivalued attributes,

6. consist of single attributes, i.e., not be based on candidate keys consisting of multiple
attributes,

7. be simple attributes, i.e., not composed attributes,

8. be small in terms of the expected required storage size (see also Best Practice 8).

Sometimes, it can happen that we end up with entity types where no suitable primary key exists. Maybe
all the attributes that form candidate keys are just too long. In such a case, we can use a technique
we already learned in back in Section 9.1 (The Table “product”):

Definition 18.16: Surrogate Key

When no suitable candidate key for an entity exists, an artificial key, such as an auto-incremented
integer value, can be used as surrogate key.

While we feel very pessimistic about our idea about the concept of students, for now, we bravely march
on and update our ERD from Figure 18.4. In the new Figure 18.5, the attribute Student-ID is marked
as primary key. This is done by underlining the attribute name [164].

CHAPTER 18. CONCEPTUAL MODEL DESIGN 176

Student

ID

Mobile PhoneDate of Birth

Address

Country

Province

City

District

Street

Address

Postal Code

Name

Full Name Salutation

Student-ID

Age

Figure 18.5: A new version of the Student ERD from Figure 18.4, this time with Student-ID marked
as primary key.

18.3 Relationships

If we only had a single entity type in our DB, the using a DB makes no sense. In that case, we would be
better of using simple documents, like CSV or XML files. However, clearly, in our teaching management
platform application, we are going to have many different entity types. And again, if these entity types
were unrelated, say “Student,” “Weather,” “Product,” then we were still better off storing them in a
bunch of such files. But they are related. So how do we model these relationships? Let us begin with
some basic definitions [164].

Definition 18.17: Relationship

A relationship (instance) is an association of two or more entities.

An example for a relationship would be Mr. Bibbo enrolls into the module Programming with Python.

Definition 18.18: Relationship Type

A relationship type is the set of all relationships possible between two or more sets of entities.

The Enrolls relationship type could be defined between the Student entity type and the Module entity
type. We notice that (transitive) verbs [406] in the requirements definition often represent relationship
types [69].

Definition 18.19: Degree of Relationship

The degree of a relationship (instance or type) refers to the number of participating entities.

There can be binary relationships, i.e., relationships where two entities participate. For example, we
could model the student-module relationship in a binary fashion: Student enrolls into Module. We could
just as well use a ternary relationship with three participating entities instead, e.g., Student enrolls into
Module taught by Professor.

Definition 18.20: Roles in a Relationship

Each entity participating in relationship may have a role, which defines the way in which the
entity participates in the relationship.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 177

Student Moduleenrolls into

(18.6.1) The binary relationship of student and modules, which does not represent the relationship of professors to
modules and students.

Student Moduleenrolls into Professorteaches

(18.6.2) Two binary relationships, i.e., the relationship of student to modules and the relationship of professors to
modules. This does not represent that a student enrolls into a course taught by a professor.

Student

Module

takes place Professor
enrolls into teaches

(18.6.3) The ternary relationship of students, modules, and professors. This represents how students join a course taught
by a specific professor. However, it would not permit the same student enroll into the same course for two years. It also
does not give us the information when the course takes place.

Student

Module

takes place Professor

in Semester

enrolls into teaches

(18.6.4) The ternary relationship of students, modules, and professors with the relationship attribute semester.

Figure 18.6: Modeling the relationship between students, professors, and modules.

If we imagine the ternary Student enrolls into Module taught by Professor relationship, then the student
could have the role enrolls and the professor could have the role teaches.

Definition 18.21: Relationship Attribute

A relationship type can have attributes describing properties of the relationship.

For example, we could write something like Mr. Bebbo enrolls into module Databases in summer
semester 2025. The attribute Semester of this relation only makes sense in this context. It neither
belongs to the student Mr. Bebbo nor does it belong to the module Databases. Different from entities,
relationship types do not have key attributes. The single relationships are identified by the primary keys
of the participating entities [164].

Let us start modelling relationships. We begin by representing the fact that a student can enroll into
a module. Relationships in ERDs are drawn as diamonds that are connected to the involved entities.
Figure 18.6.1 shows an ERD where the student entity is linked to a module entity by the relationship
enrolls into. This is a binary relationship, because two entities take part in it.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 178

This diagram is interpreted as follows: Entities of type student can enroll into an entities of type
module. At first glance, this sounds OK. However, then we notice several problems with this.

First, modules are taught by professors. This issue is not represented. Matter of fact, the relationship
makes no statement at all about this implicit student-professor relationship.

We try to fix this in Figure 18.6.2 by adding a second binary relationship: Professor teaches module.
Sadly, this does not solve the problem at all. We now can properly represent that a student can enroll
into a certain module. We can also represent that a professor teaches a module. But with this model,
we cannot represent the information that a student joins a module taught be a specific professor.
Because the two binary relationships we drew are independent from each other.

This can be fixed by using a single ternary relationship in our model. The ERD in Figure 18.6.3
shows a relationship where three entity types participate. The professor teaches the module and the
student enrolls into the module that the professor teaches. This model is much better.

However, it is still a bit ambiguous. There is no real statement about when the module takes place.
Also, we said before that a relationship is represented by the primary keys of all involved entities. What
happens if a student takes part in a module but, sadly, fails the final exam or has to repeat the module
for some other reason? Can they enroll twice? Well, if we use all the primary keys of all involved
entities, i.e., one professor, one module, and potentially many students, that would probably be OK.
Although it feels awkward. Also, what happens if the professor, for some reason, cannot complete the
module and teaches it again next semester? Then all the students would enroll again, and then we
would definitely have two relations where all keys are identical. To resolve these issues, we give our
relationship the attribute in Semester in Figure 18.6.4.

This was rather easy. But let us do something a bit more interesting. Today, we had a meeting
with the stakeholders at the university again and showed them our entity model for students from
Figure 18.5. It looks quite nice, we are told, but it does not withstand the harsh test of reality.

First, there is the issue with names again. See, people may have multiple names. Foreign exchange
students, for example, may have their original name. However, they may also have a Chinese name.
A Ms. Elizabeth Prudence McDouglas may thus also be known as 邓小花 in the university. Obviously,
for official documents, only the original name of the person is to be used, while university-internal files
or maybe seating cards in meetings might use the Chinesified name. So the original name may be the
name-for-documents, while others are there to allow us to match different documents.

“Original name,” we said, did we? Actually, in the West, it is not uncommon that people change
their name when they marry. Let’s say that Elizabeth marries Mr. Heinrich Gieselher von Görlitz-
Zittau. She may decide to keep her name unchanged. She may take on the family name of her
husband and become Mrs. Elizabeth Prudence von Görlitz-Zittau. The couple may also choose for
a composite family name. This may result in a person named Mrs. Elizabeth Prudence von Görlitz-
Zittau-McDouglas or maybe Mrs. Elizabeth Prudence McDouglas-von-Görlitz-Zittau. (Notice that this
would look interesting on Chinese official documents where the space for names is usually calculated
to not exceed five characters. . .) Either way, there can be a variety of reasons why names change.

However, changing the names in the DB is not an option. Because this would mean that the old
name “disappears”. Then we would eventually have older documents in the real world that can no longer
be matched with the updated data in the DB. So we need to make names a multivalued attribute, too.
When doing this, we may decide to assign names a valid-from and valid-from attribute, to emphasize
the time when the names changed.

In the moment where wanted to begin modelling the names, we realize that this is not a student
issue. The same issue will later reappear when we model the employees of our university. They, too,
may have dodgy name issues. They also have mobile phones, IDs, and addresses. Now we do not want
to model the same stuff twice, because that just makes the system more complicated and introduces
the chance for inconsistencies. Thus, before moving on, we decide to make short work of this problem
by introducing a new entity Person. Students and employees are persons. We will put all the fancy
attributes then into the person records. This also makes sense because, theoretically, a teacher might
also enroll as a student. Maybe a chemistry lecturer wants to also do a MSc in computer science. Or a
student first does the BSc in computer science and later the MSc. They would still be the same person
and there is no reason to store all their data separately multiple times.

We sort out all of these issues in Figure 18.7 by introducing the new entity type Person. Later, we
will hang all the shared attributes on this entity type. The entity type Student for now only needs the
single primary key attribute Student ID. A person can be a student and this relationship has a certain

CHAPTER 18. CONCEPTUAL MODEL DESIGN 179

Person
Faculty

Member
Student is a is a

Worker IDStudent ID

Position

Starting Date Ending Date Starting Date Ending Date

Figure 18.7: An ERD illustrating the new Person entity and how students and faculty members are
related to it.

Person

ID

Mobile PhoneDate of Birth

Address

Country

Province

City

District

Street

Address

Postal Code

Age

Name

Full Name

Salutation

Start Date

End Date

is official

Surrogate

Key

Figure 18.8: The Person entity type with the attributes of the Student entity type taken from Figure 18.5
and the improved Name attribute.

start and end date. The end date can be NULL for all students that currently are enrolled and therefore
is an optional attribute.

For faculty members, the situation is quite similar. They are uniquely identified by a worker ID.
They also have a position, e.g., lecturer, associate professor, or full professor. This function, too, has
a start date and an optional end date.

In Figure 18.8, we copy the attributes from the Student entity type in Figure 18.5 to the new Person
entity type. Of course, we now do no longer include the student ID. We also fix the Name attribute.
It is now a multivalued attribute. Each name now also has a start and (optional) end date associated
with it. This should help to sort out situations such as name changes nicely. We will also define the
constraint that exactly one name of a person must be the offical name and that this name must have
a start date before the present date and no end date.

We imagine that our system will not bother the data-entry person too much with these options.
They can just enter one name. Its start date will be set automatically to today and it will automatically
be marke as official. The system will automatically set the salutation and the full name to be the same.
The administrative person working with this data will be able to change either of them, to add new
names, mark names as official, change dates, and so on. So there would not be much hassle when
entering the data but the option to deal with all sorts of name-related issues. And since our university is
an international university with students and faculty from all over the globe, it is important to consider
such issues from the beginning.

To our dismay, we realize one problem, though: We can no longer spot a reasonable candidate for
primary key in our Person entity type. Name and Address both are multivalued composite attributes
that do not need to be unique. The government-issued ID is optional. The Mobile Phone number is

CHAPTER 18. CONCEPTUAL MODEL DESIGN 180

Person

Date of Birth

Address

Country

Province City District

Street

Address

Postal Code

Name

Full Name

Salutation

Age

Start Date

End Date

is official

ID Type

Name

Validation

RegEx

has ID

Value

Valid From Valid To
Surrogate

Key

Figure 18.9: We now add the ID entity type to our Person ERD from Figure 18.8.

both optional and multivalued. Date of Birth is certainly not unique and Age is additionally derived.
None of them and neither combination is necessarily unique. Of course, later, we will add other ID
values like passport numbers and email addresses. An application could enforce that each person has
either a passport or a government-issued ID and that their numbers be unique. However, it would still
feel awkward to somehow create a Frankensteinesque primary key out of this. The easiest solution
here is to use a surrogate key. In our model, we actually call it Surrogate Key, to avoid any form
of misunderstanding. We will assume that whatever DBMS we will eventually use, it will be able
to somehow generate unique values, like back in Section 9.1 (The Table “product”). Our Person in
Figure 18.8 now looks fairly reasonable.

Having solved this problem, we now want to clean up the issue of IDs and ID documents. So far,
we modeled the ID as the government-issued ID. It is an optional attribute, because foreign exchange
students as well as foreign employees do not have one. On one hand, even foreigners do have ID
documents – just not Chinese ones. These are, of course, useless in our context. On the other hand,
a foreigner entering China must have a passport [255]. A passport has a unique number . . . it is not
a permanent ID, though. While Chinese ID numbers stay the same, the passport number is usually
a number identifying the passport booklet [417]. A passport booklet usually stays valid for ten years
and then a new passport is issued to the person, usually having a new passport number. When a
foreigner enters China, they need a visa, which, in turn, also has a unique identification number and a
time window of duration [460]. There are many different types of visa that are for different activities,
for example X1 and X2 visa are for studying and Z visas are for working. Foreigners who work in
China (e.g., as professors) furthermore need work permits [457], which also have unique identifying
numbers. Of courses, visas and work permits eventually expire and need to be renewed. This allows
for an arbitrarily complex and ugly model.

We decide to cut our losses. How about this: We create an entity type to represent ID Types.
An entity of this type will store the name of the ID type, which is the primary key of this entity
type. This could be “Mobile Phone (China),” “Mobile Phone (Intl),” “ID (中华人民共和国居民身
份证),” “Passport (护照),” “Work Permit (中华人民共和国外国人工作许可证),” “X1-Visa,” “X2-
Visa,” “Z-Visa,” “Email Address,” “WeChat User Name,” whatever. Notice how this makes our system
future-prove: While the importance of Emails is currently fading and WeChat has become the main
communication device, maybe something new will emerge later. Or maybe there will be new visa types
later on. We could then just add a new ID type. We could also extend this entity type with attributes,
such as is for communication, is ID document, etc., to add more context.

Either way, using this idea, we have unified all communication and identification values into one
entity type. We can also store multiple ID values and multiple phone numbers or email addresses for
each person. Each ID value would be associated with an ID type.

This, however, creates the problem how to validate ID values. After all, mobile phone numbers
and passport numbers and ID numbers are very different. We can leave this, to some degree, to the

CHAPTER 18. CONCEPTUAL MODEL DESIGN 181

application that we will build on top of our DB. We can still add some very basic method to check ID
values. Back in Section 9.2 (The Table “customer”), we learned about regexes, i.e., text strings that
describe patterns can be matched against other strings. We will simply store one regex as “Validation
RegEx” attribute for each ID type entity. When the administrator enters a new ID of a given type, this
value will be matched against this the corresponding pattern. While we cannot emulate checksums or
other advanced validation techniques, we can this way at least ensure the right amount of characters
or numbers for the IDs.

We can now introduce the new relationship type between the Person and ID Type entity types: A
person has an ID. Each ID has a Valid From attribute and may have a Valid To date. Figure 18.9
provides an illustration of the new Person entity.

18.4 Weak Entities

In the previous section, we made some big strides towards properly modelling people in our teaching
management platform. A particularly interesting aspect was the modeling of the different types of IDs
and communication monikers. Unifying IDs by using the new entity type ID Type was a nice idea and
we are pleased by ourselves. Then we revisit our new ERD in Figure 18.9.

And we remember something: Relationship types do not have key attributes, they are identified by
the primary keys of the participating entities. Which entities are participating in our Has ID relationship?
The Person entities, identified by their surrogate key and the ID Type entities, identified by their name.
If we apply the above rule, then this means that, actually, each person can only have one ID of any
given type. One mobile phone number. One passport number. One email address. In other words: We
were happy too early. Passports and visa expire and it is very likely that foreign members of our uni,
during their stay, will have multiple different ones. We did not yet solve the problem completely.

At least not in terms of the conceptual model. If we were to technically implement this model
as a PostgreSQL DB, we could probably realize it in the way we “meant” it without too much of a
hassle by using multiple tables an foreign keys and such and such. But we want to do this properly
also on a conceptual level. The solution for this problem can be found in the different types of entity
types [355].

Definition 18.22: Strong Entity

A strong entities (type) exists independently of the other entity types and has an own primary
key.

So far, we have modeled all of our data as strong entities. However, there are also weak entities [300,
340, 355].

Definition 18.23: Weak Entity

A weak entity is only identifiable by its values and the primary key(s) of an entity (each) of at
least one other entity type.

A weak entity cannot exist on its own. Its existence depends on at least one other entity, which is
called its owner. It does not have an own primary key. It has a partial key, i.e., a set of attributes that,
combined with the primary keys of its owner(s), can be used to identify it in its entity set.

Definition 18.24: Identifying Relationship

An identifying relationship links a strong entity to a weak entity.

In an ERD, strong entities are symbolized by rectangles. So far, we only modeled strong entities. Weak
entities are represented by double-lined rectangles. The identifying relationships that connect them to
other entities are symbolized by double-lined diamonds.

If we look at our “ID problem” again, we could model the has ID relationship as a weak entity. The
weak entity would be identified by its own value together with the primary key of the corresponding

CHAPTER 18. CONCEPTUAL MODEL DESIGN 182

Person ID Type

Name

Validation

RegEx

Value

Valid From Valid To

Personal ID
belongs to

type
owns ID

Surrogate

Key

Figure 18.10: An improvement of Figure 18.9: We now use weak entities to represent the ID values of
a person.

Person entity and the primary key of the corresponding ID type entity. It would be a weak entity
depending on two strong entities.

Figure 18.10 illustrated this new situation. The new weak entity is called Personal ID. It has the
same attributes as the relationship in Figure 18.9. It is linked with identifying relationships to both the
Person and the ID Type entities. Each instance of Personal ID is uniquely identified by its attributes
Value, Valid From, and Valid To (which form the partial key) together with the primary keys Surrogate
Key of the Person entity and Name of the ID Type entity. Now a person can have multiple phone
numbers, provided that they are different (or valid at different time ranges). A person can have different
visa, because they will usually have different visa numbers or, at least, different time frames. Now we
indeed have unified communication-based IDs such as mobile phone numbers, email addresses, WeChat
IDs together with document-based IDs such as, well, actual government issued IDs, visas, work permits,
driver’s licenses, etc. And we can create new forms of ID if need be.

Definition 18.25: Associative Entity

An associative entity is an entity type that has attributes and a primary key, but also serves as
relationship that can link entities together.

In an ERD, an associative entity is symbolized by a rectangle with a diamond inside. They are mainly
used to normalize and simplify many-to-many relationships. They usually connect two entities that
have multiple interactions with each other. However, we skip them here, as I see them more as an
intermediate step when mapping entity models to relational database models. At this stage, however,
we do not want to concern ourselves with the relational DB structure (yet). It instead is our goal to
more freely model the data structures that we will have to deal with (and, hence implement) in our
teaching management platform.

18.5 The Cardinality of Relationships

We already learned that attributes can have different cardinalities: There can be single-valued or
multivalued attributes and either can be optional. Figure 18.11 sketches a set of basic examples
for relationship cardinalities. Commonly, we distinguish one-to-one, one-to-many, and many-to-many
relationships. This is embodied by Chen’s original ERD notation [71], where the relationship ends are
simply annotated with 1, N, or M to express 1:1, 1:N, or M:N relationships. In notation by Bachman [12]
from back in 1969, a relationship is represented by an arrow from one entity to another. The entity to
which the arrow points may occur N times, then one from which the arrow line originates once.

When creating an entity-relationship model, we often want a finer granularity. We want to express
whether relationships are optional or mandatory (required) on either end of the relationship. Therefore,
usually, an end of relationships can be annotated with its modality (is it optional or mandatory) and
with its cardinality (the number of participating entities) [318].

CHAPTER 18. CONCEPTUAL MODEL DESIGN 183

(18.11.1) A 1:1 or one-to-one rela-
tionship where participation on both
ends is optional. An example would
be the relation between students and
graduation thesis topics.

(18.11.2) A 1:N or 1-to-many rela-
tionship where participation on both
ends is optional. An example would
be the relation between supervising
professors and students.

(18.11.3) A N:M or many-to-many
relationship where participation on
both ends is optional. An example
would be the relation between stu-
dents and course enrollments.

Figure 18.11: Some simple examples for relationship cardinalities [340, 423].

Definition 18.26: Relationship Modality

The modality of a relationship end defines whether participation is optional or mandatory. It
can be viewed as the minimum number of participating entities.

From a practical point of view, only the minimum participation numbers of 0 and 1 are practically
relevant. A modality of 0 means that relationship participation is optional. In this case, one entity
occurrence does not require a corresponding entity occurrence in a particular relationship. A modality
of 1 means that relationship participation is mandatory. In this case, one entity occurrence requires
a corresponding entity occurrence in a particular relationship. This allows us to distinguish total and
partial relationships [302, 423]. If all entities of an entity set must participate in at least one relationship,
then this relationship end total. If only some entities participate in a relationship, then this relationship
end is partial.

Definition 18.27: Relationship Cardinality

The maximum number of participating entities of a relationship end is called cardinality.

Practically, we usually only distinguish the cardinalities one and many, i.e., unlimited.In UML, cardinality
is called multiplicity.

There are multiple conventions on how to express the relationship end modality and cardinality in
an ERD. Figure 18.12 presents these two methods. On one hand, there is the Crow’s Foot notation [58,
144, 355], where a graphical notation is used to expresses the cardinality and modality of a relationship
end. On the other hand, we can also directly write the permitted number of participants as labels on the
ends the relationships [302]. Here, an integer range i..j, where i is the minimum number of participating
entities, j is the maximum, and ∗ stands for unlimited, many, or infinity. The second method has the
advantage of permitting much more diverse ranges of cardinalities. The drawback is that it is slightly
harder to draw, because we need to add labels to the relationship ends. In LibreOffice Base, ERDs can
be drawn that are directly linked to the underlying DB in the 1:1/1:N notation, but lowercase n represent
“many”. Microsoft Access offers a similar functionality, but the relationship ends are annotated with 1
or∞. For the remainder of this text, we will stick to the Crow’s Foot Notation to signify the relationship
modalities and cardinalities (while keeping Chen’s notation for the symbols), simply because we can
paint this more easily with yEd without needing to add labels to relationship ends.

Notice that original Crow’s Foot method by Everest [144], also sketched in Figure 18.12, which did
not yet have the mandatory/optional symbolism. This method can be used when the modality is not
important during modeling, or when we want to leave it open and settle it during a later discussion.

Of course, there are many more possible notations to express the cardinality of relationships. We
could write (i, j) instead of i..j to express the possible numbers of participating entities [164, 340].
Instead of using ∗ as symbol for unlimited / many, some write M or N. Different variations of the
arrow-based notation are still in use as well. An arrow touching the relationship diamond means “one”
in [423]. In [164], the arrow needs to instead touch the entity rectangle and means either ≥ 0 or ≥ 1.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 184

C
a

rd
in

a
lity

C
a

rd
in

a
lity

C
ro

w
's F

o
o

t
C

ro
w

's F
o

o
t

partial relationship: optional 1

Entity Relationship

Entity Relationship

0..1

total relationship: mandatory 1

Entity Relationship

Entity Relationship

1..1

partial relationship: optional many

Entity Relationship

Entity Relationship

0..*

total relationship: mandatory many

Entity Relationship

Entity Relationship

E
v
e

re
st

C
ro

w
's F

o
o

t

1..*

one

Entity Relationship

many

Entity Relationship

Figure 18.12: Two different ways to express possible modalities and cardinalities of relationship ends in
ERDs.

Nice overviews can be found in [49, 371]. Which notation is used probably does not matter much, as
long as all stakeholders agree upon and understand it.

As said, we will stick with the Crow’s Foot notation, mainly because it is easy to use in yEd. Let’s
write down all the possible combinations of “relationship ends” in Figure 18.13 for this notation. There
are four possibilities to annotate the end of a relation:

• Optional 1: , equivalent to 0..1,

• Mandatory 1: , equivalent to 1..1,

• Optional Many: , equivalent to 0..∗, 0..N, and 0..∞, and

• Mandatory Many: , equivalent to 1..∗, 1..N, and 1..∞.

Since each relationship as two ends, this gives us 4+3+2+1 = 10 = (4+2−1)!
4−1!∗2! different combinations.

It is important to understand how to interpret the cardinalities and modalities of the relationship ends,
because this can easily be mistaken: The participation of an entity depends on the other end. Let’s
take K L as example. First, place your finger on the K as say “Each K has. . . ”. Now move your
finger towards the L and read the relationship end there says: “. . . zero, one, or many L.” [192]. Then
place your finger on the L an say “Each L has. . . ”. Move the finger to the K and read the relationship
end touching the K. This means that “. . . exactly one K.” Notice that the touching K does not
mean that “Every K must be related to some L.” To be on the safe side, let’s write down the meaning
of each of them based on Figure 18.13.

• A B: Each entity of type A may be linked to zero or one entity of type B. Each entity of
type B may be linked to zero or one entity of type A. [269]
Example: When issuing an order for goods online, a customer may enter a discount code. Each
discount code must be used at most once. At most one discount code can be used for an
order. [269]
Example: One person maybe married to another person. [318]
See later in Section 19.2.2.1.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 185

A

Relationship

B

C

Relationship

D

E

Relationship

F

G

Relationship

H

K

Relationship

L

M

Relationship

N

I

Relationship

J

O

Relationship

P

Q

Relationship

R

S

Relationship

T

Figure 18.13: The ten possible combinations of cardinalities in Crow’s Foot notation.

• C D: Each entity of type C must be linked to exactly one entity of type D. Each entity of
type D may be linked to zero or one entity of type C. [408]
Example: Each office in an office building may host zero or one salespersons. Each salesperson
must have one office. [408]
Example: A professor may be the dean of school or not be a dean. A school must have exactly
one dean. [318]
See later in Section 19.2.2.2.

• E F: Each entity of type E may be linked to zero, one, or many entities of type F. Each
entity of type F may be linked to zero or one entity of type E. [250]
Example: Assume that for bank accounts, two addresses may be associated: A home address
is required (not relevant for this example). Additionally, a bank account may be linked to zero
or one postal address. Each address may be the postal address of zero, one, or many bank
accounts. [250]
See later in Section 19.2.2.3.

• G H: Each entity of type G is related at least one, but maybe many entities of type H.
Each entity of type H is linked to zero or one entity of type G.
Example: The trainer of a football club coaches many club members. A club member can be
coached by at most one trainer or not be coached at all, if they have other functions [190].
See later in Section 19.2.2.4.

• I J: Each entity of type I must be associated with exactly one entity of type J. Each entity
of type J must be associated with exactly one entity of type I.
Example: Police patrols always are done by a team of two police officers (at least in classic movies
and TV shows).
Example: In public bus transportation, it could be that there are always teams of one bus driver
and one ticket inspector working together.
Example: In a certain company, each salesperson must be the backup for one other salesperson

CHAPTER 18. CONCEPTUAL MODEL DESIGN 186

and vice versa. [408]
See later in Section 19.2.2.5.

• K L: Each entity of type K may be linked to zero, one, or many entities of type L. Each
entity of type L must be linked to exactly one entity of type K. [250, 269]
Example: A customer may issue zero or arbitrarily many orders for products. However, each order
must be linked to exactly one customer. [269]
Example: A bank account may take part in zero, one, or many bank transfers as source account.
However, each bank transfer must have exactly one source bank account. [250]
Example: Each customer is handled by exactly one salesperson. A salesperson may not have any
customers, one customer, or many customers. [408]
See later in Section 19.2.2.6.

• M N: Each entity of type M is related to at least one and possibly multiple entities of
type N. Each entity of type N is related to exactly one entity of type M. [270]
Example: A patient can make several appointments (to visit doctors). Each appointment is linked
to exactly one patient. [270]
Example: A school of a university must consist of at least one, but possibly many departments.
Each department must belong to exactly one school. [318]
See later in Section 19.2.2.7.

• O P: Each entity of type O may be related to zero, one, or multiple entities of type P.
Each entity of type P may be related to zero, one, or multiple entities of type Q.
Example: A pizza shop sells pizza to customers. A pizza may be ordered by zero, one, or many
customers. A customer may not order pizza (maybe the want to eat something else), or order
one pizza, or order multiple pizzas. [102]
See later in Section 19.2.2.8.

• Q R: Each entity of type Q must be linked to at least one entity of type R, i.e, one or
many entities of type R. Each entity of type R may be related to zero, one, or many entities of
type Q. [269]
Example: When placing an order for products online, the order must be for at least one product.
Each product may be referenced by zero, one, or many orders. [269]
See later in Section 19.2.2.9.

• S T: Each entity of type S is linked to at least one, but maybe many entities of type T.
Each entity of type T is linked to at least one, but maybe many entities of type S. [408]
Example: Each salesperson sells at least one product but may also sell more than one product.
Each product must be sold by at least one salesperson, but may also be sold by many salespeo-
ple. [408]
See later in Section 19.2.2.10.

So let us now annotate the cardinalities to the relationships of the Person entity type from Fig-
ure 18.10. This leads to the new ERD in Figure 18.14. We had the idea to have multiple different
ID Types. Each actual Personal ID must belong to exactly one ID Type. There may be an arbitrary

Person ID Type

Name

Validation

RegEx

Value

Valid From Valid To

Personal ID
belongs to

Type
owns ID

Surrogate

Key

Figure 18.14: The ERD for Person from Figure 18.10, but annotated with relationship cardinalities.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 187

Person
Faculty

Member
Student is a is a

Worker ID

Student ID

Starting Date

Ending Date

Starting Date Ending Date

Position has PositionPosition Type

Name

is MSc

Supervisor?

belongs

to Type

Module TypeName

can chair

is under-

graduate

is graduate

is PhD

Supervisor?

Curriculum

is enrolled in

Semester

Starting Date

Ending Date

Curriculum

Instance
runs asstarts in

summer/

winter

School

belongs to

belongs to

Name

is MSc? is BSc?

Figure 18.15: A significant extension of the Figure 18.7 ERD describing the relationship between
students, professors, and persons. The new diagram also introduces curricula, schools, and positions.

number of Personal IDs for each ID Type in our system, maybe none at all, maybe one, maybe many.
Hence, the relationship is Personal ID ID Type.

Each Personal ID belongs to exactly one Person. At the same time, there must be at least one Per-
sonal ID for every Person record in our DB. We cannot have any person in our system whose identify has
not been confirmed in at least one official way. Thus, the relationship will be Person Personal ID.

In Figure 18.15, we now expand our ERD regarding the two different types of persons, namely
students and professors. We know that each student record must be associated with exactly one person
record, because each student is a person and only one person. Then again, a person record may be
associated with zero student roles (if they are not a student) or one student role (e.g., they enrolled as
compute science Bachelor student). However, a person may also have multiple student roles. Maybe
they enrolled as computer science Bachelor student, completed this curriculum and then graduated.
Then they enrolled in the Master’s program for computer science. In this case, they receive a new
student ID. Each student role has a starting date and an end date.

Every student must be enrolled in exactly one curriculum instance. There may be zero, one, or
many students enrolled in a curriculum instance. What is a curriculum instance? Well, we said that
a student is maybe enrolled in the Bachelor program for computer science. When they do so, they
enroll in a particular semester of the program, say, the Bachelor program computer science starting in
the Winter semester of 2024. From the perspective of entity relationship modeling, we could say: A
curriculum may be executed by the university zero (unlikely), one, or many times as curriculum instance.
Each curriculum instance is associated with exactly one curriculum. Also, it is associated with exactly
one semester. Since curricula instances do not have any other identifying characteristics and cannot
exist by themselves, they are weak entities. They only come to life through their relationship with the
curriculum they belong to and the semester in which they are launched.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 188

We decided to model a semester as independent entity, because this allows us to tag attributes to
it. For example, a semester can have a start date and end date, it may even have dates for the exam
period. Since we give the start and end date, we could derive attributes such as whether a semester is
a summer or a winter semester. Of course, in each semester, our university may launch zero, one, or
many instances of curricula.

A curriculum has a unique name, serving as its primary key. Curricula also have further attributes,
e.g., whether they are undergraduate or graduate programs. Each curriculum belongs to exactly one
school of our university. Each school may have zero, one, or many curricula.

This model describes the situation of the students reasonably well. By tracing the relationships, we
know which curriculum a student attends. We did not model this, but you can assume that, to each
curriculum, we can relate the modules that it contains and in which semester of the curriculum they
need to take place. Hence, we would know when which student should attend which module. We also
know to which school a student belongs to. Based on this, the set of professors who could be their
supervisor can be constructed.

Let us now model a bit of the situation of faculty members. A person can be at most one faculty
member. Each faculty member is exactly one person and has a unique worker’s ID. This is a bit
different from the situation of students: A student gets a new student ID every time they enroll into a
curriculum. The most common case is that a student will only study one curriculum in our university. A
faculty member, however, will always retain the same worker’s ID. A faculty member may be promoted
or change their position, but the worker’s ID will never change.

There are different types of positions in a university. For example, lecturer, assistant professor,
associate professor, full professor, and even different levels of full professorship. Each such position
type has a unique name and determines which kind of things a faculty member can do. For example,
there are different types of modules, such as undergraduate modules, graduate modules, professional
base classes, professional special classes, etc. A person at a given position type may chair modules
belonging to an arbitrary number of module types. Each module type may be chaired by faculty
members belonging to an arbitrary number of position types.

Either way, we introduce the weak entity position that we use to link faculty members to position
types. Every instance of this weak entity belongs to exactly one faculty member and to exactly one
position type. Each faculty member does have at least one position. Usually they have only one position
at a time (which is why each position has a starting date and an optional end date). Faculty members
may have multiple different positions over time, for example, they may start as lecturer in 2022, then
be promoted to associate professor in 2025. For each position type, there may be arbitrarily many
corresponding position records.

Interestingly, whether a faculty member can supervise certain types of students is not necessarily
only determined by the position type. These abilities are instead attributes of the faculty member.
They may require certain positions, such as full professor for graduate students. But there may also be
other factors, such as recent publications, fulfillment of teaching duties, etc.

Finally, we also model that each faculty member belongs to exactly one school. An each school can
have an arbitrary number of faculty members.

When we look at the new Figure 18.15, we find that it is truly beautiful. We can also see that
many things are still missing. For example, we did not yet model the relationship between students
and classes, classes and modules, modules and curricula, classes and rooms, the list of available rooms
and their features, exams, exam results, graduation requirements, and so on. Still, we have managed
to drag a good piece of reality into our model.

18.6 Compact Crow’s Foot Notation

From Figure 18.15, we can draw two very general conclusions about the notation we used (entities as
rectangles, attributes as ellipses, and relationships as diamonds, combined with the Crow’s Foot method
for expression cardinalities): First, it indeed allows us to model real-world situations as datastructures
and their relationships. Second, it is also a bit verbose. Especially if we have many attributes, the
ellipses get many and hard to read. The diamonds to expression relationships are also space consuming.

There also is a more compact method to express (almost) the same information: We can combine
UML class diagrams with the Crow’s Foot notation as well. This is a very commonly used method
in several tools. Let us investigate it here and use it to further explore our example application, the

CHAPTER 18. CONCEPTUAL MODEL DESIGN 189

Person

Surrogate-

Key

Message

Subject

Body

When sender

is reply

receiver

Figure 18.16: The structure of the messaging subsystem of the teaching management platform.

School

Name

Building

Name

Number

Address

Room

Name

Number

Capacity

Room

Feature

Name

Module

Name

Credits

Hours

Weeks

is offered

is in

can use

hasrequires

Figure 18.17: The room planning subsystem of the teaching management platform.

teaching management platform. In Figure 18.16, we sketch the messaging subsystem of our teaching
management platform. In this notation, an entity type is still visualized a rectangle. In the top part of
the rectangle, the entity type name is written. In the second part, we write the list of attributes. As
you remember, Person is a strong entity type in our model. The new entity type Message is a strong
entity type as well. It as three attributes, Subject, i.e., the title of the message, and Body, i.e., the
message text, and When, the date and time when the message was sent.

Relationships in this visualization approach are modeled just as lines connecting the entities. No
diamonds are used, but instead the relationship names are written as labels directly adjacent to the
lines. Each message has exactly one person as sender. Each person can be the sender of arbitrarily
many messages. Each message has at least one, but potentially many persons as receiver. Each person
can receive zero or arbitrarily many messages. Additionally, a message can be the answer to no or
exactly one (previous) message. There can be arbitrarily many answers to each message.

Before, we signified strong and weak entities by using normal or double-lined rectangles. Now,
instead, relationships can be weak or strong [289].

Definition 18.28: Identifying Relationship

A identifying (strong) relationship is connected to at least one weak entity and is required for
identifying the weak entity.

Usually, a strong relationship connects a strong entity to a weak entity. The weak entity cannot exist
without the strong entity. The primary key of the strong entity is then part of the key of weak entity.
Strong relationships are signified by solid lines.

Definition 18.29: Non-Identifying Relationship

A non-identifying (weak) relationship is not needed to identify an entity.

Examples for this are, e.g., two connected strong entities. But also weak entities can be connected, as
long as the connection is not required for identifying purposes.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 190

We now develop the room management subsystem for our teaching management platform in Fig-
ure 18.17. In this model, buildings are strong entities. They may have a name, maybe something like
合肥大学综合实验楼, and a number, let’s say 53. We also offer an address string. No real addresses
as discussed before are needed, because we certainly do not need to model countries or provinces here.
We assume that all classes of a curriculum take place in the same country, province, and city. However,
maybe the university has different campuses, like南一区 and南二区, which would be something useful
to write there.

Rooms exist within buildings, so they are weak entities. They have a number and maybe a name.
Each room has a capacity limit for students. They are connected to the building entities via identifying
relationships: A room must be in exactly one building, whereas a building should consist of one or
many rooms (otherwise, we do not need to store it in our DB).

The last sentence is interesting, as it poses a somewhat philosophical problem. We said that “each
room is inside one building and each building is composed of one or multiple rooms.” This is what we
wrote in our ERD in Figure 18.17 and this is what makes sense. On a technical level, this causes me
to scratch my head. What we have here is a Building Room pattern.

Regardless of what data model I use, I will be forced to instantiate the data structure for Room to,
well, represent a room in my DB. Following the formal definition of the above rule, I would need to
have an existing entity of type Building at this point in time. Because I must link each room to one
building. So I must first instantiate Building and then I can instantiate Room. However, if I interpret
my ERD strictly, I face the problem that each building must also be connected to at least one room.
So this means that I would first need an instance of Room before I can instantiate the Building entity
type.

This philosophical dilemma, resulting from nitpicking, can be solved in three ways: First, we could
say: “Well, the conceptual model represents the real world. In the real world, each room is inside a
building and a building has at least one room. That is true and that is what we model here. Whether
or not this can be realized technically is not relevant at this stage of development.”

Second, we could say, maybe even as a corollary of the above, that: “On a technical level, we
simply do not enforce that buildings must contain rooms. We know that the user will add rooms to
buildings eventually. We just accept that there may be a temporary state of the DB where one of the
mutual dependency constraints is violated. Just for a short time, between the moment when the user
has created a building and right before she adds a room. It doesn’t matter.”

The third solution is that we, well, actually implement it as specified. Most DBMSes support
transactions, i.e., groups of instructions to the DB that are executed as one atomic unit and either fail
together or succeed together. There is no intermediate state, as transactions are indivisible, atomically
executed units. Thus, we could require that every time a new building is added to the DB, the first
room is specified as well. The creation of the building and room record could be executed together
as atomic transaction. If we do this, the conceptual constraints would perfectly map to technical con-
straints, at the expense of more complex update operations (because we now need to use transactions).
PostgreSQL permits us to defer the constraints checking to the end of a transaction [271, 351]. Later,
in Section 19.2.2.7, we will learn that using PostgreSQL-specific extensions to SQL, we can group the
necessary instructions together such that they form an implicit transaction.

Anyway, the point is that conceptual relationships that seem hard to realize in software may exist.
We will see that all relationship models that can be represented with crow’s notation can be implemented
in a relational DBMS. Whether it makes sense to do it – it can become a bit complicated – or not, this
should not bother us during the conceptual modelling phase.

Rooms are also connected with non-identifying relationships to schools: One school may be permit-
ted to use zero or more rooms for teaching. Each room must be usable by at least one school (because
otherwise, we simply don’t need to store it in the DB).

We can easily expect that different teaching modules may have different requirements regarding
the rooms. For normal teaching, it may be sufficient that an overhead projector is present. We could
assume that this is always the case. However, for practical computer science lab classes, we may need
one computer per desk. For chemistry experiment classes, we may need a smoke outlet and something
for chemical waste disposal. To model this, we create the strong entity Room Feature, which just
needs a descriptive name. Rooms are linked via non-identifying connections to such features: Each
room may have zero or one or many such features. Each room feature may be provided by zero, one,
or many rooms. At the same time, a teaching module may require any number of room features. A

CHAPTER 18. CONCEPTUAL MODEL DESIGN 191

Semester

Starting Date

Ending Date

...

Curriculum

Instance

Curriculum

Name

Faculty

Member

Worker ID

Position

Starting Date

Ending Date

Note

Position Type

Name

Module Type

Name

Module

Name

Credits

Hours

Weeks

Class

Student

Student ID

Starting Date

Ending Date

Note

Enrollment

Score

Pass/Fail

Note

Component

Name

Semester Idx(s)

N required

starts in

runs as

has

Position

belongs to

type

can chair

belongs to

type

offered in

offered as

offered by

enrolls in

takes

takes

consists of

contains

offered in

Figure 18.18: A re-design of the student/curriculum/faculty/module interactions in our teaching man-
agement platform.

room feature may be required by any number of teaching modules.

Let us now re-design the interactions of students, curricula, faculty, and modules. Wen we initially
discussed our plans for designing these systems, we discussed with our stakeholders in the university.
We learned that, for example, some abilities of teachers are bound to their position, e.g., which kind
of modules they can chair. Other abilities should be bound to their person, e.g., whether they can
be Master’s supervisor. We did model this back in Figure 18.15. There also are two different ways
teachers and students can interact: Students can enroll in classes of professors and/or a professor can
be their BSc or MSc supervisor. Basically, we would have two sets of interactions governed by two
different forms credentials on the teacher’s side.

We have the idea to unify them both in Figure 18.18. It is clear that not all teachers can chair
all types of modules. Maybe our university will only permit full professors to chair core modules of a
curriculum, while younger lecturers can propose and chair elective (voluntary) courses. This can easily
be covered by relating position types to module types. Then again, some modules may require special
certifications, such as chemistry safety certification or something. This does not fit well to the position
type-module type approach, because “chemistry safety certified” is not a position. The same holds for
“Master’s Supervisor”.

Well, not necessarily: How about we permit that a person can hold multiple positions at a time.
Besides the traditional positions, we could add things like “Chemistry Safety Certified,” “Master’s
Supervisor,” an whatever else we need. That positions are limited by starting and ending dates is also
not a problem. This is exactly a feature that we would like to have. Interestingly, with our Position and
Position Type entity types used like this, we could easily represent even more complex functions, such
as Dean, Vice-Dean for Teaching, Department Head, Team Head, and so on. These functions could
then be tied to what kind of changes the person can make to the data.

But back to the relationship between teaching and position. Each Module Type entity can now
be linked to one or multiple Position Types that a teacher must hold to be permitted to chair them.
Each position type, of course, can be the credential for chairing modules of multiple different module
types. This approach works because we realize that Master’s and Bachelor’s projects are, basically, just
special module types. They would automatically be covered by this permission system.

A school in our university may offer different curricula, e.g., a Master of Computer Science or a

CHAPTER 18. CONCEPTUAL MODEL DESIGN 192

Bachelor of Engineering in Computer Science. Initially, we assumed that we could say that a curriculum
consists of different modules and each module takes place in a certain semester of a curriculum.
However, there are two different problems: First, sometimes we have elective modules, i.e., situations
where a student needs to pick maybe two out of a set of three or four possible modules. Second, for
a curriculum, there may be different specialization directions. A Master in Computer Science could
offer the specializations AI, DBMSes, and Computer Security, for example. Each such specialization
may (recursively) come with different compulsive and elective modules.

We will try to model this by introducing the Component entity. A curriculum consists of at least
one component and each component belongs to exactly on curriculum. A component can also be a
sub-component of at most one other component. A component may also contain an arbitrary number
of sub-components. Each component has a name, a set of semester indices in which it is offered (such
as “7th and 8th semester”). A module can now be offered in one or multiple such components. Each
component may offer zero or multiple modules. A component can also contain a number defining how
many of the offered modules must be taken. With this, we could now state that:

“Among the many components of the Master of Computer Science curriculum, there is the ‘Spe-
cialization’ component. It, in turn, offers the components ‘AI’, ‘DBMS’, and ‘Computer Security.’ A
student must select exactly one such component. The ‘DBMS’ specialization then offers the compulsive
module ‘Databases’. It also offers the component ‘Electives’. Both, the ‘Databases’ and ‘Electives’ com-
ponent must be completed by students. The ‘Electives’ component offers the modules ‘PostgreSQL,’
‘Systems Security,’ and ‘DB Design,’ two of which must be completed by the students.”

This does not look very pretty, but at least it allows us to model even complicated situations within
our DB. Either way, this brings us to the Module entity type. Modules must be offered by at least one
component (otherwise they are useless). They also belong to a module type, which links them back to
the position-based credential system for teachers discussed earlier. Each module has a name, a number
of credits, and a number of teaching hours. Some modules, like internships or external practical training
classes, may have weeks as duration. They also have a syllabus and abstract and other information,
which we have omitted here.

Modules are basically the blueprint of the learning content that is offered. They are linked to certain
semesters counted from the start of the curriculum.

A school can instantiate a given curriculum and create an entity of type Curriculum Instance. Such
an instance is always linked to a starting semester, such as the Winter Semester 2025, or maybe the
Summer Semester 2026. We retain the Semester entity type for this purpose, which contains all the
necessary dates and meta-information for a semester date period as defined by the university. At the
start of each semester, a faculty member can offer no, one, or multiple classes. A class is always an
instantiation of one module. A module may be offered multiple times as class, maybe even within the
same semester: Remember that we also treat Master’s and Bachelor’s projects as modules. (They
start in one semester, but nobody said they need to end in the same semester.) Our system could
easily check whether a teacher has the credentials required to offer a certain class. Of course, the
administrative person of a school needs to enter the offered classes.

A student can now enroll into a class. Both classes an enrollments are weak entities. Each enrollment
is linked to exactly one student, but a student may enroll into arbitrarily many classes. The enrollment
record will later also contain information such as the score of the student, whether they passed a class
or not, and maybe explanatory notes.

Every student is also enrolled into exactly one curriculum. Arbitrarily many students can enroll into
one curriculum. Well, maybe there will be limits for this, but we assume that the administrative person
of the school enters the students into the curricula and they will know what they do.

Actually, our platform could automatically enroll students into classes that they have to take. It
sees which curriculum they belong to, knows which modules are required, and can auto-enroll them
whenever there are no alternative choices. Based on the classes offered and the curriculum structure,
it can also offer them choices where they exist via a web portal.

Another part for our platform will focus on deliverables in Figure 18.19. There are different types
of deliverables, e.g., written exams, oral exams, midterm exams, homework, internship reports, or
theses. Each module type may require any number of deliverables of different types. Each module
type may also permit any number of deliverables. (We modeled these two relationships as one to save
space.) We already have established that classes belong to modules belong to module types. So from
the relationship between module types and deliverable types, we can infer what deliverable types are

CHAPTER 18. CONCEPTUAL MODEL DESIGN 193

Module Type

Name

Student

Student ID

Starting Date

Ending Date

Note

Class

Enrollment

Score

Pass/Fail

Note

Deliverable

Type

Name

Description

Deliverable

Name

Description

Submission

Score

Note

takes

takes

requires/

permits

belongs to

is for

is

submits

Figure 18.19: The handling of deliverables in our teaching management platform.

permitted and/or required for every class. For a Master’s Project, a Master’s Thesis may be a required
deliverable. For a course “Databases”, a written final exam may be required and a mid-term exam as
well as homeworks may be permitted. The teacher then will create a (weak) Deliverable entity, which
has a Name and a Description. Each students will make corresponding submission for the deliverable.
These submissions will not go to our platform. Instead they are sent to the teacher. The teacher
evaluates them and creates the corresponding (weak) Submission entities – one per student – in the
system. This weak entity holds the result of the student and maybe a comment by the teacher. This
way, the teacher can upload exam results, mid-term exam results, and so on. The students then can
view them in the online system. Notice that we here just wrote Score as attribute, but we may as well
imagine that other attributes like pass/fail would make sense here.

All of the elements of this conceptual draft of our teaching management DB are included in Fig-
ure 18.20. This model is still not very advanced. But it has already several good features. We can
imagine that it will be at least somewhat usable.

We did not explicitly state this before, our model for the teaching platform partially follows the
principle of an Insert-Only Database [304]:

Best Practice 14

In many application scenarios where historical information needs to be preserved, data in a DB
should never be changed or deleted. Changes in the real world should instead be reflected by
adding data to the DB.

In other words, viewing this from the SQL perspective, UPDATE and DELETE operations should not be
used if we need to remember the past state of data. Instead, only new records should be added via
INSERT INTO . And in our situation, we do want to preserve the history of the data.

For example, a curriculum consists of modules. Now we could have modeled that each module is
assigned to a teacher. Once the teacher changes their workstation and another teacher takes over, we
could just change the assignment. This would be much simpler than our current conceptual model. It
would have a big drawback, though: It would be impossible to tell which teacher taught a module in
the past.

Therefore, we chose a different path: Each instantiation of a module is a class and each class is
assigned to a teacher. This assignment never changes. Each semester, new class records are added.
We always know who taught which course in which semester. Our DB will grow incrementally an
changes are reflected by new records and not the modification of existing records. If a module is taken
over by another professor, then this will yield a new class instance. We can see who taught which
class (module) in which semester.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 194

Semester

Starting Date

Ending Date

...

Curriculum

Instance

Curriculum

Name

School

Name

Faculty

Member

Worker ID

Position

Starting Date

Ending Date

Note

Position Type

Name

Module Type

Name

Person

Surrogate-

Key

Student

Student ID

Starting Date

Ending Date

Note

Module

Name

Credits

Hours

Weeks

Component

Name

Semester Idx(s)

N required

Class

Enrollment

Score

Pass/Fail

Note

ID Type

Name

Validation

 -RegEx

is official

Personal ID

Value

Valid From

Valid To

Person Name

Full Name

Saluation

Valid From

Valid To

Note

Address

Country

Province

City

District

Postal Code

Street Addr

is Main

Valid From

Valid To

Note

Building

Name

Number

Address

Room

Name

Number

Capacity

Room

Feature

Name

Scheduling

Weekday

Period

Deliverable

Type

Name

Description

Deliverable

Name

Description

Submission

Score

Note

Message

Subject

Body

When

starts in

runs as

belongs to belongs to

has

Position

belongs to

type

can chair

is faculty

enrolls in

belongs to

type

consists of

contains

offered in

offered in

offered as

offered by

takes

takes

belongs

to type

owns ID

is

has address

is in

can use

has

requires

is used

takes

place

requires/permits

belongs to

is for

is

submits

sender

is reply

receiver

Figure 18.20: A complete overview of the conceptual model of our teaching management platform.

CHAPTER 18. CONCEPTUAL MODEL DESIGN 195

For this reason, we also added the Valid From and Valid To attributes to the Address entity type.
If the address of a student or faculty member changes, we create a new address record and mark it as
valid starting today, while leaving the Valid To attribute at NULL . We then enter yesterday as Valid
To value of the old address as no longer in use. The same also holds for our Personal ID and Person
Name entity types. The administrators can therefore immediately see which address, ID, or name a
person had in use when some action was taken in the past.

Our system also has some shortcomings. For example, there may be some more levels of structural
indirection in a university. A school may be subdivided into different departments.

Furthermore, we should be able to add timestamps and notes to most of the data items – a technique
called timestamping – which we did not really model here. Also, we did not model rights management.
We would probably need a table assigning which person is permitted to enroll students into a class or
curriculum, which person in a school can create new modules, classes, curricula, and so on. Or we
could also handle this via the position submodule that we already designed. This would probably a
good idea.

Additionally, we may want to create a table creating an audit trail [231]. Such a table would store
which user added/changed which record in which table at which point in time.

Finally, in our Address entity, countries and provinces are simple attributes. We could probably
have another entity type to represent countries and country subdivisions (such as provinces) based on
the ISO 3166 standard [97, 209], maybe with additional information such as the phone number prefix.
Each address could be linked to at least one such entity via a relationship.

For now, we omit all of this. Such features could probably be added later. The system looks more
or less reasonable, so our goal is to move on to create a logical model and then a prototype.

18.7 Database Model Selection

Between the design of the conceptual schema and the design of the logical schema, we have to choose
a data model for our DB [343].

Definition 18.30: Data Model

The data model specifies the notation and language for defining types and for accessing and
updating the DB.

There are several important data models.
We could treat our data as single or weakly-interrelated tables, which can be stored in formats

such as CSV, Microsoft Excel, or LibreOffice Calc. Such formats can deal with thousands of similarly-
structured records and perform efficient calculations on them. They are not suitable for data where
records of different types are related and constraints are placed upon such relationships. They are also
not suitable for scenarios where multiple users concurrently work on the same documents.

Another choice would be hierarchically structured single documents, in formats such as XML, JSON,
and YAML. These formats are able to deal with thousands of records that are structured similarly or
differently. They are not suitable for data where records of different types are related and constraints
are placed upon such relationships. They are also not suitable for scenarios where multiple users
concurrently work on the same documents. Still, some open source software (OSS) such as BaseX [169,
170] exists that brings more of a DB flavor into this area.

The early developments in the DB field saw hierarchical DBs, such as IMS [31, 225, 233]. These offer
the advantages of hierarchically structured documents combined with the ability to support concurrent
access. The hierarchical structure of data may create redundancy: If a professor teaches two classes,
then the data about the professor is stored twice. This approach to DBs is basically outdated. Still,
some open source hierarchical DBMSes still exist, including MUMPS [277, 278]. The hierarchical
key-value store YottaDB is also an implementation of MUMPS [36].

Another legacy approach is the network data model, which emerged from IDS [13, 14, 173] and
CODASYL [390]. There still exist CODASYL and COBOL-based DBMSes today [281]. However, as
is the case for hierarchical DBs, it may generally be better to implement a DB in the relation model.
On one hand, this model fits well to many application domains. If you can express your data in an

https://basex.org

CHAPTER 18. CONCEPTUAL MODEL DESIGN 196

hierarchical or network model, you probably can do this with a relational model, too. On the other hand,
there just exists infinitely more and well-maintained open source and commercial relational DBMSes.

Another data model are key-value stores, which are basically schema-less and appropriate if your
data has a key-value structure.

The main focus of this book, however, is on the relational data model invented by Codd [81] and
the SQL language. Here, entity sets are represented as relation and stored in a table inside the DB.
As we already practically explored, the tables can also be related and constraints can ensure that
the relationships between them remain in a consistent state. We find that most of our entity types
will probably nicely map two-dimensional tabular structure. Most of our attributes are simple. The
relationships in the diagrams can probably be represented directly as foreign keys or in additional tables
that relate foreign keys to each other other. Therefore, the relational model is what we decide to use
for our teaching management platform. In Section 19.1, we will introduce this model in more detail.

18.8 Summary

At this point, we finish our excursion into the exciting world of conceptual modeling. This important
stage of the DB development lifecycle is somewhat the transition from requirements gathering to system
implementation. Here, we try to convert the requirements into semi-formal system models. We can
still discuss and verify them with stakeholders.

Conceptual models are supposed to be abstract. They are not focused on any specific DB technology
and do not even have to comply with the relational data model. Instead, we try to represent the part
of the world that is relevant for the system that we want to construct as clearly as possible. This gives
us more freedom. We can model things in the most natural way and do not (yet) need to worry about
how to actually implement the model.

At this stage, we can also hash out some basic principles for our system.
The conceptual model for our example, the teaching management platform, is still relatively simple.

Yet, it already involves relationships between data over several levels indirection. It already involves
lots of different entity types. Conceptual models of non-trivial systems have a certain complexity.

And this is also why we need them: Of course, we could have started designing the DB with SQL
right away. That could even succeed.

However, this would have short-circuited our creative process. When you read this part of the book
from beginning to end in one go, you may notice that we changed the way we modeled certain things. We
could do that because we could look at simple visual representations of our DB. We even (imagined that
we) discussed them with our (imaginary) stakeholders in our (imaginary) university and incorporated
(imaginary) feedback. If you have downloaded yEd and maybe even loaded the ERDs that we designed
with it, you may have found that working with this tool to design a model is even . . . kind of fun. At
least I found that. And I did not expect that it would be fun. Either way, it is clear that with relatively
little effort, we can design a model or a part of a model as ERD. When we find the something is wrong
with the idea, or maybe we get an idea to achieve the same resuls with a simpler approach, then we
can conveniently change the model. Try doing that with a model based on SQL commands.

Chapter 19

Logical Model Design

The next phase of DB design is the transformation of the entity-relationship model into a logical schema
obeying a certain data model [346]. We chose the relational data model in Section 18.7.

19.1 The Relational Data Model

In the ERDs that we painted before Section 18.6, there were three visual components: entity types (rect-
angles), attributes (ellipses), and relationship types (diamonds). When we moved to the more compact
visualization style in Section 18.6, the relationship diamonds disappeared. Instead, they were repre-
sented just by straight lines. This has two reasons: First, the relationship diamonds waste space.
Second, in the relational data model, relationships do not exist as independent objects. In this model,
we only have entity types (embodied by tables) and attributes (the columns of the tables). Relationships
are realized as foreign keys, i.e., as special attributes.

19.1.1 Definitions

In the context of relational databases, the same definitions for attributes and domains (Definitions 18.2
and 18.3) that we already discussed back in Section 18.1 (Entities and Attributes) are used. The
following additional definitions are commonly considered [81]:

Definition 19.1: Relation Schema

A relation schema Σ is the ordered sequences of n attributes (a1, a2, . . . , an), i.e., is a sequence
of attribute names and domains.

Definition 19.2: Relation

A relation R is a set of n-tuples R ⊆ dom(a1)× dom(a2)×· · ·× dom(an) to which a relation
schema Σ(R) [345] that specifies the attributes (a1, a2, . . . , an) is associated.

The definition of relation schemas in the relational model is therefore somewhat equivalent to the
definition of entity types in the entity model (see Definition 18.4). When translating our conceptual
model to a logical relational model, an entity type will become a relation schema. The difference
between conceptual and logical model is that we will use relations to implement both entities and
relationships.

Also, at first glance, one may think that “Relations = Tables” in a DB. In other words, one may
think that relations are implemented as tables. But this is only partially true: Relations can also be
the result from a SELECT statement in SQL. Relations can also be the parameter of an INSERT INTO
statement. Thus, relations are a quite versatile concept to represent our data.

Notice that a relation is a set of tuples. Since a set cannot contain the same element twice, this
means that duplicate tuples (rows, records) are not permitted in relations by definition [63]. As a
deviation from the pure formalism, the SQL language does permit duplicate tuples in tables and query
results [63]. Sets are also not ordered, so there is no default order of the tuples in relations either.

197

CHAPTER 19. LOGICAL MODEL DESIGN 198

All attributes (columns) must have names, i.e., there are no anonymous attributes [357]. In the
original works on relational databases [81], the order of the attributes (columns) in a relation mattered
and it was permitted that two column have the same name. This idea was later abandoned. Today, the
order of columns are unimportant and the columns of a table must have unique names [357]. The values
of attributes are atomic, i.e., there are no multivalued attributes and no composite attributes [346, 357].

The degree of a relation is defined as follows (please to not mix this up with the degree of a
relationship discussed in Definition 18.19):

Definition 19.3: Degree of a Relation

The degree of a relation is the number n of its attributes.

Relations are at the core of relational databases.

The totality of data in a data bank may be viewed as a collection of time-varying
relations. These relations are of assorted degrees. As time progresses, each n-ary
relation may be subject to insertion of additional n-tuples, deletion of existing ones,
and alteration of components of any of its existing n-tuples.

— Edgar Frank “Ted” Codd [81], 1970

19.1.2 Keys

In Section 18.2 (Keys), we discussed the topic of keys in conceptual modelling. In Definition 19.2 (Rela-
tion), we stated that relations are sets of unique records, and keys are what make these records unique.
Keys therefore play a very important role in relational DB design. It thus makes sense to revisit this
topic here again.

Back in Section 18.2, we learned that a key is a minimal super key, i.e., a minimal set of attributes
that can identify an entity. With the definitions given for the relational data model that we just
discussed, Definition 18.13 ((Candidate) Key) can also be expressed as follows [346]:

Definition 19.4: Key

A set of attributes K ⊆= Σ(R) given as K = {ki : i ∈ 1..m ∧ ki ∈ Σ(R)} of a relation R is
a key if and only if

1. K is identifying, i.e., if the values v1,i and v2,i for all i ∈ 1..m are the values of the
attributes ki for two rows r1 and r2 in R and r1 ̸= r2, then there is at least one j ∈ 1..m
with v1,j ̸= v2,j and

2. there is no subset of {k1, . . . , km} with this identifying property, i.e., the key is minimal.

For a super key S, as introduced in Definition 18.12 (Super Key), it then simply holds that K ⊆ S ⊆
Σ(R). Each relation must have at least one key, because the records in a relation are unique. One of
the keys is chosen as primary key (see Definition 18.14). Often, however, we instead use a surrogate
key, i.e., an identifier automatically generated by the DBMS (see Definition 18.16).

We already learned that the records of one relation can reference records in another relation via
so-called foreign keys. Let us now formalize this concept [346]:

Definition 19.5: Foreign Key

A set of attributes F in the schema Σ(R1) of a relation R1 is called a foreign key if

1. the attributes of F have the same domain as the attributes of primary key P of a different
relation R2 and

2. a value of F in a tuple r1 ∈ R1 either occurs as a value of P for some tuple r2 ∈ R2 or
is NULL .

CHAPTER 19. LOGICAL MODEL DESIGN 199

With this, we have lifted the definitions of (candidate) keys, super keys, primary keys, and foreign keys
from the conceptual level to the logical level under assumption of the relational data model.

19.1.3 Relational Database Management Systems

In the 1980s, many vendors of DBMS did not completely implement the relational data model as
developed by Codd. Instead, they added mechanics that circumvent the relational characteristics,
either because of laziness, to allow backwards compatibility to older systems, or in order to improve
performance. In a response, Codd defined thirteen rules that govern a relational DBMS [82, 84, 357,
379, 380]. Since the first rule is called Rule 0, the thirteen rules are referred to as the twelve rules.

0. Foundation Rule: A relational DBMS must be able to manage DBs entirely through its relational
capabilities.

1. Information Rule: All information in a relational database is represented explicitly at the logical
level and in exactly one way – by values in tables. This includes even table names, column
names, and column types, which, too, must be stored in a table. Such special tables that store
the structure of a DB are usually part of the built-in system catalog. This system catalog holds
the metadata of the system and is (or is part of) a relational DB itself.

Remember back when we first began working with PostgreSQL in our very first, very simple exam-
ple? In Chapter 7, we started by creating a new user for the DBMSes called boss . We checked the
list of existing users by writing SELECT usename FROM pg_catalog.pg_user . pg_catalog.pg_user
is the name of a table, which belongs to the system catalog. When we connected to our DB using
LibreOffice Base, we saw lots of strange tables in Figure 13.1.12. These belong to the system
catalog.

2. Guaranteed Access Rule: Each and every datum (atomic value) in a relational DB is guaranteed
to be accessible via a combination of table name, primary key value, and column name.

3. Systematic Treatment of Missing Values Rule: NULL values (distinct from the empty character
string or a string of blank characters, and distinct from zero or any other number) are supported
in fully relational DBMS for representing missing information and inapplicable information in a
systematic way (independent of data type).

This rule has been a point of arguments over meany years [63]: Real data does include unspecified
elements. There may be street addresses without house number, there may be people without
phone number. So there is a need to represent such situations. However, having unspecified
or missing values also violates the definition of tuples in relations. We could imagine that the
domain of each attributes contains the additional value NULL , too, though.

4. Dynamic Online Catalog based on the Relational Model: The DB description is represented at
the logical level just like ordinary data, so that authorized users can apply the same relational
language to its interrogation as they apply to the regular data.

5. Comprehensive Data Sublanguage Rule: A relational system must support at least one language
whose statements are expressible per some well-defined syntax as character strings; and which
supportings all of the following items:

a) data definition (e.g., creating tables),

b) view definition (creating views),

c) data manipulation (e.g., adding and deleting of data),

d) integrity constraints (e.g., limits on data range, foreign keys, . . .),

e) authorization (e.g., user managenment), and

f) transaction boundaries (begin, commit, and rollback).

In the case of our book, this language is SQL. Of course, one could conceive and support also
other languages.

6. View Updating Rule: All views that are theoretically updatable are also updatable by the system.

CHAPTER 19. LOGICAL MODEL DESIGN 200

7. Insert, Update, and Delete Rule: The capability of handling a base relation or a derived relation
as a single operand applies not only to the retrieval of data but also to the insertion, update, and
deletion of data. In other words, the operations do not just apply to single records (rows) but
can concern multiple rows at once, because their inputs can be relations (whole tables, results of
SELECT , . . .).

8. Physical Data Independence Rule: Application programs and terminal activities remain logically
unimpaired whenever any changes are made in either storage representations or access methods.
In other words, the way the DBMS actually stores the data has no impact on how an application
accesses data via the text-based language.

9. Logical Data Independence Rule: Application programs and terminal activities remain logically
unimpaired when information-preserving changes of any kind that theoretically permit unimpair-
ment are made to the base tables. Let’s say we split a table into two tables and distribute the
rows into either part, leaving columns and primary keys intact. We can then design a view that
merges the two tables (using UNION). An application sitting on top of that will not see any
change.

10. Integrity Independence Rule: Integrity constraints specific to a particular relational database must
be definable in the relational data sublanguage and storable in the catalog (not in the applica-
tion programs). We did this several times, for example with the PRIMARY KEY constraint, the
REFERENCES constraint, and the CHECK constraint as far back as in Chapter 9 (Creating Tables
and Filling them with Data). All of them were defined in SQL.

11. Distribution Independence Rule: A relational DBMS has distribution independence. This means
that a DBMS may store data distributed over several different computers (nodes) or a cluster. If
the DBMS supports such distribution, then this should not affect the SQL programs sent to it.
In this case, the DBMS must take care of dividing the queries to the corresponding nodes and
re-assemble the results. If a DBMS does not support distribution of data over a network, then it
automatically fulfills this rule.

12. Non-Subversion Rule: If a relational system has a low level (single-record-at-a-time) language,
that low level cannot be used to subvert or bypass the integrity rules and constraints expressed in
the higher level relational language (multiple-records-at-a-time). In other words, a DBMS must
support at least one relational language (Rule 5), but it may support any other access languages
or programming interfaces as well, some of which may work on single records, some may not
be relational and so on. However, none of these access methods must be allowed to violate the
integrity of the relational data.

These rules are implemented to a large degree by modern DBMSes. They also tell us relatively exactly
what to expect, with what kind of features we can work.

19.2 Mapping Conceptual Models to Logical Models

It is now our task to implement the conceptual model of our teaching management platform on top of
a relational DBMS, which is governed by these rules. This requires us to map entities and relationships
to tables and constraints. We further will need to design views, queries, as well as insertion rules for
our data. Naturally, we choose PostgreSQL as the DBMS. PostgreSQL supports SQL, so most of the
functionality we will use can be provided 1:1 by other systems, such as MySQL, MariaDB, or SQLite.

The question of how to translate the conceptual model to a logical model is interesting. There are
several sources that say that entity relationship models can easily be converted to logical schemas based
on the relational data model and that there are tools available that can automate this [346]. This,
I believe, depends on how abstract your entity relationship models. As said, there are different tools
that we could use to create our ERDs. We used yEd, which is total independent from any underlying
DB technology. It does not even have anything to do with the relational data model. Translating such
models to logical model does require thinking, although it is quite easy.

We could have used PgModeler to draw our ERDs as well. The PgModeler can output SQL or even
directly connect to the PostgreSQL DBMS. Then, however, we would not have created an abstract
conceptual model. We would have directly started with something that is more or less already a logical
model.

CHAPTER 19. LOGICAL MODEL DESIGN 201

19.2.1 Mapping Conceptual Entity Types to Logical Models

Translating entity types from the conceptual model to the logical model is fairly simple. Each entity type
in the conceptual model becomes one table in the logical model. The entity type Student becomes
the table student . Each simple single-valued attribute becomes one column of that table. The
attribute Name becomes the column name with a specific SQL datatype for text and maybe an added
sanity constraint, e.g., names should begin and end with printable (non-whitespace) characters.

Each component of a composite attribute becomes one column of that table. If Name is not a
simple attribute but a composite attribute consisting of the two components Full Name and Salutation,
then we will have two columns, one called full_name and one called saluation . Both have reasonable
datatypes and attached sanity constraints. In this case, the composite attribute Name in the conceptual
model does not have a column in the table for the entity type of the logical model, but instead its
components have columns. Of course, if the components themselves are composite attributes, the
process is repeated recursively, i.e., the components are broken down until we arrive at simple attribes,
for which we then have columns.

Multivalued attributes come separate tables, where each row references the primary key of entity’s
table as foreign key. For example, if the Student entity type in the conceptual model has the multivalued
attribute Mobile Phone, this would mean that each entity of type Student can have multiple values
of Mobile Phone associated with it. The relational model, all datatypes are atomic, i.e., we cannot
have a column that is of type “list of something”. Each attribute can only have a single value in each
record. Thus, multivalued attributes need to become tables by themselves. So we would need to create
a table mobile just for mobile phone numbers. This table would, at least, need a column for the actual
phone number and a column that references the corresponding Student record via a foreign key. It may
also need to have a surrogate key, but this we discuss later on. Derived attributes are not included in
the table.

OK, so our goal here would be to either transform the conceptual model of a DB to a logical
model (or to directly design the logical model). But lets first circle back to what a logical model
is. In Definition 15.2, we basically stated that the logical model is the collective view that users and
applications have on the DB. In the relational model, this means that it defines all the tables, their
attributes and constraints, as well as the queries.

In our small initial example in Part II, we only worked with the logical model. We did not create
a conceptual model and neither did we bother with a physical model. We just directly went for the
action, we fired out SQL scripts to the PostgreSQL server. Indeed, if we have chosen an relational
database as DB type for our project, then the logical model can be specified in SQL – and that is what
we did back in that example.

This time, we do have a conceptual model. We want to follow the DB design process properly, based
on a software engineering perspective. Back in Chapter 18, we designed our conceptual models based
on a very loose syntax using the graphical editor yEd. This editor is entirely unrelated to any DBMS.
If we wanted, we could have painted diagrams that make no sense at all. And this freedom is useful
when designing conceptual models. We can quickly change entity types, attributes, and relationships.
We do not need to worry about technical aspects. We can discuss our model with stakeholders who
don’t know anything about SQL.

The logical model, however, is bound to a technology. At this level, using a tool like yEd makes
little sense. Instead, there are also tools that are tied closely to SQL or even to specific DBMSes.
MySQL Workbench [263], for example, can connect to the MySQL DBMS and allows us to craft tables
using an ERD-like syntax. PgModeler [7] allows us to do the same for the PostgreSQL DBMS. The
idea here is that we can use a much clearer and more restricted syntax to draw a visual representation
of our DB. This syntax can then be translated to SQL, which we can send to the PostgreSQL server,
e.g., via the psql client. Using such a GUI has two main advantages: First, diagrams are intuitive and
faster to understand than SQL scripts. Second, the different forms and dialogs that we use to create
the ERDs help guiding us to create syntactially correct SQL.

Thus, we first install the PgModeler as discussed in Chapter 6. And now, we will try to translate a
simple conceptual ERD – with only a single entity type – to a logical model. We use the very first ERD
we drew: the Student entity type from Figure 18.1.21.Back when we just began discussing conceptual
models, we tried to model the entity type Student. We drew an ERD for students as Figure 18.1.21,
which I here reproduce as Figure 19.1.1. Here, each entity of type Student will have a name, an ID, a
student-ID, an address, a mobile phone number, and a Date of Birth (DOB). Later on, we realized that

CHAPTER 19. LOGICAL MODEL DESIGN 202

Student

Name ID

Student-ID

Address

Mobile Phone
Date of Birth

(19.1.1) A reproduction of the Student ERD from Fig-
ure 18.1.21. We want to translate this ERD into a
logical model for a DB that only contains this single
table.

tweise@weise-laptop:~$ pgmodeler

tweise@weise-laptop: ~

(19.1.2) To start the PgModeler, under Ubuntu Linux, we open a
terminal by hitting Ctrl + Alt + T . We type in pgmodler and
hit Enter . Under Microsoft Windows, you would instead proceed
as shown in Figure 6.2.18.

(19.1.3) In the PgModeler, we click on New Model . (19.1.4) An empty ERD opens. We right-click some-
where in it. In the context menu that opens, we click
on Properties .

(19.1.5) A dialog called “Database Properties” opens. We
want to set a proper name for our new DB. We choose
student_database and then click on Apply .

(19.1.6) Back in the ERD view, we again right-click
into the (empty) diagram. In the popup-menu, we click
on New Schema Object Table .

Figure 19.1: Developing logical models using PgModeler.

CHAPTER 19. LOGICAL MODEL DESIGN 203

(19.1.7) The “Table properties” dialog opens. As table
name, we enter student . Then we click on the regis-
ter Columns .

(19.1.8) In the columns register, we click on the Add Item
symbol .

(19.1.9) We want to add a column for the university-
issued student ID. As name for this column, we
choose student_id . As type, we choose character ,
i.e., the SQL datatype for fixed-length strings (all stu-
dent IDs have the same length).

(19.1.10) As (fixed) length, we enter 11 in the L: field.
We also mark the column as NOT NULL , meaning that
there cannot be a student record without student ID. We
click Apply .

Figure 19.1: Developing logical models using PgModeler (continued).

this model has many shortcomings and is not suitable for our teaching management platform. Yet, it is
fairly simple and suitable as an example for translating a single entity type from the conceptual model
to the logical model.

We want to use the PgModeler for doing so. Under Ubuntu Linux, we can start this program by
opening a terminal by hitting Ctrl + Alt + T , typing in pgmodler , and hitting Enter , as shown in
Figure 19.1.2. Under Microsoft Windows, you would instead proceed as shown in Figure 6.2.18.

In the opened PgModeler window, we click on New Model in Figure 19.1.3. An empty ERD opens
that represents an (empty) DB. In a first step, we should choose a proper name for our DB. We right-
click at some place in the empty ERD. In the context menu that opens up, we click on Properties , as
shown in Figure 19.1.4. A dialog called “Database Properties” opens. As said, we want to set a proper
name for our new DB. We choose student_database – because the DB will only have a single table
named student – and then click on Apply in Figure 19.1.5.

Back in the ERD view it is now time for creating the table that will represent our Student entity
type. We therefore again right-click into the (empty) diagram. In the popup-menu, we click on New

Schema Object Table , as illustrated in Figure 19.1.6.

CHAPTER 19. LOGICAL MODEL DESIGN 204

(19.1.11) The new column appears in the dialog. We click
again on Add Item .

(19.1.12) We add the column national_id for storing
Chinese ID numbers (中国公民身份号码). Such numbers
are strings (character) of the fixed length 18. We also
mark this column as NOT NULL , meaning that every record
must have one. We click Apply .

(19.1.13) The new column appears and we
click Add Item .

(19.1.14) We define the column name for student names.
Names are of variable length (type varchar) and we set
the maximum length 255. Each student must have a name,
so we again specify NOT NULL and click Apply .

Figure 19.1: Developing logical models using PgModeler (continued).

The “Table properties” dialog opens in Figure 19.1.7. We can choose a table name and, as said,
we pick student and type this in. The attributes of an entity type become attributes in a relation in
a relational logical schema, which are embodied as columns of a table. To add such columns, we click
on the register Columns . The columns register is still empty. We click on the Add Item symbol in
Figure 19.1.8.

In a first step, we want to create a column for the university-issued student ID. As name for this
column, we choose student_id . This is better than using ID , because it conveys a clear meaning that
this is, in fact, the student ID. Everybody will immediately understand what this means. Student IDs
are usually strings of a fixed length. We therefore choose the Type character in Figure 19.1.9. In SQL,
this is the datatype for fixed-length strings. As (fixed) length, we enter 11 in the L: field. This means
that all student IDs that we store in our DB will be text strings consisting of eleven characters. We also
mark the column as NOT NULL . This means that there cannot be a student record where the student_id
is NULL . This, in turn, means that there cannot be a student record without student ID. student_id
is a mandatory field that always needs to be provided. In Figure 19.1.10, we click Apply .

CHAPTER 19. LOGICAL MODEL DESIGN 205

(19.1.15) The new column appears in the dialog. We click
again on Add Item .

(19.1.16) Addresses, too, are strings of variable
length (type varchar). We again set the maximum
length to 255, require the field to be NOT NULL , and
click Apply .

(19.1.17) The new column appears and we
click Add Item .

(19.1.18) We now add a column for mobile phone num-
bers. In China, these are strings (character) of the
fixed length 11. We require that they must be speci-
fied (NOT NULL) and click Apply .

Figure 19.1: Developing logical models using PgModeler (continued).

Best Practice 15

To avoid issues with quotations, it is best to use only lower case character names and under-
scores (_) to separate words for all named things in PgModeler, including tables, columns, and
constraints.

The new column appears in the table creation dialog. We now want to add the next column, so
we click again on Add Item in Figure 19.1.11. The next important piece of data of each student
record is a national Chinese ID number (中国公民身份号码). We add the column national_id for
storing Chinese ID numbers. As per standard GB11643-1999 公民身份号码 (Citizen Identification
Number) [458], such numbers always consist of 18 characters. So we choose the atatype character
with the fixed length 18. We here ignore the fact that there could be foreign exchange students (留学
生) and demand that all records must have national_id field set by marking the column as NOT NULL .
We click Apply in Figure 19.1.12.

The new column appears in Figure 19.1.13 and we click Add Item . We now define the column

CHAPTER 19. LOGICAL MODEL DESIGN 206

(19.1.19) The new column appears in the dialog. We click
again on Add Item .

(19.1.20) Finally, we add the Date of Birth (DOB) in form
of a date_of_birth column. The type here is date and
DOBs are required to be NOT NULL . We click Apply .

(19.1.21) The new column appears. We click on the regis-
ter Constraints , because now we want to add validity rules
for our data.

(19.1.22) In the Constraints register, we click Add Item .

Figure 19.1: Developing logical models using PgModeler (continued).

name for student names. Names are text strings of variable length, which corresponds to the SQL
datatype varchar . We set the maximum length to 255 characters, which is fairly large and should be
long enough for most sensible names. Each student must have a name, so we again specify NOT NULL
and click Apply in Figure 19.1.14.

The new column appears in Figure 19.1.15 and we click again on Add Item . The next column
we want to add is for storing the addresses of the students. We call this column address . Here, we
again use strings of variable length (type varchar) as datatype. We again set the maximum length to
255 characters. We also again require the field to be NOT NULL and click Apply in Figure 19.1.16.

The new column appears in Figure 19.1.17 and we click Add Item . We now add a column for
mobile phone numbers. Mobile phone numbers in China have 11 digits [459]. We can thus store them
as strings (character) of the fixed length 11. We require that they must be specified (NOT NULL) and
click Apply in Figure 19.1.18.

The new column appears in the table dialog and we again click on Add Item in Figure 19.1.19.
Finally, we add the DOB in form of the date_of_birth column. The datatype here is date . Like all
the columns so far, we require that DOBs to be NOT NULL . We click Apply in Figure 19.1.20.

The new column appears in Figure 19.1.21. In the above text, you may have noticed that we are

CHAPTER 19. LOGICAL MODEL DESIGN 207

(19.1.23) As first constraint, we want to define
student_id as the primary key of our table. We
call this constraint student_student_id_pk and se-
lect PRIMARY KEY as type. We select the column
student_id in the Column drop-down box and click
on Add Item .

(19.1.24) The column student_id appears in the
Columns list. We click on Apply .

(19.1.25) The new constraint appears and we click on
Add Item .

(19.1.26) We now want to add a constraint check-
ing that the national ID is correct. We call it
student_national_id_check and select CHECK in the
Type drop-down box.

Figure 19.1: Developing logical models using PgModeler (continued).

quite lenient with the data. For example, mobile phone numbers are not strings of arbitrary characters,
but consist only of digits. Chinese ID numbers also are composed of digits, with the exception that
the last character might be an X . Also, we should probably not permit arbitrary dates as DOBs. Even
though September 23, 1811 would be a totally valid date, as the DOB of a student it would be unusual.
Actually, we already learned how to deal with such restrictions on valid data back in Section 9.2 (The
Table “customer”): by using constraints. We also did not yet define a primary key (see Definition 18.14)
for our table.

We click on the register Constraints , because now we want to add validity rules for our data. In
the Constraints register, we click Add Item , as shown in Figure 19.1.22. If you think about, we can
consider the fact that a column is the primary key as a combination of a UNIQUE and a NOT NULL
constraint (maybe together with some special indexing for fast access). So first, we want to choose a
primary key.

What would be the most suitable column for use as primary key? The columns name , address ,
and date_of_birth are unsuitable – if not for obvious reasons – then at least because they are not
necessarily unique. The two columns student_id and national_id both look promising a primary
keys. However, a person may enroll several times, maybe first as Bachelor and later as Master’s
student. Hence, national_id is not necessarily unique. But for each enrollment, the person gets a
new student_id , which therefore is unique. As first constraint, we thus want to define student_id as

CHAPTER 19. LOGICAL MODEL DESIGN 208

(19.1.27) CHECK constraints are speci-
fied as SQL Expression . To validate the
field national_id , we specify the regex
national_id~’^\d{6}((19)|(20))\d{9}[0-9X]$’ .
We click Apply .

(19.1.28) The new constraint appears and we click
on Add Item .

(19.1.29) We create a CHECK constraint for the col-
umn mobile . The expression mobile ~ ’^\d{11}$’
demands an 11 digit string. We click on Apply .

(19.1.30) The new constraint appears and we click
on Add Item .

Figure 19.1: Developing logical models using PgModeler (continued).

the primary key of our table.
We call this constraint student_student_id_pk and select PRIMARY KEY as type. We select the

column student_id in the Column drop-down box and click on Add Item in Figure 19.1.23. The
column student_id appears in the Columns list. We click on Apply in Figure 19.1.24.

Best Practice 16

Constraints should have descriptive names [51]. If some table modification fails, we will see the
name of the constraint that was violated. If the name makes sense and is easy to understand,
then this makes it easier to find out what went wrong and why.

The new constraint appears and we click on Add Item in Figure 19.1.25. We now want to add
a constraint checking that the national ID is correct. We call it student_national_id_check and
select CHECK in the Type drop-down box in Figure 19.1.26. Indeed, we are going to create a CHECK
constraint. For this, we just need to provide an SQL Expression . This expression is evaluated whenever

CHAPTER 19. LOGICAL MODEL DESIGN 209

(19.1.31) We specify the CHECK
constraint for the DOB and call
it student_date_of_birth_check . We combine the
condition date_of_birth > ’1900-01-01’ (demand-
ing that students may not be born before the year 1900)
and date_of_birth < ’2100-01-01’ (which pre-
vents students born in the 22nd century) with AND . We
click Apply .

(19.1.32) The new constraint appears and we click
on Add Item .

(19.1.33) We create a CHECK constraint for the col-
umn name and call it student_name_check . The ex-
pression name ~ ’^\S+.*\S+$’ demands that names
both start and end with printable characters and may con-
tain an arbitrary number of characters in between We click
on Apply .

(19.1.34) The new constraint appears. We stop here and
create the table model by clicking on Apply .

Figure 19.1: Developing logical models using PgModeler (continued).

a row is added to the table or when a row is changed. If it then returns TRUE , everything is fine. If it
returns FALSE , then the change will not be made.

So back to the Chinese ID numbers (中国公民身份号码). How do we check them? Standard
GB11643-1999 公民身份号码 (Citizen Identification Number) [458] tells us that the first six digits are
the administrative division code. The next eight digits are the DOB in format YYYYMMDD, followed
by three digits of order code. The last character is a single checksum digit (which can be X). We could
check this in a super fancy fashion. We could get our hands on a list of the actual valid values for the
first digits, assuming that not all possible 1 000 000 possible administrative division codes are actually
valid. We could compare the next six digits to the DOB that we store as well1. We could even try to

1On second thought, if we require ID numbers to be present, we would not need to store the DOB anymore . . . but

CHAPTER 19. LOGICAL MODEL DESIGN 210

(19.1.35) The new table appears in our ERD, with a syntax
similar to what we had in Section 18.6. We click on the
main menu ≡.

(19.1.36) It is time to save the model to a file. We click
on ≡ File Save as .

(19.1.37) Since our model is new and unchecked (or
changed), we get asked to validate it. Heck, why not,
we click on Validate .

(19.1.38) We can now select a file name and directory
where the model should be stored. We choose the name
student_database_1 and click Save .

Figure 19.1: Developing logical models using PgModeler (continued).

compute the checksum digit and check whether it matches.

This is all too complicated for us. Instead, we will resort to a regular expression
(regex) to check the field like back in Section 9.2 (The Table “customer”). We write
national_id ~ ’^\d{6}((19)|(20))\d{9}[0-9X]$’ . The national_id ~ xxx means that the value
of national_id must match to some regex xxx . In the regex, ^ indicates the start of the text.
\d{6} means that six digits must immediately follow ^ , i.e., be right at the start of the string. Then
comes ((19)|(20)) , which means that the next two characters must be either “19” or “20”. This is
because we do not permit DOBs before the year 1900 or after 2099. After that, we require nine digits to
follow via \d{9} . This means we now have 6+ 2+ 9 = 17 digits, leaving the final checksum character,
which can be any digit from 0 to 9 or X. This is expressed by the [0-9X] . The textil$ that follows
marks the end of the string, which, hence, must come directly after the checksum digit.

You may ask: Why do we create such a trivial constraint? Well, this constraint would still guard
against several possible typos. Verifying the checksum with a regex is probably not possible anyway, at
least not with a regex of reasonable complexity. Eventually, we would create an application program
through which the administrative staff enters student information. This program should then check the
checksum of the national_id field.

So you may ask: If we check the national ID value in the application anyway, then why do we put
a constraint here? We could just leave it away and assume that the application will check the validity
of the field. The answer is defense in depth.

well, now we did it and will stick to it.

CHAPTER 19. LOGICAL MODEL DESIGN 211

(19.1.39) This takes us back to the main window. We no-
tice a bar with new buttons, including one called Validate .
We click on it.

(19.1.40) Our model gets validated. It is OK. We can close
the log.

(19.1.41) We now want to export the model and, thus,
click on Export .

(19.1.42) We want to store it as graphic. So we click on
Graphics file and select Vectorial (SVG) , which will store
the model in SVG format. We then click into the File bar.

Figure 19.1: Developing logical models using PgModeler (continued).

Best Practice 17

Data should be checked at all levels of an application, in the forms where it is entered, in the
DB via constraints, and back in the application when it is loaded from the DB. The more lines
of defense we create with constraints, static checks, and dynamic checks, the higher is our
chance to discover errors early, to prevent them from propagating, and to pinpoint the reason
of errors. This gives us the best chance to locate and fix the error if it is a problem with a
program as well as to prevent errors resulting from typos to enter and pollute our DB.

This best practice also fits well to what we wrote in Programming with Python [437] for the Python
programming language:

Best Practice 18

Errors should not be ignored and input data should not be artificially sanitized. Instead, the
input of our functions should be checked for validity wherever reasonable. Faulty input should
always be signaled by errors breaking the program flow. [In Python,]Exceptions should be
raised as early as possible and whenever an unexpected situation occurs.

CHAPTER 19. LOGICAL MODEL DESIGN 212

(19.1.43) We again get to select a file name and stick with
student_database_1 . We click on Save .

(19.1.44) We can now click on Export .

(19.1.45) The file has been exported, we can close the
dialog.

student_id

national_id

name

address

mobile

date_of_birth

student_student_id_pk

student_national_id_check

student_mobile_check

student_date_of_birth_check

student_name_check

public.student

(19.1.46) This is the exported vector graphic. It looks
quite nice. If we had done a bigger model with many
tables, it would probably look quite exciting.

Figure 19.1: Developing logical models using PgModeler (continued).

So it makes sense to specify as many constraints as early as possible wherever possible, even if they
can only check some aspects of the data. Either way, after specifying the constraint, we click Apply in
Figure 19.1.27 and the constraint is specified. The new constraint appears and we click on Add Item

in Figure 19.1.28.
We now create a similar CHECK constraint for the column mobile in Figure 19.1.29. We call

it student_mobile_check . The expression mobile ~ ’^\d{11}$’ demands an 11 digit string: It states
that the mobile value must, right at its begin (^), have eleven digits (\d{11}), and then the end of
the string follows immediately ($). We click on Apply .

The new constraint appears and we click on Add Item again in Figure 19.1.30. We want to
specify the CHECK constraint for the DOB and call it student_date_of_birth_check . We combine
the condition date_of_birth > ’1900-01-01’ (demanding that students may not be born before the
year 1900) and date_of_birth < ’2100-01-01’ (which prevents students born in the 22nd century)
with AND . We click Apply in Figure 19.1.31.

In Figure 19.1.32, the new constraint appears and we click on Add Item . As final constraint,
we want to set some restriction on valid names. We create a CHECK constraint for the column name

CHAPTER 19. LOGICAL MODEL DESIGN 213

(19.1.47) We open the Export dialog again. This time, we
want to export our model to SQL. We click on SQL file .
Important: Mark the output as Split. Then on the file bar.

(19.1.48) Because we want to output the model using the
split method, this will create multiple SQL files. Instead of
a file name, we need to choose a folder name. We therefore
create a new folder and choose generated_sql as its
name.

(19.1.49) The folder is created, we click on Open . (19.1.50) This takes us back to the Export model dialog,
where we click on Export .

Figure 19.1: Developing logical models using PgModeler (continued).

and call it student_name_check . We specify the expression name ~ ’^\S+.*\S+$’ . The \S matches
a single character that is not whitespace, i.e., a character that is neither space nor a line break nor a
tabulator. The + means “one or multiple repetitions of the previous”, so \S+ means “one or multiple
non-space characters”. We want the name to start (and end) with a letter or Chinese character or
maybe Indian character or whatever, but no reasonable name starts with a space. We force such a non-
space character to be at the beginning (^\S+) and at the end (\S+$) of the string name2. Inbetween,
we permit an arbitrary number (*) of arbitrary characters (.). Thus, this expression demands that
names both start and end with printable characters and may contain an arbitrary number of characters
in between We click on Apply in Figure 19.1.33.

The new constraint appears. We stop here. Yes, we could add a similar constraint for the columns
address . And indeed, we did not match the DOB stored as date_of_birth in the table against the
DOBs encoded in the field national_id . We also did not impose a constraint upon the student_id ,
except that these values have to be UNIQUE and NOT NULL . Well, for this simple example, I think we

2On second thought, we could have left the + s away.

CHAPTER 19. LOGICAL MODEL DESIGN 214

(19.1.51) The logical model is exported to SQL. We can
close the dialog by clicking on Close .

(19.1.52) We can browse to the folder using whatever file
browser the OS offers. We find that it contains several
files, whose contents are shown in Listings 19.1 and 19.3.
We can execute them on the PostgreSQL server using psql.
We do this in Listings 19.2 and 19.4.

Figure 19.1: Developing logical models using PgModeler (continued).

Listing 19.1: This auto-generated SQL script creates the DB student_database . (stored in
file 01_student_database_database_2001.sql ; output in Listing 19.2)

1 -- object: student_database | type: DATABASE --
2 -- DROP DATABASE IF EXISTS student_database;
3 CREATE DATABASE student_database;
4 -- ddl -end --

Listing 19.2: The stdout resulting from the SQL statements
in 01_student_database_database_2001.sql given in Listing 19.1.

1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf 01
↪→ _student_database_database_2001.sql

2 CREATE DATABASE
3 # psql 16.9 succeeded with exit code 0.

are good. We now create the table model by clicking on Apply in Figure 19.1.34.

The new table appears in our ERD, with a syntax similar to what we had in Section 18.6. It
is now time to save this logical model to a file. We click on ≡ File Save as in Figure 19.1.36.
Since our model is new and unchecked (or changed), we get asked to validate it. This seems to be
a reasonable request and we click on Validate in Figure 19.1.37. Next we can select a file name and
directory where the model should be stored. We choose the name student_database_1 and click Save

in Figure 19.1.38.
This takes us back to the main window. We notice a bar with new buttons, including one

called Validate . This must be the meaning of the request to validate our model in Figure 19.1.37.
So now we click on it in Figure 19.1.39. Our model gets validated. It is OK. We can close the log in
Figure 19.1.40.

So far, however, we did not really do anything useful with this logical model. When we used yEd
to draw our conceptual model, we could export it as Scalable Vector Graphics (SVG) graphic. We can
also do this with models created in the PgModeler. We therefore click on Export in Figure 19.1.41.

We want to store the model as SVG graphic. Therefore, we click on Graphics file and select
Vectorial (SVG) . We then click into the File bar in Figure 19.1.42. We again get to select a file
name and again stick with student_database_1 . In Figure 19.1.43, we click on Save . This takes us

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_1/generated_sql/01_student_database_database_2001.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_1/generated_sql/01_student_database_database_2001.sql

CHAPTER 19. LOGICAL MODEL DESIGN 215

Listing 19.3: This auto-generated SQL script creates the table student inside the
DB student_database . (stored in file 03_public_student_table_5071.sql ; output in Listing 19.4)

1 -- object: public.student | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student CASCADE;
3 CREATE TABLE public.student (
4 student_id character (11) NOT NULL ,
5 national_id character (18) NOT NULL ,
6 name varchar (255) NOT NULL ,
7 address varchar (255) NOT NULL ,
8 mobile character (11) NOT NULL ,
9 date_of_birth date NOT NULL ,

10 CONSTRAINT student_student_id_pk PRIMARY KEY (student_id),
11 CONSTRAINT student_national_id_check CHECK (national_id ~ ’^\d{6}((19)|

↪→ (20))\d{9}[0-9X]$’),
12 CONSTRAINT student_mobile_check CHECK (mobile ~ ’^\d{11}$’),
13 CONSTRAINT student_date_of_birth_check CHECK ((date_of_birth > ’

↪→ 1900 -01 -01’) AND (date_of_birth < ’2100 -01 -01’)),
14 CONSTRAINT student_name_check CHECK (name ~ ’^\S+.*\S+$’)
15);
16 -- ddl -end --
17 ALTER TABLE public.student OWNER TO postgres;
18 -- ddl -end --

Listing 19.4: The stdout resulting from the SQL statements in 03_public_student_table_5071.sql
given in Listing 19.3.

1 $ psql "postgres :// postgres:XXX@localhost/student_database" -v
↪→ ON_ERROR_STOP =1 -ebf 03 _public_student_table_5071.sql

2 CREATE TABLE
3 ALTER TABLE
4 # psql 16.9 succeeded with exit code 0.

back to the export dialog in Figure 19.1.44. Here we can now click on Export . The file has been
exported, we can close the dialog in Figure 19.1.45.

In Figure 19.1.46, we illustrate the exported vector graphic. It looks quite nice. If we had done a
bigger model with many tables, it would probably look quite exciting.

This is the extend of what we could do on the conceptual modelling level, too. There, we could
paint a model and print it as graphic. We also painted a model now. The logical model we did paint had
a much tighter syntax is a formal model. We used specific SQL datatypes, SQL constraints, and could
do nothing that cannot be done with SQL. In stark contrast, yEd allows us to paint almost arbitrary
graphics. We could have drawn stars and clouds into our ERD if we wanted to.

However, sticking to SQL (or, more precisely, the PostgreSQL flavor of it), has another advantage:
We can actually create a DB directly from our model!

We therefore open the Export dialog again. This time, we want to export our model to SQL and
we therefore select SQL file option in the Export dialog. It is very important to export the model to
multiple files, i.e., to select the “Split” option. If we export everything into one file, then the commands
to create of the student_database DB and the creation of the student table will in the same file.
If we submit the contents of this file to psql, then the student table will not be created inside the
student_database DB. Instead, the script will first create the student_database DB and then, in the
public schema of the PostgreSQL server, also create the student table alongside it. The student table
will not be inside the student_database DB, but in the public schema of the DBMS. It is therefore
vital to click SQL file . After that is done, we click into the Output bar to select a target directory in
Figure 19.1.47.

We now need to create a new directory where the SQL files should be stored. We click on the folder
creation symbol, choose generated_sql as directory name in Figure 19.1.48 and then click on Create .
We then click Open back in the directory selection dialog as shown in Figure 19.1.49. This takes us

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_1/generated_sql/03_public_student_table_5071.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_1/generated_sql/03_public_student_table_5071.sql

CHAPTER 19. LOGICAL MODEL DESIGN 216

Listing 19.5: We can insert some records into the table student . (stored in file insert.sql ; output
in Listing 19.6)

1 /** Insert some rows into the student database. */
2
3 -- Insert records that can be inserted correctly.
4 INSERT INTO student (student_id , national_id , name , address , mobile ,
5 date_of_birth) VALUES
6 (’1234567890 ’, ’123456199501021234 ’, ’Bibbo’, ’Hefei , China’,
7 ’12345678901 ’, ’1995 -01 -02’),
8 (’1234567891 ’, ’123456200508071234 ’, ’Bebbo’, ’Chemnitz , Germany ’,
9 ’12345678902 ’, ’2005 -08 -07’);

10
11 -- Print the records that were inserted.
12 SELECT student_id , name from student;
13
14 -- Try inserting an invalid record: The date of birth is way too early.
15 INSERT INTO student (student_id , national_id , name , address , mobile ,
16 date_of_birth) VALUES
17 (’1111111111 ’, ’123456022501011234 ’, ’Liu Hui’, ’Zouping , Shandong ’,
18 ’12345678902 ’, ’0225 -01 -01’);

Listing 19.6: The stdout resulting from the SQL statements in insert.sql given in Listing 19.5.
1 $ psql "postgres :// postgres:XXX@localhost/student_database" -v

↪→ ON_ERROR_STOP =1 -ebf insert.sql
2 INSERT 0 2
3 student_id | name
4 -------------+-------
5 1234567890 | Bibbo
6 1234567891 | Bebbo
7 (2 rows)
8
9 psql:teachingManagement/logical/student_database_1/insert.sql :18: ERROR:

↪→ new row for relation "student" violates check constraint "
↪→ student_date_of_birth_check"

10 DETAIL: Failing row contains (1111111111 , 123456022501011234 , Liu Hui ,
↪→ Zouping , Shandong , 12345678902 , 0225 -01 -01).

11 psql:teachingManagement/logical/student_database_1/insert.sql :18: STATEMENT
↪→ : INSERT INTO student (student_id , national_id , name , address ,
↪→ mobile ,

12 date_of_birth) VALUES
13 (’1111111111 ’, ’123456022501011234 ’, ’Liu Hui’, ’Zouping , Shandong ’,
14 ’12345678902 ’, ’0225 -01 -01’);
15 # psql 16.9 failed with exit code 3.

back to the Export dialog where click on Export , as shown in Figure 19.1.50.

The model is exported and we close the dialog in Figure 19.1.51. In Figure 19.1.52, we enter the
folder into which we exported the files. We find three new files. The first one, named something
like 01_student_database_database...sql , is the SQL script for creating the DB. We list its contents
in Listing 19.1. Besides some comments, we only find the CREATE DATABASE student_database; state-
ment. This what we expect and we submit to to SQL using the postgres administrative account in
Listing 19.2.

The second file is empty, so we can ignore it. The third file is named something like
03_public_student_table_...sql . This file contains the commands for creating the table student .
Its contents are shown in Listing 19.3. There is not really anything there that goes beyond what we
discussed in our initial example back in Chapter 9 (Creating Tables and Filling them with Data). We
see the CREATE TABLE command together with statements for creating the constraints.

When we pass the contents of this file to psql, we must make sure to send them to the DB

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_1/insert.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_1/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 217

Listing 19.7: Cleaning up after the student DB example. (stored in file cleanup.sql ; output in List-
ing 19.8)

1 /* Cleanup after the example: Delete the student database. */
2
3 DROP DATABASE IF EXISTS student_database;

Listing 19.8: The stdout resulting from the SQL statements in cleanup.sql given in Listing 19.7.
1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf cleanup.

↪→ sql
2 DROP DATABASE
3 # psql 16.9 succeeded with exit code 0.

student_database . We do so in Listing 19.4 and the execution completes successful.

We thus have created a DB from our logical model. In Listing 19.5, we test this new DB
by inserting some records. The first two are OK, the third one violates the constraints on DOBs
and on the national_id . The first two insertions succeed in Listing 19.6, but the third one fails,
as expected. When the third request fails, we get a very clear and understandable output. The
student_date_of_birth_check constraint was violated. Because we chose a clear name for our con-
straint, we can easy find out what went wrong and where and why.

Finally, in Listing 19.7, we provide the SQL code for deleting the DB again. After executing it in
Listing 19.8, we can continue our work on a clean PostgreSQL server. Notice that this script, like the
DB creation script, is executed with a connection URI the does not specify a DB to work on. Otherwise,
if we would connect to the DB student_database and then attempt to delete while being connected
to it, this would fail with the error message “cannot drop the currently open database.”

In summary, we can conclude that this approach works. The DB and the table were created exactly
as expected. What does this mean? It means the following:

Useful Tool 6

With PgModeler, we have a tool in our hands that allows us to basically draw logical models for
DBs as ERDs. These models are easy-to-understand graphics that follow crow’s foot notation.
PgModeler can connect to a PostgreSQL server and directly push the models to it or load a
logical model from the server. It can also export logical models as SQL scripts that we then
can execute. It therefore offers us a convenient GUI to design the logical schema of a DB.

Of course, PgModeler is not the only such software. But it is quite nice, open source, and free. It
is suitable for PostgreSQL, while other programs have been developed for other DBMSes. As said in
Best Practice 1, good software engineers are both able and keen to learn new tools. To depart from
this example with a clean slate, we execute the SQL script given in Listing 19.7 to delete the table and
DB again.

We currently are in the business of translating entity types to the relational data model, i.e., to tables.
When entity types have composite attributes, these get recursively divided into their components. Each
component of the composite attribute that cannot further be divided becomes an column in the table
for the entity type. Multivalued attributes, i.e., attributes that can take on several values for each
entity, instead need to go into their own, separate tables. Back when designing conceptual models,
we had one variant of the Student entity type design that had both a composite and a multivalued
attribute – see Figure 18.2.

We will now use this example to also exercise these steps of the conceptual-to-logical model mapping
step. We therefore reprint the ERD from Figure 18.2 here as Figure 19.2.1. We already created
a logical model for the Student entity type just now in Section 19.2.1. In that model, we had a
simple attribute name and a single-valued attribute mobile . If we leave these two columns and the
corresponding constraints away, then this model is a good starting point for translating Figure 18.2.

We either can create the exactly same model (without these columns and constraints) again in

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_1/cleanup.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_1/cleanup.sql

CHAPTER 19. LOGICAL MODEL DESIGN 218

Student

ID

Student-ID

Address

Mobile Phone
Date of Birth

Name

Full Name Salutation

(19.2.1) We want to design a model where composite
and multivalued attributes are represented. We therefore
reprint the ERD from Figure 18.2 here.

(19.2.2) In PgModeler, we start with the same model as
in Section 19.2.1, however without the columns name
and mobile and without their corresponding constraints
in the student table. We double-click on the ta-
ble student to edit it.

(19.2.3) We want tp add the columns full_name
and saltulation to represent the flattened composite
attribute name .

(19.2.4) We add a column full_name , which is a
variable-length string with maximum length 255 that must
be NOT NULL . We add a column saltulation , which
is a variable-length string with maximum length 255. We
click Apply .

Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple
mobile phone numbers.

the PgModeler or we load the previous model and delete them. That’s up to you. Either way, in
Figure 19.2.2 we begin with this modified model variant. The model has the student table. We will
first add the two new name-related columns. Therefore, we double-click on the table student to edit
it.

We want tp add the columns full_name and saltulation to represent the flattened composite
attribute name in Figure 19.2.3. First, we add a column full_name , which is a variable-length string
with maximum length 255 that must be NOT NULL . We insist that full names must always be provided
for students. Then, we add the column saltulation , which is a variable-length string with maximum
length 255. For this one, we do not require the NOT NULL feature. If no salutation is provided, we
simply assume that the full name can be used to addressed a student. After doing this Figure 19.2.4,
we click Apply .

Multivalued attributes should go into their own table. We therefore need to create a second table
in our logical model. We create a new table by right-clicking somewhere into our model (but not on
the student table) and then selecting New Schema object Table in Figure 19.2.5. A suitable name
for this new table is mobile . So we enter it as name. We then click on Columns , because we will now

CHAPTER 19. LOGICAL MODEL DESIGN 219

(19.2.5) Multivalued attributes should go into their own
table. So we create a new table by right-clicking into our
model and then selecting New Schema object Table .

(19.2.6) We will call the table mobile and click on
Columns , because we will now add several columns.

(19.2.7) We will store the mobile phone and a reference
to the student in this table. Neither are necessarily unique
(since the same person may enroll multiple times). Thus,
we need a surrogate key. We create the column id of
type integer and mark it as Identiy which is (gen-
erated) BY DEFAULT . This will be roughly equivalent
to how we generated IDs in our factory example. We
click Apply .

(19.2.8) We create a phone number column in the same
style we did in the first student DB.

Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple
mobile phone numbers (continued).

add several columns in Figure 19.2.6.
Our goal with this table is to store the mobile phone and a reference to the student in this table.

Neither of them are necessarily unique: The same person may enroll first as Bachelor’s and then, after
graduation, as Master’s student. This means that their mobile phone number may occur multiple times.
Since each student can have multiple mobile phone numbers, the primary key student_id that we will
need as foreign key is also not unique.

This means that we need a surrogate key. We already used surrogate keys in our factory example
back in Chapter 9 (Creating Tables and Filling them with Data). We will do exactly the same here.
However, for the sake of convenience, we will do so in the PgModeler. We create the column id of type
integer . We mark it as Identiy which is (generated) BY DEFAULT . This will be roughly equivalent to
how we generated IDs in Chapter 9. We do this in Figure 19.2.7 and then click Apply .

CHAPTER 19. LOGICAL MODEL DESIGN 220

(19.2.9) We create a column student , which must have
the same datatype as the student_id column that holds
the primary key of the table student .

(19.2.10) We have created three columns and move on to
create Constraints .

(19.2.11) First we create a primary key constraint for the
column id .

(19.2.12) Then we re-create the mobile phone number
checking constraint.

Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple
mobile phone numbers (continued).

The next column we create is for the mobile phone numbers. To avoid calling it mobile as well,
we here choose to call it phone . This column must have the same features as the same column in the
previous example: It is a fixed-length string of eleven characters and it must be NOT NULL . We create
the column by clicking Apply in Figure 19.2.8.

Finally, we need a column to hold a the foreign key student_id pointing to rows in the student
table. We therefore create a column student . Obviously, it must have the same datatype as our
student_id column in the student table. This, too, happens to be a fixed-length string of eleven
characters. Also obviously, it must be NOT NULL , because each mobile phone entry must be related to
one student record. We create this column in Figure 19.2.9.

We have created the three columns in Figure 19.2.10 and move on to create Constraints . First we
create a primary key constraint for the column id in Figure 19.2.11. There is nothing new about that.
Then we re-create the mobile phone number checking constraint in Figure 19.2.12, which is the same
as in the previous example as well.

Finally, we want to link the rows in the table mobile to those in the table student . We create a
FOREIGN KEY constraint and call it mobile_student_id_fk . We select FOREIGN KEY as Type: . We then
add the column student under Columns and then click on Referenced Columns in Figure 19.2.13. In the
Reference Columns view, we click on the Table bar. In the dialog that pops up in Figure 19.2.14, we
navigate to the public schema, open the Table list, and select the table student . We then click on
Column: , select student_id , and add it via by pressing the Add Items button in Figure 19.2.15. The

CHAPTER 19. LOGICAL MODEL DESIGN 221

(19.2.13) Now we want to link the rows in this table to
those in the table student . We create a FOREIGN KEY
constraint and call it mobile_student_id_fk . We
select FOREIGN KEY as Type: . We then add the
column student under Columns and then click on
Referenced Columns .

(19.2.14) There, we click on Table and select the ta-
ble student in the dialog that pops up.

(19.2.15) We then click on Column: , select student_id ,
and add it via .

(19.2.16) It appears in the columns list. We are done and
click Apply .

Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple
mobile phone numbers (continued).

student_id column appears in the columns list. We are done and click Apply in Figure 19.2.16.
Figure 19.2.17 shows the three constraints that we have created. We click Apply to finally create

our new table. The model appears in crow’s foot notation in Figure 19.2.18. We can see both tables.
We see that each row in the table mobile must be linked to exactly one row in the table student . We
see that each row in the table student may be linked to arbitrarily many rows in the table mobile .
This is a bit different from before, as now students are permitted to exist that do not have a mobile
phone number associated with themselves. But this is also OK, so let’s not fuss about it too much.

We can again export the model as SVG graphic by following the steps given in Figures 19.1.41
to 19.1.44. Figure 19.2.19 shows how nice it looks . . . just compare how much better a vector graphic
looks compared to a pixel graphic (Figure 19.2.18).

We also notice now that, while our model looks visually pleasing, the diagram lacks some details.
For example, we cannot see the datatypes of columns. We cannot see whether they are annotated as
UNIQUE or NOT NULL . This can easily be solved: In Figure 19.2.20, we click on the button at the
top-right of the tools bar. This button lets the details appear.

This also makes the tables in the diagram larger, as shown in Figure 19.2.21. We drag them apart
with the mouse, which gives us the much clearer layout in Figure 19.2.22. In this layout, we see,
for example, that student_id is the primary key of the table student from the key symbol and the
«pk» annotation. We see that it is of datatype CHARACTER(11) . We lso see that national_id is a text
string of the fixed length 18. and since it is annotated with «nn», it must be NOT NULL .

We can export the model again to a SVG graphic. This graphic, shown in Figure 19.2.23, now

CHAPTER 19. LOGICAL MODEL DESIGN 222

(19.2.17) We have created three columns and three con-
straints. We click Apply to finally create our new table.

(19.2.18) The model appears in crow’s foot notation. We
can see both tables. We see that each row in the ta-
ble mobile must be linked to exactly one row in the
table student . We see that each row in the table
student may be linked to arbitrarily many rows in the
table mobile .

rel_mobile_student

student_id

national_id

address

date_of_birth

full_name

salutation

student_student_id_pk

student_national_id_check

student_date_of_birth_check

public.student

id

phone

student

mobile_id_pk

mobile_phone_check

mobile_student_id_fk

public.mobile

(19.2.19) This is the model if exported as SVG graphic by following the steps
in Figures 19.1.41 to 19.1.44.

(19.2.20) In order to see more details in the diagram, we press the button
at the top-right of the tools bar.

Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple
mobile phone numbers (continued).

CHAPTER 19. LOGICAL MODEL DESIGN 223

(19.2.21) More details, such as the column types, appear
in the diagram, causing the tables to overlap. We drag
them apart with the mouse.

(19.2.22) The new layout looks much clearer.

rel_mobile_student

student_id character(11) « pk »

national_id character(18) « nn »

address varchar(255) « nn »

date_of_birth date « nn »

full_name varchar(255) « nn »

salutation varchar(255)

student_student_id_pk constraint « pk »

student_national_id_check constraint « ck »

student_date_of_birth_check constraint « ck »

public.student

id integer « pk »

phone character(11) « nn »

student character(11) « fk nn »

mobile_id_pk constraint « pk »

mobile_phone_check constraint « ck »

mobile_student_id_fk constraint « fk »

public.mobile

(19.2.23) We export the model again to a SVG graphic, following the steps in Figures 19.1.41 to 19.1.44.
This graphic now contains more details as well.

Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple
mobile phone numbers (continued).

Listing 19.9: This auto-generated SQL script creates the DB student_database . (stored in
file 01_student_database_database_2001.sql ; output in Listing 19.10)

1 -- object: student_database | type: DATABASE --
2 -- DROP DATABASE IF EXISTS student_database;
3 CREATE DATABASE student_database;
4 -- ddl -end --

Listing 19.10: The stdout resulting from the SQL statements
in 01_student_database_database_2001.sql given in Listing 19.9.

1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf 01
↪→ _student_database_database_2001.sql

2 CREATE DATABASE
3 # psql 16.9 succeeded with exit code 0.

contains all the details as well. It clearly shows the structure and the most important information of
our logical model at a glance.

We now export this model to SQL, exactly as we did before. This time, we get four scripts. The
first one, Listing 19.9, again creates the student_database DB. The second one, Listing 19.11, creates
the student table.

The third script, here given as Listing 19.13, creates the mobile table. We notice that the primary
key is created as id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY . This is almost exactly
the same way in which we created the primary key for the product table back in Listing 9.1. The only
difference is that PgModeler likes to express the integer type as integer and there we used INT . Both
types are synonymous.

The foreign key constraint is not included in Listing 19.13. Instead, it went into its own script,

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/generated_sql/01_student_database_database_2001.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/generated_sql/01_student_database_database_2001.sql

CHAPTER 19. LOGICAL MODEL DESIGN 224

Listing 19.11: This auto-generated SQL script creates the table student . (stored in
file 03_public_student_table_5071.sql ; output in Listing 19.12)

1 -- object: public.student | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student CASCADE;
3 CREATE TABLE public.student (
4 student_id character (11) NOT NULL ,
5 national_id character (18) NOT NULL ,
6 address varchar (255) NOT NULL ,
7 date_of_birth date NOT NULL ,
8 full_name varchar (255) NOT NULL ,
9 salutation varchar (255),

10 CONSTRAINT student_student_id_pk PRIMARY KEY (student_id),
11 CONSTRAINT student_national_id_check CHECK (national_id ~ ’^\d{6}((19)|

↪→ (20))\d{9}[0-9X]$’),
12 CONSTRAINT student_date_of_birth_check CHECK ((date_of_birth > ’

↪→ 1900 -01 -01’) AND (date_of_birth < ’2100 -01 -01’))
13);
14 -- ddl -end --
15 ALTER TABLE public.student OWNER TO postgres;
16 -- ddl -end --

Listing 19.12: The stdout resulting from the SQL statements in 03_public_student_table_5071.sql
given in Listing 19.11.

1 $ psql "postgres :// postgres:XXX@localhost/student_database" -v
↪→ ON_ERROR_STOP =1 -ebf 03 _public_student_table_5071.sql

2 CREATE TABLE
3 ALTER TABLE
4 # psql 16.9 succeeded with exit code 0.

here reproduced as Listing 19.15. Instead of directly including it when the table is created, the table
is later changed (ALTER TABLE). The constraint is added via ADD CONSTRAINT . Apart from this and
some additional behavior specifications that we will ignore here, it looks not much different from the
REFERENCES statement we used when creating our factory’s demand table back in Listing 9.15. Well, it
looks different, because now it is explicitly defined as constraint instead of being declared inline. But it
clearly has the same functionality and if you understand what one notation means, you can also infer
what the other means.

We execute all four scripts. Their output in Listings 19.10, 19.14 and 19.16 shows that everything
went successfully.

Let us now also use the DB for a bit. For this, we again manually write another SQL script. In
Listing 19.17, we first insert some rows into the student table. Mr. Bibbo and Mr. Bebbo enroll into our
university. We also store three mobile phone numbers, two for Mr. Bibbo and one for Mr. Bebbo. The
rows in the mobile table reference the rows in the student table via the student column referencing
the foreign key student_id . We do not need to specify values for the id column of the mobile table,
as this one will automatically be filled with sequential values. Then, we SELECT the full names of the
students associated with each mobile phone via an INNER JOIN . The output for this script, given in
Listing 19.17, shows that both INSERT INTO commands were successful and that SELECT gives us the
expected result.

Finally, we delete the DB again in Listing 19.19. With this, we are able to translate single entity
types to the relational data model. We are then also able to create the corresponding logical model
in a comfortable editor (PgModeler), that offers us an ERD-like visual syntax. We can export these
models to SQL. And we can then push these SQL scripts to the PostgreSQL server.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/generated_sql/03_public_student_table_5071.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/generated_sql/03_public_student_table_5071.sql

CHAPTER 19. LOGICAL MODEL DESIGN 225

Listing 19.13: This auto-generated SQL script creates the table mobile . (stored in
file 04_public_mobile_table_5081.sql ; output in Listing 19.14)

1 -- object: public.mobile | type: TABLE --
2 -- DROP TABLE IF EXISTS public.mobile CASCADE;
3 CREATE TABLE public.mobile (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 phone character (11) NOT NULL ,
6 student character (11) NOT NULL ,
7 CONSTRAINT mobile_id_pk PRIMARY KEY (id),
8 CONSTRAINT mobile_phone_check CHECK (phone ~ ’^\d{11}$’)
9);

10 -- ddl -end --
11 ALTER TABLE public.mobile OWNER TO postgres;
12 -- ddl -end --

Listing 19.14: The stdout resulting from the SQL statements in 04_public_mobile_table_5081.sql
given in Listing 19.13.

1 $ psql "postgres :// postgres:XXX@localhost/student_database" -v
↪→ ON_ERROR_STOP =1 -ebf 04 _public_mobile_table_5081.sql

2 CREATE TABLE
3 ALTER TABLE
4 # psql 16.9 succeeded with exit code 0.

Listing 19.15: This auto-generated SQL script adds the foreign key constraint to the ta-
ble mobile . (stored in file 05_public_mobile_mobile_student_id_fk_constraint_5087.sql ; output
in Listing 19.16)

1 -- object: mobile_student_id_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.mobile DROP CONSTRAINT IF EXISTS mobile_student_id_fk

↪→ CASCADE;
3 ALTER TABLE public.mobile ADD CONSTRAINT mobile_student_id_fk FOREIGN KEY (

↪→ student)
4 REFERENCES public.student (student_id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listing 19.16: The stdout resulting from the SQL statements
in 05_public_mobile_mobile_student_id_fk_constraint_5087.sql given in Listing 19.15.

1 $ psql "postgres :// postgres:XXX@localhost/student_database" -v
↪→ ON_ERROR_STOP =1 -ebf 05
↪→ _public_mobile_mobile_student_id_fk_constraint_5087.sql

2 ALTER TABLE
3 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/generated_sql/04_public_mobile_table_5081.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/generated_sql/04_public_mobile_table_5081.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/generated_sql/05_public_mobile_mobile_student_id_fk_constraint_5087.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/generated_sql/05_public_mobile_mobile_student_id_fk_constraint_5087.sql

CHAPTER 19. LOGICAL MODEL DESIGN 226

Listing 19.17: We now insert some data into the student and mobile tables and use a JOIN to select
data from both. (stored in file insert_and_select.sql ; output in Listing 19.18)

1 /** Insert data into the student database and join the two tables. */
2
3 -- Insert several student records.
4 INSERT INTO student (student_id , national_id , full_name , salutation ,
5 address , date_of_birth) VALUES
6 (’1234567890 ’, ’123456199501021234 ’, ’Bibbo’, ’The Bib -Man’,
7 ’Hefei , China ’, ’1995 -01 -02’),
8 (’1234567891 ’, ’123456200508071234 ’, ’Bebbo’, ’Bebbo Machine ’,
9 ’Chemnitz , Germany ’, ’2005 -08 -07’);

10
11 -- Insert several mobile phone numbers
12 INSERT INTO mobile (phone , student) VALUES
13 (’11111111111 ’, ’1234567890 ’), (’22222222222 ’, ’1234567891 ’),
14 (’33333333333 ’, ’1234567890 ’);
15
16 -- Print the mobile phone numbers of the students.
17 SELECT student.full_name , mobile.phone , mobile.id FROM mobile
18 INNER JOIN student ON mobile.student = student.student_id;

Listing 19.18: The stdout resulting from the SQL statements in insert_and_select.sql given in List-
ing 19.17.

1 $ psql "postgres :// postgres:XXX@localhost/student_database" -v
↪→ ON_ERROR_STOP =1 -ebf insert_and_select.sql

2 INSERT 0 2
3 INSERT 0 3
4 full_name | phone | id
5 -----------+-------------+----
6 Bibbo | 11111111111 | 1
7 Bebbo | 22222222222 | 2
8 Bibbo | 33333333333 | 3
9 (3 rows)

10
11 # psql 16.9 succeeded with exit code 0.

Listing 19.19: We delete the DB again, so we can start with a clean slate in the next experiment. (stored
in file cleanup.sql ; output in Listing 19.20)

1 /* Cleanup after the example: Delete the student database. */
2
3 DROP DATABASE IF EXISTS student_database;

Listing 19.20: The stdout resulting from the SQL statements in cleanup.sql given in Listing 19.19.
1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf cleanup.

↪→ sql
2 DROP DATABASE
3 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/cleanup.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/student_database_2/cleanup.sql

CHAPTER 19. LOGICAL MODEL DESIGN 227

19.2.2 Mapping Conceptual Relationships to Logical Models

In Section 18.5, we discussed ten different types of binary relationships between two entity types that
can occur in an ERD created during conceptual modeling. Back then, we worked our way through
these types and tried to find examples in existing sources.

We can view the binary relationship types as requirements that are imposed on the elements of two
entity types. In a C D relationship, for example, it is required that any entity of type C must
be related to exactly one entity of type D. Relationships are bi-directional, i.e., if an entity of type C
is related to an entity of type D, then that very same entity of type D is obviously also related to the
entity of type C. Vice versa, the C D pattern also permits an entity of type D to either be linked
to one or no entity of type C.

Definition 19.6: Referential Integrity

A DB where the relationship constraints between entities are correctly maintained has the
property of referential integrity.

In other words, if we map a conceptual models, say given as ERD, to a relational data model, we must
also map the relationship patterns. This means essential to translate crow’s foot notation to SQL. SQL
offers us four major tools to implement relationship constraints:

• the primary key constraint PRIMARY KEY ,

• the foreign key constraint REFERENCES ,

• the NOT NULL constraint that prevents an attribute to ever be undefined (NULL),

• the UNIQUE constraint that prevents a value from occurring twice in a column.

We will now set out to find how each of the ten binary conceptual relationship types that we discussed
can be implemented in SQL. We will do this in plain SQL and not in the PgModeler, because we
start from the visual representation of the relationships and want to transform them to SQL. Using
PgModeler, we would practically do the same, just in a convenient GUI. PgModeler is also more suitable
for managing larger models, whereas we will slash and hammer our way through several small models
with two entity types each.

Please also consider this as an exercise in SQL. This is not so much about whether all of these
relationship types do occur in practice. It is also not about memorizing the different approaches how
they can be implemented. It is mainly about getting some feeling and understanding how the utilities
that SQL offers us, mainly NOT NULL , REFERENCES , UNIQUE , and PRIMARY KEY constraints [92] together
with INNER JOIN queries [212] can be used to enforce referential integrity between tables. And also,
for some relationship types . . . it is even fun to figure out how they can be implemented.

First Time Readers and Novices: It is totally OK to skip over a few of the following
subsections. Once you understand the basic concepts, it may not be necessarily to reproduce
all ten scenarios. You can revisit the section later if you are looking for a particular setup.

Of course, keeping with our practical “This is what it looks like when we execute it on the PostgreSQL
server.” attitude, we spin up a DB to really see some of the concepts in action in Listing 19.21.

CHAPTER 19. LOGICAL MODEL DESIGN 228

Listing 19.21: We spin up a DB for running our example SQL codes when mapping conceptual re-
lationship between entity types to tables in SQL on the PostgreSQL server. (stored in file init.sql ;
output in Listing 19.22)

1 /* Initialize the database for our examples */
2
3 -- Create the database.
4 CREATE DATABASE relationships;

Listing 19.22: The stdout resulting from the SQL statements in init.sql given in Listing 19.21.
1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf init.sql
2 CREATE DATABASE
3 # psql 16.9 succeeded with exit code 0.

19.2.2.1 A B

We have the two entity types A and B. Each entity of type A is connected to zero or one entity of
type B. Each entity of type B is connected to zero or one entity of type A.

We saw examples of this relationship pattern back in Section 18.5 (The Cardinality of Relationships):
Let’s we are a pizzeria that allows customers to order pizzas online. We also hand out discount vouchers
that allow can reduce the cost of an online order by 20%. Each voucher can be redeemed for one such
online order or it may also not be redeemed at all. For each online order, you may use one voucher to
reduce the cost, or you may not use any voucher at all.

Another example could be integrated into our teaching management platform. As you will re-
member, we used the entity type Person as central model component. If we wanted, we could add
information about the current marital status of all people in form of, fittingly, relationships. Each
person can be married to zero or one (other) person. These two examples are illustrated in Figure 19.3.

There are two possible ways to implement this relationship pattern in a relational DBMS:

1. We can use a three-table solution, where each entity type gets one table and the relationship
between the entity types A and B is managed in a third table. This solution makes sense if we
have only few pairs of A and B entities that are related.

2. We can use a two-table solution, where we manage the relationship with an additional column in
one of the tables. This is the better solution if we have many related pairs of A and B entities.

Regardless which solution we pick, we need at least the following two tables. First, table a is used for
the entity type A. As primary key, we here use a surrogate primary key aid which is an automatically
generated integer sequence. Let us assume that the entity type A also has a feature x , for illustration
purposes, a string composed of three characters. Second, table b for the entity type B. We here use a
surrogate primary key bid , again an automatically generated integer sequence. Assume that there also
is an attribute y , which is a string of two characters. (In all the remaining examples in this section, we
will use similar table patterns).

We start with the three-table approach in Listing 19.23, as suggested in, e.g., [358]. There, we
have a third table relate_a_and_b relating the entities of type A to those of type B. This table has
two columns, the first one, fkaid , holding the primary key of the A entities as foreign key and the
second one, fkbid , holding the primary key of the B entities as foreign key. Since we only store the

Person
Online

Order

Discount

Voucher
A B

married to

redeemed

Figure 19.3: Examples of the A B relationship pattern from back in Section 18.5 (The Cardinality
of Relationships).

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/init.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/init.sql

CHAPTER 19. LOGICAL MODEL DESIGN 229

Listing 19.23: The three-table realization of an A B conceptual relationship. (stored in
file AB_1_tables.sql ; output in Listing 19.24)

1 /* Create the tables for an A-|o-----o|-B relationship. */
2
3 -- Table A: Each row in A is related to zero or one row in B.
4 CREATE TABLE a (
5 aid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 x CHAR (3) -- example of other attributes
7);
8
9 -- Table B: Each row in B is related to zero or one row in A.

10 CREATE TABLE b (
11 bid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 y CHAR (2) -- example of other attributes
13);
14
15 -- The table for managing the relationship between A and B.
16 CREATE TABLE relate_a_and_b (
17 fkaid INT NOT NULL UNIQUE PRIMARY KEY REFERENCES a (aid),
18 fkbid INT NOT NULL UNIQUE REFERENCES b (bid)
19);

Listing 19.24: The stdout resulting from the SQL statements in AB_1_tables.sql given in List-
ing 19.23.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf AB_1_tables.sql

2 CREATE TABLE
3 CREATE TABLE
4 CREATE TABLE
5 # psql 16.9 succeeded with exit code 0.

pairs that exist, both columns have the NOT NULL constraint. Both also have REFERENCES constraints
to their respective foreign keys. Since on both relationship ends there can only be one entity, both
columns also have UNIQUE constraints. Either of them may be used as PRIMARY KEY .

We would probably choose the key belonging from the most common direction in which we access
the table. If we most likely look for fitting entities of type B coming from a row representing an entity
of type A (as is the case in Listing 19.25), then we would probably use fkaid as PRIMARY KEY . If it
was the other way around, we would pick fkbid .

In Listing 19.25, we fill some data into the tables. Since both relationship ends are optional, we
can begin by inserting data into tables a and b without specifying any references to the other table.
We do not need to specify the primary keys, since the are automatically generated, and, as said, we
can omit the foreign keys, because they are allowed to be NULL . So we only need to provide values for
the attributes x and y . After this, we have filled both tables with some data. We can then establish
relationships between the rows of tables a and b by adding entries to relate_a_and_b with the primary
keys of the related rows. INSERT INTO relate_a_and_b (fkaid, fkbid)VALUES (2, 3); , for example,
would relate the row in table a with aid = 2 to the row in table b with bid = 3 . The contents of the
tables after executing Listing 19.25 is illustrated in Figure 19.4.

Now we want to query some information about A, using SELECT , but also need information about the
potentially related B. We use an INNER JOIN coming from table a on the third table relate_a_and_b
based on the primary key aid of table a . We then need another INNER JOIN with the table for B on
its primary key bid , as shown in Listing 19.25. This way, we can reconstruct the related data in two
steps.

Notice that it is impossible to have any row of table a that is related to more than one row in
table b , as demonstrated in Listing 19.27. The UNIQUE constraint on the column a of relate_a_and_b
prevents this. Vice versa, the UNIQUE constraint on column b in relate_a_and_b prevents that any
row in table b is related to more than one row in table a . This is demonstrated in Listing 19.29.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 230

Listing 19.25: Inserting into and selecting data from the three-table realization of an A B con-
ceptual relationship given in Listing 19.23. (stored in file AB_1_insert_and_select.sql ; output in List-
ing 19.26)

1 /* Inserting data into the tables for the A-|o-----o|-B relationship. */
2
3 -- Insert some rows into the table for entity type A.
4 INSERT INTO a (x) VALUES (’123’), (’456’), (’789’), (’101’);
5
6 -- Insert some rows into the table for entity type B.
7 INSERT INTO b (y) VALUES (’AB’), (’CD’), (’EF’), (’GH’);
8
9 -- Create the relationships between the A and B rows.

10 INSERT INTO relate_a_and_b (fkaid , fkbid) VALUES (1, 1), (2, 3), (3, 4);
11
12 -- Combine the rows from A and B. This needs two INNER JOINs.
13 SELECT aid , x, bid as bid , y FROM relate_a_and_b
14 INNER JOIN a ON a.aid = relate_a_and_b.fkaid
15 INNER JOIN b ON b.bid = relate_a_and_b.fkbid;

Listing 19.26: The stdout resulting from the SQL statements in AB_1_insert_and_select.sql given
in Listing 19.25.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf AB_1_insert_and_select.sql

2 INSERT 0 4
3 INSERT 0 4
4 INSERT 0 3
5 aid | x | bid | y
6 -----+-----+-----+----
7 1 | 123 | 1 | AB
8 2 | 456 | 3 | EF
9 3 | 789 | 4 | GH

10 (3 rows)
11
12 # psql 16.9 succeeded with exit code 0.

Table a
aid x
1 “123”
2 “456”
3 “789”
4 “101”

Table b
bid y
1 “AB”
2 “CD”
3 “EF”
4 “GH”

Table relate_a_and_b
fkaid fkbid

1 1
2 3
3 4

Figure 19.4: The contents of the the tables in the three-table implementation of the A B con-
ceptual relationship after executing Listing 19.25.

However, there are two problems with this three-table-method: First, we need two INNER JOIN
statements to combine the data from the entities A and B. Second, this approach makes sense only if
comparatively few pairs of related A and B entities exist. Performance and space-wise, in the worst
case, all entities of type A are related to an entity of type B or vice versa. In other words, our third
table can be about as big as the smaller one of the two other tables. If the tables are big, then the
query may not be fast. Also, if all entities of type A were related to an entity of type B, then we could
just as well reference these B entities directly from the table for entity type A. Actually, in that case,
using the third table would just be a waste of space and query time.

Thus, if many or most A entities are related to B entities, then instead of using a third table, we
could alternatively add a column fkbid to the table for A and store the primary keys of the related
B entities in that column. We delete the tables we just created in Listing 19.31 to explore the two-table
solution in Listing 19.23. The new column fkbid added to the table a can be allowed to be NULL ,

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 231

Listing 19.27: The schema illustrated in Listing 19.23 prevents entities of type A to be related to more
than one entity of type B. (stored in file AB_1_insert_error_1.sql ; output in Listing 19.28)

1 /* Insert a wrong row into tables for A-|o-----o|-B relationship. */
2
3 -- Create an error in the relationships between the A and B rows.
4 -- This fails because an A entry is already assigned to an B entry.
5 -- The A entity with ID 1 is already related to B entity with ID 1.
6 INSERT INTO relate_a_and_b (fkaid , fkbid) VALUES (1, 2);

Listing 19.28: The stdout resulting from the SQL statements in AB_1_insert_error_1.sql given
in Listing 19.27.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf AB_1_insert_error_1.sql

2 psql:conceptualToRelational/AB_1_insert_error_1.sql:6: ERROR: duplicate
↪→ key value violates unique constraint "relate_a_and_b_pkey"

3 DETAIL: Key (fkaid)=(1) already exists.
4 psql:conceptualToRelational/AB_1_insert_error_1.sql:6: STATEMENT: /*

↪→ Insert a wrong row into tables for A-|o-----o|-B relationship. */
5 -- Create an error in the relationships between the A and B rows.
6 -- This fails because an A entry is already assigned to an B entry.
7 -- The A entity with ID 1 is already related to B entity with ID 1.
8 INSERT INTO relate_a_and_b (fkaid , fkbid) VALUES (1, 2);
9 # psql 16.9 failed with exit code 3.

because not all entities of type A need to be related to an entity of type B. It must be marked as
UNIQUE , though, because no entity of type B can be related to more than one entity of type A. This
constraint only applies to values that are not NULL .

It also needs a REFERENCES constraint. In Listing 19.33, we add this constraint later via ALTER TABLE ,
very much like PgModeler does it (see back in Listing 19.15). Otherwise, we would need to create
table b before table a . That is totally OK, but if we had many tables, the required order of table
creation could make our SQL code harder to read. Also, the probability of making errors that are hard
to figure out would be higher. It sometimes is just easier to first create the tables and then add the
constraints via . I guess this is why PgModeler does it like this, too.

We could also do this vice versa, i.e., add an column fkaid to table b instead. Either way, this
removes the need for a third table.

In Listing 19.35, we insert the data into the two tables a and b exactly as before. The relationships
are now no longer inserted into a third table. Instead, we use UPDATE statements [416], as illustrated
in Listing 19.35. UPDATE a SET fkbid = 3 WHERE aid = 2; , for example, relates the row in table a
with aid = 2 to the row in table b with bid = 3 . The contents of the tables after creating the
data is illustrated in Figure 19.5. We can now recombine the data from the two tables using a
single INNER JOIN .

Relating entities of type A to multiple entities of type B is impossible, because the column fkbid in
table a can only have one value. Relating entities of type B to multiple entities of type A is impossible,
because of the UNIQUE constraint imposed on it the column fkbid in table a . A failed attempt to do
so anyway is shown in Listing 19.37.

Of course, the table for entity type A now needs more space. If only few entities of type A are
related to entities of type B, maybe the first solution, based on three tables, is maybe better. I think
most often, the second solution, the two-table approach, is the way to go. Still, it depends on how
many of the A and B entities are related, from which “side” we most likely navigate the relationship,
and how big the tables are.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_insert_error_1.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_insert_error_1.sql

CHAPTER 19. LOGICAL MODEL DESIGN 232

Listing 19.29: The schema illustrated in Listing 19.23 prevents entities of type B to be related to more
than one entity of type A. (stored in file AB_1_insert_error_2.sql ; output in Listing 19.30)

1 /* Insert a wrong row into tables for A-|o-----o|-B relationship. */
2
3 -- Create an error in the relationships between the A and B rows.
4 -- This fails because a B entry is already assigned to an A entry.
5 -- The B entity with ID 3 is already related to A entity with ID 1.
6 INSERT INTO relate_a_and_b (fkaid , fkbid) VALUES (4, 3);

Listing 19.30: The stdout resulting from the SQL statements in AB_1_insert_error_2.sql given
in Listing 19.29.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf AB_1_insert_error_2.sql

2 psql:conceptualToRelational/AB_1_insert_error_2.sql:6: ERROR: duplicate
↪→ key value violates unique constraint "relate_a_and_b_fkbid_key"

3 DETAIL: Key (fkbid)=(3) already exists.
4 psql:conceptualToRelational/AB_1_insert_error_2.sql:6: STATEMENT: /*

↪→ Insert a wrong row into tables for A-|o-----o|-B relationship. */
5 -- Create an error in the relationships between the A and B rows.
6 -- This fails because a B entry is already assigned to an A entry.
7 -- The B entity with ID 3 is already related to A entity with ID 1.
8 INSERT INTO relate_a_and_b (fkaid , fkbid) VALUES (4, 3);
9 # psql 16.9 failed with exit code 3.

Listing 19.31: Deleting the three tables again, because we want to try another realization of the
A B conceptual relationship. (stored in file AB_1_cleanup.sql ; output in Listing 19.32)

1 /* Drop the tables for the A-|o-----o|-B relationship. */
2
3 DROP TABLE IF EXISTS relate_a_and_b;
4 DROP TABLE IF EXISTS a;
5 DROP TABLE IF EXISTS b;

Listing 19.32: The stdout resulting from the SQL statements in AB_1_cleanup.sql given in List-
ing 19.31.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf AB_1_cleanup.sql

2 DROP TABLE
3 DROP TABLE
4 DROP TABLE
5 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_insert_error_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_insert_error_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_cleanup.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_1_cleanup.sql

CHAPTER 19. LOGICAL MODEL DESIGN 233

Listing 19.33: The two-table realization of an A B conceptual relationship. (stored in
file AB_2_tables.sql ; output in Listing 19.34)

1 /* Create the tables for an A-|o-----o|-B relationship. */
2
3 -- Table A: Each row in A is related to zero or one row in B.
4 CREATE TABLE a (
5 aid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 fkbid INT UNIQUE , -- foreign key to B, see later <-- can be NULL.
7 x CHAR (3) -- example of other attributes
8);
9

10 -- Table B: Each row in B is related to zero or one row in A.
11 CREATE TABLE b (
12 bid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
13 y CHAR (2) -- example of other attributes
14);
15
16 -- To table A, we add the foreign key reference constraint to table B.
17 ALTER TABLE a ADD CONSTRAINT a_fkbid_fk FOREIGN KEY (fkbid)
18 REFERENCES b (bid);

Listing 19.34: The stdout resulting from the SQL statements in AB_2_tables.sql given in List-
ing 19.33.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf AB_2_tables.sql

2 CREATE TABLE
3 CREATE TABLE
4 ALTER TABLE
5 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_2_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_2_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 234

Listing 19.35: Inserting into and selecting data from the two-table realization of an A B con-
ceptual relationship given in Listing 19.33. (stored in file AB_2_insert_and_select.sql ; output in List-
ing 19.36)

1 /* Inserting data into the tables for the A-|o-----o|-B relationship. */
2
3 -- Insert some rows into the table for entity type A.
4 INSERT INTO a (x) VALUES (’123’), (’456’), (’789’), (’101’);
5
6 -- Insert some rows into the table for entity type B.
7 INSERT INTO b (y) VALUES (’AB’), (’CD’), (’EF’), (’GH’);
8
9 -- Create the relationships between the A and B rows.

10 UPDATE a SET fkbid = 1 WHERE aid = 1;
11 UPDATE a SET fkbid = 3 WHERE aid = 2;
12 UPDATE a SET fkbid = 4 WHERE aid = 3;
13
14 -- Combine the rows from A and B. Only one INNER JOIN is needed.
15 SELECT aid , x, bid , y FROM a INNER JOIN b ON a.fkbid = b.bid;

Listing 19.36: The stdout resulting from the SQL statements in AB_2_insert_and_select.sql given
in Listing 19.35.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf AB_2_insert_and_select.sql

2 INSERT 0 4
3 INSERT 0 4
4 UPDATE 1
5 UPDATE 1
6 UPDATE 1
7 aid | x | bid | y
8 -----+-----+-----+----
9 1 | 123 | 1 | AB

10 2 | 456 | 3 | EF
11 3 | 789 | 4 | GH
12 (3 rows)
13
14 # psql 16.9 succeeded with exit code 0.

Table a
aid fkbid x
4 NULL “101”
1 1 “123”
2 3 “456”
3 4 “789”

Table b
bid y
1 “AB”
2 “CD”
3 “EF”
4 “GH”

Figure 19.5: The contents of the the tables in the two-table implementation of the A B concep-
tual relationship after executing Listing 19.35.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_2_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_2_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 235

Listing 19.37: The schema illustrated in Listing 19.33 prevents entities of type B to be related to
more than one entity of type A via constraints. The entities of type A can only be associated with
one entity of type B because of the table structure. (stored in file AB_2_insert_error_2.sql ; output
in Listing 19.38)

1 /* Insert a wrong row into tables for A-|o-----o|-B relationship. */
2
3 -- Create an error in the relationships between the A and B rows.
4 -- This fails because a B entry is already assigned to an A entry.
5 -- The B entity with ID 3 is already related to A entity with ID 2.
6 UPDATE a SET fkbid = 3 where aid = 4;

Listing 19.38: The stdout resulting from the SQL statements in AB_2_insert_error_2.sql given
in Listing 19.37.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf AB_2_insert_error_2.sql

2 psql:conceptualToRelational/AB_2_insert_error_2.sql:6: ERROR: duplicate
↪→ key value violates unique constraint "a_fkbid_key"

3 DETAIL: Key (fkbid)=(3) already exists.
4 psql:conceptualToRelational/AB_2_insert_error_2.sql:6: STATEMENT: /*

↪→ Insert a wrong row into tables for A-|o-----o|-B relationship. */
5 -- Create an error in the relationships between the A and B rows.
6 -- This fails because a B entry is already assigned to an A entry.
7 -- The B entity with ID 3 is already related to A entity with ID 2.
8 UPDATE a SET fkbid = 3 where aid = 4;
9 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_2_insert_error_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/AB_2_insert_error_2.sql

CHAPTER 19. LOGICAL MODEL DESIGN 236

19.2.2.2 C D

We have the two entity types C and D. Each entity of type C must be connected to exactly one entity
of type D. Each entity of type D is connected to zero or one entity of type C.

We encountered this pattern when making a conceptual model of the relationship of persons,
faculty, and students back in Figure 18.15. In our conceptual model, each entity of type Person could
be a Faculty or not. Each entity of type Faculty must be associated with one and exactly one record
of type Person, as sketched in Figure 19.6.

The solution for implementing this in a relational database is similar to the two-table variant in the
previous section: We need a table c for the entities of type C. And we need a table d for the entities of
type D. Both tables are also structured as in the previous section, including surrogate primary keys cid
and did as well as attributes x and y , respectively.

Since each entity of type C must be connected to exactly one entity of type D, we add one
column fkdid to the table for C which holds the primary key to the D entities as foreign key. This
column thus has a REFERENCES constraint to the foreign key, which we add at the end of the script

Person
Faculty

Member
is a

Worker ID

is MSc

Supervisor?

is PhD

Supervisor?

DC

Figure 19.6: We encountered the C D relationship pattern in Figure 18.15.

Listing 19.39: The three-table realization of a C D conceptual relationship. (stored in
file CD_tables.sql ; output in Listing 19.40)

1 /* Create the tables for a C-|o-----||-D relationship. */
2
3 -- Table C: Each row in C is related to exactly one row in D.
4 CREATE TABLE c (
5 cid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 fkdid INT NOT NULL UNIQUE , -- the foreign key to D, see later
7 x CHAR (3) -- example of other attributes
8);
9

10 -- Table D: Each row in D is related to zero or one row in C.
11 CREATE TABLE d (
12 did INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
13 y CHAR (2) -- example of other attributes
14);
15
16 -- To table C, we add the foreign key reference constraint to table D.
17 ALTER TABLE c ADD CONSTRAINT c_fkdid_fk FOREIGN KEY (fkdid)
18 REFERENCES d (did);

Listing 19.40: The stdout resulting from the SQL statements in CD_tables.sql given in Listing 19.39.
1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1

↪→ -ebf CD_tables.sql
2 CREATE TABLE
3 CREATE TABLE
4 ALTER TABLE
5 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/CD_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/CD_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 237

Listing 19.41: Inserting into and selecting data from the three-table realization of a C D con-
ceptual relationship given in Listing 19.39. (stored in file CD_insert_and_select.sql ; output in List-
ing 19.42)

1 /* Inserting data into the tables for the C-|o-----||-D relationship. */
2
3 -- Insert some rows into the table for entity type D.
4 -- We first must create the D elements , because the C rows cannot
5 -- exist without referencing one row in D each.
6 INSERT INTO d (y) VALUES (’AB’), (’CD’), (’EF’), (’GH’);
7
8 -- Insert some rows into the table for entity type C.
9 INSERT INTO c (fkdid , x) VALUES (1, ’123’), (3, ’456’), (4, ’789’),

10 (2, ’101’);
11
12 -- Combine the rows from C and D.
13 SELECT cid , x, did , y FROM c INNER JOIN d ON c.fkdid = d.did;

Listing 19.42: The stdout resulting from the SQL statements in CD_insert_and_select.sql given
in Listing 19.41.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf CD_insert_and_select.sql

2 INSERT 0 4
3 INSERT 0 4
4 cid | x | did | y
5 -----+-----+-----+----
6 1 | 123 | 1 | AB
7 4 | 101 | 2 | CD
8 2 | 456 | 3 | EF
9 3 | 789 | 4 | GH

10 (4 rows)
11
12 # psql 16.9 succeeded with exit code 0.

Table c
cid fkdid x
1 1 “123”
2 3 “456”
3 4 “789”
4 2 “101”

Table d
did y
1 “AB”
2 “CD”
3 “EF”
4 “GH”

Figure 19.7: The contents of the the tables in the implementation of the C D conceptual
relationship after executing Listing 19.41.

Listing 19.39 via ALTER TABLE . Different from the previous section, this column fkdid must also have a
NOT NULL constraint, because each entity of type C must necessarily be related to one entity of type D.
The column also has a UNIQUE constraint, because the entities of type D can only reference at most
one entity of type C.

We can only insert rows into the table for entity type C that reference existing rows in the table for
entity type D. The consequence is that these elements must be created first, as shown in Listing 19.41.
Thus, after inserting data into table d , we then insert the rows into table c . Each of these rows must
provide a proper foreign key fkdid referencing the primary key did in table d . The contents of the
two tables c and d after executing Listing 19.41 is illustrated in Figure 19.7. The data from the two
tables can be combined using a single INNER JOIN .

It is impossible to insert a row into table c that references a row in table d that is already referenced
by another row in table c , as shown in Listing 19.43. Neither can we insert a row into table c that
does not reference any row in table d , because of the NOT NULL constraint, nor can we create a row in
table c that references multiple rows in table d , since the foreign key attribute fkdid of table c can

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/CD_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/CD_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 238

Listing 19.43: It is impossible to insert a row into table c that references a row in table d that is already
referenced by another row in table c . (stored in file CD_insert_error.sql ; output in Listing 19.44)

1 /* Insert a wrong row into tables for C-|o-----||-D relationship. */
2
3 -- It is impossible to create a row in C that references a row in D
4 -- which is already referenced by another record.
5 INSERT INTO c (fkdid , x) VALUES (3, ’555’);

Listing 19.44: The stdout resulting from the SQL statements in CD_insert_error.sql given in List-
ing 19.43.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf CD_insert_error.sql

2 psql:conceptualToRelational/CD_insert_error.sql :5: ERROR: duplicate key
↪→ value violates unique constraint "c_fkdid_key"

3 DETAIL: Key (fkdid)=(3) already exists.
4 psql:conceptualToRelational/CD_insert_error.sql :5: STATEMENT: /* Insert a

↪→ wrong row into tables for C-|o-----||-D relationship. */
5 -- It is impossible to create a row in C that references a row in D
6 -- which is already referenced by another record.
7 INSERT INTO c (fkdid , x) VALUES (3, ’555’);
8 # psql 16.9 failed with exit code 3.

only take on one single value. Notice that, together, this also means there can never be fewer entities
of type D than entities of type C.

19.2.2.3 E F

We have the two entity types E and F. Each entity of type E may be connected to zero, one, or multiple
entities of type F. Each entity of type F is connected to zero or one entity of type E.

We encountered this relationship pattern back in Figure 18.16, where we tried to model the mes-
saging subsystem for our teaching management platform. A message can either be a new message or a
reply to exactly one existing message. There may be zero, one, or many replies to any existing message.
This situation is sketched in Figure 19.8.

We need a table e for the entities of type E and a table f for the entities of type F. Both have their
respective surrogate primary keys eid and fid and we also add the example attributes x and y to
them, respectively. Apart from that, there can again be two solutions to implementing this relationship:
We can use three tables or two, again, depending on how many entities of types E and F are actually
related.

We may use a third table relate_e_and_f relating the entities of type E to those of type F. This
approach is illustrated in Listing 19.45. There will be two columns in that table. The first one,
fkeid , holds the reference to the primary key eid of the E entities. The second one, fkfid , holds
the reference to the primary key fid of the F entities. Since we only store the pairs that exist, both
columns are NOT NULL and have REFERENCES constraints to their respective foreign keys.

Since each entity of type F can only be connected to at most one entity of type E, there will be
a UNIQUE constraint on the column fkfid and it would be the primary key of table relate_e_and_f .

Person

Surrogate-

Key

Message

Subject

Body

When

E F

sender

is reply

receiver

Figure 19.8: We encountered the E F relationship pattern in Figure 18.16.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/CD_insert_error.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/CD_insert_error.sql

CHAPTER 19. LOGICAL MODEL DESIGN 239

Listing 19.45: The three-table realization of an E F conceptual relationship. (stored in
file EF_1_tables.sql ; output in Listing 19.46)

1 /* Create the tables for an E-|o-----o<-F relationship. */
2
3 -- Table E: Each row in E is related to zero or one or many rows in F.
4 CREATE TABLE e (
5 eid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 x CHAR (3) -- example of other attributes
7);
8
9 -- Table F: Each row in F is related to zero or one row in E.

10 CREATE TABLE f (
11 fid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 y CHAR (2) -- example of other attributes
13);
14
15 -- The table for managing the relationship between E and F.
16 CREATE TABLE relate_e_and_f (
17 fkeid INT NOT NULL REFERENCES e (eid),
18 fkfid INT NOT NULL UNIQUE PRIMARY KEY REFERENCES f (fid)
19);

Listing 19.46: The stdout resulting from the SQL statements in EF_1_tables.sql given in List-
ing 19.45.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf EF_1_tables.sql

2 CREATE TABLE
3 CREATE TABLE
4 CREATE TABLE
5 # psql 16.9 succeeded with exit code 0.

It needs to be the primary key because the values in column fkeid do not need to be unique – one
entity of type E can be related to many entities of type F.

In Listing 19.47, we insert some data into the tables. Since both relationship ends are optional,
we can first populate tables e and f . Then we can establish the relationships by adding rows to
table relate_e_and_f . The contents of the three tables after executing Listing 19.47 are given in
Figure 19.9.

This is the recommended solution in [358], but we face a similar situation as back in Sec-
tion 19.2.2.1 (A B): It is efficient only if there are not too many E-F pairs that are related.
If almost all entities of type F are related to one entity of type E, then the table relate_e_and_f is
about as same as big as the table F. Instead of simply storing the keys of the related E entities in the
table f , we now have another table that stores these keys and the primary keys of the f table. Also,
we would again need two INNER JOIN statements instead of one when we merge the data, as shown in
Listing 19.47.

The two-table solution is illustrated in Listing 19.51. Here, we need to add a foreign key col-
umn fkeid to the table f . This column has a REFERENCES constraint pointing to column eid of
table e . The value of this column can be NULL , because not all rows in f need to be related to rows
in e . Different from the A B situation in Listing 19.33, there also should not be a UNIQUE
constraint here, because each row of E can be related to multiple rows in f .

We store some data into the three tables in Listing 19.53. We can do this by first inserting rows into
table e . Then we add rows to table f . For each such row, we can provide a valid foreign key fkeid to
a row in table e identified by primary key eid . This means that the new row in table f will be related
to the existing row in table e . We can also store NULL as fkeid , in which case the row in table f is not
related to any row in table e . The contents of the two tables after executing Listing 19.53 are given in
Figure 19.10. We also only need a single INNER JOIN to merge the data, as illustrated in Listing 19.53.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_1_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_1_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 240

Listing 19.47: Inserting into and selecting data from the three-table realization of an E F con-
ceptual relationship given in Listing 19.45. (stored in file EF_1_insert_and_select.sql ; output in List-
ing 19.48)

1 /* Inserting data into the tables for the E-|o-----o<-F relationship. */
2
3 -- Insert some rows into the table for entity type E.
4 INSERT INTO e (x) VALUES (’123’), (’456’), (’789’), (’101’);
5
6 -- Insert some rows into the table for entity type F.
7 INSERT INTO f (y) VALUES (’AB’), (’CD’), (’EF’), (’GH’);
8
9 -- Create the relationships between the E and F rows.

10 INSERT INTO relate_e_and_f (fkeid , fkfid) VALUES (1, 1), (1, 2), (3, 4);
11
12 -- Combine the rows from E and F. This needs two INNER JOINs.
13 SELECT eid , x, fid , y FROM relate_e_and_f
14 INNER JOIN e ON e.eid = relate_e_and_f.fkeid
15 INNER JOIN f ON f.fid = relate_e_and_f.fkfid;

Listing 19.48: The stdout resulting from the SQL statements in EF_1_insert_and_select.sql given
in Listing 19.47.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf EF_1_insert_and_select.sql

2 INSERT 0 4
3 INSERT 0 4
4 INSERT 0 3
5 eid | x | fid | y
6 -----+-----+-----+----
7 1 | 123 | 1 | AB
8 1 | 123 | 2 | CD
9 3 | 789 | 4 | GH

10 (3 rows)
11
12 # psql 16.9 succeeded with exit code 0.

Table e
eid x
1 “123”
2 “456”
3 “789”
4 “101”

Table f
fid y
1 “AB”
2 “CD”
3 “EF”
4 “GH”

Table relate_e_and_f
fkeid fkfid

1 1
1 2
3 4

Figure 19.9: The contents of the the tables in the three-table implementation of the E B con-
ceptual relationship after executing Listing 19.47.

This solution has another useful aspect: In the three-table solution, I can create an INSERT or
UPDATE query to relate_e_and_f that fails, namely if I try to relate a row of f to more than one
row in e . This is not possible in the two-table solution, because each row of f only has one attribute
value fkeid .

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_1_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_1_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 241

Listing 19.49: Deleting the tables created in Listing 19.45. (stored in file EF_1_cleanup.sql ; output
in Listing 19.50)

1 /* Drop the tables for the E-|o-----o<-F relationship. */
2
3 DROP TABLE IF EXISTS relate_e_and_f;
4 DROP TABLE IF EXISTS e;
5 DROP TABLE IF EXISTS f;

Listing 19.50: The stdout resulting from the SQL statements in EF_1_cleanup.sql given in List-
ing 19.49.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf EF_1_cleanup.sql

2 DROP TABLE
3 DROP TABLE
4 DROP TABLE
5 # psql 16.9 succeeded with exit code 0.

Listing 19.51: A two-table realization of an E F conceptual relationship. (stored in
file EF_2_tables.sql ; output in Listing 19.52)

1 /* Create the tables for an E-|o-----o<-F relationship. */
2
3 -- Table E: Each row in E is related to zero or one or many rows in F.
4 CREATE TABLE e (
5 eid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 x CHAR (3) -- example of other attributes
7);
8
9 -- Table F: Each row in F is related to zero or one row in E.

10 CREATE TABLE f (
11 fid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 fkeid INT REFERENCES e (eid), -- the foreign key to E, can be NULL.
13 y CHAR (2) -- example of other attributes
14);

Listing 19.52: The stdout resulting from the SQL statements in EF_2_tables.sql given in List-
ing 19.51.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf EF_2_tables.sql

2 CREATE TABLE
3 CREATE TABLE
4 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_1_cleanup.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_1_cleanup.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_2_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_2_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 242

Listing 19.53: Inserting into and selecting data from the two-table realization of an E F concep-
tual relationship given in Listing 19.51. (stored in file EF_2_insert_and_select.sql ; output in List-
ing 19.54)

1 /* Inserting data into the tables for the E-|o-----o<-F relationship. */
2
3 -- Insert some rows into the table for entity type E.
4 INSERT INTO e (x) VALUES (’123’), (’456’), (’789’), (’101’);
5
6 -- Insert some rows into the table for entity type F.
7 INSERT INTO f (y, fkeid) VALUES (’AB’, 1), (’CD’, 1), (’EF’, NULL),
8 (’GH’, 3);
9

10 -- Combine the rows from E and F. This needs one INNER JOIN.
11 SELECT eid , x, fid , y FROM e INNER JOIN f ON f.fkeid = e.eid;

Listing 19.54: The stdout resulting from the SQL statements in EF_2_insert_and_select.sql given
in Listing 19.53.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf EF_2_insert_and_select.sql

2 INSERT 0 4
3 INSERT 0 4
4 eid | x | fid | y
5 -----+-----+-----+----
6 1 | 123 | 1 | AB
7 1 | 123 | 2 | CD
8 3 | 789 | 4 | GH
9 (3 rows)

10
11 # psql 16.9 succeeded with exit code 0.

Table e
eid x
1 “123”
2 “456”
3 “789”
4 “101”

Table f
fid fkeid y
1 1 “AB”
2 1 “CD”
3 NULL “EF”
4 3 “GH”

Figure 19.10: The contents of the the tables in the two-table implementation of the E B con-
ceptual relationship after executing Listing 19.53.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_2_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/EF_2_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 243

19.2.2.4 G H

We have the two entity types G and H. Each entity of type G must be connected to at least one but
maybe many entities of type H. Each entity of type H is connected to zero or one entity of type G.

An example of the G H relationship pattern is given back in Section 18.5 (The Cardinality
of Relationships): In a soccer club, each trainer coaches several club members. Each member can
be coached by one trainer or, if they have other functions, not be coached at all. This example is
illustrated in Figure 19.11.

We again create two tables g and h , respectively. They have the primary keys gid and hid as well
as the example attributes x and y , respectively. Then we can approach this in the same way as the in
the two-table manner in the E F situation. However, enforcing this relationship pattern is a bit
more complicated, but doable, as illustrated in Listing 19.55:

We begin by preparing the table g . Each entity of type G must be related to at least one entity of
type H. We solve this problem in two steps: First, we enforce that each row in table g is connected to
one row in table h . Later, we permit that it can be connected to more rows. We therefore begin by
adding an attribute fkhid , which must be NOT NULL . This column should always point to the row in
table h with the same value in hid . We will later add a proper REFERENCE constraint via ALTER TABLE ,

Trainer
Football

Club Member
G H

Figure 19.11: An example of the G H relationship pattern from back in Section 18.5 (The
Cardinality of Relationships).

Listing 19.55: The realization of an G H conceptual relationship. (stored in file GH_tables.sql ;
output in Listing 19.56)

1 /* Create the tables for a G-|o-----|<-H relationship. */
2
3 -- Table G: Each row in G is related to one or multiple rows in H.
4 -- We force that that row in H is also related to our row in G via
5 -- a foreign key constraint g_h_fk.
6 CREATE TABLE g (
7 gid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
8 fkhid INT NOT NULL UNIQUE , -- row is related >= 1 H.
9 x CHAR (3) -- example of other attributes

10);
11
12 -- Table H: Each row in H is related to zero or one rows in G.
13 CREATE TABLE h (
14 hid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
15 fkgid INT REFERENCES g (gid), -- can be related to 0 or 1 G
16 y CHAR (2), -- example of attributes
17 UNIQUE (hid , fkgid) -- needed for g_fkhid_gid_fk
18);
19
20 -- To table G, we add the foreign key reference constraint towards H.
21 ALTER TABLE g ADD CONSTRAINT g_fkhid_gid_fk FOREIGN KEY (fkhid , gid)
22 REFERENCES h (hid , fkgid)

Listing 19.56: The stdout resulting from the SQL statements in GH_tables.sql given in Listing 19.55.
1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1

↪→ -ebf GH_tables.sql
2 CREATE TABLE
3 CREATE TABLE
4 ALTER TABLE
5 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 244

Listing 19.57: Inserting into and selecting data from the realization of an G H conceptual rela-
tionship given in Listing 19.55. (stored in file GH_insert_and_select.sql ; output in Listing 19.58)

1 /* Inserting data into the tables for the G-|o-----|<-H relationship. */
2
3 -- Insert some rows into the table for entity type H.
4 -- Not specifying ‘g‘ leave the references G as NULL for now.
5 INSERT INTO h (y) VALUES (’AB’), (’CD’), (’EF’), (’GH’), (’IJ’), (’KL’);
6
7 -- Insert into G and relate to H. We do this three times.
8 WITH new_g AS (INSERT INTO g (fkhid , x) VALUES (1, ’123’)
9 RETURNING gid , fkhid)

10 UPDATE h SET fkgid = new_g.gid FROM new_g WHERE h.hid = new_g.fkhid;
11
12 WITH new_g AS (INSERT INTO g (fkhid , x) VALUES (3, ’456’)
13 RETURNING gid , fkhid)
14 UPDATE h SET fkgid = new_g.gid FROM new_g WHERE h.hid = new_g.fkhid;
15
16 WITH new_g AS (INSERT INTO g (fkhid , x) VALUES (4, ’789’)
17 RETURNING gid , fkhid)
18 UPDATE h SET fkgid = new_g.gid FROM new_g WHERE h.hid = new_g.fkhid;
19
20 -- Link one H row to another G row. (We do this twice.)
21 UPDATE h SET fkgid = 3 WHERE hid = 2;
22 UPDATE h SET fkgid = 3 WHERE hid = 5;
23
24 -- Combine the rows from G and H.
25 SELECT gid , x, hid , y FROM h INNER JOIN g ON g.gid = h.fkgid;

Listing 19.58: The stdout resulting from the SQL statements in GH_insert_and_select.sql given
in Listing 19.57.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf GH_insert_and_select.sql

2 INSERT 0 6
3 UPDATE 1
4 UPDATE 1
5 UPDATE 1
6 UPDATE 1
7 UPDATE 1
8 gid | x | hid | y
9 -----+-----+-----+----

10 1 | 123 | 1 | AB
11 2 | 456 | 3 | EF
12 3 | 789 | 4 | GH
13 3 | 789 | 2 | CD
14 3 | 789 | 5 | IJ
15 (5 rows)
16
17 # psql 16.9 succeeded with exit code 0.

because we cannot add it yet, because table h does not yet exist. So for now, just imagine that we
had added it and that this attribute always references on row in table h . We will consider this attribute
to identify the “primary H” entity to which the row in table g is related. We make this column also
UNIQUE , because no row in table h can be related to more than one row in table g . Thus, no primary
key value hid can thus occur more than once in column fkhid .

Now we prepare the table for entity type H. Since each entity of type H can be related to either
zero or one entity of type G, we add a column fkgid to this table. This column can be NULL , in which
case the corresponding row in h is not related to any entity of type G. If it is not NULL , then it must
be a proper foreign key reference to a row in table g . This column does not need to be UNIQUE , as

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 245

Table g
gid fkhid x
1 1 “123”
2 3 “456”
3 4 “789”

Table h
hid fkgid y
6 NULL “KL”
1 1 “AB”
3 2 “EF”
4 3 “GH”
2 3 “CD”
5 3 “IJ”

Figure 19.12: The contents of the the two tables in the implementation of the G H conceptual
relationship after executing Listing 19.57.

Listing 19.59: Trying to create a row into table g that is not related to any row in table h is not
possible. (stored in file GH_insert_error_1.sql ; output in Listing 19.60)

1 /* Can we create a row in G unrelated to any row in H? */
2
3 INSERT INTO g (x) VALUES (’777’);

Listing 19.60: The stdout resulting from the SQL statements in GH_insert_error_1.sql given in List-
ing 19.59.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf GH_insert_error_1.sql

2 psql:conceptualToRelational/GH_insert_error_1.sql:3: ERROR: null value in
↪→ column "fkhid" of relation "g" violates not -null constraint

3 DETAIL: Failing row contains (4, null , 777).
4 psql:conceptualToRelational/GH_insert_error_1.sql:3: STATEMENT: /* Can we

↪→ create a row in G unrelated to any row in H? */
5 INSERT INTO g (x) VALUES (’777’);
6 # psql 16.9 failed with exit code 3.

multiple entities of type H can be related to the very same entity of type G.
At this stage, we have enforced that each entity of type H can be related to

zero or one entity of type G. We could now go and add a constraint g_fkhid_fk
as FOREIGN KEY (fkhid)REFERENCES h (hid) to table g via ALTER TABLE g ADD CONSTRAINT... . This
would enforce that each entity of type G must be related to at least one entity of type H. However,
this would not enforced that, if an entity of type G is related to one entity of type H as its “primary H,”
then that very same H entity also is related to the G entity.

We can do this by creating the foreign key REFERENCES constraint not on the single column hid ,
but by enforcing that the pair (fkhid, gid) from table g must also appear as pair (hid, fkgid) in
table h . We know that each value of gid can only exist once in table g . We also know that each value
of hid can only exist once in table h . Therefore, the first part of the column pair in the constraint,
fkhid (or, looking at it from the other side, hid), already selects one unique row in table h . There
can never be another row with the same hid value, because that’s the primary key of table h . The
second element of the pair, i.e., gid (or, looking from the other side, fkgid) thus forces that this single
row in table h has the value gid stored in fkgid . Since foreign key REFERENCES constraints can only
reference UNIQUE column(s), we must add the constraint UNIQUE (hid, fkgid) to table h .

Let’s go over this one more time: We specify the constraint g_fkhid_gid_fk
as FOREIGN KEY (fkhid, gid)REFERENCES h (hid, fkgid) . On the side of the table g , this
constraint looks at a row and takes the value of its foreign key fkhid to table h together with its own
primary key gid as a tuple. On the side of the table h , there must be a corresponding tuple with
the primary key hid and the value of its corresponding foreign key fkgid . Of course, the primary
keys of both tables are always unique. Let’s say a row in table g has primary key gid=u and foreign
key fkhid=v . Then the row in table h with primary key hid=v must have the foreign key fkgid=u .
Of course, there could also be another row in table h which also has foreign key fkgid=u . That’s OK,
because multiple entities of type H can reference the same entity of type G.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_1.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_1.sql

CHAPTER 19. LOGICAL MODEL DESIGN 246

Listing 19.61: Trying to create a row in table g that references a row in table h which is not referencing
any row in table g is not possible. (stored in file GH_insert_error_2.sql ; output in Listing 19.62)

1 /* Can we create a row in G related to a row in H unrelated to any G? */
2
3 INSERT INTO g (fkhid , x) VALUES (6, ’888’);

Listing 19.62: The stdout resulting from the SQL statements in GH_insert_error_2.sql given in List-
ing 19.61.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf GH_insert_error_2.sql

2 psql:conceptualToRelational/GH_insert_error_2.sql:3: ERROR: insert or
↪→ update on table "g" violates foreign key constraint "g_fkhid_gid_fk"

3 DETAIL: Key (fkhid , gid)=(6, 5) is not present in table "h".
4 psql:conceptualToRelational/GH_insert_error_2.sql:3: STATEMENT: /* Can we

↪→ create a row in G related to a row in H unrelated to any G? */
5 INSERT INTO g (fkhid , x) VALUES (6, ’888’);
6 # psql 16.9 failed with exit code 3.

Listing 19.63: Trying to create a row in table g that references a row in table h which is already
referencing another row in table g is not possible. (stored in file GH_insert_error_3.sql ; output
in Listing 19.64)

1 /* Can we insert a G that is related to a H related to another G? */
2
3 -- H with id 4 is already related to G with id 3.
4 -- Can we make our new G row point to it as its "primary H" anyway?
5 INSERT INTO g (fkhid , x) VALUES (4, ’999’);

Listing 19.64: The stdout resulting from the SQL statements in GH_insert_error_3.sql given in List-
ing 19.63.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf GH_insert_error_3.sql

2 psql:conceptualToRelational/GH_insert_error_3.sql:5: ERROR: duplicate key
↪→ value violates unique constraint "g_fkhid_key"

3 DETAIL: Key (fkhid)=(4) already exists.
4 psql:conceptualToRelational/GH_insert_error_3.sql:5: STATEMENT: /* Can we

↪→ insert a G that is related to a H related to another G? */
5 -- H with id 4 is already related to G with id 3.
6 -- Can we make our new G row point to it as its "primary H" anyway?
7 INSERT INTO g (fkhid , x) VALUES (4, ’999’);
8 # psql 16.9 failed with exit code 3.

With these constraints, given in Listing 19.55, we have implemented the relationship pattern. Let
us check what we have done.

Can we insert a row into table g that is not related to at least one row in table h? No, we cannot,
as shown in Listing 19.59. Inserting a row in g requires us to specify a value for the foreign key fkhid
and the corresponding row in table h must exist. We can insert rows into table h that are not related to
any row in table g , but that is OK: Entities of type H are related to either zero or one entities of type G.
But could we insert a row into table G that references a row in table h that is not already related to
another entity of type G? No, because the constraint g_fkhid_gid_fk requires that the corresponding
row in table h would reference back to the row in table g (Listing 19.61).

So how do we actually insert rows into table g? We cannot insert a row that does not references a
row in table h . We cannot insert a row that references no row in table g . And if we wanted to insert
a row into table g that references a row in table h that already references some row in table g , then

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_3.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_3.sql

CHAPTER 19. LOGICAL MODEL DESIGN 247

Listing 19.65: Trying the same thing as in Listing 19.63, but this time also attempting to re-adjusting
the row in h with an UPDATE instruction to make it reference the new row in table g , is also not
possible. (stored in file GH_insert_error_4.sql ; output in Listing 19.66)

1 /* Can we insert a G that is related to a H related to another G? */
2
3 -- H with id 4 is already related to G with id 3.
4 -- Can we make it point to the new G row instead?
5 WITH g_new AS (INSERT INTO g (fkhid , x) VALUES (4, ’555’)
6 RETURNING gid , fkhid)
7 UPDATE h SET fkgid = g_new.gid FROM g_new WHERE hid = fkhid;

Listing 19.66: The stdout resulting from the SQL statements in GH_insert_error_4.sql given in List-
ing 19.65.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf GH_insert_error_4.sql

2 psql:conceptualToRelational/GH_insert_error_4.sql:7: ERROR: duplicate key
↪→ value violates unique constraint "g_fkhid_key"

3 DETAIL: Key (fkhid)=(4) already exists.
4 psql:conceptualToRelational/GH_insert_error_4.sql:7: STATEMENT: /* Can we

↪→ insert a G that is related to a H related to another G? */
5 -- H with id 4 is already related to G with id 3.
6 -- Can we make it point to the new G row instead?
7 WITH g_new AS (INSERT INTO g (fkhid , x) VALUES (4, ’555’)
8 RETURNING gid , fkhid)
9 UPDATE h SET fkgid = g_new.gid FROM g_new WHERE hid = fkhid;

10 # psql 16.9 failed with exit code 3.

this would mean that we already need to have an existing row in table g . Which we do not have.
Now that we have created our two tables and protected their referential integrity using fierce

constraints, we need to see that we can insert data into them. We have to solve this odd chicken-and-
egg problem.

In Listing 19.57, we begin by first filling the table h . Since entities of type H do not necessarily
be related any entity of type G, this can be done without worrying about constraints. When we insert
an entity of type G into our table g , we must, at the same time, create a relationship to an entity of
type H in table h . We do this by knowing that:

A constraint that is not deferrable will be checked immediately after every com-
mand. Checking of constraints that are deferrable can be postponed until the end of
the transaction. . .

— [99], 2025

In PostgreSQL (and probably several other DBMSes), referential integrity constraints are checked at the
end of a command’s execution. Indeed, a single command in PostgreSQL behave like transactions [405],
meaning that referencial integrity constraints are checked at at the end of the command execution.
The changes are committed to the data if the constraints are met and rolled back otherwise. To insert
a row into table g , we also need to modify a record from table h that currently is unrelated to any row
in g to relate to that new row, If we can wrap the insertion and the modification into a single SQL
command, then things might work.

In order to modify the row in table h , we must know the primary key gid of the new row in table g .
We declared the primary key gid of table g as INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY .
This means that the values of this key are generated when the rows are created. This, in turn, means
that before inserting the row into table g , we do not know the value that its primary key will have.
Luckily, this is a very common problem: “What if we insert some data into a table with automatically
generated primary keys and then need the key that was assigned to that data?” PostgreSQL offers an
answer with the RETURNING keyword3 [329].

3This is a PostgreSQL addition to SQL [418] and does not seem to be part of the SQL standard, but it is also

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_4.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_4.sql

CHAPTER 19. LOGICAL MODEL DESIGN 248

Listing 19.67: Changing a row in table h that references a row in table g to now reference another row
in table g is not possible. (stored in file GH_insert_error_5.sql ; output in Listing 19.68)

1 /* Can we change the relationship of a H away from its primary G? */
2
3 -- H with id 1 is used as "primary H" for G with ID 1.
4 -- Can we make it point to another G?
5 UPDATE h SET fkgid = 3 WHERE hid = 1;

Listing 19.68: The stdout resulting from the SQL statements in GH_insert_error_5.sql given in List-
ing 19.67.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf GH_insert_error_5.sql

2 psql:conceptualToRelational/GH_insert_error_5.sql:5: ERROR: update or
↪→ delete on table "h" violates foreign key constraint "g_fkhid_gid_fk"
↪→ on table "g"

3 DETAIL: Key (hid , fkgid)=(1, 1) is still referenced from table "g".
4 psql:conceptualToRelational/GH_insert_error_5.sql:5: STATEMENT: /* Can we

↪→ change the relationship of a H away from its primary G? */
5 -- H with id 1 is used as "primary H" for G with ID 1.
6 -- Can we make it point to another G?
7 UPDATE h SET fkgid = 3 WHERE hid = 1;
8 # psql 16.9 failed with exit code 3.

The statement INSERT INTO g (fkhid, x)VALUES (1, ’123’)RETURNING gid, fkhid would insert
a row into the table g where the value of the attribute x is ’123’ and the value of the attribute fkhid
is 1 . It would return the value of the primary key column gid that was automatically generated and
assigned to this row as well as the value of fkhid , which would be 1 in this case. Of course, this
statement will fail, because it would violate our constraint g_fkhid_gid_fk from Listing 19.55. But we
are one step closer to make things work.

One idea would be to build some Frankensteinian query trying to plug the first insert
into the second in the form UPDATE h SET gid = (INSERT INTO g (fkhid, x)VALUES (1, ’123’)
RETURNING gid, fkhid)WHERE h.hid = fkhid; . This is not a valid approach in SQL, and PostgreSQL
does not like this either. It would be a single statement, but this does not work.

However, we can use another tool: common table expressions (CTEs). A CTE allows us to as-
sign a name to a sub-expression of a query. This sub-expression then works a bit like a temporary
table. It is evaluated only once and can be used like a read-only table in other queries. For exam-
ple, WITH cats AS (SELECT age, name FROM animals WHERE type=’cat’) , we would assign the result
of the query SELECT age, name FROM animals WHERE type=’cat’ to the CTE cats . We could then
use cats as if it was a read-only table and do something like SELECT name FROM cats; to get the cat
names. It’s a bit like a VIEW , but it is part of a single SQL command.

We now put everything together: Assume that we already inserted a row into table h that
has the primary key 1. We can do that at any time, because these rows do not need to be re-
lated to rows in table g . Now, we put the row insertion into table g into a CTE g_id by writing
WITH g_new AS (INSERT INTO g (fkhid, x)VALUES (1, ’123’)RETURNING id, fkhid) . This CTE will
insert a row into table g that references the row of table h that has primary key 1. It will also
return the primary key of the newly generated row in table g as gid and the foreign key fkhid .
Then we use this CTE when updating the row with primary key hid = fkhid in table h by doing
UPDATE h SET fkgid = g_new.gid FROM g_new WHERE h.gid = g_new.fkhid; . This would make the
foreign key stored in this row point to our new row in table g . Since both sub-expression are part of a
single command, the referential integrity constraints (the REFERENCES constraints) are checked only at
the very end, when the ; is reached. By this time, the referential integrity has been established, since
we inserted one row into table g and made the corresponding row in table h reference it.

The contents of the tables g and h after inserting the data are shown in Figure 19.12. Relating
the existing rows in g to additional rows in h is then much easier and can be done with single

supported by MariaDB [206] and SQLite [328].

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_5.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/GH_insert_error_5.sql

CHAPTER 19. LOGICAL MODEL DESIGN 249

UPDATE statements applied to table h .

We now conduct a few additional sanity tests to check whether our constraints work and really
protect the referential integrity. First, we check whether it is possible to make a second row in table g
to a row in table h that is already related to another row in table g . This is not allowed by our
relationship model. The output of the execution of Listing 19.63 shows that this is not possible. We
can also not redirect a row in table h to a new row in table g (Listing 19.65) nor can we make a row in
table h that currently is related to a row in table g point to another one via an UPDATE (Listing 19.67).
It indeed seems that our constraints properly protected the relationships.

19.2.2.5 I J

We have the two entity types I and J. Each entity of type I must be linked to exactly one entity of
type J. Each entity of type J must be linked to exactly one entity of type I.

We discussed a few examples of this relationship pattern from back in Section 18.5 (The Cardinality
of Relationships). For example, in classical police movies or TV shows, there are always teams of two
police(wo)men together performing a police patrol. We can also imagine that there always is one bus
driver working together with one ticket inspector together to service a bus route. These examples are
illustrated in Figure 19.13.

In this scenario, we only need a single table [358]. We just merge the attributes of the two entity
types and put them all into one table. If each pair of related entities of types I and J forms a single row
in table i_j , then there can never be any issue with the referential integrity. Neither can we have a row
without the I entity, nor can we have a row without entity of type J. This is illustrated in Listing 19.69.
Since this is so very straightforward, we will not exercise inserting data into this table and selecting it
back in another listing.

Police

Officer
I J

Bus

Driver

Ticket

Inspector

police patrol

Figure 19.13: Examples of the I J relationship pattern from back in Section 18.5 (The Cardinality
of Relationships).

Listing 19.69: The single-table realization of an I J conceptual relationship. (src)
1 /* Create the table for an I-||-----||-J relationship. */
2
3 -- Table I_J: Each row holds one entity of type I and one of type J.
4 CREATE TABLE i_j (
5 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 x CHAR (3), -- example of other attributes of entity type I
7 y CHAR (2) -- example of other attributes of entity type J
8);

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/IJ_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 250

19.2.2.6 K L

We have the two entity types K and L. Each entity of type K may be connected to zero, one, or multiple
entities of type L. Each entity of type L is connected to exactly one entity of type K.

We already encountered this relationship pattern in back in Figure 18.14, when we modeled the
relationship between the entity types Personal ID and ID Type. We found that there can be many
different types of IDs, including the Chinese IDs (中国公民身份号码), passports, visas, or even mobile
phone numbers. For each such type, we may have zero, one, or many personal ID records stored in
our DB. Each personal ID, however, must always belong to exactly one ID type. This is illustrated in
Figure 19.14.

We need a table k for the entities of type K and a table l for the entities of type L. We call the
primary key for table k kid and also add the example attribute x . The primary key for table l be lid
and we again provide the example attribute y . Every row of table l must be related to exactly one
row of table k . The three table solution from the E F scenario therefore makes no sense: The
third table could never have few rows, it would always have exactly as many rows as l .

The sensible solution is to add a foreign key column to table l that references the primary key of
table k , as shown in Listing 19.70. Since the relationship is mandatory, the column must be NOT NULL .
It does not need to be unique, because each row in table k can be related to arbitrarily many rows

ID Type

Name

Validation

RegEx

Value

Valid From Valid To

Personal ID
belongs to

Type
K L

Figure 19.14: We encountered the K L relationship pattern in Figure 18.14.

Listing 19.70: The realization of a K L conceptual relationship. (stored in file KL_tables.sql ;
output in Listing 19.71)

1 /* Create the tables for a K-||-----o<-L relationship. */
2
3 -- Table K: Each row in K is related to zero or one or many rows in L.
4 CREATE TABLE k (
5 kid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 x CHAR (3) -- example of other attributes
7);
8
9 -- Table L: Each row in L is related to exactly one row in K.

10 CREATE TABLE l (
11 lid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 fkkid INT NOT NULL REFERENCES k (kid), -- the foreign key to K.
13 y CHAR (2) -- example of other attributes
14);

Listing 19.71: The stdout resulting from the SQL statements in KL_tables.sql given in Listing 19.70.
1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1

↪→ -ebf KL_tables.sql
2 CREATE TABLE
3 CREATE TABLE
4 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/KL_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/KL_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 251

Listing 19.72: Inserting into and selecting data from the realization of an K L conceptual rela-
tionship given in Listing 19.70. (stored in file KL_insert_and_select.sql ; output in Listing 19.73)

1 /* Inserting data into the tables for the K-||-----o<-L relationship. */
2
3 -- Insert some rows into the table for entity type K.
4 INSERT INTO k (x) VALUES (’123’), (’456’), (’789’), (’101’);
5
6 -- Insert some rows into the table for entity type L, referencing K.
7 INSERT INTO l (y, fkkid) VALUES (’AB’, 1), (’CD’, 1), (’EF’, 4),
8 (’GH’, 3);
9

10 -- Combine the rows from K and L.
11 SELECT kid , x, lid , y FROM l INNER JOIN k ON l.fkkid = k.kid;

Listing 19.73: The stdout resulting from the SQL statements in KL_insert_and_select.sql given
in Listing 19.72.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf KL_insert_and_select.sql

2 INSERT 0 4
3 INSERT 0 4
4 kid | x | lid | y
5 -----+-----+-----+----
6 1 | 123 | 1 | AB
7 1 | 123 | 2 | CD
8 4 | 101 | 3 | EF
9 3 | 789 | 4 | GH

10 (4 rows)
11
12 # psql 16.9 succeeded with exit code 0.

Table k
kid x
1 “123”
2 “456”
3 “789”
4 “101”

Table l
lid fkkid y
1 1 “AB”
2 1 “CD”
3 4 “EF”
4 3 “GH”

Figure 19.15: The contents of the the two tables in the implementation of the K L conceptual
relationship after executing Listing 19.72.

in l .

We insert some data into this structure in Listing 19.72. We can first create the rows for table k ,
because their relationship to rows in table l is optional. Then we insert rows in table l . For each of
them, we must provide a valid value for the column fkkid , i.e., for the foreign key to table k . The
value in this column must match one existing value in column kid of table k . The reason is that each
row in table l must be related to exactly one row in table k . Thus, providing NULL as fkkid is not
possible. The contents of the tables k and l after inserting the data are shown in Figure 19.15.

It is impossible to add a row to table l without providing an existing value of the primary key
attribute id of table k for the foreign key column k . In other words, because of the REFERENCES and
the NOT NULL constraint, each row in table l must reference exactly one row in table k . It cannot
reference more than one row, because the atttribute k can only take on a single value. In turn, the
rows in table k can be referenced by arbitrarily many rows in table l : maybe by no row at all, maybe
by one, maybe be hundreds. This is exactly the meaning of the “optionally-many” relationship end
pointing towards entity type L. In Listing 19.72, we insert some rows into both tables and combine the
data together using a single INNER JOIN .

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/KL_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/KL_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 252

Person

Value

Valid From Valid To

Personal IDowns ID

Surrogate

Key

M N

Figure 19.16: We encountered the M N relationship pattern in Figure 18.14.

19.2.2.7 M N

We have the two entity types M and N. Each entity of type M must be linked to at least one entity
of type N, but can also be linked to many of them. Each entity of type N is connected to exactly one
entity of type M.

We encountered this relationship pattern in Figure 18.14, when we tried to model the relationship
between entities of type Person and Personal ID. Each person must have at least one personal ID. Each
personal ID belongs to exactly one person. This is illustrated in Figure 19.16.

Implementing the referential integrity of this relationship pattern in SQL is a bit complicated but
doable. I did struggle with the G H relationship pattern back in Section 19.2.2.4 (G H),
but in the end we figured it out. A very similar pattern can be implemented now. We only have one
more constraint, namely the one that enforces that all entities of type N are linked to one entity of
type M each. And this additional constraint is the same that we used back then, just “the other way
around.” Writing down the table structures and constraints as shown in Listing 19.74 can thus be
understood once we comprehend Listing 19.55 from back in Section 19.2.2.4. Well, almost.

We create a table m for the entities of type M in Listing 19.74. It has primary key mid and the
additional example data column x . This also needs an attribute fknid that will later be used to
reference one row in table n . Since each entity of type M must be linked to at least one entity of
type N, this column will be NOT NULL . Since each entity of type N must be linked to exactly one entity
of type M (and not more than one), we also mark the column as UNIQUE .

Now we create the table n for storing entities of type N. The primary key be nid and the additional
example data column is y . Since each row in n must be related to exactly one row in m , we also
add a column fkmid to this table. It REFERENCES the primary key mid of table m . The difference
between Listing 19.74 and Listing 19.55 is that now fkmid of table n is NOT NULL , whereas the foreign
key fkgid for table h could be NULL . This is because every entity of type N must be related to an
entity of type M, whereas back in Section 19.2.2.4, each entity of type H could be related to one or
zero entities of type G. Apart from this difference, we now add the constraint m_fknid_mid_fk which
works exactly as g_fkhid_gid_fk in Listing 19.55.

It turns out that this single added NOT NULL constraint imposed on column fkmid of table n makes
inserting data much harder. The “G end” of the relationship in Section 19.2.2.4 was an “optionally
one”. Once we had created the tables and constraints, we could begin storing data by first populating
the table for the entities of type H. Then we could take of creating the records for the table for the
entities of type G and fix the referential integrity.

Regardless of how we look at it, we do not have such luck this time: Each entity of type N must
be linked to exactly one existing entity of type M. Each entity of type M must be linked to at least one
existing entity of type N. This is a much worse problem, because we need to know the primary key nid
of a row in table n in order to create a new row in table m and we need to know the primary key mid
of a row in table m to create a new row in table n .

It is clear that we will have to use CTEs to approach this problem. The only solution I could find
for this problem is based on the following idea: We need to, somehow, be able to get the value of the
primary key that would be used when we create a new row in m before creating this row. If we know
the primary key value, then we can use its value as fkmid when inserting a row into table n and get

CHAPTER 19. LOGICAL MODEL DESIGN 253

Listing 19.74: The realization of a M N conceptual relationship. (stored in file MN_tables.sql ;
output in Listing 19.75)

1 /* Create the tables for a M-||-----|<-N relationship. */
2
3 -- The sequence for the primary keys of the rows in m.
4 CREATE SEQUENCE sqmid AS INT;
5
6 -- Table M: Each row in M is related to one or multiple rows in N.
7 CREATE TABLE m (
8 mid INT DEFAULT NEXTVAL(’sqmid’) PRIMARY KEY , -- Use ID sequence!
9 fknid INT NOT NULL UNIQUE , -- UNIQUE: Each N is related to one M.

10 x CHAR (3) -- example of other attributes
11);
12
13 -- Table N: Each row in N is related exactly one row in M.
14 CREATE TABLE n (
15 nid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
16 fkmid INT NOT NULL REFERENCES m (mid),
17 y CHAR (2), -- example of other attributes
18 UNIQUE (nid , fkmid) -- needed for m_mid_fknid_fk
19);
20
21 -- To table M, we add the foreign key reference constraint towards
22 -- table N. This enforces the mandatory -many part of the relationship.
23 ALTER TABLE m ADD CONSTRAINT m_fknid_mid_fk FOREIGN KEY (fknid , mid)
24 REFERENCES n (nid , fkmid);

Listing 19.75: The stdout resulting from the SQL statements in MN_tables.sql given in Listing 19.74.
1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1

↪→ -ebf MN_tables.sql
2 CREATE SEQUENCE
3 CREATE TABLE
4 CREATE TABLE
5 ALTER TABLE
6 # psql 16.9 succeeded with exit code 0.

the primary key of that row. Then we use this primary key as fknid and actually insert the row into
table m .

This can be done if we generate the primary key for table m more explicitly than before. So far, we
would write something like mid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY . This means
that the column is a primary key is of type INT . It is GENERATED BY DEFAULT , which means that its
values or generated unless specified [157]. Thus, when inserting rows into the table, we could specify a
value for mid , which is then used, or we do not specify a value, in which case one will be generated for
us automatically. The AS IDENTITY means that, when a value is generated, it is taken from an implicit
sequence [198].

Instead of using an implicit sequence without name, we also create a sequence using the com-
mand CREATE SEQUENCE [98]. We create a sequence sqmid to generate the primary keys for the table m
in Listing 19.74 by writing CREATE SEQUENCE sqmid AS INT; . Such sequences will always be strictly
increasing. The next value of sqmid would be obtained atomically by NEXTVAL(’sqmid’) [350]. We
now define the primary key of table m as mid INT DEFAULT NEXTVAL(’sqmid’)PRIMARY KEY . This defi-
nition says that the value of the primary key mid can be provided when creating rows in m . If it is not
provided, then a DEFAULT value will be used [123]. This default value is computed by evaluating the
expression NEXTVAL(’sqmid’) . It will be the ever-increasing output of the sequence sqmid .

From a mechanical point of view, this works more or less like mid INT GENERATED BY DEFAULT AS
IDENTITY PRIMARY KEY . The difference is that we now can also generate valid values for mid without
creating rows in m . Of course we can use NEXTVAL(’sqmid’) in any SQL query, SELECT , INSERT , UPDATE

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 254

– whatever we want. And whenever NEXTVAL(’sqmid’) is invoked, it will step the sequence sqmid . It
will never return the same value (unless you evaluate it 264 times). This means that we can generate a
valid primary key value for table m , then insert a row into table n using this value as foreign key, and
then insert a row into table m actually using it as primary key.

In Listing 19.76, we thus insert a pair of rows into tables m and n as follows: First, we
generate the primary key for the row that we want to insert into table m as CTE that just invokes
NEXTVAL(’sqmid’) and remembers the result, i.e., m_id AS (SELECT NEXTVAL(’sqmid’)AS new_mid) .
Then we insert a row into table n , also as CTE, by doing
new_n AS (INSERT INTO n (y, fkmid)SELECT ’AB’, new_mid FROM m_id RETURNING nid, fkmid) .
This CTE returns the primary key nid of the new row in table n as well as the pre-
viously generated primary key new_mid for the row that we will insert into table m (as
fkmid). We use both values in to finally actually insert the row into table m by calling
INSERT INTO m (mid, x, fknid)SELECT fkmid, ’123’, nid FROM new_n; .

After this, if we want to append another row to table n and link it to the now existing row in
table m , we can do this more easily via INSERT INTO n (y, fkmid)VALUES (’CD’, 1); . The creation
of new rows for table m , however, requires us to have the two CTEs. The contents of the tables m
and n after inserting the data are shown in Figure 19.17. Reassembling the data from both tables can
be achieved with a single INNER JOIN , as illustrated at the bottom of Listing 19.76.

This solution requires several PostgreSQL-specific techniques, such as RETURNING , NEXTVAL , and
the creation of sequences. Other DBMSes certainly have similar or slightly different extensions to the
SQL standard that allow us to do similar things. In Listings 19.78 to 19.87 we perform similar sanity
tests as back in Section 19.2.2.4. We confirm that our constraints protect the referential integrity of
the data.

CHAPTER 19. LOGICAL MODEL DESIGN 255

Listing 19.76: Inserting into and selecting data from the realization of an M N conceptual
relationship given in Listing 19.74. (stored in file MN_insert_and_select.sql ; output in Listing 19.77)

1 /* Inserting data into the tables for the M-||-----|<-n relationship. */
2
3 -- Insert into M and N at the same time.
4 -- This creates M entry with id 1, and N entry with id 1, and
5 -- relationship (1, 1).
6 WITH m_id AS (SELECT NEXTVAL(’sqmid ’) AS new_mid),
7 new_n AS (INSERT INTO n (y, fkmid)
8 SELECT ’AB’, new_mid FROM m_id RETURNING nid , fkmid)
9 INSERT INTO m (mid , x, fknid) SELECT fkmid , ’123’, nid FROM new_n;

10
11 -- Create a new row in N referencing an existing row in M.
12 INSERT INTO n (y, fkmid) VALUES (’CD’, 1);
13
14 -- Insert into M and N at the same time.
15 WITH m_id AS (SELECT NEXTVAL(’sqmid ’) AS new_mid),
16 new_n AS (INSERT INTO n (y, fkmid)
17 SELECT ’EF’, new_mid FROM m_id RETURNING nid , fkmid)
18 INSERT INTO m (mid , x, fknid) SELECT fkmid , ’456’, nid FROM new_n;
19
20 -- Insert into M and N at the same time.
21 WITH m_id AS (SELECT NEXTVAL(’sqmid ’) AS new_mid),
22 new_n AS (INSERT INTO n (y, fkmid)
23 SELECT ’GH’, new_mid FROM m_id RETURNING nid , fkmid)
24 INSERT INTO m (mid , x, fknid) SELECT fkmid , ’789’, nid FROM new_n;
25
26 -- Create a new row in N referencing an existing row in M.
27 INSERT INTO n (y, fkmid) VALUES (’IJ’, 1);
28
29 -- Combine the rows from M and N.
30 SELECT mid , x, nid , y FROM n INNER JOIN m ON n.fkmid = m.mid;

Listing 19.77: The stdout resulting from the SQL statements in MN_insert_and_select.sql given
in Listing 19.76.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf MN_insert_and_select.sql

2 INSERT 0 1
3 INSERT 0 1
4 INSERT 0 1
5 INSERT 0 1
6 INSERT 0 1
7 mid | x | nid | y
8 -----+-----+-----+----
9 1 | 123 | 1 | AB

10 1 | 123 | 2 | CD
11 2 | 456 | 3 | EF
12 3 | 789 | 4 | GH
13 1 | 123 | 5 | IJ
14 (5 rows)
15
16 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 256

Table m
mid fknid x
1 1 “123”
2 3 “456”
3 4 “789”

Table n
nid fkmid y
1 1 “AB”
2 1 “CD”
3 2 “EF”
4 3 “GH”
5 1 “IJ”

Figure 19.17: The contents of the the two tables in the implementation of the M N conceptual
relationship after executing Listing 19.76.

Listing 19.78: Trying to create a row into table m that is not related to any row in table n is not
possible. (stored in file MN_insert_error_1.sql ; output in Listing 19.79)

1 /* Can we create a row in M unrelated to any row in N? */
2
3 INSERT INTO m (x) VALUES (’777’);

Listing 19.79: The stdout resulting from the SQL statements in MN_insert_error_1.sql given in List-
ing 19.78.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf MN_insert_error_1.sql

2 psql:conceptualToRelational/MN_insert_error_1.sql:3: ERROR: null value in
↪→ column "fknid" of relation "m" violates not -null constraint

3 DETAIL: Failing row contains (4, null , 777).
4 psql:conceptualToRelational/MN_insert_error_1.sql:3: STATEMENT: /* Can we

↪→ create a row in M unrelated to any row in N? */
5 INSERT INTO m (x) VALUES (’777’);
6 # psql 16.9 failed with exit code 3.

Listing 19.80: Trying to create a row into table n that is not related to any row in table m is not
possible. (stored in file MN_insert_error_2.sql ; output in Listing 19.81)

1 /* Can we create a row in N unrelated to any row in M? */
2
3 INSERT INTO n (y) VALUES (’ZZ’);

Listing 19.81: The stdout resulting from the SQL statements in MN_insert_error_2.sql given in List-
ing 19.80.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf MN_insert_error_2.sql

2 psql:conceptualToRelational/MN_insert_error_2.sql:3: ERROR: null value in
↪→ column "fkmid" of relation "n" violates not -null constraint

3 DETAIL: Failing row contains (6, null , ZZ).
4 psql:conceptualToRelational/MN_insert_error_2.sql:3: STATEMENT: /* Can we

↪→ create a row in N unrelated to any row in M? */
5 INSERT INTO n (y) VALUES (’ZZ’);
6 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_1.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_1.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_2.sql

CHAPTER 19. LOGICAL MODEL DESIGN 257

Listing 19.82: Trying to create a row in table m that references a row in table n which is referencing
another row in table m is not possible. (stored in file MN_insert_error_3.sql ; output in Listing 19.83)

1 /* Can we insert a M that is related to a N related to another M? */
2
3 -- N with id 4 is already related to M with id 3.
4 -- Can we make our new M row point to it as its "primary N" anyway?
5 INSERT INTO m (fknid , x) VALUES (4, ’888’);

Listing 19.83: The stdout resulting from the SQL statements in MN_insert_error_3.sql given in List-
ing 19.82.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf MN_insert_error_3.sql

2 psql:conceptualToRelational/MN_insert_error_3.sql:5: ERROR: duplicate key
↪→ value violates unique constraint "m_fknid_key"

3 DETAIL: Key (fknid)=(4) already exists.
4 psql:conceptualToRelational/MN_insert_error_3.sql:5: STATEMENT: /* Can we

↪→ insert a M that is related to a N related to another M? */
5 -- N with id 4 is already related to M with id 3.
6 -- Can we make our new M row point to it as its "primary N" anyway?
7 INSERT INTO m (fknid , x) VALUES (4, ’888’);
8 # psql 16.9 failed with exit code 3.

Listing 19.84: Trying the same thing as in Listing 19.82, but this time also attempting to re-adjusting
the row in n with an UPDATE instruction to make reference the new row in table m , is also not
possible. (stored in file MN_insert_error_4.sql ; output in Listing 19.85)

1 /* Can we insert a M that is related to a N related to another M? */
2
3 -- N with id 4 is already related to M with id 3.
4 -- Can we make it point to the new M row instead?
5 WITH m_new AS (INSERT INTO m (fknid , x) VALUES (4, ’555’)
6 RETURNING mid , fknid)
7 UPDATE n SET fkmid = m_new.mid FROM m_new WHERE nid = fknid;

Listing 19.85: The stdout resulting from the SQL statements in MN_insert_error_4.sql given in List-
ing 19.84.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf MN_insert_error_4.sql

2 psql:conceptualToRelational/MN_insert_error_4.sql:7: ERROR: duplicate key
↪→ value violates unique constraint "m_fknid_key"

3 DETAIL: Key (fknid)=(4) already exists.
4 psql:conceptualToRelational/MN_insert_error_4.sql:7: STATEMENT: /* Can we

↪→ insert a M that is related to a N related to another M? */
5 -- N with id 4 is already related to M with id 3.
6 -- Can we make it point to the new M row instead?
7 WITH m_new AS (INSERT INTO m (fknid , x) VALUES (4, ’555’)
8 RETURNING mid , fknid)
9 UPDATE n SET fkmid = m_new.mid FROM m_new WHERE nid = fknid;

10 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_3.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_3.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_4.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_4.sql

CHAPTER 19. LOGICAL MODEL DESIGN 258

Listing 19.86: Changing a row in table n that references a row in table m to now reference another row
in table m is not possible. (stored in file MN_insert_error_5.sql ; output in Listing 19.87)

1 /* Can we change the relationship of a N away from its primary M? */
2
3 -- N with id 1 is used as "primary N" for M with ID 1.
4 -- Can we make it point to another M?
5 UPDATE n SET fkmid = 3 WHERE nid = 1;

Listing 19.87: The stdout resulting from the SQL statements in MN_insert_error_5.sql given in List-
ing 19.86.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf MN_insert_error_5.sql

2 psql:conceptualToRelational/MN_insert_error_5.sql:5: ERROR: update or
↪→ delete on table "n" violates foreign key constraint "m_fknid_mid_fk"
↪→ on table "m"

3 DETAIL: Key (nid , fkmid)=(1, 1) is still referenced from table "m".
4 psql:conceptualToRelational/MN_insert_error_5.sql:5: STATEMENT: /* Can we

↪→ change the relationship of a N away from its primary M? */
5 -- N with id 1 is used as "primary N" for M with ID 1.
6 -- Can we make it point to another M?
7 UPDATE n SET fkmid = 3 WHERE nid = 1;
8 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_5.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/MN_insert_error_5.sql

CHAPTER 19. LOGICAL MODEL DESIGN 259

19.2.2.8 O P

We have the two entity types O and P. Each entity of type O may be connected to zero, one, or multiple
entities of type P. Each entity of type P may be connected to zero, one, or multiple entities of type O.

We encountered this pattern back in Figure 18.15 when we modeled the relationship between the
different types of modules and the different types of teacher position. For example, maybe a lecturer
can propose and chair a module of type elective specialization course. The mandatory core module may
only be chaired by a full professor, who is also permitted to chair elective specialization course. The
Master’s (thesis module) supervision may only be available to teachers that hold the position Master’s
supervisor. This means that each position may give a faculty member the credentials to chair zero,
one, or many different types of modules. At the same time, a module type may be chaired by teachers
belonging to zero, one, or many position types, as illustrated in Figure 19.18. Granted, the situation
where a module type cannot be chaired by any position type would be very strange. This maybe a
shortcoming of our model back then. . .

When implementing this pattern, we need a table o for the entities of type O. The primary key
of this table be oid and there also will be the example attribute x . We also need a table p for the
entities of type P, which gets the primary key pid and the example attribute y . Now, since each row
in o can be related to multiple rows in table p and vice versa, no two-table solution is possible. This
time, there is no way around it: We need three tables. But this three-table approach will look pretty
much like the one in Section 19.2.2.1 for the A B, but with different UNIQUE constraints.

In Listing 19.88, we add the table relate_o_and_p which has two columns, fkoid and fkpid ,
which are foreign keys pointing to the primary keys oid and pid of tables o and p , respectively.
This is ensured with corresponding REFERENCES constraints. Both columns are marked as NOT NULL .
Neither of them is UNIQUE , because each row of table o can be related to multiple rows of table p
and vice versa. Still, the a pair (fkoid, fkpid) can appear only once in the table, because two
specific rows in tables o and p can, of course, be related only once to each other. We could enforce
this with a constraint UNIQUE (fkoid, fkpid) . However, the right solution here is to go directly
for PRIMARY KEY (fkoid, fkpid) . Our table needs a primary key, and here, the only possible primary
key are the pairs of (fkoid, fkpid) . And primary keys must be unique by default, so this constraint
also covers the uniqueness.

In Listing 19.90, we now insert data into the two tables. Since both relationship ends are optional,
we can first enter some data into the tables o and p . Then we can add the relationships between the
rows of these tables by inserting rows into table relate_o_and_p . The contents of all three tables after
inserting the data are displayed in Figure 19.19. If we want to recombine data from the two tables, we
can do this with two INNER JOIN expressions.

During the above example, we inserted the row (1, 1) into table relate_o_and_p . This row
establishes that the row with primary key oid = 1 of table o is related to the row with primary
key pid = 1 in table p . In Listing 19.92, we try inserting the row again into relate_o_and_p . Of

Position TypeName

Module TypeName

can chair

is under-

graduate

is graduate

O

P

Figure 19.18: We encountered the O P relationship pattern in Figure 18.15.

CHAPTER 19. LOGICAL MODEL DESIGN 260

Listing 19.88: The realization of a O P conceptual relationship. (stored in file OP_tables.sql ;
output in Listing 19.89)

1 /* Create the tables for an O->o-----o<-P relationship. */
2
3 -- Table O: Each row in O is related to zero or one or many rows in P.
4 CREATE TABLE o (
5 oid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 x CHAR (3) -- example of other attributes
7);
8
9 -- Table P: Each row in P is related to zero or one or many rows in O.

10 CREATE TABLE p (
11 pid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 y CHAR (2) -- example of other attributes
13);
14
15 -- The table for managing the relationship between O and P.
16 CREATE TABLE relate_o_and_p (
17 fkoid INT NOT NULL REFERENCES o (oid),
18 fkpid INT NOT NULL REFERENCES p (pid),
19 PRIMARY KEY (fkoid , fkpid) -- Primary key includes both columns.
20);

Listing 19.89: The stdout resulting from the SQL statements in OP_tables.sql given in Listing 19.88.
1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1

↪→ -ebf OP_tables.sql
2 CREATE TABLE
3 CREATE TABLE
4 CREATE TABLE
5 # psql 16.9 succeeded with exit code 0.

course, no two rows can be related twice. (It would make, for example, no sense to assign the
same address twice to the same person.) Thanks to the PRIMARY KEY constraint that we attached to
table relate_o_and_p , this insertion fails.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/OP_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/OP_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 261

Listing 19.90: Inserting into and selecting data from the realization of an O P conceptual rela-
tionship given in Listing 19.88. (stored in file OP_insert_and_select.sql ; output in Listing 19.91)

1 /* Inserting data into the tables for the O->o-----o<-P relationship. */
2
3 -- Insert some rows into the table for entity type O.
4 INSERT INTO o (x) VALUES (’123’), (’456’), (’789’), (’101’);
5
6 -- Insert some rows into the table for entity type P.
7 INSERT INTO p (y) VALUES (’AB’), (’CD’), (’EF’), (’GH’);
8
9 -- Create some relationships between O and P.

10 INSERT INTO relate_o_and_p (fkoid , fkpid) VALUES
11 (1, 1), (1, 2), (2, 2), (4, 1), (3, 2);
12
13 -- Combine the rows from O and P.
14 SELECT oid , x, pid , y FROM relate_o_and_p
15 INNER JOIN o ON o.oid = relate_o_and_p.fkoid
16 INNER JOIN p ON p.pid = relate_o_and_p.fkpid;

Listing 19.91: The stdout resulting from the SQL statements in OP_insert_and_select.sql given
in Listing 19.90.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf OP_insert_and_select.sql

2 INSERT 0 4
3 INSERT 0 4
4 INSERT 0 5
5 oid | x | pid | y
6 -----+-----+-----+----
7 1 | 123 | 1 | AB
8 1 | 123 | 2 | CD
9 2 | 456 | 2 | CD

10 4 | 101 | 1 | AB
11 3 | 789 | 2 | CD
12 (5 rows)
13
14 # psql 16.9 succeeded with exit code 0.

Table o
oid x
1 “123”
2 “456”
3 “789”
4 “101”

Table p
pid y
1 “AB”
2 “CD”
3 “EF”
4 “GH”

Table relate_o_and_p
fkoid fkpid

1 1
1 2
2 2
4 1
3 2

Figure 19.19: The contents of the the three tables in the implementation of the O P conceptual
relationship after executing Listing 19.90.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/OP_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/OP_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 262

Listing 19.92: Trying to relate two entities twice, which is of course not permitted in any relationship
pattern. (stored in file OP_insert_error.sql ; output in Listing 19.93)

1 /* Try to create a relationship that already exists. */
2
3 -- The relationship (1, 1) already exists , so this will fail.
4 INSERT INTO relate_o_and_p (fkoid , fkpid) VALUES (1, 1);

Listing 19.93: The stdout resulting from the SQL statements in OP_insert_error.sql given in List-
ing 19.92.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf OP_insert_error.sql

2 psql:conceptualToRelational/OP_insert_error.sql :4: ERROR: duplicate key
↪→ value violates unique constraint "relate_o_and_p_pkey"

3 DETAIL: Key (fkoid , fkpid)=(1, 1) already exists.
4 psql:conceptualToRelational/OP_insert_error.sql :4: STATEMENT: /* Try to

↪→ create a relationship that already exists. */
5 -- The relationship (1, 1) already exists , so this will fail.
6 INSERT INTO relate_o_and_p (fkoid , fkpid) VALUES (1, 1);
7 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/OP_insert_error.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/OP_insert_error.sql

CHAPTER 19. LOGICAL MODEL DESIGN 263

19.2.2.9 Q R

We have the two entity types Q and R. Each entity of type Q may be connected to zero, one, or
multiple entities of type R. Each entity of type R must be connected to at least one entity of type P,
but can be connected to many.

We came across this situation when modeling the messaging subsystem of our teaching management
platform back in Figure 18.16. A message must have at least one receiver, but it could also be sent
to multiple people at once. Each person may receive zero, one, or many messages. This situation is
sketched in Figure 19.20.

Let us again begin by establishing the basic tables that we need and then sort out how we can

Person

Surrogate-

Key

Message

Subject

Body

When

Q R

sender

is reply

receiver

Figure 19.20: We encountered the Q R relationship pattern in Figure 18.16.

Listing 19.94: The realization of a Q R conceptual relationship. (stored in file QR_tables.sql ;
output in Listing 19.95)

1 /* Create the tables for a Q->o-----|<-R relationship. */
2
3 -- Table Q: Each row in Q is related to one or multiple rows in R.
4 CREATE TABLE q (
5 qid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
6 fkrid INT NOT NULL , -- later used to reference R via relate_q_and_r
7 x CHAR (3) -- example for other attributes
8);
9

10 -- Table R: Each row in R is related to zero , one , or many rows in Q.
11 CREATE TABLE r (
12 rid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
13 y CHAR (2) -- example for other attributes
14);
15
16 -- The table for managing the relationship between Q and R.
17 CREATE TABLE relate_q_and_r (
18 fkqid INT NOT NULL REFERENCES q (qid),
19 fkrid INT NOT NULL REFERENCES r (rid),
20 PRIMARY KEY (fkqid , fkrid) -- Primary key includes both columns.
21);
22
23 -- To table Q, we add the foreign key reference constraint towards
24 -- table relate_q_and_r. This enforces that one relation must exist.
25 ALTER TABLE q ADD CONSTRAINT q_qid_fkrid_fk FOREIGN KEY (qid , fkrid)
26 REFERENCES relate_q_and_r (fkqid , fkrid);

Listing 19.95: The stdout resulting from the SQL statements in QR_tables.sql given in Listing 19.94.
1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1

↪→ -ebf QR_tables.sql
2 CREATE TABLE
3 CREATE TABLE
4 CREATE TABLE
5 ALTER TABLE
6 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 264

enforce referential integrity with proper constraints. We need a table q for the entities of type Q. The
primary key of this table be qid and there also will be the example attribute x . We also need a table r
for the entities of type R, which gets the primary key rid and the example attribute y . Since both ends
of the relationship allow for a row to be connected to multiple rows in the other table, we definitely
will need three tables.

We create another table relate_q_and_r to manage the relationships in Listing 19.94. This table
has two columns, fkqid and fkrid , which are foreign keys pointing to the primary keys qid and rid
of tables q and r , respectively. This is ensured with corresponding REFERENCES constraints. Both
columns are marked as NOT NULL . Like in Section 19.2.2.8, each pair (fkqid, fkrid) can appear only
once in the table, because two specific rows in tables q and r can, of course, be related only once to
each other. This is implemented via the constraint PRIMARY KEY (fkqid, fkrid) .

Compared to Section 19.2.2.8, the problem that we need to solve is that we must force that each
row in table q is related to (at least) one row in table r . Back in Section 19.2.2.4 (G H), we
faced a similar problem, i.e., “How can we make sure that each entity of type G is connected to at
least one entity of type H?” The main problem there was not to make a new row in table g reference
some row in table h , but that we then must make that row in table h reference back the same row
in table g . We solved this by creating a constraint that enforced that the primary key of that row in
table h together with the foreign key to the table q would need to be the same as the foreign key of
the row in table q and its primary key.

Now our relationships are managed in the table relate_q_and_r . What we need to do is to make
sure that, if we insert a row into table q , we must also – at the same time – insert a row into
table relate_q_and_r that will link this row to a row in table r . We again store a “primary R” foreign
key to a row in r as column fkrid in table q . Then we add the constraint q_qid_fkrid_fk to table q
which enforces FOREIGN KEY (qid, fkrid)REFERENCES relate_q_and_r (fkqid, fkrid) .

In Listing 19.96, we now insert data into the two tables. For the entities of type R, the connection
to entities of type Q is optional. Therefore, we can populate the table r first.

If we want to insert a row into table q , however, we must at the same time also insert a row into
table relate_q_and_r . When we do this, the new row in table relate_q_and_r must use the primary
key of the new row in table q as foreign key. This means that we will again use a CTE, which we
will call q_new . We define it as INSERT INTO q (x, fkrid)VALUES (’123’, 1)RETURNING qid, fkrid .
Here, we want to insert a row into table q whose x attribute has value ’123’ and that is related to
the entry with primary key 1 in table r . Once this insert is executed, it will return the primary key of
the new row (as qid) and the foreign key to the row in table r , which is named fkrid and obviously
has value 1 .

This CTE is then used to insert a new row into table relate_q_and_r . We write
INSERT INTO relate_q_and_r (fkqid, fkrid)SELECT qid, fkrid FROM q_new; . This is pretty
straightforward: The new row in table relate_o_and_p gets the primary key to the new row in ta-
ble q as well as the primary key of the row in table r that it references. Both insertions are executed
as one single command and the referential integrity constraints are checked at its end.

We insert a few rows into tables q and relate_q_and_r using this method. Once this is done, we
can easily add more connections as rows in table relate_q_and_r . The contents of all three tables
after we inserted the data are displayed in Figure 19.21. Finally, we can merge the data again using
the same two INNER JOIN expressions we used several times before.

It is clear that we cannot insert any row into table q that does not provide a foreign key to a
row in table r , as shown in Listing 19.98. Neither can we insert a row that does provide such a
foreign key, but for which now row in table relate_q_and_r exists, as shown in Listing 19.100. Finally,
Listing 19.102 shows that we can also not first insert a row into table relate_q_and_r and then create
the corresponding row in table q , even if we know the right primary key for that second new row. In
other words, our constraints properly protect the referential integrity of the relationship pattern.

CHAPTER 19. LOGICAL MODEL DESIGN 265

Listing 19.96: Inserting into and selecting data from the realization of an Q R conceptual rela-
tionship given in Listing 19.94. (stored in file QR_insert_and_select.sql ; output in Listing 19.97)

1 /* Inserting data into the tables for the Q->o-----|<-R relationship. */
2
3 -- Insert some rows into the table for entity type R first.
4 -- We can only create rows in Q related to existing R entities.
5 INSERT INTO r (y) VALUES (’AB’), (’CD’), (’EF’), (’GH’), (’IJ’), (’KL’);
6
7 -- Insert into Q and relate_q_and_r at the same time.
8 -- This creates Q entry with id 1 and relationship (1, 1).
9 WITH q_new AS (INSERT INTO q (x, fkrid) VALUES (’123’, 1)

10 RETURNING qid , fkrid)
11 INSERT INTO relate_q_and_r (fkqid , fkrid)
12 SELECT qid , fkrid FROM q_new;
13
14 -- Insert into Q and relate_q_and_r at the same time.
15 -- This creates Q entry with id 2 and relationship (2, 4).
16 WITH q_new AS (INSERT INTO q (x, fkrid) VALUES (’456’, 4)
17 RETURNING qid , fkrid)
18 INSERT INTO relate_q_and_r (fkqid , fkrid)
19 SELECT qid , fkrid FROM q_new;
20
21 -- Insert into Q and relate_q_and_r at the same time.
22 -- This creates Q entry with id 2 and relationship (3, 1).
23 WITH q_new AS (INSERT INTO q (x, fkrid) VALUES (’789’, 1)
24 RETURNING qid , fkrid)
25 INSERT INTO relate_q_and_r (fkqid , fkrid)
26 SELECT qid , fkrid FROM q_new;
27
28 -- We can now insert additional relationships
29 INSERT INTO relate_q_and_r VALUES (1, 2), (2, 3), (2, 5);
30
31 -- Combine the rows from Q and R. This needs two INNER JOINs.
32 SELECT qid , x, rid , y FROM relate_q_and_r
33 INNER JOIN q ON q.qid = relate_q_and_r.fkqid
34 INNER JOIN r ON r.rid = relate_q_and_r.fkrid;

Listing 19.97: The stdout resulting from the SQL statements in QR_insert_and_select.sql given
in Listing 19.96.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf QR_insert_and_select.sql

2 INSERT 0 6
3 INSERT 0 1
4 INSERT 0 1
5 INSERT 0 1
6 INSERT 0 3
7 qid | x | rid | y
8 -----+-----+-----+----
9 1 | 123 | 1 | AB

10 2 | 456 | 4 | GH
11 3 | 789 | 1 | AB
12 1 | 123 | 2 | CD
13 2 | 456 | 3 | EF
14 2 | 456 | 5 | IJ
15 (6 rows)
16
17 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 266

Table q
qid fkrid x
1 1 “123”
2 4 “456”
3 1 “789”

Table r
rid y
1 “AB”
2 “CD”
3 “EF”
4 “GH”
5 “IJ”
6 “KL”

Table relate_q_and_r
fkqid fkrid

1 1
2 4
3 1
1 2
2 3
2 5

Figure 19.21: The contents of the the three tables in the implementation of the Q R conceptual
relationship after executing Listing 19.96.

Listing 19.98: Trying to create a row into table q without providing a foreign key to a row in r
fails. (stored in file QR_insert_error_1.sql ; output in Listing 19.99)

1 /* Can we create a row in Q unrelated to any row in R? */
2
3 INSERT INTO q (x) VALUES (’777’);

Listing 19.99: The stdout resulting from the SQL statements in QR_insert_error_1.sql given in List-
ing 19.98.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf QR_insert_error_1.sql

2 psql:conceptualToRelational/QR_insert_error_1.sql:3: ERROR: null value in
↪→ column "fkrid" of relation "q" violates not -null constraint

3 DETAIL: Failing row contains (4, null , 777).
4 psql:conceptualToRelational/QR_insert_error_1.sql:3: STATEMENT: /* Can we

↪→ create a row in Q unrelated to any row in R? */
5 INSERT INTO q (x) VALUES (’777’);
6 # psql 16.9 failed with exit code 3.

Listing 19.100: Trying to create a row into table q with creating a corresponding row in ta-
ble relate_q_and_r also fails. (stored in file QR_insert_error_2.sql ; output in Listing 19.101)

1 /* Can we create a row in Q ignoring ‘relate_q_and_r ‘ table? */
2
3 INSERT INTO q (fkrid , x) VALUES (6, ’888’);

Listing 19.101: The stdout resulting from the SQL statements in QR_insert_error_2.sql given
in Listing 19.100.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf QR_insert_error_2.sql

2 psql:conceptualToRelational/QR_insert_error_2.sql:3: ERROR: insert or
↪→ update on table "q" violates foreign key constraint "q_qid_fkrid_fk"

3 DETAIL: Key (qid , fkrid)=(5, 6) is not present in table "relate_q_and_r".
4 psql:conceptualToRelational/QR_insert_error_2.sql:3: STATEMENT: /* Can we

↪→ create a row in Q ignoring ‘relate_q_and_r ‘ table? */
5 INSERT INTO q (fkrid , x) VALUES (6, ’888’);
6 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_insert_error_1.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_insert_error_1.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_insert_error_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_insert_error_2.sql

CHAPTER 19. LOGICAL MODEL DESIGN 267

Listing 19.102: Even if we can choose the primary key for the new row in table q , we cannot create the
associated row in table relate_q_and_r first. (stored in file QR_insert_error_3.sql ; output in List-
ing 19.103)

1 /* Can we create the row in ‘relate_q_and_r ‘ first? */
2
3 INSERT INTO relate_q_and_r VALUES (10, 4);
4 INSERT INTO q (qid , fkrid , x) VALUES (10, 4, ’999’);

Listing 19.103: The stdout resulting from the SQL statements in QR_insert_error_3.sql given
in Listing 19.102.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf QR_insert_error_3.sql

2 psql:conceptualToRelational/QR_insert_error_3.sql:3: ERROR: insert or
↪→ update on table "relate_q_and_r" violates foreign key constraint "
↪→ relate_q_and_r_fkqid_fkey"

3 DETAIL: Key (fkqid)=(10) is not present in table "q".
4 psql:conceptualToRelational/QR_insert_error_3.sql:3: STATEMENT: /* Can we

↪→ create the row in ‘relate_q_and_r ‘ first? */
5 INSERT INTO relate_q_and_r VALUES (10, 4);
6 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_insert_error_3.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/QR_insert_error_3.sql

CHAPTER 19. LOGICAL MODEL DESIGN 268

19.2.2.10 S T

We have the two entity types S and T. Each entity of type S must be connected to at least one entity
of type T, but can be connected to many. Each entity of type T must be connected to at least one
entity of type P, but can be connected to many.

We encountered this relationship pattern back in Figure 18.20 when constructing the overall model
of our teaching management platform. Back then, we related address records to person entities. Each
person must have at least one address, but may have more than one address. Each address stored in
our system must be associated with at least one person, but it is possible that multiple people live at
the same place. This part of the model is sketched in Figure 19.22.

To implement this relationship pattern, we will combine what we learned when implementing the
M N pattern in Section 19.2.2.7 with the method for implementing the Q R pattern in
Section 19.2.2.9.

We first again create the basic tables that we are definitely going to need in Listing 19.104. We
need a table s for the entities of type S. The primary key of this table be sid and there also will be
the example attribute x . We also need a table t for the entities of type T, which gets the primary
key tid and the example attribute y .

We will also definitely need a third table to manage the relationships, which we will
call relate_s_and_t . This table has two columns, fksid and fktid , which are foreign keys pointing
to the primary keys sid and tid of tables s and t , respectively. This is ensured with corresponding
REFERENCES constraints. Both columns also are marked as NOT NULL , because neither value can be
omitted in a row. Like in Section 19.2.2.8, each pair (fksid, fktid) can appear only once in the
table, because two specific rows in tables s and t can, of course, be related only once to each other.
This is implemented via the constraint PRIMARY KEY (fksid, fktid) .

Like in the M N pattern, both relationship ends are mandatory. We cannot create a row in
table s without relating it to an existing row in table t . We also cannot create a row in table t without
relating it to an existing row in table s . Back in Section 19.2.2.7, we solved this chicken-and-egg prob-
lem by creating a sequence from which we could then generate values for the primary key of the table m .
We would use this sequence to first create a primary key, use the primary key as foreign key in the
table n , and use the primary key of that row together with the one for table m to finally insert a new row
in table m . We will follow a similar approach here, so we first invoke CREATE SEQUENCE sqsid AS INT; .
The primary key for table s is then defined as sid INT DEFAULT NEXTVAL(’sqsid’)PRIMARY KEY .

Both tables s and t will have a column referencing a primary key from the respective other table.
For table s , this is column fktid , and for table t , this is column fksid . These will be used to enforce
that each row in table s is definitely related to one row in table t and vice versa. Of course, they can also
be related to multiple rows, which is why we need to manage the relationships in table relate_s_and_t .

We also must make sure that for each row in table s with data (sid, fktid) ,
there exists a corresponding row (fksid, fktid) in table relate_s_and_t . We do
this by adding the constraint s_sid_fktid_fk which is FOREIGN KEY (sid, fktid)
that REFERENCES relate_s_and_t (fksid, fktid) to table s . This is the exactly same approach we
used for the Q R pattern in Section 19.2.2.9.

The difference is that we must do this also for table t , because both relationship ends are manda-

Person

Surrogate-

Key

Address

Country

Province

City

District

Postal Code

Street Addr

is Main

Valid From

Valid To

Note

S T
has address

Figure 19.22: We encountered the S T relationship pattern in Figure 18.20.

CHAPTER 19. LOGICAL MODEL DESIGN 269

Listing 19.104: The realization of a S T conceptual relationship. (stored in file ST_tables.sql ;
output in Listing 19.105)

1 /* Create the tables for a S->|-----|<-T relationship. */
2
3 -- The sequence for the primary keys of the rows in s.
4 CREATE SEQUENCE sqsid AS INT;
5
6 -- Table S: Each row in S is related to one or multiple rows in T.
7 CREATE TABLE s (
8 sid INT DEFAULT NEXTVAL(’sqsid’) PRIMARY KEY ,
9 fktid INT NOT NULL , -- later used to reference T via relate_s_and_t

10 x CHAR (3) -- example for other attributes
11);
12
13 -- Table T: Each row in T is related to one or multiple rows in S.
14 CREATE TABLE t (
15 tid INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
16 fksid INT NOT NULL , -- later used to reference S via relate_s_and_t
17 y CHAR (2) -- example for other attributes
18);
19
20 -- The table for managing the relationship between S and T.
21 CREATE TABLE relate_s_and_t (
22 fksid INT NOT NULL REFERENCES s (sid),
23 fktid INT NOT NULL REFERENCES t (tid),
24 PRIMARY KEY (fksid , fktid) -- Primary key includes both columns.
25);
26
27 -- To tables S and T, we add foreign key constraints that enforce that
28 -- the corresponding rows in relate_s_and_t exist.
29 ALTER TABLE s ADD CONSTRAINT s_sid_fktid_fk FOREIGN KEY (sid , fktid)
30 REFERENCES relate_s_and_t (fksid , fktid);
31 ALTER TABLE t ADD CONSTRAINT t_fksid_tid_fk FOREIGN KEY (fksid , tid)
32 REFERENCES relate_s_and_t (fksid , fktid);

Listing 19.105: The stdout resulting from the SQL statements in ST_tables.sql given in List-
ing 19.104.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf ST_tables.sql

2 CREATE SEQUENCE
3 CREATE TABLE
4 CREATE TABLE
5 CREATE TABLE
6 ALTER TABLE
7 ALTER TABLE
8 # psql 16.9 succeeded with exit code 0.

tory. In other words, we add the constraint t_fksid_tid_fk to table t that ensures that every tu-
ple (fksid, tid) in that table must also appear as tuple (fksid, fktid) in table relate_s_and_t .

Defining the constraints that enforce referential integrity for pattern is one thing, finding a way to
insert data into the tables under these tight constraints is another issue. In Listing 19.106, we do that.

Initially, the tables are empty. This means that we need to create three rows at once: We need to
create a row in table s and we must immediately relate it to a newly created row in table t and this
relationship must also appear as row in table relate_s_and_t . Thanks to CTEs, this is possible.

First, we create a new primary key value for table s by creating the CTE s_id corresponding
to SELECT NEXTVAL(’sqsid’)AS new_sid . We then use this new primary key value when inserting a
row into table t via INSERT INTO t (y, fksid)SELECT ’AB’, new_sid FROM s_id . Of course, we do

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/ST_tables.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/ST_tables.sql

CHAPTER 19. LOGICAL MODEL DESIGN 270

this as another CTE named new_t also doing RETURNING tid, fksid . This means that this CTE will
provide is the primary key of the new row in table t and the primary key fksid that we already
allocated for the row in table s that we will create next. And now we create this row. We in-
voke INSERT INTO s (sid, x, fktid)SELECT fksid, ’123’, tid FROM new_t . Notice how this uses
the pre-created primary key as, well, primary key. It also uses the primary key of the new row
in table t as foreign key. This is going to be our third CTE, called new_s , which also returns
both keys via RETURNING sid, fktid . Finally, we can insert a row into relate_s_and_t by doing
INSERT INTO relate_s_and_t (fksid, fktid)SELECT sid, fktid FROM new_s . Thanks to CTEs, we
could insert one row in three tables each, in a single SQL command, which performs the referential
integrity checks at its end.

Now there are existing records in the tables s and t . It is comparatively easy to cre-
ate a new row for table s that is related to an existing row in table t . In this case, all
we need to do is to insert the row into table s and, at the same time, insert a row into ta-
ble relate_s_and_t . We just need a single CTE, which we will call new_s , and which per-
forms INSERT INTO s (x, fktid)VALUES (’456’, 1)RETURNING sid, fktid . As result, we get the
primary key sid of the new row in table s as well as the foreign key to table t , fktid , which
is the same as the one we provided when creating the row in table s , namely 1 . We can then
INSERT INTO relate_s_and_t (fksid, fktid)SELECT sid, fktid FROM new_s and are done.

Since the relationship pattern is symmetric, we can do exactly the same for table t . We can
insert a new row into table t and relate it to an existing row in table s . For this, we would
proceed the same way and also use one CTE. Finally, we can also simply relate two existing rows
in tables s and t by just creating one new row in table relate_s_and_t . This can be like
this: INSERT INTO relate_s_and_t VALUES (1, 3); . The contents of all three tables after inserting
the data are shown in Figure 19.23.

Merging the data requires again two INNER JOIN expressions, exactly as before. The constraints
prevent us from creating rows in s (or t) that are not related to rows in t (or s). We also cannot
relate rows without creating the corresponding entry in relate_s_and_t , as shown in Listings 19.108
and 19.110.

CHAPTER 19. LOGICAL MODEL DESIGN 271

Listing 19.106: Inserting into and selecting data from the realization of an S T conceptual
relationship given in Listing 19.104. (stored in file ST_insert_and_select.sql ; output in Listing 19.107)

1 /* Insert into the tables for the S->|-----|<-T relationship. */
2
3 -- Create a pair of new and related S and T entities.
4 WITH s_id AS (SELECT NEXTVAL(’sqsid’) AS new_sid),
5 new_t AS (INSERT INTO t (y, fksid)
6 SELECT ’AB’, new_sid FROM s_id RETURNING tid , fksid),
7 new_s AS (INSERT INTO s (sid , x, fktid)
8 SELECT fksid , ’123’, tid FROM new_t RETURNING sid , fktid)
9 INSERT INTO relate_s_and_t (fksid , fktid)

10 SELECT sid , fktid FROM new_s;
11
12 -- Create a new S record and relate it to an existing T entity.
13 WITH new_s AS (INSERT INTO s (x, fktid) VALUES (’456’, 1)
14 RETURNING sid , fktid)
15 INSERT INTO relate_s_and_t (fksid , fktid)
16 SELECT sid , fktid FROM new_s;
17
18 -- Create a new T entity and relate it to an existing S entity.
19 WITH new_t AS (INSERT INTO t (y, fksid) VALUES (’CD’, 2)
20 RETURNING tid , fksid)
21 INSERT INTO relate_s_and_t (fksid , fktid)
22 SELECT fksid , tid FROM new_t;
23
24 -- Create a new T entity and relate it to an existing S entity.
25 WITH new_t AS (INSERT INTO t (y, fksid) VALUES (’EF’, 2)
26 RETURNING tid , fksid)
27 INSERT INTO relate_s_and_t (fksid , fktid)
28 SELECT fksid , tid FROM new_t;
29
30 -- We can now insert additional relationships.
31 INSERT INTO relate_s_and_t VALUES (1, 3);
32
33 -- Combine the rows from S and T. This needs two INNER JOINs.
34 SELECT sid , x, tid , y FROM relate_s_and_t
35 INNER JOIN s ON s.sid = relate_s_and_t.fksid
36 INNER JOIN t ON t.tid = relate_s_and_t.fktid;

Listing 19.107: The stdout resulting from the SQL statements in ST_insert_and_select.sql given
in Listing 19.106.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf ST_insert_and_select.sql

2 INSERT 0 1
3 INSERT 0 1
4 INSERT 0 1
5 INSERT 0 1
6 INSERT 0 1
7 sid | x | tid | y
8 -----+-----+-----+----
9 1 | 123 | 1 | AB

10 2 | 456 | 1 | AB
11 2 | 456 | 2 | CD
12 2 | 456 | 3 | EF
13 1 | 123 | 3 | EF
14 (5 rows)
15
16 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/ST_insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/ST_insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 272

Table s
sid fktid x
1 1 “123”
2 1 “456”

Table t
tid fksid y
1 1 “AB”
2 2 “CD”
3 2 “EF”

Table relate_s_and_t
fksid fktid

1 1
2 1
2 2
2 3
1 3

Figure 19.23: The contents of the the three tables in the implementation of the S T conceptual
relationship after executing Listing 19.106.

Listing 19.108: Trying to insert new related rows into tables s and t without updating ta-
ble relate_s_and_t does not work. (stored in file ST_insert_error_1.sql ; output in Listing 19.109)

1 /* Trying to insert rows S and T without using the relationship table */
2
3 -- Create a pair of new related S and T entities , ignore relate_s_and_t.
4 WITH s_id AS (SELECT NEXTVAL(’sqsid’) AS new_sid),
5 new_t AS (INSERT INTO t (y, fksid)
6 SELECT ’GH’, new_sid FROM s_id RETURNING tid , fksid)
7 INSERT INTO s (sid , x, fktid) SELECT fksid , ’555’, tid FROM new_t;

Listing 19.109: The stdout resulting from the SQL statements in ST_insert_error_1.sql given
in Listing 19.108.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf ST_insert_error_1.sql

2 psql:conceptualToRelational/ST_insert_error_1.sql:7: ERROR: insert or
↪→ update on table "t" violates foreign key constraint "t_fksid_tid_fk"

3 DETAIL: Key (fksid , tid)=(3, 4) is not present in table "relate_s_and_t".
4 psql:conceptualToRelational/ST_insert_error_1.sql:7: STATEMENT: /* Trying

↪→ to insert rows S and T without using the relationship table */
5 -- Create a pair of new related S and T entities , ignore relate_s_and_t.
6 WITH s_id AS (SELECT NEXTVAL(’sqsid’) AS new_sid),
7 new_t AS (INSERT INTO t (y, fksid)
8 SELECT ’GH’, new_sid FROM s_id RETURNING tid , fksid)
9 INSERT INTO s (sid , x, fktid) SELECT fksid , ’555’, tid FROM new_t;

10 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/ST_insert_error_1.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/ST_insert_error_1.sql

CHAPTER 19. LOGICAL MODEL DESIGN 273

Listing 19.110: Trying to insert a new row into tables s and relate it to an existing row in table t
without updating table relate_s_and_t does not work either. (stored in file ST_insert_error_2.sql ;
output in Listing 19.111)

1 /* Trying to insert rows S and T without using the relationship table */
2
3 -- Create relate a new S entity to an existing T entity without updating
4 -- relate_s_and_t.
5 INSERT INTO s (fktid , x) VALUES (3, ’777’);

Listing 19.111: The stdout resulting from the SQL statements in ST_insert_error_2.sql given
in Listing 19.110.

1 $ psql "postgres :// postgres:XXX@localhost/relationships" -v ON_ERROR_STOP =1
↪→ -ebf ST_insert_error_2.sql

2 psql:conceptualToRelational/ST_insert_error_2.sql:5: ERROR: insert or
↪→ update on table "s" violates foreign key constraint "s_sid_fktid_fk"

3 DETAIL: Key (sid , fktid)=(4, 3) is not present in table "relate_s_and_t".
4 psql:conceptualToRelational/ST_insert_error_2.sql:5: STATEMENT: /* Trying

↪→ to insert rows S and T without using the relationship table */
5 -- Create relate a new S entity to an existing T entity without updating
6 -- relate_s_and_t.
7 INSERT INTO s (fktid , x) VALUES (3, ’777’);
8 # psql 16.9 failed with exit code 3.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/ST_insert_error_2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/ST_insert_error_2.sql

CHAPTER 19. LOGICAL MODEL DESIGN 274

19.2.2.11 Summary

This was quite a journey. We have worked our way through every single binary conceptual relationship
type that can be expressed with crow’s foot notation. We listed all of these relationship types back in
Section 18.5 (The Cardinality of Relationships).

We found that each of these types can be enforced in a relational DBMS. With enforced, we refer
to the cardinality and modality of the relationship ends. If we want to implement, for example, a
relationship following the pattern K L in a DBMS, then we can do that. We can create a table k
for the entities of type K and a table l for the entities of type L. Then we can use constraints that
enforce that each row in table l must be related to exactly one row in table k . We can enforce that,
at no time, there can ever be a row in table l that is not related to a row in table k or related to more
than one such row. We can also enforce that each row in table k can be related to an arbitrary amount
of rows in table l . Of course, we also enforce that if a row in table l is related to one row in table k ,
then that row in table k must be related to that row in table l and vice versa. No relationship end
can be “open”. If these conditions are met, then our DB has the property of referential integrity.

What we also learned is that specifying the necessary constraints is not always easy. Especially if
both relationship ends are mandatory, things can get complicated. We still managed to find solutions for
all cases and also learned some additional SQL commands, such as common table expressions (CTEs).
Sometimes, however, we used PostgreSQL-specific extensions to SQL. One particularly useful one is
the RETURNING statement [329], which is also supported by MariaDB [206] and SQLite [328]. Another
one were sequences and the NEXTVAL function [98, 350].

Due to the complexity, we may sometimes choose to change the relationship types when moving
from the conceptual model to the logical model. We only considered binary relationship between
two entity types, and doing something like M N while also having N X might prove too
annoying to actually implement.

Creating examples for every single possible relationship type for two tables was fun, though. As
final step, we can now get rid of our example DB in Listing 19.112.

Listing 19.112: We now tear down the example DB that we used to play around with when mapping
conceptual relationships between entity types to tables in SQL. (stored in file cleanup.sql ; output
in Listing 19.113)

1 /* Drop the database for our examples */
2
3 -- If the database ’relationships ’ exists , we delete it.
4 DROP DATABASE IF EXISTS relationships;

Listing 19.113: The stdout resulting from the SQL statements in cleanup.sql given in Listing 19.112.
1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf cleanup.

↪→ sql
2 DROP DATABASE
3 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/cleanup.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/conceptualToRelational/cleanup.sql

CHAPTER 19. LOGICAL MODEL DESIGN 275

19.2.3 Other Non-Relational Objects

When we begin designing an application, we develop the conceptual model. For this purpose, we usually
use entity relationship diagrams (ERDs). ERDs give us lots of freedom in how we can represent the real
world. We can use strong entities, weak entities, and relationships, and all three of these object types
can have attributes. Attributes can be single-values or multivalued as well as atomic or composite.

We then use the relational data modelling approach for the logical model of our applications. At
its core, the only type of objects offered by relational model for storing data are relations. Relations
have attributes which are single-valued and atomic. Tables are the practical implementation of relations
inside a DBMS and table columns represent attributes.

One of the beautiful things of the relational data model is that it feels very natural. Many com-
ponents of the conceptual modeling level can directly be translated to the logical level. For example,
Entities become tables.

Conceptual relationships are objects in the conceptual model that do not exist in the relational
model as singular objects. Instead, they become either tables or columns and constraints, as we have
discussed in the previous section. Multivalued attributes, which are useful at the conceptual level, also
do not exist in the relational model. They become tables in their own right. Composite attributes are
broken down to their elements which then become columns. All of this we have already discussed.

When scrolling over our section on conceptual modelling, we find that three types of objects are
still “left over:”

1. We discussed strong entities, but not weak entities, see Section 18.4 (Weak Entities).

2. We discussed relationships, but not relationship attributes, see Definition 18.21 (Relationship
Attribute).

3. We did not discuss derived attributes, see Definition 18.11 (Derived Attribute).

4. While we exhaustively discussed all possible binary relationship patterns, we did not discuss
relationships of a higher degree, i.e., situations where three or more entity types participate in a
relationship, see Definition 18.19 (Degree of Relationship).

To complete our treatment on the translation of conceptual models to logical models, let us also take
a look how these are translated to the relational data model.

19.2.3.1 Weak Entities

As introduced in Section 18.4, weak entity types always appear in at least one identifying relationship
with a strong entity type [358]. In Figure 18.14 back in Section 18.5 (The Cardinality of Relationships),
which is here reprinted as Figure 19.24.1, we modeled IDs that belong to a person as such a week
entity type. Each Personal ID is in an identifying relationship with an entity of type Person and also in
an identifying relationship with an entity of type ID Type.

If we map such identifying relationships to SQL, then they must be represented with mandatory ends
on the sides opposing the weak entity type. In other words, the relationships must be such that they
enforce that the weak entity is connected to the strong entities. This is If we look at Figure 19.24.1,
then this would mean that we need to model the following two relationships:

• Person Personal ID, which we can do based on Section 19.2.2.7 and

• Personal ID ID Type, i.e., ID Type Personal ID, which we can do based on Sec-
tion 19.2.2.6.

For the modeling, we will this time use the PgModeler. We will basically have to enter the same
constraints and table formats as we would do via SQL, but can use a more convenient GUI. The
transformation of Figure 19.24.1 to the logical model via PgModeler is illustrated in Figure 19.24.2.

Back in Section 19.2.2.7, we needed two foreign key REFERENCES constraints to enforce the
M N. On the one hand, we referenced table M from table N with a single foreign key that
was NOT NULL . This enforced that there was at least one row in table M for each row in table N . On
the other hand, we referenced table N from table M with a compound foreign key. This enforced that

CHAPTER 19. LOGICAL MODEL DESIGN 276

Person ID Type

Name

Validation

RegEx

Value

Valid From Valid To

Personal ID
belongs to

Type
owns ID

Surrogate

Key

(19.24.1) A reproduction of Figure 18.14 from back in Section 18.5 (The Cardinality of Relationships), which was
created using yEd.

belongs_to_type

has_id

enforce_at_least_one

id integer « pk »

name varchar(100) « uq nn »

validation_regexp varchar(255) « nn »

id_type_id_pk constraint « pk »

id_type_name_uq constraint « uq »

public.id_type

id integer « pk uq »

id_type integer « fk nn »

person integer « uq fk nn »

value varchar(100) « nn »

valid_from date « nn »

valid_to date

personal_id_id_pk constraint « pk »

person_id_id_person_uq constraint « uq »

personal_id_id_type_fk constraint « fk »

personal_id_person_fk constraint « fk »

public.personal_id

id integer « pk fk »

person_id integer « fk nn »

person_id_pk constraint « pk »

person_id_person_id_fk constraint « fk »

public.person

(19.24.2) A transformation of Figure 18.14 to a logical model using PgModeler.

Figure 19.24: The representation of weak entities as tables bound with mandatory relationships.

each one row in table M was connected to one row in table N , while not preventing that more rows in
table N may exist that are related to it.

If we enter the same constraints into PgModeler, it will display them separately. Indeed, this offers
another perspective on the way we modeled the M N relationship in SQL: Actually, we did realize
it as a combination of a M N and a M N relationship.

• The brown person personal_id relationship called enforce_at_least_one in Fig-
ure 19.24.2 uses a composite foreign key and makes sure that, for each row in table person ,
at least one related row in table personal_id exists. It will be imposed to table person .

• The green person personal_id relationship called has_id in Figure 19.24.2 uses a single
foreign key in table personal_id and enforces that each row in that table is related to exactly
one row in table person .It is imposed on table personal_id .

Notice that we used the SEQUENCE feature when creating the model for the M N setup in
Section 19.2.2.7. While I will not go into detail on how we create the whole logical model, let us briefly
discuss how to use this feature in PgModeler. It is rather easy. We begin by opening the PgModeler in
the design view. We right-click into the workspace and select New Schema Object Sequence , as shown
in Figure 19.25.1.

In the dialog that pops up, we first enter a reasonable name for our SEQUENCE . Here we choose
person_id_counter , because we will use the sequence to generate the values for the id column of the
person table. Then we click Apply , as sketched in Figure 19.25.2.

CHAPTER 19. LOGICAL MODEL DESIGN 277

(19.25.1) In the PgModeler design view, right-click and
select New Schema Object Sequence .

(19.25.2) In the dialog that pops up, we first enter a
reasonable name for our SEQUENCE . Here we choose
person_id_counter . Then we click Apply .

(19.25.3) Later, when adding columns to a table, we can
use the sequence. We select Sequence as Default Value
and then click into the text box to the right of Sequence.

(19.25.4) Another dialog opens up where we click through
the tree of objects, find our new Sequence , and then
click the check mark button at the bottom.

(19.25.5) The sequence is now selected and the column will
take its default values from it.

Figure 19.25: Using the SEQUENCE feature in PgModeler.

CHAPTER 19. LOGICAL MODEL DESIGN 278

Listing 19.114: The generated script to create the person_database DB. (src)
1 -- object: person_database | type: DATABASE --
2 -- DROP DATABASE IF EXISTS person_database;
3 CREATE DATABASE person_database;
4 -- ddl -end --

Listing 19.115: The generated script to create ID SEQUENCE . (src)
1 -- object: public.person_id_counter | type: SEQUENCE --
2 -- DROP SEQUENCE IF EXISTS public.person_id_counter CASCADE;
3 CREATE SEQUENCE public.person_id_counter
4 INCREMENT BY 1
5 MINVALUE 0
6 MAXVALUE 2147483647
7 START WITH 1
8 CACHE 1
9 NO CYCLE

10 OWNED BY NONE;
11
12 -- ddl -end --
13 ALTER SEQUENCE public.person_id_counter OWNER TO postgres;
14 -- ddl -end --

Listing 19.116: The generated script to create the id_type table. (src)
1 -- object: public.id_type | type: TABLE --
2 -- DROP TABLE IF EXISTS public.id_type CASCADE;
3 CREATE TABLE public.id_type (
4 id integer NOT NULL GENERATED ALWAYS AS IDENTITY ,
5 name varchar (100) NOT NULL ,
6 validation_regexp varchar (255) NOT NULL DEFAULT ’.+’,
7 CONSTRAINT id_type_id_pk PRIMARY KEY (id),
8 CONSTRAINT id_type_name_uq UNIQUE (name)
9);

10 -- ddl -end --
11 ALTER TABLE public.id_type OWNER TO postgres;
12 -- ddl -end --

Later, when adding columns to a table person , we can use the sequence. We therefore select
Sequence as Default Value . In Figure 19.25.3, we then click into the text box to the right of Sequence.
As illustrated in Figure 19.25.4, another dialog opens up where we click through the tree of objects,
find our new Sequence , and then click the check mark button at the bottom. In Figure 19.25.5, the
sequence is now selected and the column will take its default values from it.

Listings 19.114 to 19.121 illustrate the generated SQL scripts corresponding to this logical model.
In Listing 19.114, the empty new DB person_database is created. Listing 19.115 creates the sequence
that we will use to generate the primary keys id of the person table.

Listing 19.116 creates the table for the ID types. This table has the primary key id and an
attribute name , which must be UNIQUE . It also has a column validation_regex in which we will
store a regex that applications can use to validate the input for a given ID type. This column must
be NOT NULL and has the default value ’.+’ , which is the regex for “at least one character”. In other
words, unless the DBA provides a better regex, applications are told to check that an ID always consists
of at least one character.

Listing 19.117 creates that table in which we will store the Personal ID entities. Like all of our
tables, it has a surrogate primary key id . The Personal ID entities are weak entities. They cannot
exist without a defining relationship to one Person entity and one ID Type entity. Therefore, this
table stores two foreign keys: id_type and person . The corresponding constraints are added later in

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/generated_sql/01_person_database_database_2001.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/generated_sql/03_public_person_id_counter_sequence_5071.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/generated_sql/04_public_id_type_table_5072.sql

CHAPTER 19. LOGICAL MODEL DESIGN 279

Listing 19.117: The generated script to create the personal_id table. (src)
1 -- object: public.personal_id | type: TABLE --
2 -- DROP TABLE IF EXISTS public.personal_id CASCADE;
3 CREATE TABLE public.personal_id (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 id_type integer NOT NULL ,
6 person integer NOT NULL ,
7 value varchar (100) NOT NULL ,
8 valid_from date NOT NULL ,
9 valid_to date ,

10 CONSTRAINT personal_id_id_pk PRIMARY KEY (id),
11 CONSTRAINT person_id_id_person_uq UNIQUE (id,person)
12);
13 -- ddl -end --
14 ALTER TABLE public.personal_id OWNER TO postgres;
15 -- ddl -end --

Listing 19.118: The generated script to create the personal_id table. (src)
1 -- object: public.person | type: TABLE --
2 -- DROP TABLE IF EXISTS public.person CASCADE;
3 CREATE TABLE public.person (
4 id integer NOT NULL DEFAULT nextval(’public.person_id_counter ’::

↪→ regclass),
5 person_id integer NOT NULL ,
6 CONSTRAINT person_id_pk PRIMARY KEY (id)
7);
8 -- ddl -end --
9 ALTER TABLE public.person OWNER TO postgres;

10 -- ddl -end --

Listing 19.119: The generated script to create the constraint managing the relationship between the
rows in table personal_id and those in table id_type . (src)

1 -- object: personal_id_id_type_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.personal_id DROP CONSTRAINT IF EXISTS

↪→ personal_id_id_type_fk CASCADE;
3 ALTER TABLE public.personal_id ADD CONSTRAINT personal_id_id_type_fk

↪→ FOREIGN KEY (id_type)
4 REFERENCES public.id_type (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listings 19.119 and 19.120, respectively. The table has a UNIQUE constraint imposed on the tuples of
the surrogate key id and the foreign key person , because later, the table person will use this tuple as
composite foreign key.

In Listing 19.118, the table person is created. In this part of our example, we do not model
much additional information about the Person entities. Therefore, this table only has a surrogate
primary key id . However, we imposed the requirement that our system must have stored some form
of identification for each entity of type Person. Therefore, we also have the foreign key person_id
pointing to the table personal_id with the weak Personal ID entities. From our treatment of the
M N relationship pattern in Section 19.2.2.7, we know that this table must use a composition
foreign key, which is created in Listing 19.121. This key makes sure that each row in table person has
at least one corresponding row in table personal_id .

We create all the tables by executing all of the above scripts. Then, we can insert data into them
by writing and running our own SQL script. Such a script is illustrated in Listing 19.122. We start out
by inserting two rows into the table id_type , one for Chinese ID numbers (中国公民身份号码) and

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/generated_sql/05_public_personal_id_table_5078.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/generated_sql/06_public_person_table_5087.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/generated_sql/07_public_personal_id_personal_id_id_type_fk_constraint_5093.sql

CHAPTER 19. LOGICAL MODEL DESIGN 280

Listing 19.120: The generated script to create the constraint that enforces that each row in ta-
ble personal_id is related to exactly one row in table person . (src)

1 -- object: personal_id_person_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.personal_id DROP CONSTRAINT IF EXISTS

↪→ personal_id_person_fk CASCADE;
3 ALTER TABLE public.personal_id ADD CONSTRAINT personal_id_person_fk FOREIGN

↪→ KEY (person)
4 REFERENCES public.person (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listing 19.121: The generated script to create the constraint that enforces that, for each row in
table person , at least one related row in table personal_id exists. (src)

1 -- object: person_id_person_id_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.person DROP CONSTRAINT IF EXISTS

↪→ person_id_person_id_fk CASCADE;
3 ALTER TABLE public.person ADD CONSTRAINT person_id_person_id_fk FOREIGN KEY

↪→ (person_id ,id)
4 REFERENCES public.personal_id (id ,person) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

one for Chinese mobile phone numbers. We store the same regexes that we used in Section 19.2.1. Of
course, now, we are only working on a part of a logical model of the teaching management system. So
there is no application that actually uses these regexes. But at least in our imagination, we would have
provided the means for checking ID values.

Then we use basically the same code as in Listing 19.76 from back in Section 19.2.2.7 (M N)
to fill the tables person and personal_id . First we create a person record with an associated Chinese
national ID, then we add a mobile phone number to that record. Then we create a second record,
again with national ID. At the end, we combine the information back together using an INNER JOIN .

One may ask whether it is really useful to go through the hassle to enforce that each Person entity
does have at least one associated Personal ID entity. This is a valid question. Creating the proper
constraints to fully represent the logical relationship imposed by the conceptual model and the weak
entity structure requires considerable effort. It also forces us to use the SEQUENCE feature, which is
not supported by some DBMSes, and the RETURNING feature, which is also not supported by several
systems.

It thus may be much easier to choose a Person Personal ID relationship structure instead of
the Person Personal ID pattern. Doing this would allow us to remain in the realm of plain and
simple standard SQL. We would have to trust the person tasked with entering data about students
and faculty members that they will always require and properly enter some form of ID, even if the
underlying DB would permit ID-less entries. We would not apply follow our conceptual model exactly.
We would also reduce our “defense in depth” approach from Best Practice 17, which emphasizes on
using as many constraints and sanity checks as possible in all layers of our application. But we would
get much simpler code, which is easier to check and easier to maintain. Also, if an application would
later enter data, maybe via a library like psycopg, the complexity of the required access pattern would
also be reduced. What to do here is a an interesting philosophical question, with no clear right or
wrong choice.

In this book, we choose the harder method . . . just to see whether we can get it to work. Anyway,
after running this example we delete the person_database with a DROP DATABASE command.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/generated_sql/08_public_personal_id_personal_id_person_fk_constraint_5094.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/generated_sql/09_public_person_person_id_person_id_fk_constraint_5092.sql

CHAPTER 19. LOGICAL MODEL DESIGN 281

Listing 19.122: Inserting into and selecting data from the tables in the person_database . (stored in
file insert_and_select.sql ; output in Listing 19.123)

1 /** Insert some data into the tables of our person database. */
2
3 -- Create two ID types: Chinese national ID and mobile phone numbers.
4 INSERT INTO id_type (name , validation_regexp) VALUES
5 (’national ID’, ’^\d{6}((19)|(20))\d{9}[0-9X]$’),
6 (’mobile phone number ’, ’^\d{11}$’);
7
8 -- Insert a new person record and a new ID record at the same time.
9 WITH pers_id AS (SELECT NEXTVAL(’person_id_counter ’) AS person),

10 new_pers_id AS (INSERT INTO personal_id (
11 id_type , person , value , valid_from)
12 SELECT 1, person , ’123456199501021234 ’, ’2024 -12 -01’ FROM pers_id
13 RETURNING id, person)
14 INSERT INTO person (id, person_id) SELECT person , id FROM new_pers_id;
15
16 -- Insert a new personal ID for an existing person record.
17 INSERT INTO personal_id (id_type , person , value , valid_from) VALUES
18 (2, 1, ’1234567890 ’, ’2023 -02 -07’);
19
20 -- Insert a new person record and a new ID record at the same time.
21 WITH pers_id AS (SELECT NEXTVAL(’person_id_counter ’) AS person),
22 new_pers_id AS (INSERT INTO personal_id (
23 id_type , person , value , valid_from)
24 SELECT 1, person , ’123456200508071234 ’, ’2021 -09 -21’ FROM pers_id
25 RETURNING id, person)
26 INSERT INTO person (id, person_id) SELECT person , id FROM new_pers_id;
27
28 -- Print the records that were inserted.
29 SELECT person , personal_id.id as pk, value , valid_from , name AS id_type

↪→ FROM personal_id
30 INNER JOIN id_type ON personal_id.id_type = id_type.id;

Listing 19.123: The stdout resulting from the SQL statements in insert_and_select.sql given
in Listing 19.122.

1 $ psql "postgres :// postgres:XXX@localhost/person_database" -v ON_ERROR_STOP
↪→ =1 -ebf insert_and_select.sql

2 INSERT 0 2
3 INSERT 0 1
4 INSERT 0 1
5 INSERT 0 1
6 person | pk | value | valid_from | id_type
7 --------+----+--------------------+------------+---------------------
8 1 | 1 | 123456199501021234 | 2024 -12 -01 | national ID
9 1 | 2 | 1234567890 | 2023 -02 -07 | mobile phone number

10 2 | 3 | 123456200508071234 | 2021 -09 -21 | national ID
11 (3 rows)
12
13 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_1/insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 282

19.2.3.2 Relationship Attributes

Relationships in conceptual models may have attributes, as stated in Definition 18.21. Of course, since
relationships do not exist as distinct objects in the relational data model, we must find another way to
express these attributes. Since only relations exist in the relational model and such relations become
tables in a DB, the attributes of relationships also become table columns.

It will depend on the relationship pattern where we put them. To try this concept out, let us go back
to an even earlier example of the Person entity: to Figure 18.9 from back in Section 18.3 (Relationships).
We created this figure using yEd and reprint it in Figure 19.26.1. As you can see, in this figure, there
is a relationship has ID that connects the Person entities with the entity type ID Type.

In the model, we did not annotate the relationships with cardinalities, because that was before
we got to that topic. However, it is rather clear that this would either be a Person ID Type
or a Person ID Type relationship. We can store arbitrarily many forms of ID for each person
and each form of ID may be used by arbitrarily many people. Since we went the hard way in the
last section and modeled a relationship with the mandatory many pattern, we this time go easy and
choose Person ID Type. In other words, we follow the pattern O P discussed in Sec-
tion 19.2.2.8 (O P).

For this pattern, we need an additional table. We follow exactly the same method as back in
Section 19.2.2.8, except that we use different table and column names. We also use PgModeler for the

Person

Date of Birth

Address

Country

Province City District

Street

Address

Postal Code

Name

Full Name

Salutation

Age

Start Date

End Date

is official

ID Type

Name

Validation

RegEx

has ID

Value

Valid From Valid To
Surrogate

Key

(19.26.1) A reproduction of Figure 18.9 from back in Section 18.3 (Relationships), which was created using
yEd.

name_of_person address_of_person

has_id

belongs_to_type

id integer « pk »

date_of_birth date « nn »

person_id_pk constraint « pk »

public.person

id integer « pk »

person integer « fk nn »

full_name varchar(255) « nn »

salutation varchar(255)

is_official boolean « nn »

start_date date « nn »

end_date date

name_id_pk constraint « pk »

name_person_fk constraint « fk »

public.name

id integer « pk »

person integer « fk nn »

country char(2) « nn »

province char(2)

city varchar(255) « nn »

district varchar(255)

postal_code varchar(32) « nn »

street_address varchar(255) « nn »

address_id_pk constraint « pk »

address_person_fk constraint « fk »

public.address

id integer « pk »

name varchar(100) « uq nn »

validation_regexp varchar(255) « nn »

id_type_id_pk constraint « pk »

id_type_name_uq constraint « uq »

public.id_type

id integer « pk »

id_type integer « fk nn »

person integer « fk nn »

value varchar(100) « nn »

valid_from date « nn »

valid_to date

has_id_id_pk constraint « pk »

has_id_id_type_fk constraint « fk »

has_id_person_fk constraint « fk »

public.has_id

(19.26.2) A transformation of Figure 19.26.1 to a logical model using PgModeler.

Figure 19.26: The representation of relationship attributes as table for the relationship.

CHAPTER 19. LOGICAL MODEL DESIGN 283

Listing 19.124: The generated script to create the person_database DB. (src)
1 -- object: person_database | type: DATABASE --
2 -- DROP DATABASE IF EXISTS person_database;
3 CREATE DATABASE person_database;
4 -- ddl -end --

Listing 19.125: The generated SQL script to create the table person . (src)
1 -- object: public.person | type: TABLE --
2 -- DROP TABLE IF EXISTS public.person CASCADE;
3 CREATE TABLE public.person (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 date_of_birth date NOT NULL ,
6 CONSTRAINT person_id_pk PRIMARY KEY (id)
7);
8 -- ddl -end --
9 ALTER TABLE public.person OWNER TO postgres;

10 -- ddl -end --

Listing 19.126: The generated SQL script to create the table name . (src)
1 -- object: public.name | type: TABLE --
2 -- DROP TABLE IF EXISTS public.name CASCADE;
3 CREATE TABLE public.name (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 person integer NOT NULL ,
6 full_name varchar (255) NOT NULL ,
7 salutation varchar (255),
8 is_official boolean NOT NULL DEFAULT True ,
9 start_date date NOT NULL DEFAULT CURRENT_DATE ,

10 end_date date ,
11 CONSTRAINT name_id_pk PRIMARY KEY (id)
12);
13 -- ddl -end --
14 ALTER TABLE public.name OWNER TO postgres;
15 -- ddl -end --

sake of convenience (and because it allows me to create nice ERDs. . .). We call the additional table
has_id to properly reflect the conceptual model. The relationship attributes will therefore become
columns of this table. This is illustrated in Figure 19.26.2.

Notice how we again gain another perspective on how we modeled relationships: In Section 19.2.2.8,
we implement an O P relationship in SQL. We did so using the additional table relate_o_and_p .
Another perspective would be that we actually implemented two relationships: o relate_o_and_p
and p relate_o_and_p . Each row in table relate_o_and_p must be related to one row in
table o and also to one row in table p . Each row in table o can be related to arbitrarily many
rows in table relate_o_and_p . Each row in table p can be related to arbitrarily many rows in ta-
ble relate_o_and_p . Indeed, that forms a O P relationship.

Also, when implementing the full conceptual model given in Figure 19.26.1, we again encounter
multivalued attributes: Name and Address. As we already learned before, these go into additional
tables, which we call name and address , respectively. For these, we again use the proper foreign key
REFERENCES constraints.

We can export the logical model created with PgModeler and we get Listings 19.124 to 19.133.
Listing 19.124 creates the DB person_database . The table person is created in Listing 19.125, with
a surrogate primary key and a field date_of_birth for the DOB.

In Listing 19.126, the table name is created for the multivalued composite attribute Name. Each row
in table name will store a foreign key person that is linked to a row in table person using a REFERENCES

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/01_person_database_database_2001.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/03_public_person_table_5071.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/04_public_name_table_5075.sql

CHAPTER 19. LOGICAL MODEL DESIGN 284

Listing 19.127: The generated SQL script to create the table address . (src)
1 -- object: public.address | type: TABLE --
2 -- DROP TABLE IF EXISTS public.address CASCADE;
3 CREATE TABLE public.address (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 person integer NOT NULL ,
6 country char (2) NOT NULL DEFAULT ’CN’,
7 province char (2) DEFAULT ’AH’,
8 city varchar (255) NOT NULL ,
9 district varchar (255),

10 postal_code varchar (32) NOT NULL ,
11 street_address varchar (255) NOT NULL ,
12 CONSTRAINT address_id_pk PRIMARY KEY (id)
13);
14 -- ddl -end --
15 ALTER TABLE public.address OWNER TO postgres;
16 -- ddl -end --

Listing 19.128: The generated SQL script to create the table id_type . (src)
1 -- object: public.id_type | type: TABLE --
2 -- DROP TABLE IF EXISTS public.id_type CASCADE;
3 CREATE TABLE public.id_type (
4 id integer NOT NULL GENERATED ALWAYS AS IDENTITY ,
5 name varchar (100) NOT NULL ,
6 validation_regexp varchar (255) NOT NULL DEFAULT ’.+’,
7 CONSTRAINT id_type_id_pk PRIMARY KEY (id),
8 CONSTRAINT id_type_name_uq UNIQUE (name)
9);

10 -- ddl -end --
11 ALTER TABLE public.id_type OWNER TO postgres;
12 -- ddl -end --

constraint, which is added later in Listing 19.130. Apart from that, we added a small gimmick for your
enjoyment: The column start_date is created NOT NULL DEFAULT CURRENT_DATE . This means that,
for each row in table name , we must store a proper start date as per the NOT NULL . However, if we do
not provide such a date when the row is created, a DEFAULT value is stored instead. This DEFAULT is
CURRENT_DATE , which, as the name implies, will be the date at the very moment we enter the row into
the DB [112]. Similar functions are CURRENT_TIME and, most importantly, CURRENT_TIMESTAMP [112],
which is often used for timestamping.

But back to the topic at hand. Listing 19.127 creates the table address . There is nothing special
about this table. Its foreign key person is related to the table person using the REFERENCES constraint
given in Listing 19.131. Listing 19.128 creates the table id_type in pretty much the same shape
and form already used in the previous section in Listing 19.116. The table has_id is created in
Listing 19.129. It follows the same design as table personal_id from the previous section, which was
given in Listing 19.117. The corresponding foreign key constraints linking its rows to tables id_type
and person are created using Listings 19.132 and 19.133, respectively. With this, we have constructed
the person_database .

We fill the DB with data in Listing 19.134. In Listing 19.136, we use a query that combines data
from several tables using INNER JOIN statements and then concatenates the data to single text strings
per result row.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/05_public_address_table_5084.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/06_public_id_type_table_5094.sql

CHAPTER 19. LOGICAL MODEL DESIGN 285

Listing 19.129: The generated SQL script to create the table has_id . (src)
1 -- object: public.has_id | type: TABLE --
2 -- DROP TABLE IF EXISTS public.has_id CASCADE;
3 CREATE TABLE public.has_id (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 id_type integer NOT NULL ,
6 person integer NOT NULL ,
7 value varchar (100) NOT NULL ,
8 valid_from date NOT NULL ,
9 valid_to date ,

10 CONSTRAINT has_id_id_pk PRIMARY KEY (id)
11);
12 -- ddl -end --
13 ALTER TABLE public.has_id OWNER TO postgres;
14 -- ddl -end --

Listing 19.130: The generated SQL script to create the foreign key constraint ensuring that each row
in table name is associated with one row in table person . (src)

1 -- object: name_person_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.name DROP CONSTRAINT IF EXISTS name_person_fk CASCADE

↪→ ;
3 ALTER TABLE public.name ADD CONSTRAINT name_person_fk FOREIGN KEY (person)
4 REFERENCES public.person (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listing 19.131: The generated SQL script to create the foreign key constraint ensuring that each row
in table address is associated with one row in table person . (src)

1 -- object: address_person_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.address DROP CONSTRAINT IF EXISTS address_person_fk

↪→ CASCADE;
3 ALTER TABLE public.address ADD CONSTRAINT address_person_fk FOREIGN KEY (

↪→ person)
4 REFERENCES public.person (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listing 19.132: The generated SQL script to create the foreign key constraint ensuring that each row
in table has_id is associated with one row in table id_type . (src)

1 -- object: has_id_id_type_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.has_id DROP CONSTRAINT IF EXISTS has_id_id_type_fk

↪→ CASCADE;
3 ALTER TABLE public.has_id ADD CONSTRAINT has_id_id_type_fk FOREIGN KEY (

↪→ id_type)
4 REFERENCES public.id_type (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/07_public_has_id_table_5100.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/08_public_name_name_person_fk_constraint_5108.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/09_public_address_address_person_fk_constraint_5109.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/10_public_has_id_has_id_id_type_fk_constraint_5110.sql

CHAPTER 19. LOGICAL MODEL DESIGN 286

Listing 19.133: The generated SQL script to create the foreign key constraint ensuring that each row
in table has_id is associated with one row in table person . (src)

1 -- object: has_id_person_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.has_id DROP CONSTRAINT IF EXISTS has_id_person_fk

↪→ CASCADE;
3 ALTER TABLE public.has_id ADD CONSTRAINT has_id_person_fk FOREIGN KEY (

↪→ person)
4 REFERENCES public.person (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listing 19.134: Inserting into the tables in the person_database . (stored in file insert.sql ; output
in Listing 19.135)

1 /** Insert some data into the tables of our person database. */
2
3 -- Create the persons Bebbo , Bibbo , and Bebba.
4 INSERT INTO person (date_of_birth) VALUES
5 (’2005 -08 -07’), (’1995 -01 -02’), (’1963 -11 -13’);
6
7 -- Create the names of Bebbo , Bibbo , and Bebba.
8 INSERT INTO name (person , full_name , salutation , is_official ,
9 start_date , end_date) VALUES

10 (1, ’Bebbo ’, ’Bebbo Machine ’, TRUE , ’2005 -08 -07’, NULL),
11 (2, ’Bibbo ’, ’The Bib -Man’, TRUE , ’1995 -01 -02’, NULL),
12 (3, ’Bibbi ’, ’Ms. Bibbi’, FALSE , ’1963 -11 -13’, ’1989 -02 -12’),
13 (3, ’Bebba ’, ’Mrs. Bebba ’, TRUE , ’1989 -02 -12’, NULL);
14
15 -- Create two ID types: Chinese national ID and mobile phone numbers.
16 INSERT INTO id_type (name , validation_regexp) VALUES
17 (’national ID’, ’^\d{6}((19)|(20))\d{9}[0-9X]$’),
18 (’mobile phone number ’, ’^\d{11}$’);
19
20 -- Insert the personal IDs and mobile phone numbers of the people.
21 INSERT INTO has_id (id_type , person , value , valid_from) VALUES
22 (1, 1, ’123456200508071234 ’, ’2021 -09 -21’),
23 (1, 2, ’123456199501021234 ’, ’2024 -12 -01’),
24 (1, 3, ’123456196311131234 ’, ’1983 -10 -03’),
25 (2, 1, ’22222222222 ’, ’2020 -09 -12’),
26 (2, 2, ’11111111111 ’, ’2012 -07 -30’),
27 (2, 3, ’44444444444 ’, ’2012 -07 -30’);
28
29 -- Provide an address for each person.
30 INSERT INTO address (person , country , province , city ,
31 district , postal_code , street_address) VALUES
32 (1, ’DE’, ’SN’, ’Chemnitz ’, ’Zentrum ’, ’09111 ’, ’Rathaus ’),
33 (2, ’CN’, ’AH’, ’Hefei’, ’Jinkaiqu ’, ’230601 ’, ’Hefei University ’),
34 (3, ’US’, ’NY’, ’New York’, ’Manhattan ’, ’10036 ’, ’Times Square ’);

Listing 19.135: The stdout resulting from the SQL statements in insert.sql given in Listing 19.134.
1 $ psql "postgres :// postgres:XXX@localhost/person_database" -v ON_ERROR_STOP

↪→ =1 -ebf insert.sql
2 INSERT 0 3
3 INSERT 0 4
4 INSERT 0 2
5 INSERT 0 6
6 INSERT 0 3
7 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/generated_sql/11_public_has_id_has_id_person_fk_constraint_5111.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/insert.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 287

Listing 19.136: Selecting data from the tables in the person_database . (stored in file select.sql ;
output in Listing 19.137)

1 /** Combine people , names , addresses , and phone numbers. */
2
3 SELECT full_name || ’: ’ || country || ’-’ || province || ’, ’ ||
4 city || ’, ’ || street_address ||
5 ’ (call ’ || value || ’)’ AS contact FROM name
6 INNER JOIN person ON person.id = name.person
7 INNER JOIN address ON person.id = address.person
8 INNER JOIN has_id ON person.id = has_id.person
9 WHERE name.is_official = TRUE AND -- use official name only

10 has_id.id_type = 2 -- use ID type for mobile phone
11 ORDER BY person.date_of_birth; -- sort by age , oldest people first

Listing 19.137: The stdout resulting from the SQL statements in select.sql given in Listing 19.136.
1 $ psql "postgres :// postgres:XXX@localhost/person_database" -v ON_ERROR_STOP

↪→ =1 -ebf select.sql
2 contact
3 --
4 Bebba: US -NY , New York , Times Square (call 44444444444)
5 Bibbo: CN -AH , Hefei , Hefei University (call 11111111111)
6 Bebbo: DE -SN , Chemnitz , Rathaus (call 22222222222)
7 (3 rows)
8
9 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 288

19.2.3.3 Derived Attributes

Derived attributes, introduced in Definition 18.11, are attributes that are computed based on the
values of other attributes. Whether or not they should be stored in a table depends on how hard it is
to compute them. For example, imagine that we have a factory and package things in boxes, pretty
much like back in Section 9.1 (The Table “product”). Maybe we have a table in our DB just for storing
the types of boxes by their width, height, and depth. The volume of a box could be derived attribute,
computed as the product of the three dimensions. It would not make sense wasting space by storing
this value, because we can easily compute it in an SQL query.

Then again, we may sell multiple products as packages. For example, we may offer a vacuum cleaner
together with a spare battery, two different nozzles, two brushes, an edge tool, and other attachments,
and a pack of air filter papers. These package elements need to all fit together into a box and the
order in which they are packed into the is important. This is a bit like a puzzle game. The best order
could be computed based on the dimensions of the box and the dimensions of the package components.
Doing so, however, means solving an NP-hard problem, which requires lots of time. Then, we would
definitely store the corresponding data as attributes even though they could be re-computed.

A derived attribute that is stored is just a normal table column. If the value can be computed from
values of other columns, as is the case in the box volume example above, the column can be annotated
as GENERATED [157]. At the time of this writing, PostgreSQL 17 is the current major version. This
major version only supports STORED generated columns [157], but in the future, VIRTUAL generated
columns whose values are not stored in the DB, but which are computed when read, will be introduced.

In summary, there are three choices of how we can implement derived attributes:

• realize them as GENERATED table columns and store their values [157],

• realize them as virtual GENERATED table columns without storing their values, which is currently
not yet supported by PostgreSQL [157], but will be implementedd in the future and may be
supported by other DBMS already, or

• realize them by computing their values in SELECT queries as needed.

Now, in the conceptual model illustrated as Figure 19.26.1 in the previous section, there was one derived
attribute, namely Age. This attribute is supposed to represent the age of a person. Of course, if we
know the DOB of a the person, we can compute the age right away. So how would we realize this
attribute: As a stored GENERATED column or compute it on the fly during SELECT queries?

Storing this value makes no sense: The age of a person is not a constant. It will change as time
goes by. Also, even if PostgreSQL does support virtual (not stored) GENERATED columns, it would still
be a mistake to use those to represent the age of people.

Several restrictions apply to the definition of generated columns and tables involv-
ing generated columns:
- The generation expression can only use immutable functions and cannot use sub-
queries or reference anything other than the current row in any way.
- . . .

— [157], 2025

To compute the age of a person, we need the DOB and we will somehow subtract it from the
CURRENT_DATE . CURRENT_DATE certainly is not an immutable or constant function. It changes daily.

So regardless of whether we have virtual GENERATED columns or not, the best way to compute the
age of a person is by defining a query, maybe solidified as a VIEW . Still having the person_database
from the previous section lying around, we will do it in there.

In Listing 19.138, we create a view with the name person_age . PostgreSQL offers the function
AGE [112] which computes the difference between CURRENT_DATE and the TIMESTAMP or DATE value
provided as parameter. Our new view simply selects all the columns from table person and adds a new
column called age computed as AGE(date_of_birth) . In Listing 19.139, we then first print the value
of the CURRENT_DATE of the time when this book is compiled for reference. Then we combine the result
of the new view person_age with the table name to print all the person records together with their
name, DOBs, and ages. Having done that, we can delete the DB person_database again.

CHAPTER 19. LOGICAL MODEL DESIGN 289

Listing 19.138: Create a view that represents the derived attribute age and execute it. (stored in
file view_person_age.sql ; output in Listing 19.139)

1 /* Create a view adding age information to person table. */
2
3 -- Create a view that adds the age to the fields of the person table.
4 CREATE VIEW person_age AS
5 SELECT *, AGE(date_of_birth) AS age FROM person;
6
7 -- Show current date.
8 SELECT CURRENT_DATE;
9

10 -- Execute the view.
11 SELECT name.full_name , person_age.date_of_birth , person_age.age
12 FROM person_age INNER JOIN name ON name.person = person_age.id
13 WHERE name.is_official = TRUE;

Listing 19.139: The stdout resulting from the SQL statements in view_person_age.sql given in List-
ing 19.138.

1 $ psql "postgres :// postgres:XXX@localhost/person_database" -v ON_ERROR_STOP
↪→ =1 -ebf view_person_age.sql

2 CREATE VIEW
3 current_date
4 --------------
5 2025 -06 -07
6 (1 row)
7
8 full_name | date_of_birth | age
9 -----------+---------------+-------------------------

10 Bebbo | 2005 -08 -07 | 19 years 10 mons
11 Bibbo | 1995 -01 -02 | 30 years 5 mons 5 days
12 Bebba | 1963 -11 -13 | 61 years 6 mons 24 days
13 (3 rows)
14
15 # psql 16.9 succeeded with exit code 0.

19.2.3.4 Relationships of a Higher Degree

In Figure 19.27.1, we reproduce a figure from Section 18.3 (Relationships) where a ternary relationship is
illustrated. The entities Professor, Student, and Module are related with each other and this relationship
even has a relationship attribute. The professor teaches a module in a certain semester. The student
enrolls in that taught module in that semester.

In Figure 19.27.2, we create a logical model that fits to this scenario. First, the entities become
tables with surrogate primary keys. We thus get the tables module , professor , and student . In
order to add a bit more sense to this example, we add the attribute name to the tables student and
professor as well as title to module .

We then construct the ternary relationship. We basically have two choices to do this:

1. We can create one single table takes_place which has three foreign keys to the tables professor ,
student , and module , as well as a column semester .

2. We can create one table course with a surrogate key for the “module-instantiation”, which has
foreign keys to the tables professor and module as well as the column semester . We create
a second table enrolls that has two foreign keys, one for the table student and one for the
table course .

Both choices would be feasible, but we go with the second one. The idea is that we can also consider
the realization of a module by a certain professor in a semester as an entity in its own right. This entity
would have the attribute semester , but could also have arbitrary other attributes that we may want to

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/view_person_age.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/person_database_2/view_person_age.sql

CHAPTER 19. LOGICAL MODEL DESIGN 290

Student

Module

takes place Professor

in Semester

enrolls into teaches

(19.27.1) A reproduction of Figure 18.6.4, which illustrates a ternary relationship of students, modules, and
professors with the relationship attribute semester. This graphic was painted using yEd.

teaches

joins

course

id integer « pk »

name varchar(255) « nn »

student_id_pk constraint « pk »

public.student

id integer « pk »

name varchar(255) « nn »

professor_id_pl constraint « pk »

public.professor

id integer « pk »

title varchar(255) « nn »

module_id_pl constraint « pk »

public.module

id integer « pk »

professor integer « fk nn »

module integer « fk nn »

semester integer « nn »

course_id_pk constraint « pk »

course_professor_fk constraint « fk »

course_module_fk constraint « fk »

public.course

student integer « pk fk »

course integer « pk fk »

enrolls_pk constraint « pk »

enrolls_student_fk constraint « fk »

enrolls_course_fk constraint « fk »

public.enrolls

module

(19.27.2) One possible transformation of Figure 18.6.4 to a logical model using PgModeler.

Figure 19.27: The representation of relationships with a degree higher than two in relational logical
models.

Listing 19.140: The generated script to create the teaching_database DB. (src)
1 -- object: teaching_database | type: DATABASE --
2 -- DROP DATABASE IF EXISTS teaching_database;
3 CREATE DATABASE teaching_database;
4 -- ddl -end --

add later. Relating the students to that course table by using a separate table then makes sense. So
we modeled this using PgModeler and get the logical schema illustrated in Figure 19.27.2.

Exporting this model SQL yields ten scripts. Listing 19.140 sets up the DB. Listings 19.141 to 19.145
create the five tables student , professor , module , course , and enrolls , respectively. Listings 19.146
to 19.149 create the foreign key constraints that ensure referential integrity.

For this purpose, we extend the model further with reasonable assumptions about cardinalities and
modalities. For example, it makes sense to assume that each row in table course must be related to
exactly one row in table professor and exactly one row in table module . We do not permit a course
that represents no module of the curriculum and we also do not permit a course that teaches the
knowledge of multiple modules at once. Similarly, we cannot have a course without professor and also
we do not permit more than one professor to teach a course. Well, the latter may actually be possible.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/01_teaching_database_database_2001.sql

CHAPTER 19. LOGICAL MODEL DESIGN 291

Listing 19.141: The generated script to create the table student . (src)
1 -- object: public.student | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student CASCADE;
3 CREATE TABLE public.student (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 name varchar (255) NOT NULL ,
6 CONSTRAINT student_id_pk PRIMARY KEY (id)
7);
8 -- ddl -end --
9 ALTER TABLE public.student OWNER TO postgres;

10 -- ddl -end --

Listing 19.142: The generated script to create the table professor . (src)
1 -- object: public.professor | type: TABLE --
2 -- DROP TABLE IF EXISTS public.professor CASCADE;
3 CREATE TABLE public.professor (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 name varchar (255) NOT NULL ,
6 CONSTRAINT professor_id_pl PRIMARY KEY (id)
7);
8 -- ddl -end --
9 ALTER TABLE public.professor OWNER TO postgres;

10 -- ddl -end --

Listing 19.143: The generated script to create the table module . (src)
1 -- object: public.module | type: TABLE --
2 -- DROP TABLE IF EXISTS public.module CASCADE;
3 CREATE TABLE public.module (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 title varchar (255) NOT NULL ,
6 CONSTRAINT module_id_pl PRIMARY KEY (id)
7);
8 -- ddl -end --
9 ALTER TABLE public.module OWNER TO postgres;

10 -- ddl -end --

Maybe that would be a good question to bring up during the requirements gathering process or later
during conceptual modelling when sitting down with our stakeholders in the university. At least for
now, we do not permit that (as it would also make our relationship patterns more complicated).

Professors can teach multiple modules and each module can be taught by multiple professors. We
could add a UNIQUE constraint over the combination of the columns module , professor , and semester .
This would mean that a professor cannot teach the same module twice in the same semester. Then
again, we can also permit this. We can easily imagine some “service modules,” like “Mathematics for
Engineers,” that many be offered by the School of Mathematics to several other schools, say the School
of Computer Science, the School the Engineering, and the School of Agriculture. Then a professor may
offer the same module several times in the same semester, just for different student groups.

We also enforce that each record in the table enrolls must relate exactly one row in table student
and one row in table course . We use the combination of these two foreign keys as primary key. In
other words, no student can enroll in the same course more than once. Courses are realizations of
modules that emerge because a professor teaches them in a specific semester. So it makes no sense
that a student takes part in the same module taught by the same professor in the same semester more
than once. They can, however, take part in the same module in other semesters. Of course, students
can also enroll into multiple different courses.

After executing these scripts, we insert some data into the tables in Listing 19.150. We define the

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/03_public_student_table_5071.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/04_public_professor_table_5087.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/05_public_module_table_5095.sql

CHAPTER 19. LOGICAL MODEL DESIGN 292

Listing 19.144: The generated script to create the table course which relates the tables professor
and module . (src)

1 -- object: public.course | type: TABLE --
2 -- DROP TABLE IF EXISTS public.course CASCADE;
3 CREATE TABLE public.course (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 professor integer NOT NULL ,
6 module integer NOT NULL ,
7 semester integer NOT NULL ,
8 CONSTRAINT course_id_pk PRIMARY KEY (id)
9);

10 -- ddl -end --
11 ALTER TABLE public.course OWNER TO postgres;
12 -- ddl -end --

Listing 19.145: The generated script to create the table enrolls which relates the tables student
and course . (src)

1 -- object: public.enrolls | type: TABLE --
2 -- DROP TABLE IF EXISTS public.enrolls CASCADE;
3 CREATE TABLE public.enrolls (
4 student integer NOT NULL ,
5 course integer NOT NULL ,
6 CONSTRAINT enrolls_pk PRIMARY KEY (student ,course)
7);
8 -- ddl -end --
9 ALTER TABLE public.enrolls OWNER TO postgres;

10 -- ddl -end --

Listing 19.146: The generated script to create the constraint enforcing that each row in table course
is related to exactly one row in table professor . (src)

1 -- object: course_professor_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.course DROP CONSTRAINT IF EXISTS course_professor_fk

↪→ CASCADE;
3 ALTER TABLE public.course ADD CONSTRAINT course_professor_fk FOREIGN KEY (

↪→ professor)
4 REFERENCES public.professor (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

three students Bibbo, Bebbo, and Bebba. Two professors are declared, namely Weise (yours truly) and
Bobbo. We enter three modules, namely Python, Databases, and Java. Via the courses table, we
specify that Prof. Weise teaches Python and Databases, both in semester 20252, which we interprete
as the fall semester in the year 2025. We also define that Bobbo teaches Java in the spring and fall
semesters 2026.

Using four INNER JOIN expressions, we then merge all the data together. We order the results by
the student name, professor names, module titles, and semesters. After all of that, we delete the DB
again using DROP DATABASE .

In this example, we noticed that we could realize the conceptual ternary relationship given in
Figure 19.27.1 in two different ways in a logical schema. In other scenarios, there may yet be other
choices. It does not make much sense to iterate over all the (4+3−1)!

(4−1)!∗3! = 20 possible ternary relationships
here. Then we would have to also iterate over all 35 possible relationships that involve four entity types,
all 56 relationship patterns of five entity types, and so on. We should also remember that relationship
attributes may be present, which could mess up the patterns further.

The somewhat unsatisfying answer on how to implement relationship patterns of more than two

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/06_public_course_table_5105.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/07_public_enrolls_table_5131.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/08_public_course_course_professor_fk_constraint_5116.sql

CHAPTER 19. LOGICAL MODEL DESIGN 293

Listing 19.147: The generated script to create the constraint enforcing that each row in table course
is related to exactly one row in table module . (src)

1 -- object: course_module_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.course DROP CONSTRAINT IF EXISTS course_module_fk

↪→ CASCADE;
3 ALTER TABLE public.course ADD CONSTRAINT course_module_fk FOREIGN KEY (

↪→ module)
4 REFERENCES public.module (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listing 19.148: The generated script to create the constraint enforcing that each row in table enrolls
is related to exactly one row in table student . (src)

1 -- object: enrolls_student_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.enrolls DROP CONSTRAINT IF EXISTS enrolls_student_fk

↪→ CASCADE;
3 ALTER TABLE public.enrolls ADD CONSTRAINT enrolls_student_fk FOREIGN KEY (

↪→ student)
4 REFERENCES public.student (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listing 19.149: The generated script to create the constraint enforcing that each row in table enrolls
is related to exactly one row in table course . (src)

1 -- object: enrolls_course_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.enrolls DROP CONSTRAINT IF EXISTS enrolls_course_fk

↪→ CASCADE;
3 ALTER TABLE public.enrolls ADD CONSTRAINT enrolls_course_fk FOREIGN KEY (

↪→ course)
4 REFERENCES public.course (id) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

entity types is it depends. We are equipped with the ability to enforce referential integrity of arbitrary
binary relationship patterns. We can use this knowledge to reasonably realize patterns that are more
complicated. We just have to build experience.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/09_public_course_course_module_fk_constraint_5117.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/10_public_enrolls_enrolls_student_fk_constraint_5145.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/generated_sql/11_public_enrolls_enrolls_course_fk_constraint_5151.sql

CHAPTER 19. LOGICAL MODEL DESIGN 294

Listing 19.150: Inserting into and selecting data from the tables in the teaching_database . (stored in
file insert_and_select.sql ; output in Listing 19.151)

1 /** Insert data into the teaching database and then merge it. */
2
3 -- Insert several student records.
4 INSERT INTO student (name) VALUES (’Bibbo ’), (’Bebbo’), (’Bebba’);
5
6 -- Insert several professor records.
7 INSERT INTO professor (name) VALUES (’Weise’), (’Bobbo ’);
8
9 -- Insert several module records.

10 INSERT INTO module (title) VALUES (’Python ’), (’Databases ’), (’Java’);
11
12 -- Create the courses , i.e., the instances of the modules in semesters.
13 INSERT INTO course (professor , module , semester) VALUES
14 (1, 1, 20252) , (1, 2, 20252) , (2, 3, 20261) , (2, 3, 20262);
15
16 -- Enroll students into the courses.
17 INSERT INTO enrolls (student , course) VALUES
18 (1, 1), (1, 2), (1, 3), (2, 1), (2, 4), (3, 2), (3, 3);
19
20 -- Print the enrollment information.
21 SELECT student.name AS student , professor.name AS teacher ,
22 module.title AS module , semester FROM enrolls
23 INNER JOIN student ON enrolls.student = student.id
24 INNER JOIN course ON enrolls.course = course.id
25 INNER JOIN professor ON course.professor = professor.id
26 INNER JOIN module ON course.module = module.id
27 ORDER BY student.name , professor.name , module.title , semester;

Listing 19.151: The stdout resulting from the SQL statements in insert_and_select.sql given
in Listing 19.150.

1 $ psql "postgres :// postgres:XXX@localhost/teaching_database" -v
↪→ ON_ERROR_STOP =1 -ebf insert_and_select.sql

2 INSERT 0 3
3 INSERT 0 2
4 INSERT 0 3
5 INSERT 0 4
6 INSERT 0 7
7 student | teacher | module | semester
8 ---------+---------+-----------+----------
9 Bebba | Bobbo | Java | 20261

10 Bebba | Weise | Databases | 20252
11 Bebbo | Bobbo | Java | 20262
12 Bebbo | Weise | Python | 20252
13 Bibbo | Bobbo | Java | 20261
14 Bibbo | Weise | Databases | 20252
15 Bibbo | Weise | Python | 20252
16 (7 rows)
17
18 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/insert_and_select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/teachingManagement/logical/teaching_database_1/insert_and_select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 295

19.2.3.5 Summary

At this stage, we now have the means to translate conceptual models to logical models that follow the
relational principle. In relational databases, all the data is stored in tables. Each table as a primary
key. One table can refer to another table via columns that can store the primary keys of that other
table. These columns then are called the foreign keys. The referential integrity between the tables is
maintained via REFERENCES , NOT NULL , and UNIQUE constraints. We have learned how to map weak
entities, relationship attributes, derived attributes, and relationships of higher degrees to this data
model as well. With this, we have the tools to transform all the elements that can draw into a entity
relationship diagram (ERD) to SQL code.

19.3 Normalization

Designing the logical schema for a relational database is not just a transformation of a conceptual
schema to SQL. While we now are able to translate all the elements of an ERD illustrating a conceptual
model to to a logical model, this does not necessarily mean that the resulting model will be efficient
and well-designed. In order to achieve this, several guidelines can be followed and some of the most
important once concern normalization [110, 143].

Normalization is a process that aims at minimizing redundancy and avoiding inconsistencies and
anomalies [359, 360]. It does so at the trade-off of data retrieval speed: Data which, in unnormalized
form, could be stored in a single table needs to be reassembled using INNER JOIN and similar constructs
combining multiple tables in normalized form [221]. Therefore, whether to normalize data and to which
degree is a question always to be answered with performance in mind [221].

There exist several normal forms (NFs), such as the first normal form (1NF), the second normal form
(2NF), the third normal form (3NF), and so on. Higher normal forms are more restrictive. Therefore,
if a part of a logical model is in a higher normal form, then it is also in all of the lower normal forms.

19.3.1 First Normal Form

The first normal form (1NF) dates back to Codd’s seminal paper [81] where he presented the relational
data model back in 1970. In its essence, it prescribes that the design of tables must follow the relational
data model.

Definition 19.7: First normal form (1NF)

Under the 1NF, all rows in a table must have the same number of fields and all fields must be
atomic.

This excludes multivalued attributes as well as composite attributes. As we already discussed before,
the relational data model does not support such attributes anyway.

In Section 19.2.1, we discussed how entity types in the conceptual schema are translate to tables in
the logical schema based on the requirements of the relational data model. We stated that multivalued
attributes become separate tables and that composite attributes need to be recursively broken down
into their atomic components, which then become separate columns. If we use the relational data
model, then we would naturally produce logical models in 1NF.

However, this is only true if we recognize multivalued attributes and composite attributes as such.
If a table does have attributes that are semantically composite but we implement them as single flat
attributes, then it violates the 1NF. If an attribute of an entity is multivalued, but instead of placing it
into an additional table, we try to represent it using multiple columns in the table for entity, we violate
the 1NF. Let us explore what happens if we violate the 1NF.

19.3.1.1 Composite Attributes

Violation: The Use of Composite Attributes In Figure 19.28, we illustrate a part of a logical
model that relates student records to address records. In this relationship, each student has exactly one
address. In Listings 19.152 and 19.153, we create the two tables, while leaving the DB and constraint
creation to your imagination. We then insert some data into them DB Listing 19.154. At first glance,
all looks well.

CHAPTER 19. LOGICAL MODEL DESIGN 296

home_address

id integer « pk »

full_address varchar(255) « nn »

address_id_pk constraint « pk »

public.address
id integer « pk »

name varchar(255) « nn »

address integer « fk nn »

student_id_pk constraint « pk »

student_address_fk constraint « fk »

public.student

Figure 19.28: A violation of the 1NF: The full_address field is semantically a composite attribute,
but represented as flat VARCHAR .

Listing 19.152: The generated SQL code for creating the address table that violates the 1NF based
on Figure 19.28. (src)

1 -- object: public.address | type: TABLE --
2 -- DROP TABLE IF EXISTS public.address CASCADE;
3 CREATE TABLE public.address (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 full_address varchar (255) NOT NULL ,
6 CONSTRAINT address_id_pk PRIMARY KEY (id)
7);
8 -- ddl -end --
9 ALTER TABLE public.address OWNER TO postgres;

10 -- ddl -end --

Listing 19.153: The generated SQL code for creating the student table based on Figure 19.28. (src)
1 -- object: public.student | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student CASCADE;
3 CREATE TABLE public.student (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 name varchar (255) NOT NULL ,
6 address integer NOT NULL ,
7 CONSTRAINT student_id_pk PRIMARY KEY (id)
8);
9 -- ddl -end --

10 ALTER TABLE public.student OWNER TO postgres;
11 -- ddl -end --

And all could be well, if we would treat the address of a student always as a single text string.
However, this is not necessarily true, especially not true in our teaching management platform exam-
ple. In our example, Mr. Bibbo lives directly in our Hefei University whereas Mr. Babbo comes from
Quanzhou (泉州市) in the Fujian province (福建省). Mr. Bebbo and Ms. Bibbi, however, are foreign
exchange students (留学生) from Germany and the USA, respectively. Assume that this table would
be much larger. What would happen if we wanted to know who of our students have a valid address
in China? How would we do that?

Matter of fact, we encountered this very same situation back in Section 9.2.2. Back then,
we used the ILIKE expression and we do so again here: In Listing 19.155, we combine the ta-
bles student and address by using an INNER JOIN statement. We then only keep the rows
WHERE full_address ILIKE ’%china%’ , in other words, where the word “china” occurs anywhere in
the full_address columns, regardless of its casing. “China,” “china,” “CHINA,” “cHina” – all are OK.
Doing this will yield the two students Mr. Bibbo and Ms. Bibbi. Ms. Bibbi, however, is a foreign
exchange student. She lives in Chinatown, New York. Also, Mr. Babbo was not listed, as he declared
his address to be in the PRC, i.e., the People’s Republic of China.

We are faced with two problems: The first one is that we have no method to decide what part of
the full_address is the country and what not. The second problem is that there are many different
ways to declare that the country of an address is China.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_composite/generated_sql/03_public_address_table_5071.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_composite/generated_sql/04_public_student_table_5075.sql

CHAPTER 19. LOGICAL MODEL DESIGN 297

Listing 19.154: Inserting some data into the tables student and address in violation of the 1NF based
on Figure 19.28. (src)

1 /** Insert data into the database. */
2
3 -- Insert several address records.
4 INSERT INTO address (full_address) VALUES
5 (’Hefei University , Hefei 230601 Jinkaiqu , Hefei , Anhui , China ’),
6 (’Am Rathaus 1, 09111 Zentrum , Chemnitz , Sachsen , Deutschland ’),
7 (’Canal Street 4, Chinatown , New York , NY, USA’),
8 (’West Street , Licheng District , Quanzhou 362002 , Fujian , PRC’);
9

10 -- Create the student records.
11 INSERT INTO student (name , address) VALUES
12 (’Bibbo’, 1), (’Bebbo’, 2), (’Bibbi’, 3), (’Babbo’, 4);

The first problem is caused directly by our violation of the 1NF. Here, we did not model the attribute
for the address as a composite attribute. We modelled it as an atomic attribute, which turned out
to be wrong, because now we want to access its components. An atomic attribute does not have
components.

Now our DB can still “work”. We can construct the second query in Listing 19.155, which deals
with both of the special cases mentioned above. We exclude addresses that have China in their text
but also Chinatown. And we include addresses that mention PRC and, for good measures, also those
including P.R.C. These, however, are only crutches and no solutions. We can easily imagine addresses
that still will be misclassified. For example, what do we do with the “Embassy of China in Berlin,
Germany”?

Repair: Disassembling the Composite Attribute Let us now fix this problem. A proper solution
can only be to model the address as a composite attribute. At least the country needs to be split off.
Maybe also the province, because that could come in handy, too. We probably also want a postal code.
We apply these ideas to create the improved logical model in Figure 19.29.

The attribute full_address now now longer exists when we create the table address in List-
ing 19.157. Instead, we have the columns country , province , city , postal_code , and street_address ,
all of which are of type VARCHAR of appropriate lengths. We permit province to be NULL , because
some countries maybe do not have provinces, whereas all other fields must be NOT NULL . Nothing else
changes, the table student can stay as it is.

When we insert the data into our DB Listing 19.158, we of course also need to split the addresses
properly over the columns. This also shows us a slight drawback that is inherent to all normal forms:
They break compound data into independent pieces. If we later need the complete data again, we need
to reassemble the pieces. Thus, if we need the full address string, we first must reassemble it, probably
using the string concatenation operator || [382].

As you can see in Listing 19.160, we now can indeed obtain the list of all students with addresses
in China much more easily. It is a given that we still have to deal with the fact that different people
may use different names for the country, but at least we cannot accidentally classify someone from
Chinatown in San Francisco as a PRC resident.

While we are here, let’s do a small excursion that just fits nicely in this topic but is otherwise
unrelated to the 1NF. If you read Listing 19.159, you notice that reassembling the full address was a
bit complicated and went beyond simply using || . This is because we allowed the province column
to be NULL .

We even have such a case in our table: A new student, Ms. Bebbe, has joined our university and
she is from Beijing (北京市). Beijing that does not belong to any province but is a municipality
directly under the central government of China. Therefore, when adding her address record, we left the
province column as NULL .

In PostgreSQL, concatenating a string with NULL yields NULL . If we just combined all the address
fields using || , we would yield NULL for the address of Ms. Bebbe. To deal with the potentially NULL in
the province field, we use the COALESCE function [89]. This function takes arbitrarily many arguments

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_composite/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 298

Listing 19.155: Trying to find all the students with an address in China, which is hard, because table
address violates the 1NF. (stored in file select.sql ; output in Listing 19.156)

1 /** Get a list of students from China. */
2
3 -- Fails to get addresses from the PRC and includes addresses from
4 -- Chinatown , New York.
5 SELECT name , full_address as address_attempt_1 FROM student
6 INNER JOIN address ON student.address = address.id
7 WHERE full_address ILIKE ’%china%’;
8
9 -- Gets everything right , but is still error prone.

10 -- For examples , what if China was written in Chinese?
11 -- What with other words or names that include China?
12 SELECT name , full_address as address_attempt_2 FROM student
13 INNER JOIN address ON student.address = address.id
14 WHERE ((full_address ILIKE ’%china%’) AND NOT
15 (full_address ILIKE ’%chinatown%’))
16 OR (full_address ILIKE ’%PRC%’)
17 OR (full_address ILIKE ’%P.R.C.%’);

Listing 19.156: The stdout resulting from the SQL statements in select.sql given in Listing 19.155.
1 $ psql "postgres :// postgres:XXX@localhost/anomalies" -v ON_ERROR_STOP =1 -

↪→ ebf select.sql
2 name | address_attempt_1
3 -------+--
4 Bibbo | Hefei University , Hefei 230601 Jinkaiqu , Hefei , Anhui , China
5 Bibbi | Canal Street 4, Chinatown , New York , NY, USA
6 (2 rows)
7
8 name | address_attempt_2
9 -------+--

10 Bibbo | Hefei University , Hefei 230601 Jinkaiqu , Hefei , Anhui , China
11 Babbo | West Street , Licheng District , Quanzhou 362002 , Fujian , PRC
12 (2 rows)
13
14 # psql 16.9 succeeded with exit code 0.

and returns the first argument that is not NULL (or NULL if all of its arguments are NULL).

When reading the query, you will also find one additional change when checking
the country: We could have used the logical OR to combine the three conditions
country ILIKE ’%china%’ , country ILIKE ’%PRC%’ , and country ILIKE ’%P.R.C.%’ . Instead, we
wrote country ILIKE ANY(ARRAY[’%china%’, ’%PRC%’, ’%P.R.C.%’]) , which is equivalent to that [8,
335]: We can declare an array of the values a , b , c , and d as ARRAY[a, b, c, d] . The expression
XXX operator ANY(ARRAY[...]) becomes TRUE if XXX operator YYY is TRUE for any, i.e., at least one,
YYY in the array [335]. In our case, XXX is country and operator is ILIKE . (Similarly, the expression
XXX operator ALL(ARRAY[...]) becomes TRUE if XXX operator YYY is TRUE for every single, i.e., all,
YYY in the array [335].) Thus, we can use the shorter expression to save a bit space.

Anyway, we have seen one anomaly that can occur when designing logical schemas. If we incorrectly
model composite attributes as atomic attributes and later need to pull the components out of them,
we can quickly descend into the hell of crutches and special cases. Properly recognizing the nature of
attributes and strictly adhering to the 1NF can reduce the potential errors very significantly. It comes
at the cost of slightly more complicated queries when reassembling the compound data.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_composite/select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_composite/select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 299

home_address

id integer « pk »

country varchar(100) « nn »

province varchar(100)

city varchar(100) « nn »

postal_code varchar(40) « nn »

street_address varchar(255) « nn »

address_id_pk constraint « pk »

public.address

id integer « pk »

name varchar(255) « nn »

address integer « fk nn »

student_id_pk constraint « pk »

student_address_fk constraint « fk »

public.student

Figure 19.29: A new variant of Figure 19.28 that does no longer violate the 1NF. The address data
has been disassembled in several columns, allowing us to extract the country of an address with ease.

Listing 19.157: The generated SQL code for creating the address table based on Figure 19.29, which
no longer violates the 1NF. (src)

1 -- object: public.address | type: TABLE --
2 -- DROP TABLE IF EXISTS public.address CASCADE;
3 CREATE TABLE public.address (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 country varchar (100) NOT NULL ,
6 province varchar (100),
7 city varchar (100) NOT NULL ,
8 postal_code varchar (40) NOT NULL ,
9 street_address varchar (255) NOT NULL ,

10 CONSTRAINT address_id_pk PRIMARY KEY (id)
11);
12 -- ddl -end --
13 ALTER TABLE public.address OWNER TO postgres;
14 -- ddl -end --

Listing 19.158: Inserting some data into the tables student and address as designed in Figure 19.29,
which now comply with the 1NF. (src)

1 /** Insert data into the database. */
2
3 -- Insert several address records.
4 INSERT INTO address (
5 country , province , city , postal_code , street_address) VALUES
6 (’China’, ’Anhui ’, ’Hefei’, ’230601 ’, ’Jinkaiqu , Hefei University ’),
7 (’Deutschland ’, ’Sachsen ’, ’Chemnitz ’, ’09111’, ’Am Rathaus 1’),
8 (’USA’, ’NY’, ’New York’, ’10013 ’, ’Canal Street 4, Chinatown ’),
9 (’PRC’, ’Fujian ’, ’Quanzhou ’, ’362002 ’, ’West Street ’),

10 (’P.R.C.’, NULL , ’Beijing ’, ’100084 ’, ’Tsinghua University ’);
11
12 -- Create the student records.
13 INSERT INTO student (name , address) VALUES
14 (’Bibbo’, 1), (’Bebbo’, 2), (’Bibbi’, 3), (’Babbo’, 4), (’Bebbe ’, 5);

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_composite/generated_sql/03_public_address_table_5071.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_composite/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 300

Listing 19.159: Trying to find all the students with an address in China becomes easier now, because
county is its own column. Also, reassembling the full address using the string concatenation opera-
tion || . (stored in file select.sql ; output in Listing 19.160)

1 /** Get a list of students from China. */
2
3 -- Much easier due to 1NF , but still a bit problematic due to multiple
4 -- names for same country.
5 SELECT name , country || ’, ’ || COALESCE(province || ’, ’, ’’)
6 || postal_code || ’ ’ || city || ’, ’
7 || street_address AS address FROM student
8 INNER JOIN address ON student.address = address.id
9 WHERE country ILIKE ANY(ARRAY[’%china%’, ’%PRC%’, ’%P.R.C.%’]);

Listing 19.160: The stdout resulting from the SQL statements in select.sql given in Listing 19.159.
1 $ psql "postgres :// postgres:XXX@localhost/fixed" -v ON_ERROR_STOP =1 -ebf

↪→ select.sql
2 name | address
3 -------+--
4 Bibbo | China , Anhui , 230601 Hefei , Jinkaiqu , Hefei University
5 Babbo | PRC , Fujian , 362002 Quanzhou , West Street
6 Bebbe | P.R.C., 100084 Beijing , Tsinghua University
7 (3 rows)
8
9 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_composite/select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_composite/select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 301

19.3.1.2 The Use of Multivalued Attributes

Violation: The Use of Multivalued Attributes Let us continue our example from the previous
section. There, we developed a two-table structure for storing addresses of students. Each student had
exactly one address. But maybe in reality, students can have more than one address. Let’s say their
current address, maybe in the university dormitory in a flat rented nearby, and their old home address,
i.e., the flat of their parents. In the model from the previous section, this cannot be implemented. In
Figure 19.30, the DB developer had a very simple idea: Let’s just have two columns for the addresses
– address_1 and address_2 – in the table student . By doing so, they have violated the 1NF. The
table student is created based on this model in Listing 19.161. We omitted the foreign key REFERENCES
constraints for the sake of brevity. We also did not print the SQL script for creating the table address ,
since it remains the same as in the last section.

The violation of the 1NF can cause various problems. First, there are design-level problems. What,
for example, will we do if a student needs a third address? This is easily conceivable, maybe a student
has parents who live separately, so they have two home addresses and one flat rented near the university.
Sticking to the repeating-groups method, we would need to add a columns address_3 . What if we
have a person with four addresses? Will we keep adding columns when special cases that require more
addresses appear? However, such a modification is not just a single change. There could be various
queries and applications that make use of the address columns. We would need to update every single
one of them.

Another problem is how do we know how many addresses a student has? In our logical model shown
in Figure 19.30 and in its implementation in Listing 19.161, we constrained the address_1 column to
be NOT NULL . Column address_2 is permitted to be NULL . in Therefore, a student has either one or
two addresses. If we had extended our model to three addresses, then it could happen that the second
column is NULL while the third column is not, or the other way around. So just to know the number of
addresses, we would have a somewhat complex query.

Well, since we have multiple addresses now our queries get more complicated anyway. However,
due to the repeated group emulating a multivalued attribute, they become even more complex. For

home_address_1

home_address_2

id integer « pk »

country varchar(100) « nn »

province varchar(100)

city varchar(100) « nn »

postal_code varchar(40) « nn »

street_address varchar(255) « nn »

address_id_pk constraint « pk »

public.address

id integer « pk »

name varchar(255) « nn »

address_1 integer « fk nn »

address_2 integer « fk »

student_id_pk constraint « pk »

student_address_1_fk constraint « fk »

student_address_2_fk constraint « fk »

public.student

Figure 19.30: A violation of the 1NF: The student table has two columns with the same semantic,
i.e., a repeating group. Both columns reference addresses to simulate a multivalued attribute.

Listing 19.161: The generated SQL code for creating the student table with two columns for addresses
based on Figure 19.30, which violates the 1NF. The corresponding REFERENCES constraints have been
omitted here for the sake of brevity. (src)

1 -- object: public.student | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student CASCADE;
3 CREATE TABLE public.student (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 name varchar (255) NOT NULL ,
6 address_1 integer NOT NULL ,
7 address_2 integer ,
8 CONSTRAINT student_id_pk PRIMARY KEY (id)
9);

10 -- ddl -end --
11 ALTER TABLE public.student OWNER TO postgres;
12 -- ddl -end --

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_multivalued/generated_sql/04_public_student_table_5079.sql

CHAPTER 19. LOGICAL MODEL DESIGN 302

Listing 19.162: Inserting some data into the tables student and address in violation of the 1NF based
on Figure 19.30. (src)

1 /** Insert data into the database. */
2
3 -- Insert several address records.
4 INSERT INTO address (
5 country , province , city , postal_code , street_address) VALUES
6 (’China’, ’Anhui ’, ’Hefei’, ’230601 ’, ’Jinkaiqu , Hefei University ’),
7 (’China’, ’Anhui ’, ’Hefei’, ’230026 ’, ’USTC’),
8 (’Deutschland ’, ’Sachsen ’, ’Chemnitz ’, ’09111’, ’Am Rathaus 1’),
9 (’USA’, ’NY’, ’New York’, ’10013 ’, ’Canal Street 4, Chinatown ’),

10 (’Deutschland ’, ’Sachsen ’, ’Chemnitz ’, ’09111 ’, ’TU Chemnitz ’),
11 (’PRC’, ’Fujian ’, ’Quanzhou ’, ’362002 ’, ’West Street ’),
12 (’P.R.C.’, NULL , ’Beijing ’, ’100084 ’, ’Tsinghua University ’),
13 (’Spain’, ’Andalusia ’, ’Granada ’, ’18009’, ’Alhambra de Granada ’);
14
15
16 -- Create the student records.
17 INSERT INTO student (name , address_1 , address_2) VALUES
18 (’Bibbo’, 1, 2), (’Bebbo ’, 3, NULL), (’Bibbi ’, 4, NULL),
19 (’Babbo’, 5, 6), (’Bebbe ’, 7, 8);

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_multivalued/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 303

Listing 19.163: Trying to find all the students with at least one address in China, which is harder than
necessary, because table student violates the 1NF. (stored in file select.sql ; output in Listing 19.164)

1 /** Get a list of students with at least one address in China. */
2
3 -- Select the student id, student name , and address as three columns.
4 SELECT name , address_1 AS adr FROM student
5 UNION SELECT name , address_2 AS adr FROM student
6 WHERE address_2 IS NOT NULL;
7
8 -- Use the above as *subquery* to construct the overall result.
9 SELECT name , city || ’, ’ || street_address AS address FROM (

10 SELECT name , address_1 AS adr FROM student
11 UNION SELECT name , address_2 AS adr FROM student)
12 INNER JOIN address ON adr = address.id
13 WHERE country ILIKE ANY(ARRAY[’%china%’, ’%PRC%’, ’%P.R.C.%’]);
14
15 -- Remove double student entries.
16 SELECT DISTINCT ON (sid)
17 name , city || ’, ’ || street_address AS address FROM (
18 SELECT id AS sid , name , address_1 AS adr FROM student
19 UNION SELECT id AS sid , name , address_2 AS adr FROM student)
20 INNER JOIN address ON adr = address.id
21 WHERE country ILIKE ANY(ARRAY[’%china%’, ’%PRC%’, ’%P.R.C.%’]);

Listing 19.164: The stdout resulting from the SQL statements in select.sql given in Listing 19.163.
1 $ psql "postgres :// postgres:XXX@localhost/anomalies" -v ON_ERROR_STOP =1 -

↪→ ebf select.sql
2 name | adr
3 -------+-----
4 Bebbe | 7
5 Babbo | 5
6 Bibbo | 1
7 Bibbo | 2
8 Bebbo | 3
9 Bebbe | 8

10 Bibbi | 4
11 Babbo | 6
12 (8 rows)
13
14 name | address
15 -------+-----------------------------------
16 Bebbe | Beijing , Tsinghua University
17 Bibbo | Hefei , Jinkaiqu , Hefei University
18 Bibbo | Hefei , USTC
19 Babbo | Quanzhou , West Street
20 (4 rows)
21
22 name | address
23 -------+------------------------------
24 Bibbo | Hefei , USTC
25 Babbo | Quanzhou , West Street
26 Bebbe | Beijing , Tsinghua University
27 (3 rows)
28
29 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_multivalued/select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/anomaly_multivalued/select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 304

example: What do we do if we want a list of students who have at least one address in China?

Before we try to construct such a query, let us first insert some example data into our DB in
Listing 19.162. Mr. Bibbo now has two addresses in Hefei, one at our Hefei University (合肥大学) and
one at the University of Science and Technology of China (中国科学技术大学, USTC). Mr. Bebbo still
has only one address and lives in Chemnitz city in Germany. Ms. Bibbi lives only in Chinatown, New
York, USA. Mr. Babbo, too, has an address in Chemnitz city, Germany, but also a secondary address
in Quanzhou (福建省泉州市), China. The first address of Ms. Bebbe is in Beijing (北京), but she also
has a secondary address in Spain. The example covers all the possible cases in this constallation: Some
people have no address in China, for some the first address in China, for some the second address is in
China, and for some, both addresses are in China. From the five people, clearly Mr. Bibbo, Mr. Babbo,
and Ms. Bebbe have an address in China.

So how do we get the list of these three people? Regardless of how we slice this problem, we will
need to somehow apply the same expression to both address columns. In Listing 19.163, we therefore
begin by figuring out how to get the table into the shape of a relation that has a one student ID and
one address ID in each row, and maybe the student’s name . This can be done with a UNION query.
The first query that we try out is thus one that selects the student name and the first address column
address_1 , which we rename to adr via AS . It then appends the result of a second query that does
the same, but uses address_2 as adr . The two queries are combined with the UNION keyword. As you
can see in Listing 19.164, this produces eight rows. Actually, this is relation is in the 1NF.

Having re-created the 1NF, we can now go about selecting the people with addresses in China. We
can do this almost exactly as in the previous section in Listing 19.159, by using an INNER JOIN and
the array-based ILIKE . The difference is that we now cannot use the student table as data source.
Instead, we use the UNION query that we constructed above as a subquery. In SQL, you can also use
the result of another SELECT...FROM as source for a query instead of a table. All that needs to be done
is to write the query into parentheses (...) !

The second query in Listing 19.163 therefore looks very much like the query that we designed in
Listing 19.159. The only difference is that we have replaced the query source, the table student , with
our UNION query in parentheses (and we renamed some columns). This works well, with one exception:
As Listing 19.164 shows, Mr. Bibbo is listed twice. He has two addresses in China.

Luckily, the DISTINCT keyword exists [349]. SELECT DISTINCT deletes all duplicate rows resulting
from a query, that is, if two or more rows have the same values, only one of them is preserved
and the remaining rows are dropped. SELECT DISTINCT ON (col1, col2, ...) uses only a subset of
columns (here col1 , col2 , . . .) to decide whether a row is a duplicate or not. Since names may be
ambiguous, we now also pass along the student ID (renamed to sid) from the subqueries. By including
a DISTINCT ON (sid) at the beginning of our query, we ensure that each student will only appear once
in the result. The third query in Listing 19.163 and its result in Listing 19.164 are now correct.

What we learned here is this: If we want to do anything useful with multivalued attributes rep-
resented as repeating groups . . . then we have to rewire them be in 1NF, i.e., to be represented
as separate relations, that is, in the form that we already learned back in Section 19.2.1 (Mapping
Conceptual Entity Types to Logical Models). So why not store them as such directly? The model
in Figure 19.30 is just a wrongheaded representation of a student address relationship. We
learned about this in relationship pattern Section 19.2.2.9 (Q R).

Repair: Extracting Multivalued Attributes to Separate Table So let us fix this problem by ex-
tracting the multivalued attribute into a separate table. For the sake of simplicity, we will not enforce
that each student must have at least one address. We instead create an student address pat-
tern, as discussed back in Section 19.2.2.8 (O P). As illustrated in Figure 19.31, we now need a
third table, which we will call student_address . This table will have a composite primary key consisting
of one foreign key reference to the table student and one foreign key reference to the table address .
The table student is now reduced and its address attributes are removed. It now only has its primary
key id and the student name attribute left. The table address stays as it is.

In Listing 19.167, we first create the address records. Then we create the student records. Then
we insert the relationships between the student and the address records in table student_address .

Trying to find the students who have at least one address in China now becomes much easier. The
corresponding query, shown in Listing 19.168, does no longer require an UNION statement. Instead,
we already have the student-address relationships in perfect tabular form. With only two INNER JOIN

CHAPTER 19. LOGICAL MODEL DESIGN 305

has_address

address_of_student

id integer « pk »

country varchar(100) « nn »

province varchar(100)

city varchar(100) « nn »

postal_code varchar(40) « nn »

street_address varchar(255) « nn »

address_id_pk constraint « pk »

public.address

id integer « pk »

name varchar(255) « nn »

student_id_pk constraint « pk »

public.student

student integer « pk fk »

address integer « pk fk »

student_address_pk constraint « pk »

student_fk constraint « fk »

address_fk constraint « fk »

public.student_address

Figure 19.31: A redesign of the logical schema from Figure 19.30. Refactoring the multivalued attribute
that was represented as repeating group into a separate table brings the model into the 1NF.

Listing 19.165: The generated SQL code for creating the student table, which now only has a primary
key and the student name stored. (src)

1 -- object: public.student | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student CASCADE;
3 CREATE TABLE public.student (
4 id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY ,
5 name varchar (255) NOT NULL ,
6 CONSTRAINT student_id_pk PRIMARY KEY (id)
7);
8 -- ddl -end --
9 ALTER TABLE public.student OWNER TO postgres;

10 -- ddl -end --

constructs we can make the right connection. The ILIKE , ANY , ARRAY , and DISTINCT ON statements
are used in the same way as before.

By bringing the data into the 1NF we have achieved two things: First, we made queries significantly
simpler. Second, we also do no longer need to care about the actual number of addresses a student
can have. A student can have one, two, three, four, ten addresses if they want to. Our query will work
all the same. Of course, a DB will not just have one such query. Maybe there will be another query
for students who live in our beautiful city Hefei (合肥), or for students who do not have any address
outside of our Anhui (安徽) province. If a student with three addresses had appeared under our old
logical schema, then we would need to change the table student and then work our way through all
of these queries to modify them. That would have been quite annoying.

That being say, we also have to admit one thing: I did cheat on you a little bit. The original
schema, which violated the 1NF, required each student to have at least one address. The new schema
which does not violate the 1NF does not. I said “For the sake of simplicity, we will now not enforce
that each student must have an address.” Well, that’s a little bit of cheating. What we actually should
have implemented is the pattern student address .

When it comes to selecting and querying the data, this changes nothing. All the advantages
mentioned above remain true. We gain the ability to deal with arbitrary numbers of addresses per
student.

However, inserting data becomes more complex in a Q R relationship as compared to a
O P relationship. We would have needed to use a WITH statement to simultaneously creating a
row in the student table and use the primary key of that row to link this new student record to a row
in the table address . It still can be done. We have learned how to do that. But if we really want to

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_multivalued/generated_sql/04_public_student_table_5079.sql

CHAPTER 19. LOGICAL MODEL DESIGN 306

Listing 19.166: The generated SQL code for creating the student_address table, which has a composite
primary key composed of the student and address foreign keys. The corresponding REFERENCES
constraints have been omitted here for the sake of brevity. (src)

1 -- object: public.student_address | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student_address CASCADE;
3 CREATE TABLE public.student_address (
4 student integer NOT NULL ,
5 address integer NOT NULL ,
6 CONSTRAINT student_address_pk PRIMARY KEY (student ,address)
7);
8 -- ddl -end --
9 ALTER TABLE public.student_address OWNER TO postgres;

10 -- ddl -end --

Listing 19.167: Inserting some data into the tables student , address , and student_address . (src)
1 /** Insert data into the database. */
2
3 -- Insert several address records.
4 INSERT INTO address (
5 country , province , city , postal_code , street_address) VALUES
6 (’China’, ’Anhui ’, ’Hefei’, ’230601 ’, ’Jinkaiqu , Hefei University ’),
7 (’China’, ’Anhui ’, ’Hefei’, ’230026 ’, ’USTC’),
8 (’Deutschland ’, ’Sachsen ’, ’Chemnitz ’, ’09111’, ’Am Rathaus 1’),
9 (’USA’, ’NY’, ’New York’, ’10013 ’, ’Canal Street 4, Chinatown ’),

10 (’Deutschland ’, ’Sachsen ’, ’Chemnitz ’, ’09111 ’, ’TU Chemnitz ’),
11 (’PRC’, ’Fujian ’, ’Quanzhou ’, ’362002 ’, ’West Street ’),
12 (’P.R.C.’, NULL , ’Beijing ’, ’100084 ’, ’Tsinghua University ’),
13 (’Spain’, ’Andalusia ’, ’Granada ’, ’18009’, ’Alhambra de Granada ’);
14
15 -- Create the five student records.
16 INSERT INTO student (name) VALUES
17 (’Bibbo’), (’Bebbo’), (’Bibbi ’), (’Babbo’), (’Bebbe ’);
18
19 -- Establish the relationship to the addresses.
20 INSERT INTO student_address (student , address) VALUES
21 (1, 1), (1, 2), (2, 3), (3, 4), (4, 5), (4, 6), (5, 7), (5, 8);

enforce that each student must have at least one address, then the simple NOT NULL constraint of the
column address_1 in our original schema must be re-created. And it is recreated by another foreign
key in the table student . For details, please refer back to Section 19.2.2.9.

The interesting aspect of this situation is this: Usually, normalization makes inserting and updating
data easier at the cost of query complexity. For example, we normalized the composite address attribute
into multiple tables. One annoying aspect here was that we found multiple different spellings of the
country China. If we wanted, it would be very very easy to change all the countries to China that are
either PRC, P.R.C., or 中国 with an UPDATE statement. We could do that because we now have the
column country . If you want to do that unnormalized address column than, well, good luck. We
paid for this ease when we want to reassemble the address string, because now we needed to do string
concatenation via || and COALESCE to deal with NULL values.

This time, it is the other way around. If we had implemented all constraints of the original model,
then our INSERT statements would have become more complicated. The queries later become much
easier. Either way, our data is certainly “cleaner” and easier to handle in the 1NF.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_multivalued/generated_sql/05_public_student_address_table_5083.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_multivalued/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 307

Listing 19.168: Finding all the students with addresses in China is now easier, as no UNION is required
anymore. (stored in file select.sql ; output in Listing 19.169)

1 /** Get a list of students with at least one address in China. */
2
3 SELECT DISTINCT ON (student)
4 name , city || ’, ’ || street_address AS address FROM student_address
5 INNER JOIN address ON address = address.id
6 INNER JOIN student ON student = student.id
7 WHERE country ILIKE ANY(ARRAY[’%china%’, ’%PRC%’, ’%P.R.C.%’]);

Listing 19.169: The stdout resulting from the SQL statements in select.sql given in Listing 19.168.
1 $ psql "postgres :// postgres:XXX@localhost/fixed" -v ON_ERROR_STOP =1 -ebf

↪→ select.sql
2 name | address
3 -------+-----------------------------------
4 Bibbo | Hefei , Jinkaiqu , Hefei University
5 Babbo | Quanzhou , West Street
6 Bebbe | Beijing , Tsinghua University
7 (3 rows)
8
9 # psql 16.9 succeeded with exit code 0.

19.3.2 Second Normal Form

The second normal form (2NF) deals with the relationship between key attributes and non-key at-
tributes [80, 83, 110, 143, 221]. It applies to composite keys only, i.e., keys that consist of multiple
columns of a table. Back in Definitions 18.13 and 19.4, we learned that a key can be used to uniquely
identify entities. If a key X uniquely identifies an object, then this means that all the other attributes of
an entity provide information about that object and, hence, that key. In a table in the relational model,
a key is a unique identifier for each row. In other words, there can be at most one row for each value
of X. All the other columns provide additional information about the real-world object represented by
that key.

The 2NF is violated when a non-key attribute is a fact about a proper subset of any key [221]. A
proper subset can only exist of a set with more than one element. Therefore, the 2NF is only relevant
if our tables have a key that is composite, i.e., consists of more than one column. A table is in 2NF
if it is in the 1NF and all columns that are not part of a key provide information about the complete
key(s). Another perspective on the 2NF is offered by functional dependencies (FDs).

Definition 19.8: Functional Dependency

A functional dependency (FD) is a relationship between two groups of attributes X and Y ,
such that for each instance of X, the value of X determines the value of Y [360]. This can
be written as X → Y .

In other words, if X → Y and X is a key, then it is invalid to have two records with the same value
of X but different values of Y [221]. A given value of the key X must always occur with the same
value of Y . Also, if X is a key, then all other columns are by definition dependent on X, simply because
there cannot be two rows in a table with the same value of X.

The relational schema of relation R be Σ(R) and a key be X ⊆ Σ(R). Of course, all attributes a
in Σ(R) depend on the key attributes X, i.e., it always holds that X → a. Let us approach a definition
of the 2NF using FDs. If the 2NF is observed, then for all attributes a ∈ Σ(R) that are not part of
the key X (meaning a ̸∈ X), there does not exist a proper subset X ′ ⊂ X such that a functionally
depends on X ′, i.e. X ′ → a. (Proper means that X ′ ̸= X.) In the 2NF, all attributes depend on the
complete key X.

However, this definition is not fully correct. As we discussed before and will discuss again later, there
can be multiple keys, i.e., multiple sets of attributes, that uniquely identify rows in R. The non-key

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_multivalued/select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/1nf/fixed_multivalued/select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 308

attributes must depend on all of these keys in their entirety. It is not permitted that they depend any
subset of any key. The correct definition for the 2NF there is given as follows [345]:

Definition 19.9: Second normal form (2NF)

A relation R with the primary key P ⊆ Σ R is in the second normal form (2NF) if and only if it
is in the 1NF and for all sets of attributes X ⊆ Σ(R) and all attributes a ∈ Σ(R) with a ̸∈ X,
a ̸∈ P and X → a, it holds that X is either a key or a super key, but not a proper subset of
any key of R.

19.3.2.1 Example: Room Management System

If a table is normalized to the 2NF, then all attributes depend on the entire primary key. This only
matters if the primary key is composite, i.e., if it consists of multiple columns. If a table violates the
2NF, then this means that some columns are functionally dependent only on a part of but not the
whole primary key.

Let us explore why this can be a bad thing. Back in Figure 18.17 (The room planning subsystem
of the teaching management platform), we presented an ERD for the room planning subsystem of our
teaching management platform. We will now create two implementations that try to realize a part of
such a system. The first one will violate the 2NF and the second one will not.

Building

Name

Number

Address

Room

Name

Number

Capacity

is in

(19.32.1) An ERD of a slightly modified subset of room
planning subsystem of our teaching management plat-
form that was specified in Figure 18.17.

building_number varchar(4) « pk »

room_number varchar(4) « pk »

building_name varchar(100) « nn »

room_name varchar(100) « nn »

capacity integer « nn »

address varchar(100) « nn »

br_pk constraint « pk »

public.building_room

(19.32.2) A realization of the ERD given in Figure 19.32.1 as a
logical model that uses only a single table and that violates the
2NF.

Figure 19.32: An example for a violation of the second normal form (2NF): The table building_room
has a composite primary key composed of the room number and building number. However, the other
attributes each only depend on one part of this primary key.

Listing 19.170: The generated SQL code for creating the table building_room that violates the 2NF
based on Figure 19.32.2. (src)

1 -- object: public.building_room | type: TABLE --
2 -- DROP TABLE IF EXISTS public.building_room CASCADE;
3 CREATE TABLE public.building_room (
4 building_number varchar (4) NOT NULL ,
5 room_number varchar (4) NOT NULL ,
6 building_name varchar (100) NOT NULL ,
7 room_name varchar (100) NOT NULL ,
8 capacity integer NOT NULL ,
9 address varchar (100) NOT NULL ,

10 CONSTRAINT br_pk PRIMARY KEY (building_number ,room_number)
11);
12 -- ddl -end --
13 ALTER TABLE public.building_room OWNER TO postgres;
14 -- ddl -end --

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/violation/generated_sql/03_public_building_room_table_5071.sql

CHAPTER 19. LOGICAL MODEL DESIGN 309

Listing 19.171: Inserting some data into the table building_room in violation of the 2NF. (src)
1 /** Insert data into the database. */
2
3 -- Insert several room records.
4 INSERT INTO building_room (building_number , room_number , building_name ,
5 room_name , capacity , address) VALUES
6 (’36’, ’305’, ’CS Teaching Building ’, ’Meeting Room’, 40,
7 ’South Campus II’),
8 (’36’, ’105’, ’CS Teaching Building ’, ’Lecture Room 1’, 80,
9 ’South Campus II’),

10 (’10’, ’100’, ’Language Teaching Building ’, ’Teaching Room A’, 30,
11 ’South Campus 1’),
12 (’10’, ’102’, ’Language Teaching Building ’, ’Teaching Room B’, 30,
13 ’South Campus 1’),
14 (’53’, ’904a’, ’Comprehensive Experimental Building ’,
15 ’Office 1’, 10, ’South Campus 2’),
16 (’53’, ’904b’, ’Comprehensive Experimental Building ’,
17 ’Cluster Room’, 3, ’South Campus 2’),
18 (’7’, ’200’, ’Main Teaching Building ’, ’Auditorium ’, 120,
19 ’South Campus 1’),
20 (’36’, ’106’, ’CS Teaching Building ’, ’Lecture Room 2’, 80,
21 ’South Campus 2’);

Violation: Attributes only Depending on Parts of a Composite Primary Key In Figure 19.32.2,
we show only a part of this diagram, namely the two entity types Room and Building. As you can
see, the two entity types are related based on the Room Building pattern. We showed how this
pattern can be implemented in Section 19.2.2.6 (K L).

Assume that a DB designer wanted to cut their losses and decided to just put all the room and
building data into a single table. The result is illustrated in Figure 19.32. The table building_room was
designed. It holds the columns building_number , room_number , building_name , room_name , capacity ,
and address . building_number , room_number The building_number and room_number are both of
type VARCHAR with a maximum length of 4, as they do not necessarily be numbers but could also
be something like ’105b’ . The type VARCHAR is for variable-length text strings. Together, the two
columns form the primary key: Each room in our university is uniquely identified by the building and
room number. There cannot be two different rooms that have the same building and room number.

This design violates the 2NF because we have some columns that depend only on a part of the
primary key. The columns building_name and address are facts about building_number alone. They
do not functionally depend on room_number .

In Listing 19.170, we illustrate the SQL code that generates the table. It also creates the columns
for the room and building names as well as the address as VARCHAR with a maximum length of 100.
The capacity for people of the room is an INTEGER number. In Listing 19.171, we fill the table with
some data. For example, we store the meeting room (room 305) of Building 36 (the Computer Science
Teaching Building), located in South Campus 2. We also store information about a lecture room in the
same building. We store information about two teaching rooms in the Language Teaching Building in
South Campus 1, as some offices in Building 53 of South Campus 2, and some other rooms.

One thing immediately becomes clear when reading these INSERT statements: This structure creates
a lot of redundancy: For example, the address of Building 36 is stored three times. Actually, the name
of Building 36 is stored three times as well. This feels wrong.

With the first query in Listing 19.172, we want to extract a list of all buildings from our DB. We
will SELECT the building number and building name from our table building_rooms . Since these occur
several times, we write SELECT DISTINCT instead of just SELECT . This only returns the unique rows.
The output shows us that we have four buildings in our DB, as expected.

Assume that some time has passed and we decided that Rooms 904a and 904b are no longer used
for small-group teaching. So with the second query in the listing, we delete them from our DB. We do
this by using the DELETE FORM statement, with the WHERE criterion requiring that the building number
must be 53 and the room number must be LIKE ’904%’ , meaning that it must start with 904 followed

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/violation/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 310

Listing 19.172: First, we select a list of all buildings from the DB, which yields 4 buildings. Then we
delete the two offices 904a and 904b of Building 53 from our DB. This causes a deletion anomaly (Def-
inition 19.10): all data about Building 53 to disappear. So when we select the list of all buildings again,
now there are only 3. (stored in file delete.sql ; output in Listing 19.173)

1 /** Delete room 904a and 904b, which doesn ’t delete the building 53. */
2
3 -- Get the list of all buildings.
4 SELECT DISTINCT building_number , building_name FROM building_room;
5
6 -- Delete rooms 904a and 904b in building 53.
7 DELETE FROM building_room WHERE building_number = ’53’
8 AND room_number LIKE ’904%’
9 RETURNING building_number , room_number;

10
11 -- Get the list of all buildings again: Building 53 is still there.
12 SELECT DISTINCT building_number , building_name FROM building_room;

Listing 19.173: The stdout resulting from the SQL statements in delete.sql given in Listing 19.172.
1 $ psql "postgres :// postgres:XXX@localhost/violation" -v ON_ERROR_STOP =1 -

↪→ ebf delete.sql
2 building_number | building_name
3 -----------------+-------------------------------------
4 36 | CS Teaching Building
5 53 | Comprehensive Experimental Building
6 10 | Language Teaching Building
7 7 | Main Teaching Building
8 (4 rows)
9

10 building_number | room_number
11 -----------------+-------------
12 53 | 904a
13 53 | 904b
14 (2 rows)
15
16 DELETE 2
17 building_number | building_name
18 -----------------+----------------------------
19 36 | CS Teaching Building
20 10 | Language Teaching Building
21 7 | Main Teaching Building
22 (3 rows)
23
24 # psql 16.9 succeeded with exit code 0.

by an arbitrary character. PostgreSQL allows us to also add the RETURNING statement [329], that acts
like a SELECT on the deleted rows. The output of the command therefore is the building number and
room number of the deleted rooms. We see that, indeed, rooms 904a and 904b of Building 53 are
deleted.

We now run the same query giving us the list of buildings again (as the third query in Listing 19.172).
We notice that, by deleting the two rooms in Building 53, we inadvertently also deleted all information
about the building. Its building number, building name, and building address are all lost. Because they
were stored together with the room records. This is called deletion anomaly.

Definition 19.10: Deletion Anomaly

A situation where the deletion of unwanted information causes desired information to be deleted
as well is called deletion anomaly [360].

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/violation/delete.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/violation/delete.sql

CHAPTER 19. LOGICAL MODEL DESIGN 311

Well, of course, you may argue that in some cases, that would actually be the desired effect. For exam-
ple, in the original model given in Figure 18.17 (The room planning subsystem of the teaching manage-
ment platform), the relationship between buildings and rooms was specified as Room Building.
In this patter, discussed in Section 19.2.2.7 (M N), it would be required to delete the building
data if all rooms in the building were removed. The problem is that this deletion also occurs if we try
to follow the K L, where such deletion is not warranted.

Listing 19.174 illustrates another issue that is encouraged (but not caused) by a violation of the
2NF: inconsistency. Assume that we wanted to get a list of all rooms available in South Campus 2.
We could fire out the first query given in Listing 19.174, namely we could simply SELECT the building
number and room number where address = ’South Campus 2’ . This query only returns a single room,
namely room 106 in Building 36. We know that this is wrong, we definitely entered more than one
room for Building 36. Scrolling back to our insertion script in Listing 19.171, we noticed that we
sometimes wrote ’South Campus II’ instead of ’South Campus 2’ . Obviously, for a computer, these
are two different things.

The fact that we need to store the same data again and again makes such mistakes more likely.
Whenever a person enters some information into the computer, there is a certain probability that they
make an error. The more often we enter data, the higher the chance that some error is made somewhere.
Violating the 2NF forces us to write the same information more often, hence it increases the chance of
making an error. The violating the 2NF does not cause the error, but it makes it more likely.

Anyway, we can solve the above problem in two ways: Either we select all rows where
address = ’South Campus 2’ or address = ’South Campus II’ , as done in the second query. Or
we just fix the incorrectly entered data with an UPDATE command that sets the building address to
’South Campus 2’ if it currently is ’South Campus II’ . We again enrich this query with a RETURNING
statement [329] which will print out all the rows that were modified with this statement. After this
update, the original query works as well.

Finally, let us try to change the name of Building 36 from “CS Teaching Building” to “Com-
puter Science Building.” This can be done with the query shown in Listing 19.176. We again use
an UPDATE statement applied to our table building_room . This time, we want to modify the rows
where address = ’South Campus 2’ and building_number = ’36’ . For all of these rows, we set
building_name = ’Computer Science Building’ . We again use the RETURNING statement [329] to
print out all the rows that were modified with this statement. As you can see, this changes three rows.
Notice that we wanted to change only one single piece of data. But we did change three rows.

Definition 19.11: Update Anomaly

A situation where changing one piece of information requires that multiple rows must be
updated is called update anomaly.

This anomaly is directly caused by the violation of the 2NF. And another anomaly results from it as
well:

Definition 19.12: Insertion Anomaly

A situation where inserting data into the DB is not possible because other data is not already
there is called insertion anomaly [360].

For example, it is simply not possible to insert information about a room without inserting information
about a building as well. Of course, in our special case here, this would not make any sense anyway.

In [221], however, another interesting case is presented from the field of warehousing. The names
and addresses of warehouses are stored together with the names and quantities of the products in them.
In a table that violates the 2NF, there can be exactly these four columns. In such a case, it is not
possible to create a record for a warehouse if no product is stored in it as well.

CHAPTER 19. LOGICAL MODEL DESIGN 312

Listing 19.174: We want to see all rooms in South Campus 2. Due to some inconsistent spelling (South
Campus II vs. South Campus 2), the first query misses some rooms. We then run a modified query,
which gives us all the rooms. We can also fix the table by updating the corresponding rows, after which
the first query also works correctly. (stored in file update.sql ; output in Listing 19.175)

1 /** Find the all rooms available in South Campus 2. */
2
3 -- Several rooms are missing , because the data is inconsistent:
4 -- Their address was ’South Campus II ’.
5 SELECT building_number , room_number FROM building_room
6 WHERE address = ’South Campus 2’;
7
8 -- Now we get these rooms.
9 SELECT building_number , room_number FROM building_room

10 WHERE address = ’South Campus 2’ OR address = ’South Campus II’;
11
12 -- We can fix this problem with an UPDATE instruction.
13 UPDATE building_room SET address = ’South Campus 2’
14 WHERE address = ’South Campus II’ RETURNING building_number;
15
16 -- This query now also works , because the addresses are now consistent.
17 SELECT building_number , room_number FROM building_room
18 WHERE address = ’South Campus 2’;

Listing 19.175: The stdout resulting from the SQL statements in update.sql given in Listing 19.174.
1 $ psql "postgres :// postgres:XXX@localhost/violation" -v ON_ERROR_STOP =1 -

↪→ ebf update.sql
2 building_number | room_number
3 -----------------+-------------
4 36 | 106
5 (1 row)
6
7 building_number | room_number
8 -----------------+-------------
9 36 | 305

10 36 | 105
11 36 | 106
12 (3 rows)
13
14 building_number
15 -----------------
16 36
17 36
18 (2 rows)
19
20 UPDATE 2
21 building_number | room_number
22 -----------------+-------------
23 36 | 106
24 36 | 305
25 36 | 105
26 (3 rows)
27
28 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/violation/update.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/violation/update.sql

CHAPTER 19. LOGICAL MODEL DESIGN 313

Listing 19.176: We want to change the name of Building 36 to “Computer Science Building.” While
we only want to change one single piece of information, we actually have to update three rows. This
is an update anomaly (Definition 19.11) caused by the violation of the 2NF of our design. (stored in
file update2.sql ; output in Listing 19.177)

1 /** Change the name of Building 36 to Computer Science Building. */
2
3 UPDATE building_room SET building_name = ’Computer Science Building ’
4 WHERE address = ’South Campus 2’ AND building_number = ’36’
5 RETURNING building_number , building_name , room_number;

Listing 19.177: The stdout resulting from the SQL statements in update2.sql given in Listing 19.176.
1 $ psql "postgres :// postgres:XXX@localhost/violation" -v ON_ERROR_STOP =1 -

↪→ ebf update2.sql
2 building_number | building_name | room_number
3 -----------------+---------------------------+-------------
4 36 | Computer Science Building | 105
5 36 | Computer Science Building | 106
6 36 | Computer Science Building | 305
7 (3 rows)
8
9 UPDATE 3

10 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/violation/update2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/violation/update2.sql

CHAPTER 19. LOGICAL MODEL DESIGN 314

Fixed: Extracted Columns that Depend on Partial Key into Own Table So let us normalize the
DB from the previous section into the 2NF. Back then, we had composite primary key consisting of the
building_number and room_number in our table building_room . However, the columns building_name
and address only depend on building_number . This has led to several anomalies. To achieve normal-
ization into the 2NF, we have to separate the columns building_name and address into an own table.
We will call this table building . Of course, it also needs a primary key, which will be building_number .

We rename the rest of the table building_room to room . Each row now, indeed, just repre-
sents a single room in a building. This table still has the composite primary key building_number
and room_number , as well as the fields room_name and capacity . Clearly, both non-key fields are
functionally dependent on the primary key. As a bonus additionally to satisfying the 2NF, this de-
sign, illustrated in Figure 19.33, represents our original conceptual model given in Figure 19.32.1 much
better.

We now implement this design using SQL. Listings 19.178 to 19.180 create the tables building
and room and establish the foreign key constraint linking each row of table room to one row of ta-
ble building .

We can now insert the exactly as same data as in the last section into this DB. Listing 19.181 there-
fore needs two INSERT INTO statements. First we store all the building data into the table building .

is_in_building

building_number varchar(4) « pk fk »

room_number varchar(4) « pk »

room_name varchar(100) « nn »

capacity integer « nn »

room_pk constraint « pk »

building_fk constraint « fk »

public.room

building_number varchar(4) « pk »

building_name varchar(100) « nn »

address varchar(100) « nn »

building_pk constraint « pk »

public.building

Figure 19.33: A different approach to Figure 19.32.2 that no longer violates the 2NF. The columns
that only depend on the building_number have been extracted into their own table.

Listing 19.178: The generated SQL code for creating the table building . (src)
1 -- object: public.building | type: TABLE --
2 -- DROP TABLE IF EXISTS public.building CASCADE;
3 CREATE TABLE public.building (
4 building_number varchar (4) NOT NULL ,
5 building_name varchar (100) NOT NULL ,
6 address varchar (100) NOT NULL ,
7 CONSTRAINT building_pk PRIMARY KEY (building_number)
8);
9 -- ddl -end --

10 ALTER TABLE public.building OWNER TO postgres;
11 -- ddl -end --

Listing 19.179: The generated SQL code for creating the table room . (src)
1 -- object: public.room | type: TABLE --
2 -- DROP TABLE IF EXISTS public.room CASCADE;
3 CREATE TABLE public.room (
4 building_number varchar (4) NOT NULL ,
5 room_number varchar (4) NOT NULL ,
6 room_name varchar (100) NOT NULL ,
7 capacity integer NOT NULL ,
8 CONSTRAINT room_pk PRIMARY KEY (building_number ,room_number)
9);

10 -- ddl -end --
11 ALTER TABLE public.room OWNER TO postgres;
12 -- ddl -end --

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/generated_sql/04_public_building_table_5080.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/generated_sql/03_public_room_table_5071.sql

CHAPTER 19. LOGICAL MODEL DESIGN 315

Listing 19.180: The generated SQL code for creating the foreign key constraint linking the rows in
table room to the rows in table building . (src)

1 -- object: building_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.room DROP CONSTRAINT IF EXISTS building_fk CASCADE;
3 ALTER TABLE public.room ADD CONSTRAINT building_fk FOREIGN KEY (

↪→ building_number)
4 REFERENCES public.building (building_number) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

Listing 19.181: Inserting the very same data as in Listing 19.171 into the tables building and
room . (src)

1 /** Insert data into the database. */
2
3 -- Insert several room records.
4 INSERT INTO building (building_number , building_name , address) VALUES
5 (’36’, ’CS Teaching Building ’, ’South Campus II’),
6 (’10’, ’Language Teaching Building ’, ’South Campus 1’),
7 (’53’, ’Comprehensive Experimental Building ’, ’South Campus 2’),
8 (’7’, ’Main Teaching Building ’, ’South Campus 1’);
9

10 -- Insert several room records.
11 INSERT INTO room (building_number , room_number , room_name ,
12 capacity) VALUES
13 (’36’, ’305’, ’Meeting Room’, 40),
14 (’36’, ’105’, ’Lecture Room 1’, 80),
15 (’10’, ’100’, ’Teaching Room A’, 30),
16 (’10’, ’102’, ’Teaching Room B’, 30),
17 (’53’, ’904a’, ’Office 1’, 10),
18 (’53’, ’904b’, ’Cluster Room’, 3),
19 (’7’, ’200’, ’Auditorium ’, 120),
20 (’36’, ’106’, ’Lecture Room 2’, 80);

Then we store the information about the rooms into table room . We immediately notice that now,
there is much less redundancy. The data about each building is stored exactly once, whereas before,
we needed to store it for each room. Since we need to write data much less often, it becomes much
less likely to make errors. And if we make errors, they are easier to spot, since there are fewer records
that we would need to check.

In Listing 19.182, we now reproduce the example from Listing 19.172. We first want to get a list of all
buildings. This can be done using the query SELECT building_number, building_name FROM building; .
Notice that, compared to Listing 19.172, we do no longer need to write the DISTINCT keyword. In the
table building_room , each building number and name could appear several times, as they were stored
for each room. However, in our new table building , they can only appear once. Hence, the deletion
of duplicate rows, performed by DISTINCT , is now no longer necessary. Anyway, our query gives us a
list of four buildings.

We then again delete the two offices 904a and 904b of Building 53 using a DELETE query. The
RETURNING statement in the query again shows us the two deleted offices. Back in the previous section,
deleting these rows also deleted all information about Building 53. This Definition 19.10 was caused by
our violation of the 2NF. Back then, issuing the SELECT query again would yield only three buildings.
However, as you can see in Listing 19.183, this does not happen now. The building records are
independently stored in table building and not affected by the deletion of rows in table room . All four
building records remain.

In Listing 19.184, we reproduce the example from Listing 19.174: We want to get a list of all
rooms available in South Campus 2. When comparing the queries necessary to achieve this between
the two listings, we notice the drawback of the 2NF. We now have a more complex query. Before,
the building address was stored together with the room number in a single row. This is no longer the

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/generated_sql/05_public_room_building_fk_constraint_5099.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 316

Listing 19.182: First, we select a list of all buildings from the DB, which yields 4 buildings. (Notice that
we do no longer need the DISTINCT keyword, since each building ist listed only once in tale building .)
Then we delete the two offices 904a and 904b of Building 53 from our DB. This no longer causes a
deletion anomaly, as the data of Building 53 is not deleted. So when we select the list of all buildings
again, it is still there. This is different from the situation in Listing 19.173, where it disappeared. (stored
in file delete.sql ; output in Listing 19.183)

1 /** Delete room 904a and 904b, which deletes the entire building. */
2
3 -- Get the list of all buildings.
4 SELECT building_number , building_name FROM building;
5
6 -- Delete rooms 904a and 904b in building 53, which deletes building 53.
7 DELETE FROM room WHERE building_number = ’53’
8 AND room_number LIKE ’904%’
9 RETURNING building_number , room_number;

10
11 -- Get the list of all buildings again: Building 53 disappeared.
12 SELECT building_number , building_name FROM building;

Listing 19.183: The stdout resulting from the SQL statements in delete.sql given in Listing 19.182.
1 $ psql "postgres :// postgres:XXX@localhost/fixed" -v ON_ERROR_STOP =1 -ebf

↪→ delete.sql
2 building_number | building_name
3 -----------------+-------------------------------------
4 36 | CS Teaching Building
5 10 | Language Teaching Building
6 53 | Comprehensive Experimental Building
7 7 | Main Teaching Building
8 (4 rows)
9

10 building_number | room_number
11 -----------------+-------------
12 53 | 904a
13 53 | 904b
14 (2 rows)
15
16 DELETE 2
17 building_number | building_name
18 -----------------+-------------------------------------
19 36 | CS Teaching Building
20 10 | Language Teaching Building
21 53 | Comprehensive Experimental Building
22 7 | Main Teaching Building
23 (4 rows)
24
25 # psql 16.9 succeeded with exit code 0.

case. The room information is now stored in table room . However, the building address is stored in
table building . If we want to find out whether a room is in South Campus 2, we must combine the
data from these two tables. An INNER JOIN does the trick. The primary key of table building is
building_number . The building_number is a foreign key of table room (and also part of that table’s
primary key). So the join condition room.building_number = building.building_number allows us to
find the right row in table building for each row in table room .

So we execute this slightly more complex query. We are baffled to notice that this yields no result
at all. There are no rooms in South Campus 2? OK, we deleted the two rooms in Building 53, which
were in South Campus 2. So they are gone. But there still should be Building 36 with its three rooms.

Upon closer inspection of the data we inserted in Listing 19.181, we realize that we made the

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/delete.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/delete.sql

CHAPTER 19. LOGICAL MODEL DESIGN 317

mistake to write the address of Building 36 as South Campus II instead of South Campus 2. Since we
only store the building record once, this affected all rooms belonging to it.

This problem can be fixed exactly in the same ways as back in Listing 19.174. We can either
just expand our selection condition to also include South Campus II. This works, but it also is a bit
unsatisfying. Should we really leave inconsistent data in our DB?

No. Of course not. We decide to fix this by applying SET address = ’South Campus 2’ to all rows
of table building where address = ’South Campus II’ . We also return the number of the building
that is affected by this update. As the result, we see that a single row in the table building is changed.
Back in Listing 19.174, two rows needed to be changed. That was an example of the update anomaly.
After the update, the first query works as expected.

A clearer example of the update anomaly that occurs when the 2NF is violated was given in
Listing 19.176. When we wanted to change the name of Building 36 from CS Teaching Building to
Computer Science Building, we needed to update three rows. We wanted to change one piece of
information, but three changes were actually required. Now that we observe the 2NF, doing the same
thing in Listing 19.186 only affects a single row in table building . The anomaly has disappeared.

CHAPTER 19. LOGICAL MODEL DESIGN 318

Listing 19.184: We want to see all rooms in South Campus 2. Compared to Listing 19.174, the query
is more complex as we now need an INNER JOIN . Due to the inconsistent spelling (South Campus II
vs. South Campus 2), the first query finds nothing. We then run a modified query, which gives us all
the rooms. We can also fix the table building by updating the corresponding rows, after which the
first query also works correctly. Notice that here, only one row is updated. In Listing 19.175, two rows
were affected. (stored in file update.sql ; output in Listing 19.185)

1 /** Find the all rooms available in South Campus 2. */
2
3 -- Several rooms are missing , because the data is inconsistent:
4 -- Their address was ’South Campus II ’.
5 SELECT room.building_number , room_number FROM room
6 INNER JOIN building ON
7 room.building_number = building.building_number
8 WHERE address = ’South Campus 2’;
9

10 -- Now we get these rooms.
11 SELECT room.building_number , room_number FROM room
12 INNER JOIN building ON
13 room.building_number = building.building_number
14 WHERE address = ’South Campus 2’ OR address = ’South Campus II’;
15
16 -- We can fix this problem with an UPDATE instruction.
17 UPDATE building SET address = ’South Campus 2’
18 WHERE address = ’South Campus II’ RETURNING building_number;
19
20 -- This query now also works , because the addresses are now consistent.
21 SELECT room.building_number , room_number FROM room
22 INNER JOIN building ON
23 room.building_number = building.building_number
24 WHERE address = ’South Campus 2’;

Listing 19.185: The stdout resulting from the SQL statements in update.sql given in Listing 19.184.
1 $ psql "postgres :// postgres:XXX@localhost/fixed" -v ON_ERROR_STOP =1 -ebf

↪→ update.sql
2 building_number | room_number
3 -----------------+-------------
4 (0 rows)
5
6 building_number | room_number
7 -----------------+-------------
8 36 | 305
9 36 | 105

10 36 | 106
11 (3 rows)
12
13 building_number
14 -----------------
15 36
16 (1 row)
17
18 UPDATE 1
19 building_number | room_number
20 -----------------+-------------
21 36 | 105
22 36 | 106
23 36 | 305
24 (3 rows)
25
26 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/update.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/update.sql

CHAPTER 19. LOGICAL MODEL DESIGN 319

Listing 19.186: We want to change the name of Building 36 to “Computer Science Building.” Different
from the situation in Listing 19.177, only a single row needs to be changed. (stored in file update2.sql ;
output in Listing 19.187)

1 /** Change the name of Building 36 to Computer Science Building. */
2
3 UPDATE building SET building_name = ’Computer Science Building ’
4 WHERE address = ’South Campus 2’ AND building_number = ’36’
5 RETURNING building_number , building_name;

Listing 19.187: The stdout resulting from the SQL statements in update2.sql given in Listing 19.186.
1 $ psql "postgres :// postgres:XXX@localhost/fixed" -v ON_ERROR_STOP =1 -ebf

↪→ update2.sql
2 building_number | building_name
3 -----------------+---------------------------
4 36 | Computer Science Building
5 (1 row)
6
7 UPDATE 1
8 # psql 16.9 succeeded with exit code 0.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/update2.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/2nf/rooms/fixed/update2.sql

CHAPTER 19. LOGICAL MODEL DESIGN 320

19.3.2.2 Summary

The 2NF is a rule that helps us to avoid redundancy. It prescribes that there should not be a functional
dependency from non-key attributes on a part of any composite key. As the result, it reduces the chance
of errors during data entry, because the volume of data entered becomes smaller. We do not need to
enter the same information several times if it only concerns a part of a key. The 2NF also mitigates
problems that can be caused by deletion and update anomalies. It comes at the cost of slightly more
complicated queries: If the 2NF is violated, information is stored in a single table that needs to be
divided into multiple tables if the 2NF is observed. Hence, when we need all of the information together,
we need to merge it from these separate tables again using, e.g., INNER JOIN queries.

At the beginning of this section, we were talking about keys, but not just primary keys. We even
gave the rather complicated Definition 19.9 (Second normal form (2NF)), involving keys, the primary
key, and super keys. This looked all quite complicated for a rather simple statement, namely that no
attribute can depend on a part of a key only.

The reason for this complicated formulation is that a relation can have multiple different keys. Let’s
say we want to store information about people in table. Then a reasonable key of such a table would be
the government-issued ID number. The name, place of birth, and DOB could be another key (although
this would be a slightly more dangerous choice, because two people of the same name could be born in
the same place on the same day). Yet another key could be the primary mobile phone number. Maybe
the best choice in a practical DB implementation would be to use a surrogate key, i.e., an identifier
that is unique and automatically generated by the DBMS. This last possible choice is interesting and
relevant here.

We presented a design of the room planning subsystem of our imaginary teaching management
platform that violated the 2NF. We put all the data of rooms and buildings into a single table. The
primary key was composed of the building number and room number. The columns for building name
and building address only depend on the building number, but not on the room number. This was the
violation of the 2NF. We normalized the design to comply with the 2NF by separating these columns
into a new table.

If the 2NF would only consider primary keys, then another “solution” to this problem would be to
simply use a surrogate key for our original table building_room . Since the surrogate key would be a
single column, the 2NF would then no longer be violated. If you refer back to our example and think
about this method, you quickly realize: This would have solved none of the problems of the design.
The deletion and update anomalies would have remained.

So having a definition for the 2NF that can easily be implemented making a useless change to the
design that leads to no improvement at all would be useless. NFs are defined exactly with the goal to
give us guidance towards good DB design. Observing them should yield a good structure and reduce
the chance of anomalies.

For this purpose, the 2NF concerns all key attributes, not just the primary key attributes. Therefore,
using a surrogate key would not lead to a normalization under the 2NF. The building number/room
number attribute combination would still be key for the table. And the building name and building
address would still only depend on a part of that key.

19.3.3 Third Normal Form

The third normal form (3NF) deals with the relationship between non-key attributes [80, 83, 110, 143,
221]. The 3NF is violated when a non-key attribute is a fact about another non-key attribute [221]. A
relation R is in the 3NF if no non-key attribute transitively depends on a key attribute.

Definition 19.13: Transitive Functional Dependency

Let A, B, and C be three distinct attributes (or distinct sets of attributes) in the relation R,
i.e, A ⊆ Σ(R), B ⊆ Σ(R), and C ⊆ Σ(R). The functional dependency A → C is a transitive
dependency, if and only if A→B and B→C are true while B→A is not true.

Formally, this can be stated as follows [345]:

CHAPTER 19. LOGICAL MODEL DESIGN 321

Definition 19.14: Third normal form (3NF)

A relation R is in 3NF if it is in 2NF and each attribute a ∈ Σ(R) that is transitively dependent
on a key X ⊆ Σ(R), i.e., for which it holds that X → Y → a with Y ⊆ Σ(R), then either Y
contains a key, a is part of the primary key, or a ∈ X.

A table is in 3NF if it is in the 2NF and all the attributes that are not part of any candidate key depend
directly on the primary key. Every non-prime attribute is non-transitively dependent on every candidate
key in the table.

19.3.3.1 Example: Student and Parent Information

Imagine that during the design of the teaching management platform, a colleague mentions that it
would be a good idea to also have the contact information of one parent stored for each student.
Sometimes there can be situations where such information could be useful. Maybe a student has an
accident on campus. Maybe a student suddenly stops coming to lectures and is nowhere to be found.
Then it would be good to be able to call a parent.

Assume that the following information about students should be stored in our DB:

• their university-assigned Student ID student_id ,

• their name student_name ,

• the name parent_name of one of their parents, and

• the mobile phone number parent_mobile of that parent.

The following FDs exist at first glance:

• student_id→student_name ,

• student_id→parent_name ,

• student_id→parent_mobile , and

• parent_mobile→parent_name .

Violation: Non-Key Attribute Transitively Depends on Primary Key In Figure 19.34, we show
a part of logical model which illustrates a DB table for storing information about students and their
parents. The table has five columns. In the first column, we store the student ID, which is the
primary key. The second column is the student name. It is not a key and not necessarily unique. For
each student, we also store the name of one parent and their mobile phone number as a contact for
emergencies.

student_id character(11) « pk »

student_name varchar(100) « nn »

parent_name varchar(100) « nn »

parent_mobile character(11) « nn »

student_id_pk constraint « pk »

public.student

Figure 19.34: A table which stores data about students and their parents in violation of the 3NF,
because the parent name depends on the parent phone number, which transitively depends on the
student ID.

CHAPTER 19. LOGICAL MODEL DESIGN 322

Listing 19.188: The generated SQL code for creating the table student that violates the 3NF based
on Figure 19.34. (src)

1 -- object: public.student | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student CASCADE;
3 CREATE TABLE public.student (
4 student_id character (11) NOT NULL ,
5 student_name varchar (100) NOT NULL ,
6 parent_name varchar (100) NOT NULL ,
7 parent_mobile character (11) NOT NULL ,
8 CONSTRAINT student_id_pk PRIMARY KEY (student_id)
9);

10 -- ddl -end --
11 ALTER TABLE public.student OWNER TO postgres;
12 -- ddl -end --

Listing 19.189: Inserting some data into the table student in violation of the 3NF. (src)
1 /** Insert data into the database. */
2
3 -- Insert several student + parent records.
4 INSERT INTO student (student_id , student_name , parent_name ,
5 parent_mobile) VALUES
6 (’1234567890 ’, ’Bibbo’, ’Boddo ’, ’55544466677 ’),
7 (’1234567891 ’, ’Bebbo’, ’Balla ’, ’77788811122 ’),
8 (’1234567892 ’, ’Bibboto ’, ’Boddo ’, ’55544466677 ’),
9 (’1234567894 ’, ’Bibboba ’, ’Boddo ’, ’55544466677 ’);

This table is in the 1NF, as there are neither compound attributes nor repeated groups. It is also in
the 2NF, because there is no compound key and, hence, it is not possible that an attribute could depend
on a part of such a key only. However, this table violates the 3NF. The attribute parent_name is func-
tionally dependent on the attribute parent_mobile , which we write as parent_mobile→parent_name .
A mobile phone number is associated with a single person, hence there can only be one name for a
given mobile phone number. The parent mobile phone number depends on the primary key student_id ,
i.e., student_id→parent_mobile . The chain student_id→parent_mobile→parent_name exists. It
obviously does not hold that parent_mobile→student_id . Therefore, Definition 19.13 is fulfilled.
The relationship student_id→parent_name is transitive. And since it occurs in the table student , it
violates the 3NF.

Let us explore what consequences this has. We first create the table by executing the script given in
Listing 19.188. Then we insert four student records into the DB using the script given in Listing 19.189.
There are four students, Mr. Bibbo, Mr. Bebbo, Mr. Bibboto, and Ms. Bibboba. Their IDs are not
important. What is important is that Mr. Bibbo, Mr. Bibboto, and Ms. Bibboba happen to be siblings.
Their proud father is Mr. Böddö.

Now it happened that, being located in China, the teacher in the administrative office did not really
know how to enter the letter “ö”. So they chose, for the time being, to call the dad of the three kids
simply Mr. Boddo. A few days later, they found a solution on how to enter the letter “ö”. In order to
fix the data, they created the script Listing 19.190.

They use the mobile phone number 555 444 666 77 of Mr. Böddö to identify him in the table. To test
this, the script it uses a SELECT statement to get the three student/parent name pairs associated with
this mobile phone number. The output of this command is as expected, so next they launch an UPDATE
command. The parent_name is SET to Böddö for each record where parent_mobile = ’55544466677’ .
The updated records are returned via the RETURNING statement. As we can see, three rows are affected.

So to change one piece of information, three rows needed to be touched. This is a classical example
of an update anomaly. Similarly, if we would delete the records of Mr. Bibbo, Mr. Bibboto, and
Ms. Bibboba, all the data about their dad would disappear as well. If we had some reason to retain
this data in that case, then that would be an deletion anomaly. Finally, since we cannot insert the data
of a parent without inserting data about a student first, that would be an insertion anomaly.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/violation/generated_sql/03_public_student_table_5103.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/violation/insert.sql

CHAPTER 19. LOGICAL MODEL DESIGN 323

Listing 19.190: We noticed that the name of the father of Mr. Bibbo, Mr. Bibotto, and Ms. Bibboba
is actually Mr. Böddö, not Mr. Boddo. To change it, we need to touch three records, which is a typical
update anomaly. (stored in file update.sql ; output in Listing 19.191)

1 /** Find the parent Boddo and change his name to Böddö. */
2
3 -- Get the names of all students whose parent has mobile 55544466677.
4 SELECT student_name , parent_name FROM student
5 WHERE parent_mobile = ’55544466677 ’;
6
7 -- Change the name of the parent with mobile 55544466677 to Böddö.
8 UPDATE student SET parent_name = ’Böddö’
9 WHERE parent_mobile = ’55544466677 ’

10 RETURNING student_name , parent_name;

Listing 19.191: The stdout resulting from the SQL statements in update.sql given in Listing 19.190.
1 $ psql "postgres :// postgres:XXX@localhost/violation" -v ON_ERROR_STOP =1 -

↪→ ebf update.sql
2 student_name | parent_name
3 --------------+-------------
4 Bibbo | Boddo
5 Bibboto | Boddo
6 Bibboba | Boddo
7 (3 rows)
8
9 student_name | parent_name

10 --------------+-------------
11 Bibbo | Böddö
12 Bibboto | Böddö
13 Bibboba | Böddö
14 (3 rows)
15
16 UPDATE 3
17 # psql 16.9 succeeded with exit code 0.

Well, the real problem in this example is the update anomaly, the other two anomalies would not
be an issue in this specific scenario. What is an issue, though, is that we again need to enter the same
information several times. This very much increases the probability of typos and other errors that could
lead to data inconsistency.

For example, it could have well been possible that the information about the students were entered
by different teachers. Then, maybe one teacher would know how to enter an “ö” while another one
would just use an “o”. And baam, our data would be inconsistent, as we would have same parent with
two different names in our system.

Fixed: Transitive Dependency factored out into own Table In Figure 19.35 we illustrate a logical
model that no longer violates the 3NF. Different from our original sketch in Figure 19.34, we use two

has_parent

student_id character(11) « pk »

student_name varchar(100) « nn »

parent_mobile character(11) « fk nn »

student_id_pk constraint « pk »

parent_mobile_fk constraint « fk »

public.student

parent_mobile character(11) « pk »

parent_name varchar(100) « nn »

parent_mobile_pk constraint « pk »

public.parent

Figure 19.35: Two tables which store data about students and their parents and which, different from
Figure 19.34, do not violate the 3NF.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/violation/update.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/violation/update.sql

CHAPTER 19. LOGICAL MODEL DESIGN 324

Listing 19.192: The generated SQL code for creating the table student . (src)
1 -- object: public.student | type: TABLE --
2 -- DROP TABLE IF EXISTS public.student CASCADE;
3 CREATE TABLE public.student (
4 student_id character (11) NOT NULL ,
5 student_name varchar (100) NOT NULL ,
6 parent_mobile character (11) NOT NULL ,
7 CONSTRAINT student_id_pk PRIMARY KEY (student_id)
8);
9 -- ddl -end --

10 ALTER TABLE public.student OWNER TO postgres;
11 -- ddl -end --

Listing 19.193: The generated SQL code for creating the table parent . (src)
1 -- object: public.parent | type: TABLE --
2 -- DROP TABLE IF EXISTS public.parent CASCADE;
3 CREATE TABLE public.parent (
4 parent_mobile character (11) NOT NULL ,
5 parent_name varchar (100) NOT NULL ,
6 CONSTRAINT parent_mobile_pk PRIMARY KEY (parent_mobile)
7);
8 -- ddl -end --
9 ALTER TABLE public.parent OWNER TO postgres;

10 -- ddl -end --

Listing 19.194: We add the foreign key constraint to table student . (src)
1 -- object: parent_mobile_fk | type: CONSTRAINT --
2 -- ALTER TABLE public.student DROP CONSTRAINT IF EXISTS parent_mobile_fk

↪→ CASCADE;
3 ALTER TABLE public.student ADD CONSTRAINT parent_mobile_fk FOREIGN KEY (

↪→ parent_mobile)
4 REFERENCES public.parent (parent_mobile) MATCH SIMPLE
5 ON DELETE NO ACTION ON UPDATE NO ACTION;
6 -- ddl -end --

tables instead of one. The name of the parent depends on their mobile phone number. So we remove
this data from the original student table and put it into a table parent . This table has the primary
key parent_mobile . This value is unique and identifies a parent. The second column of this table name ,
which obviously depends on that primary key.

The modified table student now uses the attribute parent_mobile as foreign key. It must be
NOT NULL , meaning that each row in table student is linked to one (and exactly one) row in ta-
ble parent . We now no longer store the name of the parent in the student table.

Both tables observe the 1NF, as there are neither compound attributes nor repeated groups. Both
also observe the 2NF, because there is no compound key and, hence, it is not possible that an attribute
could depend on a part of such a key only. They also both observe the 3NF, because there is no
transitive functional dependency.

Let us look at this system in action. We first create the table student by executing the script
given in Listing 19.192. Listing 19.193 then creates the new table parent for the parent records. With
Listing 19.194, we add the foreign key constraint to table student . Like the DB creation and deletion
scripts, sometimes I will just not include such constraint-creation steps, as they are not very relevant
to the example. They can always found in the corresponding example directory in the repository
databasesCode with the complete examples. This time I felt like including it, just for the sake of
completeness.

Anyway, we can now insert data into this new DB structure. In Listing 19.189, we begin by storing

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/fixed/generated_sql/03_public_student_table_5071.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/fixed/generated_sql/04_public_parent_table_5077.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/fixed/generated_sql/05_public_student_parent_mobile_fk_constraint_5081.sql
\xdef https://github.com/thomasWeise/databasesCode

CHAPTER 19. LOGICAL MODEL DESIGN 325

Listing 19.195: Inserting some data into the tables parent and student . (src)
1 /** Insert data into the database. */
2
3 -- Insert several parent records.
4 INSERT INTO parent (parent_name , parent_mobile) VALUES
5 (’Boddo’, ’55544466677 ’),
6 (’Balla’, ’77788811122 ’);
7
8 -- Insert several student records that are linked to parent records.
9 INSERT INTO student (student_id , student_name , parent_mobile) VALUES

10 (’1234567890 ’, ’Bibbo’, ’55544466677 ’),
11 (’1234567891 ’, ’Bebbo’, ’77788811122 ’),
12 (’1234567892 ’, ’Bibboto ’, ’55544466677 ’),
13 (’1234567894 ’, ’Bibboba ’, ’55544466677 ’);

Listing 19.196: If we want to get the names of the parents of the students, we now need
an INNER JOIN . (stored in file select.sql ; output in Listing 19.197)

1 /** Get the names of all parents of the all students. */
2
3 SELECT student_name , parent_name FROM student
4 INNER JOIN parent ON student.parent_mobile = parent.parent_mobile;

Listing 19.197: The stdout resulting from the SQL statements in select.sql given in Listing 19.196.
1 $ psql "postgres :// postgres:XXX@localhost/fixed" -v ON_ERROR_STOP =1 -ebf

↪→ select.sql
2 student_name | parent_name
3 --------------+-------------
4 Bibbo | Boddo
5 Bebbo | Balla
6 Bibboto | Boddo
7 Bibboba | Boddo
8 (4 rows)
9

10 # psql 16.9 succeeded with exit code 0.

the two parent records into the table parent . The mobile phone numbers and names of Ms. Balla, the
mom of Mr. Bebbo, as well as Mr. Böddö, the dad of the other three students are stored. Then we
insert four student records for Mr. Bibbo, Mr. Bebbo, Mr. Bibboto, and Ms. Bibboba. Like last time,
our data entry specialist did, at first, not know how to write the the fancy “ö” in name Mr. Böddö and
resorted to just call him Mr. Boddo.

At first glance, this new structure looks more complicated. On one hand, we now have two tables
instead of one. On the other hand, if we want to know the names of the parents of the students, a
simple SELECT will no longer be enough. Instead, we need to merge the data from two tables by using
an INNER JOIN , as shown in Listing 19.196.

One could argue that the advantage is the reduced redundancy: The name of each parent is entered
once and only one. Then again, you may argue that in this simple example, this advantage is more or
less offset by the fact that we need to enter their mobile phone numbers in both tables. Generally, the
redundancy reduction is still a good argument.

The usefulness of the new design becomes clear when we change data. Like in our original example,
a few days after originally entering the data, our data entry specialist found a solution on how to enter
the letter “ö”. In order to fix the data, they created the script Listing 19.190. The UPDATE command
is now applied to table parent and only touches a single row (as you can see by the result of the
RETURNING statement). In the same script, we use another SELECT to check whether the parent names
of Mr. Bibbo, Mr. Bibboto, and Ms. Bibboba have changed. And indeed, they have. The update

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/fixed/insert.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/fixed/select.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/fixed/select.sql

CHAPTER 19. LOGICAL MODEL DESIGN 326

Listing 19.198: We noticed that the name of the father of Mr. Bibbo, Mr. Bibotto, and Ms. Bibboba
is actually Mr. Böddö, not Mr. Boddo. Since we now observe the 3NF, we need to touch only a single
records to change this. (stored in file update.sql ; output in Listing 19.199)

1 /** Find the parent Boddo and change his name to Böddö. */
2
3 -- Change the name of the parent with mobile 55544466677 to Böddö.
4 UPDATE parent SET parent_name = ’Böddö’
5 WHERE parent_mobile = ’55544466677 ’
6 RETURNING parent_name , parent_mobile;
7
8 -- Get the names of all students whose parent has mobile 55544466677.
9 SELECT student_name , parent_name FROM student

10 INNER JOIN parent ON student.parent_mobile = parent.parent_mobile
11 WHERE student.parent_mobile = ’55544466677 ’;

Listing 19.199: The stdout resulting from the SQL statements in update.sql given in Listing 19.198.
1 $ psql "postgres :// postgres:XXX@localhost/fixed" -v ON_ERROR_STOP =1 -ebf

↪→ update.sql
2 parent_name | parent_mobile
3 -------------+---------------
4 Böddö | 55544466677
5 (1 row)
6
7 UPDATE 1
8 student_name | parent_name
9 --------------+-------------

10 Bibbo | Böddö
11 Bibboto | Böddö
12 Bibboba | Böddö
13 (3 rows)
14
15 # psql 16.9 succeeded with exit code 0.

anomaly has disappeared.
The new design also no longer would exhibit a deletion anomaly, as we can delete student records

without losing the information about the parents. We can also insert new parent records at any time,
without requiring that student records of their kids are already present, so there is no insertion anomaly
either.

https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/fixed/update.sql
https://github.com/thomasWeise/databasesCode/blob/c15c5baeb01640ba41f28de9047d862620ea3ed4/normalization/3nf/student/fixed/update.sql

Backmatter

327

Best Practices

Here we discuss the best practices to be followed when working with DBs.

Best Practice 1: A computer science professional is able and always keen to learn new tools. A computer
science professional should know dozens if not hundreds of different software tools for different tasks.
A software engineer is a craftsperson and their knowledge of software is their tool belt.

Best Practice 2: Any professional computer scientist, software developer, software architect, DBA, or
system administrator should be familiar with the Linux OS.

Best Practice 3: Keywords in SQL may always be written completely in uppercase [116]. Well, techni-
cally, SQL keywords are not case sensitive, so WHERE and where work the same. It is most important
to be consistent in your casing, regardless whether you prefer upper- or lowercase [51]. Nevertheless, I
prefer uppercase and the PostgreSQL documentation does so too [308].

Best Practice 4: Table names should be singular nous written in lowercase without any prefix (i.e., no
“tbl_” in front) [51].

Best Practice 5: Always assume that any float value is imprecise. Never expect it to be exact [27,
311, 437].

Best Practice 6: Never represent monetary data with floating point numbers [339, 440].

Best Practice 7: Store monetary data using the DECIMAL datatype [57, 440].

Best Practice 8: Prefer using surrogate primary keys based on automatically incremented integers [51].
See also Definition 18.16.

Best Practice 9: Whenever using an automatically incremented integer as primary key for a table,
name it id . While there is some controversy about this topic [193], anybody accessing your DB will
immediately understand the meaning of the id columns and this practice is used in many sources [51,
308].

Best Practice 10: Never use SQL keywords or reserved words as names, e.g., for columns or tables [51].

Best Practice 11: Only things with multiple attributes should become entity types.

Best Practice 12: Each entity (type) should model one (type of) object from reality (and not more
than one) [344].

Best Practice 13: Primary keys should:

1. be unique for each entity (obviously),

2. be immutable over the lifetime of an entity,

3. not be optional, i.e., they should never be allowed to be NULL ,

4. not be derived attributes,

5. always be single-valued attributes, i.e., not be multivalued attributes,

6. consist of single attributes, i.e., not be based on candidate keys consisting of multiple attributes,

7. be simple attributes, i.e., not composed attributes,

328

329

8. be small in terms of the expected required storage size (see also Best Practice 8).

Best Practice 14: In many application scenarios where historical information needs to be preserved,
data in a DB should never be changed or deleted. Changes in the real world should instead be reflected
by adding data to the DB.

Best Practice 15: To avoid issues with quotations, it is best to use only lower case character names
and underscores (_) to separate words for all named things in PgModeler, including tables, columns,
and constraints.

Best Practice 16: Constraints should have descriptive names [51]. If some table modification fails,
we will see the name of the constraint that was violated. If the name makes sense and is easy to
understand, then this makes it easier to find out what went wrong and why.

Best Practice 17: Data should be checked at all levels of an application, in the forms where it is entered,
in the DB via constraints, and back in the application when it is loaded from the DB. The more lines
of defense we create with constraints, static checks, and dynamic checks, the higher is our chance to
discover errors early, to prevent them from propagating, and to pinpoint the reason of errors. This gives
us the best chance to locate and fix the error if it is a problem with a program as well as to prevent
errors resulting from typos to enter and pollute our DB.

Best Practice 18: Errors should not be ignored and input data should not be artificially sanitized.
Instead, the input of our functions should be checked for validity wherever reasonable. Faulty input
should always be signaled by errors breaking the program flow. [In Python,]Exceptions should be
raised as early as possible and whenever an unexpected situation occurs.

Useful Tools

Here we discuss some useful tools for working with DBs.

Useful Tool 1: PostgreSQL [146, 279, 309, 391] is an advanced relational DBMS. It is free and open
source and the basis for all hands-on examples in our course.

Useful Tool 2: psql is a text-based console program that can be used to connect to a PostgreSQL
server. From the psql console, we can send SQL commands to the PostgreSQL server and receive its
answers.

Useful Tool 3: psycopg [428] is a library that allows us to connect to the PostgreSQL DBMS from
Python code. This way, we can design complex applications in Python that interact with a PostgreSQL
DB.

Useful Tool 4: LibreOffice Base [145, 348] offers us a simple GUI that can connect to a DBMS and
provides capabilities such as executing SQL queries as well as designing and executing forms and reports.

Useful Tool 5: yEd [347, 451] is a free graph editor that can be used to draw ERDs. It is useful for
the conceptual modeling stage in DB design as discussed in Chapter 18. Installation instructions are
provided in Chapter 5 and a small hands-on tutorial is given in Section 18.1.

Useful Tool 6: With PgModeler, we have a tool in our hands that allows us to basically draw logical
models for DBs as ERDs. These models are easy-to-understand graphics that follow crow’s foot
notation. PgModeler can connect to a PostgreSQL server and directly push the models to it or load
a logical model from the server. It can also export logical models as SQL scripts that we then can
execute. It therefore offers us a convenient GUI to design the logical schema of a DB.

330

Glossary

i! The factorial a! of a natural number a ∈ N1 is the product of all positive natural numbers less than
or equal to a, i.e., a! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ · · · ∗ (a− 1) ∗ a [62, 137, 252].

i..j with i, j ∈ Z and i ≤ j is the set that contains all integer numbers in the inclusive range from i
to j. For example, 5..9 is equivalent to {5, 6, 7, 8, 9}

1NF The first normal form (NF) in relational DBs [81, 110, 143, 221]. See also Section 19.3.1.

2NF The second normal form (NF) in relational DBs [80, 83, 110, 143, 221]. See also Section 19.3.2.

3NF The third normal form (NF) in relational DBs [80, 83, 110, 143, 221]. See also Section 19.3.3.

AI Artificial Intelligence, see, e.g., [336]

Android is a common operating system for mobile phones [365].

API An Application Programming Interface is a set of rules or protocols that enables one software
application or component to use or communicate with another [162].

Bash is a the shell used under Ubuntu Linux, i.e., the program that “runs” in the terminal and interprets
your commands, allowing you to start and interact with other programs [44, 273, 454]. Learn
more at https://www.gnu.org/software/bash.

BCE before Common Era, used to refer to the years that came before the birth of Jesus Christ.
B.C.E. is now often used instead of B.C. especially in scientific writing.

C is a programming language, which is very successful in system programming situations [129, 313].

client In a client-server architecture, the client is a device or process that requests a service from the
server. It initiates the communication with the server, sends a request, and receives the response
with the result of the request. Typical examples for clients are web browsers in the internet as
well as clients for DBMSes, such as psql.

client-server architecture is a system design where a central server receives requests from one or
multiple clients [35, 284, 322, 331, 394]. These requests and responses are usually sent over
network connections. A typical example for such a system is the World Wide Web (WWW),
where web servers host websites and make them available to web browsers, the clients. Another
typical example is the structure of DB software, where a central server, the , offers access to the
DB to the different clients. Here, the client can be some terminal software shipping with the ,
such as psql, or the different applications that access the DBs.

CSV Comma-Separated Values is a very common and simple text format for exchanging tabular or
matrix data [353]. Each row in the text file represents one row in the table or matrix. The
elements in the row are separated by a fixed delimiter, usually a comma (“,”), sometimes a
semicolon (“;”). Python offers some out-of-the-box CSV support in the csv module [103].

CTE Common Table Expressions are SQL constructs for simplifying complex queries by allowing us
to break them into smaller parts which are evaluated only once and, hence, can be reused.
CTEs act as temporary named result sets created during query execution and discarded after
query completion [26, 146, 446].

331

https://www.gnu.org/software/bash

GLOSSARY 332

DB A database is an organized collection of structured information or data, typically stored electroni-
cally in a computer system. Databases are discussed in our book Databases [436].

DB2 developed by IBM is one of the older and popular relational DBMSes [16, 75, 172].

DBA A database administrator is the person or group responsible for the effective use of database
technology in an organization or enterprise.

DBMS A database management system is the software layer located between the user or application
and the DB. The DBMS allows the user/application to create, read, write, update, delete, and
otherwise manipulate the data in the DB [450].

DBS A database system is the combination of a DB and a the corresponding , i.e., basically, an
installation of a on a computer together with one or multiple DBs. DBS = DB + DBMS.

DOB Date of Birth

Docker provides OS-level virtualization. A Docker container is something like a more lightweight
variant of a virtual machine. Docker containers offer a Linux runtime environment into which
software can be installed and run isolated from the rest of the system. Such containers can be
created by scripts. They offer a simple, reproducible, and portable way to configure and ship
software components. Learn more at https://docker.com or in [217].

dom(a) the domain of an attribute a, see Definition 18.3.

ERD Entity relationship diagrams show the relationships between objects, e.g., between the tables in
a DB and how they reference each other [22, 49, 70–72, 219, 355, 439]

exit code When a process terminates, it can return a single integer value (the exit status code) to
indicate success or failure [213]. Per convention, an exit code of 0 means success. Any non-
zero exit code indicates an error. Under Python, you can terminate the current process at
any time by calling exit and optionally passing in the exit code that should be returned. If
exit is not explicitly called, then the interpreter will return an exit code of 0 once the process
normally terminates.If the process was terminated by an uncaught Exception , a non-zero exit
code, usually 1, is returned.

f-string is a special string in Python, which delimited by f"..." which can contain expressions in curly
braces like f"a{6-1}b" that are then turned to text via (string) interpolation, which turns the
string to "a5b" .

FD A functional dependency exists between two groups of attributes Y and X if the values of X
determine the values of Y . This is written as X → Y . See also Definition 19.8.

Flask is a lightweight Python framework that allows developers to quickly and easily build web ap-
plications [3, 76, 404]. It is based on the Python WSGI standard [141]. Learn more at
https://flask.palletsprojects.com.

Git is a distributed Version Control Systems (VCS) which allows multiple users to work on the same
code while preserving the history of the code changes [366, 410]. Learn more at https://
git-scm.com.

GitHub is a website where software projects can be hosted and managed via the Git VCS [297, 410].
Learn more at https://github.com.

GUI graphical user interface

HR human resources department

HTTP The Hyper Text Transfer Protocol (HTTP) is the protocol linking web browsers to web servers
in the WWW [32, 33, 147, 148, 168].

HTTPS The Hypertext Transfer Protocol Secure (HTTPS) is the encrypted variant of Hyper Text
Transfer Protocol (HTTP) where data is sent over Transport Layer Security (TLS) [148, 378].

https://docker.com
https://flask.palletsprojects.com
https://git-scm.com
https://git-scm.com
https://github.com

GLOSSARY 333

IDE An Integrated Developer Environment is a program that allows the user do multiple different
activities required for software development in one single system. It often offers functionality
such as editing source code, debugging, testing, or interaction with a distributed version control
system. For Python, we recommend using PyCharm.

IDEF1X The Integration Definition for Information Modeling (IDEF1X) is a standardized syntax for
ERDs. It was originally developed by the United States Air Force for data modeling, focusing on
entities, relationships, and key structures [47, 203].

Inkscape is a free and open source vector graphics editor, which primarily works with the SVG for-
mat [224, 333]. This is the tool that I would recommend for professional graphic design. Learn
more at https://inkscape.org.

iOS is the operating system that powers Apple iPhones [60, 368]. Learn more at https://www.
apple.com/ios.

iPadOS is the operating system that powers Apple iPads [60]. Learn more at https://www.apple.
com/ipados.

IT information technology

JAD Joint Application Development [59, 261]

Java is another very successful programming language, with roots in the C family of languages [37,
251].

JavaScript JavaScript is the predominant programming language used in websites to develop interac-
tive contents for display in browsers [142].

JSON JavaScript Object Notation is a data interchange format [45, 397] based on JavaScript [142]
syntax. An example of a JSON document is given in Figure 1.3.2.

LAMP Stack A system setup for web applications: Linux, Apache (a webserver), MySQL, and the
server-side scripting language PHP [56, 181].

LibreOffice is on open source office suite [154, 248, 348] which is a good and free alternative to
Microsoft Office. It offers software such as LibreOffice Calc and LibreOffice Base. Installation
instructions for LibreOffice are given in Chapter 3.

LibreOffice Base is a DBMSes that can work on stand-alone files but also connect to other popular
relational databases [145, 348]. It is part of LibreOffice [154, 248, 348] and has functionality that
is comparable to Microsoft Access [29, 77, 413]. See also Useful Tool 4.

LibreOffice Calc is spreadsheet software that allows you to arrange and perform calculations with
data in a tabular grid. It is a free and open source spread sheet software [248, 348], i.e., an
alternative to Microsoft Excel. It is part of LibreOffice [154, 248, 348]. An example of how a
LibreOffice Calc table looks like is given in Figure 1.2.

Linux is the leading open source operating system, i.e., a free alternative for Microsoft Windows [24,
178, 363, 403, 422]. We recommend using it for this course, for software development, and for
research. Learn more at https://www.linux.org. Its variant Ubuntu is particularly easy to use
and install.

locale A locale corresponds basically to a selection of country or culture for a system or applica-
tion [214]. The locale then determines a set of country- or culture-dependent settings, such as
the text representation for money or dates, or what decimal separators are used.A good example
is, for example, that American English readers will interpret the date 7/4/2000 as July 4th, 2000,
whereas British English readers will read this as the 7th of April, 2000 [114]. It is therefore
important that software printing dates knows whether it is running on an American or British
English PC.

localhost is the hostname of the current computer [73, 139]. It is equivalent to the IP ad-
dress 127.0.0.1 . Any message or package sent to localhost will be sent to the current computer
itself.

https://inkscape.org
https://www.apple.com/ios
https://www.apple.com/ios
https://www.apple.com/ipados
https://www.apple.com/ipados
https://www.linux.org

GLOSSARY 334

macOS or Mac OS is the operating system that powers Apple Mac(intosh) computers [368]. Learn
more at https://www.apple.com/macos.

MariaDB An open source relational database management system that has forked off from MySQL [10,
11, 25, 138, 257, 323]. See https://mariadb.org for more information.

Matplotlib is a Python package for plotting diagrams and charts [196, 197, 211, 287]. Learn more at
at https://matplotlib.org [197].

Microsoft Access is a DBMSes that can work on DBs stored in single, stand-alone files but also
connect to other popular relational databases [29, 77, 262, 413]. It is part of Microsoft Office.
A free and open source alternative to this commercial software is LibreOffice Base.

Microsoft Excel is a spreadsheet program that allows users to store, organize, manipulate, and calcu-
late data in tabular structures [38, 167, 240]. It is part of Microsoft Office. A free alternative to
this commercial software is LibreOffice Calc [248, 348].

Microsoft Office is a commercial suite of office software, including Microsoft Excel, Microsoft Word,
and Microsoft Access [240]. LibreOffice is a free and open source alternative.

Microsoft SQL Server The Microsoft SQL Server is a successful commercial relational/SQL-based
DBMS [5, 298, 442]. Learn more at https://www.microsoft.com/sql-server and https:
//learn.microsoft.com/en-us/sql.

Microsoft Windows is a commercial proprietary operating system [43]. It is widely spread, but we
recommend using a Linux variant such as Ubuntu for software development and for our course.
Learn more at https://www.microsoft.com/windows.

Microsoft Word is one of the leading text writing programs [130, 267] and part of Microsoft Office.
A free alternative to this commercial software is the LibreOffice Writer.

ML Machine Learning, see, e.g., [354]

MSYS2 Minimal SYStem 2 (MSYS2) is a collection of tools and libraries from the Linux world providing
an environment for building, installing, and running native Microsoft Windows software [411].
Learn more at https://www.msys2.org.

Mypy is a static type checking tool for Python [245] that makes use of type hints. Learn more at
https://github.com/python/mypy and in [437].

MySQL An open source relational database management system [42, 138, 326, 391, 443]. MySQL is
famous for its use in the LAMP Stack. See https://www.mysql.com for more information.

MySQL Workbench is a visual tool for DB designers that offers tools ranging from graphical modeling
to performance analysis [263]. Learn more at https://www.mysql.com/products/workbench.

N1 the set of the natural numbers excluding 0, i.e., 1, 2, 3, 4, and so on. It holds that N1 ⊂ Z.

NF The normal forms define guidelines for the design of relational DBs with the goal to avoid re-
dundancy and to prevent inconsistencies and anomalies [110, 143, 221, 359, 360]. There are
several normal forms, 1NF, 2NF, 3NF, and so on, each more restrictive than the other. See
also Section 19.3.

NP-hard Algorithms that guarantee to find the correct solutions of NP-hard problems [68, 93, 243]
need a runtime that is exponential in the problem scale in the worst case.

NumPy is a fundamental package for scientific computing with Python, which offers efficient array
datastructures [126, 176, 211]. Learn more at https://numpy.org [276].

OOP Object-Oriented Programming [338]

Oracle Database The Oracle Database was the first commercial SQL-based relational database [63].
It is still a highly successful proprietary product with many features [30, 235]. Learn more at
https://www.oracle.com/database.

https://www.apple.com/macos
https://mariadb.org
https://matplotlib.org
https://www.microsoft.com/sql-server
https://learn.microsoft.com/en-us/sql
https://learn.microsoft.com/en-us/sql
https://www.microsoft.com/windows
https://www.msys2.org
https://github.com/python/mypy
https://www.mysql.com
https://www.mysql.com/products/workbench
https://numpy.org
https://www.oracle.com/database

GLOSSARY 335

OS Operating System, the system that runs your computer, see, e.g., Linux, Microsoft Windows,
macOS, and Android.

OSS Open source software, i.e., software that can freely be used, whose source code is made availabe
in the internet, and which is usually developed cooperatively over the internet as well [186].
Typical examples are Python, Linux, Git, and PostgreSQL.

Pandas is a Python data analysis and manipulation library [28, 247]. Learn more at https://pandas.
pydata.org [290].

PD Participatory Design [59, 150]

PgModeler the PostgreSQL DB modeler is a tool that allows for graphical modeling of logical schemas
for DBs using an ERD-like notation [7]. Learn more at https://pgmodeler.io.

pip is the standard tool to install Python software packages from the PyPI repository [207, 303]. To
install a package thepackage hosted on PyPI, type pip install thepackage into the terminal.
Learn more at https://packaging.python.org/installing.

port A port in networking is a software-defined number associated to a network protocol that receives
or transmits communication for a specific service [238]. In the client-server architecture, the
server listens for incoming communication connections at a specific port. The clients connect to
the network address and port number of the server to establish such connections. port numbers
range from 0 to 65535, where the port numbers from 0 to 1023 are so-called well-known ports
corresponding to the most common services, e.g., HTTP, the protocol underpinning of the WWW,
uses normally port 80.

PostgreSQL An open source object-relational DBMS [146, 279, 309, 391]. See https://
postgresql.org and Useful Tool 1 for more information.

psql is the client program used to access the PostgreSQL DBMS server. See also Useful Tool 2.

psycopg or, more exactly, psycopg 3 , is the most popular PostgreSQL adapter for Python, implement-
ing the Python DB API 2.0 specification [246]. Learn more at https://www.psycopg.org [428]
and Useful Tool 3.

PyCharm is the convenient Python IDE that we recommend for this course [420, 444, 449]. It comes
in a free community edition, so it can be downloaded and used at no cost. Learn more at
https://www.jetbrains.com/pycharm.

PyPI The Python Package Index (PyPI) is an online repository that provides the software packages
that you can install with pip [40, 398, 419]. Learn more at https://pypi.org.

Python The Python programming language [195, 244, 253, 437], i.e., what you will learn about in our
book [437]. Learn more at https://python.org.

PyTorch is a Python library for deep learning and AI [292, 321]. Learn more at https://pytorch.org.

R the set of the real numbers.

RAD Rapid Application Development [261, 338]

regex A Regular Expression, often called “regex” for short, is a sequence of characters that defines a
search pattern for text strings [201, 234, 268, 274]. In Python, the re module offers function-
ality work with regular expressions [234, 324]. In PostgreSQL, regex-based pattern matching is
supported as well [306].

relational database A relational DB is a database that organizes data into rows (tuples, records) and
columns (attributes), which collectively form tables (relations) where the data points are related
to each other [81, 174, 175, 369, 389, 436, 441].

Scikit-learn is a Python library offering various machine learning tools [296, 321]. Learn more at
https://scikit-learn.org.

https://pandas.pydata.org
https://pandas.pydata.org
https://pgmodeler.io
https://packaging.python.org/installing
https://postgresql.org
https://postgresql.org
https://www.psycopg.org
https://www.jetbrains.com/pycharm
https://pypi.org
https://python.org
https://pytorch.org
https://scikit-learn.org

GLOSSARY 336

SciPy is a Python library for scientific computing [211, 432]. Learn more at https://scipy.org.

SDLC Software Development Life Cycle [205, 272]

server In a client-server architecture, the server is a process that fulfills the requests of the clients. It
usually waits for incoming communication carring the requests from the clients. For each request,
it takes the necessary actions, performs the required computations, and then sends a response
with the result of the request. Typical examples for servers are web servers [56] in the internet
as well as DBMSes. It is also common to refer to the computer running the server processes as
server as well, i.e., to call it the “server computer” [239].

Σ(R) the relation schema of relation R [345], see Definition 19.1.

SQL The Structured Query Language is basically a programming language for querying and manipu-
lating relational databases [63, 108, 109, 115, 202, 265, 373, 379, 380, 389]. It is understood
many DBMSes. You find the SQL commands supported by PostgreSQL in the reference [373].

SQLi attack A SQL injection attack is a web attack that is used to target data stored in DBMS by
injecting malicious input into code that constructs SQL queries by string concatenation in order to
subvert application functionality and perform unauthorized operations [101, 236, 294, 436]. In or-
der to prevent such attacks, queries to DBs should never be constructed via string concatenation
or the likes of Python f-strings. Assume that user_id was a string variable in a Python pro-
gram and we construct the query f"SELECT * FROM data WHERE user_id = {user_id}" . Notice
that the {user_in} will be replaced with the value of variable user_id during (string) inter-
polation. If user_id == "user123; DROP TABLE data;" , mayhem would ensue when we execute
the query [375]. Some programming languages, like Python, offer built-in datatypes (such as
LiteralString [375]) to annotate string constants that can be used by static type-checkers. At
the time of this writing, Mypy does not support this yet [430, 456].

SQLite is an relational DBMS which runs as in-process library that works directly on files as opposed
to the client-server architecture used by other common DBMSes. It is the most wide-spread SQL-
based DB in use today, installed in nearly every smartphone, computer, web browser, television,
and automobile [63, 153, 183, 445]. Learn more at https://sqlite.org [372].

SRS Software Requirements Specification document [199, 362, 384, 448]

stderr The standard error stream is one of the three pre-defined streams of a console process (together
with the standard input stream (stdin) and the stdout) [216]. It is the text stream to which
the process writes information about errors and exceptions. If an uncaught Exception is raised
in Python and the program terminates, then this information is written to stderr. If you run a
program in a terminal, then the text that a process writes to its stderr appears in the console.

stdin The standard input stream is one of the three pre-defined streams of a console process (together
with the stdout and the stderr) [216]. It is the text stream from which the process reads its
input text, if any. The Python instruction input reads from this stream. If you run a program
in a terminal, then the text that you type into the terminal while the process is running appears
in this stream.

stdout The standard output stream is one of the three pre-defined streams of a console process (to-
gether with the stdin and the stderr) [216]. It is the text stream to which the process writes
its normal output. The print instruction of Python writes text to this stream. If you run a
program in a terminal, then the text that a process writes to its stdout appears in the console.

(string) interpolation In Python, string interpolation is the process where all the expressions in an
f-string are evaluated and the final string is constructed. An example for string interpolation is
turning f"Rounded {1.234:.2f}" to "Rounded 1.23" .

sudo In order to perform administrative tasks such as installing new software under Linux, root (or
“super”) user privileges as needed [78]. A normal user can execute a program in the terminal
as super user by pre-pending sudo , often referred to as “super user do.” This requires the root
password.

https://scipy.org
https://sqlite.org

GLOSSARY 337

SVG The Scalable Vector Graphics (SVG) format is an XML-based format for vector graphics [105].
Vector graphics are composed of geometric shapes like lines, rectangles, circles, and text. As
opposed to raster / pixel graphics, they can be scaled seamlessly and without artifacts. They are
stored losslessly.

TensorFlow is a Python library for implementing machine learning, especially suitable for training of
neural networks [2, 241]. Learn more at https://www.tensorflow.org.

terminal A terminal is a text-based window where you can enter commands and execute them [24,
78]. Knowing what a terminal is and how to use it is very essential in any programming- or
system administration-related task. If you want to open a terminal under Microsoft Windows, you
can press q + R , type in cmd , and hit . Under Ubuntu Linux, Ctrl + Alt + T opens a
terminal, which then runs a Bash shell inside.

timestamping is a technique used in DBs to keep track of the creation and/or modification time of
data [194, 402]. For each table in a relational database to which it is applied, an additional
column with datatype TIMESTAMP [113] is added for the creation timestamp. This column is
usually annotated as NOT NULL DEFAULT CURRENT_TIMESTAMP [112], meaning that the DBMS will
automatically store the current date and time when a row is created. If data can be changed,
then another column for the last update time can be added to the table as well.

TLS Transport Layer Security, a protol for encrypted communication over the internet [136, 327, 378],
used by, e.g., HTTPS.

type hint are annotations that help programmers and static code analysis tools such as Mypy to better
understand what type a variable or function parameter is supposed to be [242, 421]. Python
is a dynamically typed programming language where you do not need to specify the type of,
e.g., a variable. This creates problems for code analysis, both automated as well as manual: For
example, it may not always be clear whether a variable or function parameter should be an integer
or floating point number. The annotations allow us to explicitly state which type is expected.
They are ignored during the program execution. They are a basically a piece of documentation.

Ubuntu is a variant of the open source operating system Linux [78, 181]. We recommend that
you use this operating system to follow this class, for software development, and for research.
Learn more at https://ubuntu.com. If you are in China, you can download it from https:
//mirrors.ustc.edu.cn/ubuntu-releases.

UCS Universal Coded Character Set, see Unicode

UML The Unified Modeling Language (UML) is a graphical language for visualizing, specifying, con-
structing, and documenting the artifacts of distributed object systems [41, 280, 414]

Unicode A standard for assigning characters to numbers [204, 401, 415]. The Unicode standard
supports basically all characters from all languages that are currently in use, as well as many
special symbols. It is the predominantly used way to represent characters in computers and is
regularly updated and improved.

URI A Uniform Resource Identifier is an identifier for an abstract or physical resource in the inter-
net [453]. It can be a Uniform Resource Locator (URL), a name, or both. URIs are supersets of
URLs. The connection strings of the PostgreSQL DBMS are examples for URIs.

URL A Uniform Resource Locator identifies a resource in the WWW and a way to obtain it by describing
a network access mechanism. The most notable example of URLs is the text you write into web
browsers to visit websites [34]. URLs are subsets of URIs.

UTF-8 The UCS Transformation Format 8 is one standard for encoding Unicode characters into a
binary format that can be stored in files [204, 453]. It is the world wide web’s most commonly
used character encoding, where each character is represented by one to four bytes. It is backwards
compatible with ASCII.

https://www.tensorflow.org
https://ubuntu.com
https://mirrors.ustc.edu.cn/ubuntu-releases
https://mirrors.ustc.edu.cn/ubuntu-releases

GLOSSARY 338

VCS A Version Control System is a software which allows you to manage and preserve the historical
development of your program code [410]. A distributed VCS allows multiple users to work on the
same code and upload their changes to the server, which then preserves the change history. The
most popular distributed VCS is Git.

virtual environment A virtual environment is a directory that contains a local Python installation [266,
433]. It comes with its own package installation directory. Multiple different virtual environments
can be installed on a system. This allows different applications to use different versions of the
same packages without conflict, because we can simply install these applications into different
virtual environments.

WeChat 微信, produced by Tencent (腾讯公司) is the most-used messenger application in China. It
integrates payment capabilities, video and voice chats, as well as social plugins and location-based
services. See also https://weixin.qq.com/.

WWW World Wide Web [32, 124]

XML The Extensible Markup Language is a text-based language for storing and trans-
porting of data [46, 86, 230]. It allows you to define elements in the form
<myElement myAttr="x">...text..</myElement> . Different from CSV, elements in XML can
be hierarchically nested, like <a><c>test</c>bla , and thus easily represent
tree structures. XML is one of most-used data interchange formats. To process XML in Python,
use the defusedxml library [180], as it protects against several security issues. Another example
of an XML ocument is given in Figure 1.3.1.

YAML YAML Ain’t Markup Language™ is a human-friendly data serialization language for all pro-
gramming languages [85, 131, 230]. It is widely used for configuration files in the DevOps
environment. See https://yaml.org for more information. An example of a YAML-document
is given in Figure 1.3.3.

yEd is a graph editor for high-quality graph-based diagrams [347, 451], suitable to draw, e.g.,
technology-independent ERDs, control flow charts, or UML class diagrams. An online ver-
sion of the editor is available at https://www.yworks.com/yed-live. Learn more at https:
//www.yworks.com/products/yed. See also Useful Tool 5.

Z the set of the integers numbers including positive and negative numbers and 0, i.e., . . . , -3, -2, -1,
0, 1, 2, 3, . . . , and so on. It holds that Z ⊂ R.

https://weixin.qq.com/
https://yaml.org
https://www.yworks.com/yed-live
https://www.yworks.com/products/yed
https://www.yworks.com/products/yed

SQL Commands

(. . .), 304
*, 96
., 102
$, 102
%, 96
^, 102
~, 102
||, 112, 137, 297, 300, 306
\d, 102
\q, 83, 85, 87, 93
\w, 102

ADD CONSTRAINT, 224
AGE, 288
ALL, 298
ALTER

ROLE, 28, 29
TABLE, 224, 231, 237
USER, 28, 29

ALTER TABLE, 231
AND, 106, 108, 113, 116,

209, 212
ANY, 298, 305
ARRAY, 298, 305
AS, 96, 109, 112, 304
AVG, 100

BY DEFAULT, 95, 101, 105

CHARACTER, 203–206
CHECK, 102, 200, 207–209,

212
COALESCE, 297, 306
COMMENT ON, 84, 86
CONSTRAINT, 102, 216

CHECK, 101, 102, 106,
108, 200,
207–209, 212

COUNT, 104, 110
CREATE

DATABASE, 84, 85,
216

ROLE, 83
SEQUENCE, 253
TABLE, 91, 92, 95,

101, 216
USER, 83
VIEW, 112, 288

CREATE ROLE, 80, 83

CREATE USER, 80, 83
CURRENT_DATE, 284,

288
CURRENT_TIME, 284
CURRENT_TIMESTAMP,

284, 337

DATABASE, 84, 216, 292
DATE, 106, 108, 206, 288
datname, 84, 86
DECIMAL, 94, 106, 108,

328
DEFAULT, 253, 284
DELETE, 315
DELETE FORM, 309
DELETE FROM, 116
DISTINCT, 304, 309, 315,

316
ON, 304

DISTINCT ON, 305
DROP

DATABASE, 146, 292
TABLE, 146
USER, 146
VIEW, 145

DROP DATABASE, 280

ENCRYPTED, 83

FALSE, 104
FOREIGN KEY, 220, 221

GENERATED, 95, 101, 105,
288

GENERATED. . .AS
IDENTITY, 95

ALWAYS, 95
BY DEFAULT, 95

GROUP BY, 104, 110

IDENTITY, 95, 101, 105
IF EXISTS, 145, 146
ILIKE, 103, 104, 296, 298,

304, 305
INNER JOIN, 224, 251,

280, 284, 292,
295, 296, 304,
316, 318, 320, 325

INSERT, 306, 309

INSERT INTO, 96, 102,
103, 107, 118,
119, 197, 224, 314

INT, 95, 101, 105, 106, 223
INTEGER, 95, 309
IS, 86

JOIN, 114, 162, 226
INNER, 110
LEFT, 108, 110
LEFT OUTER, 108

LEFT OUTER JOIN, 108
LIKE, 96, 102–104, 309
LIMIT, 100

NEXTVAL, 253, 254
NOT, 106
NOT NULL, 92, 94, 95,

101, 102, 106,
108, 203–207,
213, 221, 278,
284, 295, 297,
301, 306, 324

NULL, 108, 109, 172, 175,
179, 198, 199,
204, 297, 298,
306, 328

ON, 108
OR, 106, 298
ORDER BY, 100, 105, 109,

112, 137
ASC, 100
DESC, 100, 112

OWNER, 84, 85

PASSWORD, 28, 83
pg_catalog.pg_tables, 95,

102
pg_catalog.pg_user, 83
pg_database, 84
pg_databases, 86
postgres, 83
PRIMARY KEY, 95, 101,

105, 106, 200,
207, 208

REAL, 165

339

GLOSSARY 340

REFERENCES, 106, 108,
110, 111, 146,
162, 200, 224,
283, 284, 295,
301, 306

RETURNING, 116, 247,
254, 280, 310,
311, 315, 322, 325

SELECT, 81, 93, 288,
309–311, 315,
322, 325

SELECT DISTINCT, 309
SELECT FROM, 224
SELECT. . .FROM, 41, 83,

84, 86, 95, 96,
103, 107, 110,
118, 119, 131,
135, 197, 304

SEQUENCE, 276–278, 280
SET, 322
SMALLINT, 165
STORED, 288
SUM, 112

TABLE, 91, 95, 101, 216,
224, 231, 237

tablename, 95
tableowner, 95
TIMESTAMP, 288, 337
TRUE, 101, 104

UNION, 200, 304, 307
UNION ALL, 100
UNIQUE, 92, 96, 98, 101,

102, 108, 111,
112, 137, 207,
213, 221, 231,
278, 279, 291, 295

UPDATE, 231, 249, 306,
311, 317, 322, 325

UPDATE. . .SET, 115
usename, 83
USER, 83

VALUES, 96, 119
VARCHAR, 91, 92, 95, 101,

102, 204–206,
296, 297, 309

VIEW, 112, 248, 288
VIRTUAL, 288

WHERE, 83, 95, 96, 103,
110, 113, 116,
119, 309, 328

WITH, 248, 305
ENCRYPTED

PASSWORD, 83

Bibliography

[1] A Timeline of Database History & Database Management. Boston, MA, USA: Quickbase, Inc.,
Feb. 18, 2022–Aug. 25, 2023. URL: https://www.quickbase.com/articles/timeline-
of-database-history (visited on 2025-01-11) (cit. on p. 8).

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “TensorFlow: A System
for Large-Scale Machine Learning”. In: 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’2016). Nov. 2–4, 2016, Savannah, GA, USA. Ed. by Kimberly Keeton
and Timothy Roscoe. Berkeley, CA, USA: USENIX Association, 2016, pp. 265–283. ISBN: 978-
1-931971-33-1. URL: https://www.usenix.org/conference/osdi16/technical-sessio
ns/presentation/abadi (visited on 2024-06-26) (cit. on pp. 117, 337).

[3] Olatunde Adedeji. Full-Stack Flask and React. Birmingham, England, UK: Packt Publishing
Ltd, Nov. 2023. ISBN: 978-1-80324-844-8 (cit. on p. 332).

[4] “Aggregate Functions”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Devel-
opment Group (PGDG), Feb. 20, 2025. Chap. 9.21. URL: https://www.postgresql.org/
docs/17/functions-aggregate.html (visited on 2025-02-27) (cit. on p. 100).

[5] Dirk Angermann. T-SQL-Abfragen für Microsoft SQL-Server 2022. Blaufelden, Schwäbisch Hall,
Baden-Württemberg, Germany: mitp Verlags GmbH & Co. KG, June 2024. ISBN: 978-3-7475-
0633-2 (cit. on pp. 15, 17, 334).

[6] Database Management Systems ANSI/X3/SPARC Study Group. Framework Report on
Database Management Systems. Montvale, NJ, USA: American Federation of Information
Processing Societies (AFIPS) Press, 1978. Also published as [409] (cit. on pp. 6, 368).

[7] Raphael “rkhaotix” Araújo e Silva. pgModeler – PostgreSQL Database Modeler. Palmas, To-
cantins, Brazil, 2006–2025. URL: https://pgmodeler.io (visited on 2025-04-12) (cit. on
pp. iii, 20, 65, 201, 335).

[8] “Arrays”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 8.15. URL: https://www.postgresql.org/docs/17/
arrays.html (visited on 2025-05-08) (cit. on p. 298).

[9] David Ascher, ed. Python Cookbook. 1st ed. Sebastopol, CA, USA: O’Reilly Media, Inc., July
2002. ISBN: 978-0-596-00167-4 (cit. on p. 20).

[10] Adam Aspin and Karine Aspin. Query Answers with MariaDB – Volume I: Introduction to SQL
Queries. Tetras Publishing, Oct. 2018. ISBN: 978-1-9996172-4-0. See also [11] (cit. on pp. 14,
334, 341).

[11] Adam Aspin and Karine Aspin. Query Answers with MariaDB – Volume II: In-Depth Querying.
Tetras Publishing, Oct. 2018. ISBN: 978-1-9996172-5-7. See also [10] (cit. on pp. 14, 334, 341).

[12] Charles William “Charlie” Bachman. “Data Structure Diagrams”. DATA BASE – ACM SIGMIS
Database: The DATABASE for Advances in Information Systems 1(2):4–10, Sum. 1969. New
York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0095-0033. doi:10.1145/
1017466.1017467 (cit. on pp. 12, 166, 182).

[13] Charles William “Charlie” Bachman. “Software for Random Access Processing”. Datamation
9(4):36–41, Apr. 1965. Chicago, IL, USA: Technical Publishing Co. and Boston, MA, USA: Cah-
ners Publishing Company. ISSN: 0011-6963 (cit. on pp. 10, 195).

341

https://www.quickbase.com/articles/timeline-of-database-history
https://www.quickbase.com/articles/timeline-of-database-history
https://isbnsearch.org/isbn/978-1-931971-33-1
https://isbnsearch.org/isbn/978-1-931971-33-1
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://isbnsearch.org/isbn/978-1-80324-844-8
https://www.postgresql.org/docs/17/functions-aggregate.html
https://www.postgresql.org/docs/17/functions-aggregate.html
https://isbnsearch.org/isbn/978-3-7475-0633-2
https://isbnsearch.org/isbn/978-3-7475-0633-2
https://github.com/rkhaotix
https://pgmodeler.io
https://www.postgresql.org/docs/17/arrays.html
https://www.postgresql.org/docs/17/arrays.html
https://isbnsearch.org/isbn/978-0-596-00167-4
https://isbnsearch.org/isbn/978-1-9996172-4-0
https://isbnsearch.org/isbn/978-1-9996172-5-7
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0095-0033
https://doi.org/10.1145/1017466.1017467
https://doi.org/10.1145/1017466.1017467
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0011-6963

BIBLIOGRAPHY 342

[14] Charles William “Charlie” Bachman. “The Origin of the Integrated Data Store (IDS): The First
Direct-Access DBMS”. IEEE Annals of the History of Computing 31(4):42–54, Oct.–Dec. 2009.
Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE). ISSN: 1058-6180.
doi:10.1109/MAHC.2009.110. URL: https://tschwarz.mscs.mu.edu/Classes/DB23/HW/
bachmanIDS.pdf (visited on 2025-01-08) (cit. on pp. 10, 11, 195).

[15] Peter Bailis, Joseph M. Hellerstein, and Michael Stonebraker, eds. Readings in Database Sys-
tems. 5th ed. Stanford, CA, USA, 2015. URL: http://www.redbook.io (visited on 2025-04-04)
(cit. on p. 17).

[16] Jim Bainbridge, Hernando Bedoya, Rob Bestgen, Mike Cain, Dan Cruikshank, Jim Denton,
Doug Mack, Tom Mckinley, and Simona Pacchiarini. SQL Procedures, Triggers, and Functions
on IBM DB2 for i. Durham, NC, USA: IBM Redbooks, Apr. 2016. ISBN: 978-0-7384-4164-1
(cit. on pp. 15, 18, 332).

[17] Paul Baran. A Briefing on the Distributed Adaptive Message-Block Network. Tech. rep. P-3127.
Santa Monica, CA, USA: The RAND Corporation, Apr. 1965. URL: https://www.rand.org/
content/dam/rand/pubs/papers/2008/P3127.pdf (visited on 2025-01-20) (cit. on p. 11).

[18] Paul Baran. On a Distributed Command and Control System Configuration. Memorandum
RM-2632. Santa Monica, CA, USA: The RAND Corporation, Dec. 31, 1960. URL: https:
//www.rand.org/content/dam/rand/pubs/research_memoranda/2009/RM2632.pdf
(visited on 2025-01-20) (cit. on p. 11).

[19] Paul Baran. On Distributed Communications Networks. Tech. rep. P-2626. Santa Monica, CA,
USA: The RAND Corporation, Sept. 1962. URL: https://www.rand.org/content/dam/
rand/pubs/papers/2005/P2626.pdf (visited on 2025-01-20) (cit. on pp. 11, 12).

[20] Paul Baran. On Distributed Communications: I. Introduction to Distributed Communications
Networks. Memorandum RM-3042-PR. Santa Monica, CA, USA: The RAND Corporation, Aug.
1964. URL: https://www.rand.org/content/dam/rand/pubs/research_memoranda/
2006/RM3420.pdf (visited on 2025-01-20) (cit. on p. 11).

[21] Paul Baran. On Distributed Communications: V. History, Alternative Approaches, and Com-
parisons. Memorandum RM-3097-PR. Santa Monica, CA, USA: The RAND Corporation, Aug.
1964. URL: https://www.rand.org/content/dam/rand/pubs/research_memoranda/
2008/RM3097.pdf (visited on 2025-01-20) (cit. on p. 11).

[22] Richard Barker. Case*Method: Entity Relationship Modelling (Oracle). 1st ed. Redwood City,
CA, USA: Addison Wesley Longman Publishing Co., Inc., Jan. 1990. ISBN: 978-0-201-41696-1
(cit. on pp. 155, 164, 166, 332).

[23] G. A. Barnard III and Louis Fein. “Organization and Retrieval of Records Generated in a Large-
Scale Engineering Project”. In: Papers and Discussions Presented at the 1958 Eastern Joint
Computer Conference. Modern Computers: Objectives, Designs, Applications (AIEE-ACM-IRE)
1958 (Eastern). Dec. 3–5, 1958, Philadelphia, PA, USA. Ed. by John M. Broomall. New York,
NY, USA: Association for Computing Machinery (ACM), pp. 59–63. ISBN: 978-1-4503-7866-6.
doi:10.1145/1458043.1458058 (cit. on p. 9).

[24] Daniel J. Barrett. Efficient Linux at the Command Line. Sebastopol, CA, USA: O’Reilly Me-
dia, Inc., Feb. 2022. ISBN: 978-1-0981-1340-7 (cit. on pp. 21, 333, 337).

[25] Daniel Bartholomew. Learning the MariaDB Ecosystem: Enterprise-level Features for Scalability
and Availability. New York, NY, USA: Apress Media, LLC, Oct. 2019. ISBN: 978-1-4842-5514-8
(cit. on pp. 14, 334).

[26] Daniel Bartholomew. MariaDB and MySQL Common Table Expressions and Window Functions
Revealed. New York, NY, USA: Apress Media, LLC, Nov. 2017. ISBN: 978-1-4842-3120-3 (cit.
on p. 331).

[27] Gary Baumgartner, Danny Heap, and Richard Krueger. “Numerical Systems”. In: Course Notes
for CSC165H: Mathematical Expression and Reasoning for Computer Science. Toronto, ON,
Canada: Department of Computer Science, University of Toronto, Aut. 2006. Chap. 7. URL:
https://www.cs.toronto.edu/~krueger/csc165h/f06/lectures/ch7.pdf (visited on
2024-07-27) (cit. on pp. 93, 328).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=1058-6180
https://doi.org/10.1109/MAHC.2009.110
https://tschwarz.mscs.mu.edu/Classes/DB23/HW/bachmanIDS.pdf
https://tschwarz.mscs.mu.edu/Classes/DB23/HW/bachmanIDS.pdf
http://www.redbook.io
https://isbnsearch.org/isbn/978-0-7384-4164-1
https://www.rand.org/content/dam/rand/pubs/papers/2008/P3127.pdf
https://www.rand.org/content/dam/rand/pubs/papers/2008/P3127.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2009/RM2632.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2009/RM2632.pdf
https://www.rand.org/content/dam/rand/pubs/papers/2005/P2626.pdf
https://www.rand.org/content/dam/rand/pubs/papers/2005/P2626.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2006/RM3420.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2006/RM3420.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM3097.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM3097.pdf
https://isbnsearch.org/isbn/978-0-201-41696-1
https://isbnsearch.org/isbn/978-1-4503-7866-6
https://doi.org/10.1145/1458043.1458058
https://isbnsearch.org/isbn/978-1-0981-1340-7
https://isbnsearch.org/isbn/978-1-4842-5514-8
https://isbnsearch.org/isbn/978-1-4842-3120-3
https://www.cs.toronto.edu/~krueger/csc165h/f06/lectures/ch7.pdf

BIBLIOGRAPHY 343

[28] David M. Beazley. “Data Processing with Pandas”. ;login: Usenix Magazin 37(6), Dec. 2012.
Berkeley, CA, USA: USENIX Association. ISSN: 1044-6397. URL: https://www.usenix.org/
publications/login/december-2012-volume-37-number-6/data-processing-pandas
(visited on 2024-06-25) (cit. on pp. 117, 335).

[29] Ben Beitler. Hands-On Microsoft Access 2019. Birmingham, England, UK: Packt Publishing
Ltd, Mar. 2020. ISBN: 978-1-83898-747-3 (cit. on pp. 15, 18, 43, 333, 334).

[30] Peter Belknap, John Beresniewicz, Benoît Dageville, Karl Dias, Yakov Shafranovich, and Khaled
Yagoub. “A Decade of Oracle Database Manageability”. 34(4):20–27, Dec. 2011. URL: http:
//sites.computer.org/debull/A11dec/DODM%5C_V2.pdf (cit. on pp. 15, 334).

[31] Uri Berman, Jackie Berman, and Bob Patrick. The Birth of IMS/360. Tech. rep. 102762458.
Mountain View, CA, USA: Computer History Museum (CHM), Apr. 2007. URL: https://
archive.computerhistory.org/resources/access/text/2016/12/102762458-05-01-
acc.pdf (visited on 2025-01-08) (cit. on pp. 11, 195).

[32] Tim Berners-Lee. Re: Qualifiers on Hypertext links. . . Geneva, Switzerland: World Wide Web
project, European Organization for Nuclear Research (CERN) and Newsgroups: alt.hypertext,
Aug. 6, 1991. URL: https://www.w3.org/People/Berners-Lee/1991/08/art-6484.txt
(visited on 2025-02-05) (cit. on pp. 332, 338).

[33] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen. Hypertext Transfer Protocol --
HTTP/1.0. Request for Comments (RFC) 1945. Wilmington, DE, USA: Internet Engineering
Task Force (IETF), May 1996. URL: https://www.ietf.org/rfc/rfc1945.txt (visited on
2025-02-05) (cit. on p. 332).

[34] Tim Berners-Lee, Larry Masinter, and Mark P. McCahill. Uniform Resource Locators (URL).
Request for Comments (RFC) 1738. Wilmington, DE, USA: Internet Engineering Task
Force (IETF), Dec. 1994. URL: https://www.ietf.org/rfc/rfc1738.txt (visited on
2025-02-05) (cit. on p. 337).

[35] Alex Berson. Client/Server Architecture. 2nd ed. Computer Communications Series. New York,
NY, USA: McGraw-Hill, Mar. 29, 1996. ISBN: 978-0-07-005664-0 (cit. on pp. 12, 331).

[36] K.S. Bhaskar. The Heritage and Legacy of M (MUMPS) – and the Future of YottaDB. Malvern,
PA, USA: YottaDB, LLC., Feb. 14, 2018. URL: https://yottadb.com/heritage-legacy-
m-mumps-future-yottadb (visited on 2025-04-04) (cit. on p. 195).

[37] Joshua Bloch. Effective Java. Reading, MA, USA: Addison-Wesley Professional, May 2008.
ISBN: 978-0-321-35668-0 (cit. on p. 333).

[38] Bernard Obeng Boateng. Data Modeling with Microsoft Excel. Birmingham, England, UK: Packt
Publishing Ltd, Nov. 2023. ISBN: 978-1-80324-028-2 (cit. on pp. 2, 334).

[39] Barry W. Boehm and Philip N. Papaccio. “Understanding and Controlling Software Costs”.
IEEE Transactions on Software Engineering 14(10):1462–1477, Oct. 1988. Los Alamitos, CA,
USA: IEEE Computer Society. ISSN: 0098-5589. doi:10.1109/32.6191 (cit. on p. 158).

[40] Ethan Bommarito and Michael Bommarito. An Empirical Analysis of the Python Package In-
dex (PyPI). arXiv.org: Computing Research Repository (CoRR) abs/1907.11073. Ithaca, NY,
USA: Cornell Universiy Library, July 26, 2019. doi:10 . 48550 / arXiv . 1907 . 11073. URL:
https://arxiv.org/abs/1907.11073 (visited on 2024-08-17). arXiv:1907.11073v2 [cs.SE]
26 Jul 2019 (cit. on p. 335).

[41] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language Reference
Manual. 1st ed. Reading, MA, USA: Addison-Wesley Professional, Jan. 1999. ISBN: 978-0-201-
57168-4 (cit. on pp. 166, 337).

[42] Silvia Botros and Jeremy Tinley. High Performance MySQL. 4th ed. Sebastopol, CA, USA:
O’Reilly Media, Inc., Nov. 2021. ISBN: 978-1-4920-8051-0 (cit. on pp. 14, 334).

[43] Ed Bott. Windows 11 Inside Out. Hoboken, NJ, USA: Microsoft Press, Pearson Education, Inc.,
Feb. 2023. ISBN: 978-0-13-769132-6 (cit. on pp. 22, 334).

[44] Ron Brash and Ganesh Naik. Bash Cookbook. Birmingham, England, UK: Packt Publishing Ltd,
July 2018. ISBN: 978-1-78862-936-2 (cit. on p. 331).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=1044-6397
https://www.usenix.org/publications/login/december-2012-volume-37-number-6/data-processing-pandas
https://www.usenix.org/publications/login/december-2012-volume-37-number-6/data-processing-pandas
https://isbnsearch.org/isbn/978-1-83898-747-3
http://sites.computer.org/debull/A11dec/DODM%5C_V2.pdf
http://sites.computer.org/debull/A11dec/DODM%5C_V2.pdf
https://archive.computerhistory.org/resources/access/text/2016/12/102762458-05-01-acc.pdf
https://archive.computerhistory.org/resources/access/text/2016/12/102762458-05-01-acc.pdf
https://archive.computerhistory.org/resources/access/text/2016/12/102762458-05-01-acc.pdf
https://www.w3.org/People/Berners-Lee/1991/08/art-6484.txt
https://www.ietf.org/rfc/rfc1945.txt
https://www.ietf.org/rfc/rfc1738.txt
https://isbnsearch.org/isbn/978-0-07-005664-0
https://yottadb.com/heritage-legacy-m-mumps-future-yottadb
https://yottadb.com/heritage-legacy-m-mumps-future-yottadb
https://isbnsearch.org/isbn/978-0-321-35668-0
https://isbnsearch.org/isbn/978-1-80324-028-2
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0098-5589
https://doi.org/10.1109/32.6191
https://doi.org/10.48550/arXiv.1907.11073
https://arxiv.org/abs/1907.11073
https://isbnsearch.org/isbn/978-0-201-57168-4
https://isbnsearch.org/isbn/978-0-201-57168-4
https://isbnsearch.org/isbn/978-1-4920-8051-0
https://isbnsearch.org/isbn/978-0-13-769132-6
https://isbnsearch.org/isbn/978-1-78862-936-2

BIBLIOGRAPHY 344

[45] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format. Request for
Comments (RFC) 8259. Wilmington, DE, USA: Internet Engineering Task Force (IETF), Dec.
2017. URL: https://www.ietf.org/rfc/rfc8259.txt (visited on 2025-02-05) (cit. on
pp. 2, 333).

[46] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler, eds. Extensible Markup Lan-
guage (XML) 1.0 (Fifth Edition). W3C Recommendation. Wakefield, MA, USA: World Wide
Web Consortium (W3C), Nov. 26, 2008–Feb. 7, 2013. URL: http://www.w3.org/TR/2008/
REC-xml-20081126 (visited on 2024-12-15) (cit. on pp. 2, 338).

[47] Ronald H. Brown, Mary L. Good, Arati Prabhakar, and James H. Burrows. Integration Def-
inition for Information Modeling (IDEF1X). Federal Information Processing Standards Publi-
cation (FiPS PUB) 184. Gaithersburg, MD, USA: U.S. Department of Commerce, National
Institute of Standards and Technology (NIST), Dec. 21, 1993. URL: https://nvlpubs.nist.
gov/nistpubs/Legacy/FIPS/fipspub184.pdf (visited on 2025-03-29). Software Standard
(cit. on pp. 166, 333).

[48] Ben Brumm. “79 Data Modeling Tools Compared”. In: Database Star. Armadale, VIC, Australia:
Elevated Online Services PTY Ltd., Oct. 20, 2018–Mar. 26, 2023. URL: https://www.datab
asestar.com/data-modeling-tools (visited on 2025-04-05) (cit. on p. 166).

[49] Ben Brumm. “A Guide to the Entity Relationship Diagram (ERD)”. In: Database Star. Armadale,
VIC, Australia: Elevated Online Services PTY Ltd., July 30, 2019–Dec. 23, 2023. URL: https:
//www.databasestar.com/entity-relationship-diagram (visited on 2025-03-29) (cit. on
pp. 184, 332).

[50] Ben Brumm. Database Star. Armadale, VIC, Australia: Elevated Online Services PTY Ltd., Dec.
2024. URL: https://www.databasestar.com (visited on 2025-03-29) (cit. on p. 18).

[51] Ben Brumm. “SQL Best Practices and Style Guide”. In: Database Star. Armadale, VIC, Australia:
Elevated Online Services PTY Ltd., Dec. 10, 2024. URL: https://www.databasestar.com/
sql-best-practices (visited on 2025-02-26) (cit. on pp. 83, 91, 95, 105, 208, 328, 329).

[52] Corentin Burnay, Ivan Jureta, and Stéphane Faulkner. “What stakeholders will or will not say: A
theoretical and empirical study of topic importance in Requirements Engineering elicitation in-
terviews”. Information Systems: Databases: Their Creation, Management and Utilization 46:61–
81, Dec. 2014. Oxford, Oxfordshire, England, UK: Pergamon Press Ltd., now Amsterdam,
The Netherlands: Elsevier B.V. ISSN: 0306-4379. doi:10.1016/J.IS.2014.05.006 (cit.
on p. 159).

[53] Thomas Burns, Elizabeth N. Fong, David Jefferson, Richard Knox, Leo Mark, Christopher Reedy,
Louis Reich, Nick Roussopoulos, and Walter Truszkowski. “Reference Model for DBMS Stan-
dardization, Database Architecture Framework Task Group (DAFTG) of the ANSI/X3/SPARC
Database System Study Group”. ACM SIGMOD Record 15(1):19–58, May 1985–Mar. 1986.
New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0163-5808. doi:10.
1145/16342.16343 (cit. on p. 6).

[54] Business Analysis Benchmark 2009: The Path to Success. Wilmington, DE, USA: Information
Architecture Group (IAG) Consulting, 2009–Nov. 8, 2011. URL: https://www.iag.biz/wp-
content/uploads/Business_Ananlysis_Benchmark_Full_report_2009.pdf (visited on
2025-03-27) (cit. on p. 158).

[55] Rudd H. Canaday, R.D. Harrison, Evan L. Ivie, J.L. Ryder, and L.A. Wehr. “A Back-End Com-
puter for Data Base Management”. Communications of the ACM (CACM) 17(10):575–582, Oct.
1974. New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0001-0782.
doi:10.1145/355620.361172 (cit. on p. 12).

[56] Jason Cannon. High Availability for the LAMP Stack. Shelter Island, NY, USA: Manning Pub-
lications, June 2022 (cit. on pp. 14, 333, 336).

[57] Cardinal (“cardinalby”). Storing Currency Values: Data Types, Caveats, Best Practices. San
Francisco, CA, USA: GitHub Inc, Jan. 8, 2023. URL: https://cardinalby.github.io/
blog/post/best-practices/storing-currency-values-data-types (visited on 2025-
02-27) (cit. on pp. 94, 328).

[58] John Vincent Carlis and Joseph D. Maguire. Mastering Data Modeling: A User Driven Approach.
Reading, MA, USA: Addison-Wesley Professional, Nov. 2000. ISBN: 978-0-201-70045-9 (cit. on
pp. 17, 166, 183).

https://www.ietf.org/rfc/rfc8259.txt
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/2008/REC-xml-20081126
https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub184.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub184.pdf
https://www.databasestar.com/data-modeling-tools
https://www.databasestar.com/data-modeling-tools
https://www.databasestar.com/entity-relationship-diagram
https://www.databasestar.com/entity-relationship-diagram
https://www.databasestar.com
https://www.databasestar.com/sql-best-practices
https://www.databasestar.com/sql-best-practices
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0306-4379
https://doi.org/10.1016/J.IS.2014.05.006
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0163-5808
https://doi.org/10.1145/16342.16343
https://doi.org/10.1145/16342.16343
https://www.iag.biz/wp-content/uploads/Business_Ananlysis_Benchmark_Full_report_2009.pdf
https://www.iag.biz/wp-content/uploads/Business_Ananlysis_Benchmark_Full_report_2009.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/355620.361172
https://github.com/cardinalby
https://cardinalby.github.io/blog/post/best-practices/storing-currency-values-data-types
https://cardinalby.github.io/blog/post/best-practices/storing-currency-values-data-types
https://isbnsearch.org/isbn/978-0-201-70045-9

BIBLIOGRAPHY 345

[59] Erran Carmel, Randall D. Whitaker, and Joey F. George. “PD and Joint Application Design: A
Transatlantic Comparison”. Communications of the ACM (CACM) 36(6):40–48, June 1993.
New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0001-0782. doi:10.
1145/153571.163265 (cit. on pp. 159, 333, 335).

[60] Josh Centers. Take Control of iOS 18 and iPadOS 18. San Diego, CA, USA: Take Control
Books, Dec. 2024. ISBN: 978-1-990783-55-5 (cit. on p. 333).

[61] Cfwlr. “Multics”. In: BetaWiki: An Open Encyclopedia of Software History. Mar. 20, 2023–
June 1, 2024. URL: https://betawiki.net/wiki/Multics (visited on 2025-05-23) (cit. on
p. 10).

[62] Noureddine Chabini and Rachid Beguenane. “FPGA-Based Designs of the Factorial Function”. In:
IEEE Canadian Conference on Electrical and Computer Engineering (CCECE’2022). Sept. 18–
20, 2022, Halifax, NS, Canada. Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers (IEEE), 2022, pp. 16–20. ISBN: 978-1-6654-8432-9. doi:10.1109/CCECE49351.
2022.9918302 (cit. on p. 331).

[63] Donald D. Chamberlin. “50 Years of Queries”. Communications of the ACM (CACM) 67(8):110–
121, Aug. 2024. New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0001-
0782. doi:10.1145/3649887. URL: https://cacm.acm.org/research/50-years-of-
queries (visited on 2025-01-09) (cit. on pp. 9, 12–15, 197, 199, 334, 336).

[64] Donald D. Chamberlin, Morton M. Astrahan, Kapali P. Eswaran, Patricia P. Griffiths, Ray-
mond A. Lorie, James W. Mehl, Phyllis Reisner, and Bradford W. Wade. “SEQUEL 2: A Unified
Approach to Data Definition, Manipulation, and Control”. IBM Journal of Research and Devel-
opment 20(6):560–575, Nov. 1976. Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers (IEEE) and Armonk, NY, USA: International Business Machines Corporation (IBM).
ISSN: 0018-8646. doi:10.1147/RD.206.0560 (cit. on p. 12).

[65] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured English Query Lan-
guage”. In: 1974 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and
Control. May 1–3, 1974, Ann Arbor, MI, USA. Ed. by Gene Altshuler, Randall Rustin, and
Bernard D. Plagman. Vol. 1. New York, NY, USA: Association for Computing Machinery (ACM),
May 1974, pp. 249–264. ISBN: 978-1-4503-7415-6. doi:10.1145/800296.811515 (cit. on
p. 12).

[66] Lois Mai Chan and Joan S. Mitchell. Dewey Decimal Classification: Principles and Application.
Dublin, OH, USA: Ohio College Library Center (OCLC), Jan. 2003. ISBN: 978-0-910608-72-5
(cit. on p. 8).

[67] “Character Types”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 8.3. URL: https://www.postgresql.org/docs/17/
datatype-character.html (visited on 2025-02-27) (cit. on p. 92).

[68] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. “A Review of Machine Scheduling: Com-
plexity, Algorithms and Approximability”. In: Handbook of Combinatorial Optimization. Ed. by
Panos Miltiades Pardalos, Ding-Zhu Du, and Ronald Lewis Graham. 1st ed. Boston, MA, USA:
Springer, 1998, pp. 1493–1641. ISBN: 978-1-4613-7987-4. doi:10.1007/978-1-4613-0303-
9_25. See also pages 21–169 in volume 3/3 by Norwell, MA, USA: Kluwer Academic Publishers.
(Cit. on p. 334).

[69] Peter Pin-Shan Chen. “English, Chinese and ER Diagrams”. Data & Knowledge Engineer-
ing (DKE) 23(1):5–16, June 1997. Amsterdam, The Netherlands: Elsevier B.V. ISSN: 0169-
023X. doi:10.1016/S0169-023X(97)00017-7. URL: https://www.csc.lsu.edu/~chen/
pdf/ER_C.pdf (visited on 2025-04-06) (cit. on pp. 13, 164, 165, 176).

[70] Peter Pin-Shan Chen. “Entity-Relationship Modeling: Historical Events, Future Trends, and
Lessons Learned”. In: Software Pioneers: Contributions to Software Engineering. Ed. by Man-
fred Broy and Ernst Denert. Heidelberg, Baden-Württemberg, Germany: Springer-Verlag GmbH
Germany, Feb. 2002, pp. 296–310. doi:10.1007/978-3-642-59412-0_17. URL: http:
//bit.csc.lsu.edu/%7Echen/pdf/Chen_Pioneers.pdf (visited on 2025-03-06) (cit. on
pp. 13, 166, 332).

[71] Peter Pin-Shan Chen. “The Entity-Relationship Model – Toward a Unified View of
Data”. ACM Transactions on Database Systems (TODS) 1(1):9–36, Mar. 1976. New
York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0362-5915.
doi:10.1145/320434.320440 (cit. on pp. 12, 166, 182, 183, 332, 346).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/153571.163265
https://doi.org/10.1145/153571.163265
https://isbnsearch.org/isbn/978-1-990783-55-5
https://betawiki.net/wiki/Multics
https://isbnsearch.org/isbn/978-1-6654-8432-9
https://doi.org/10.1109/CCECE49351.2022.9918302
https://doi.org/10.1109/CCECE49351.2022.9918302
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/3649887
https://cacm.acm.org/research/50-years-of-queries
https://cacm.acm.org/research/50-years-of-queries
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0018-8646
https://doi.org/10.1147/RD.206.0560
https://isbnsearch.org/isbn/978-1-4503-7415-6
https://doi.org/10.1145/800296.811515
https://isbnsearch.org/isbn/978-0-910608-72-5
https://www.postgresql.org/docs/17/datatype-character.html
https://www.postgresql.org/docs/17/datatype-character.html
https://isbnsearch.org/isbn/978-1-4613-7987-4
https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1007/978-1-4613-0303-9_25
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0169-023X
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0169-023X
https://doi.org/10.1016/S0169-023X(97)00017-7
https://www.csc.lsu.edu/~chen/pdf/ER_C.pdf
https://www.csc.lsu.edu/~chen/pdf/ER_C.pdf
https://doi.org/10.1007/978-3-642-59412-0_17
http://bit.csc.lsu.edu/%7Echen/pdf/Chen_Pioneers.pdf
http://bit.csc.lsu.edu/%7Echen/pdf/Chen_Pioneers.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0362-5915
https://doi.org/10.1145/320434.320440

BIBLIOGRAPHY 346

[72] Peter Pin-Shan Chen. “The Entity-Relationship Model: Toward a Unified View of Data”. In:
1st International Conference on Very Large Data Bases (VLDB’1975). Sept. 22–24, 1975, Fram-
ingham, MA, USA. Ed. by Douglas S. Kerr. New York, NY, USA: Association for Computing
Machinery (ACM), p. 173. ISBN: 978-1-4503-3920-9. doi:10.1145/1282480.1282492. See [71]
for a more comprehensive introduction. (Cit. on pp. 12, 13, 166, 332).

[73] Stuart Cheshire and Marc Krochmal. Special-Use Domain Names. Request for Comments (RFC)
6761. Wilmington, DE, USA: Internet Engineering Task Force (IETF), Feb. 2013. URL: https:
//www.ietf.org/rfc/rfc4253.txt (visited on 2025-02-27) (cit. on p. 333).

[74] Junghoo “John” Cho. CS143: Data Management Systems. Davis, CA, USA: University of Cal-
ifornia – Los Angeles (UCLA), Sept. 2016–Aut. 2021. URL: http://oak.cs.ucla.edu/
classes/cs143 (visited on 2025-04-04) (cit. on p. 16).

[75] Raul F. Chong, Xiaomei Wang, Michael Dang, and Dwaine R. Snow. Understanding
DB2®: Learning Visually with Examples. 2nd ed. Indianapolis, IN, USA: IBM Press, Dec.
2007. ISBN: 978-0-7686-8177-2 (cit. on pp. 13, 15, 18, 332).

[76] Aakash Choudhury, Arjav Choudhury, Umashankar Subramanium, and S. Balamurugan. “Health-
Saver: A Neural Network based Hospital Recommendation System Framework on Flask We-
bapplication with Realtime Database and RFID based Attendance System”. Journal of Ambi-
ent Intelligence and Humanized Computing 13(10):4953–4966, Oct. 2022. London, England,
UK: Springer Nature Limited. ISSN: 1868-5137. doi:10.1007/S12652-021-03232-7 (cit. on
p. 332).

[77] Christmas, FL, USA: Simon Sez IT. Microsoft Access 2021 – Beginner to Advanced. Birming-
ham, England, UK: Packt Publishing Ltd, Aug. 2023. ISBN: 978-1-83546-911-8 (cit. on pp. 15,
18, 43, 333, 334).

[78] David Clinton and Christopher Negus. Ubuntu Linux Bible. 10th ed. Bible Series. Chichester,
West Sussex, England, UK: John Wiley and Sons Ltd., Nov. 10, 2020. ISBN: 978-1-119-72233-5
(cit. on pp. 22, 336, 337).

[79] Edgar Frank “Ted” Codd. Normalized Data Base Structure: A Brief Tutorial. IBM Research
Report RJ935. San Jose, CA, USA: IBM Research Laboratory, 1971. URL: https://www.
fsmwarden.com/Codd/Normalized%20data%20base%20structure_%20a%20brief%20tuto
rial(1971,%20nov).pdf (visited on 2025-05-04) (cit. on p. 346).

[80] Edgar Frank “Ted” Codd. “Normalized Data Base Structure: A Brief Tutorial”. In: ACM SIG-
FIDET Workshop on Data Description, Access, and Control. Nov. 11–12, 1971, San Diego, CA,
USA. Ed. by Edgar Frank “Ted” Codd and Albert L. Dean Jr. New York, NY, USA: Association
for Computing Machinery (ACM), pp. 1–17. ISBN: 978-1-4503-7300-5. doi:10.1145/1734714.
1734716. See also [79] (cit. on pp. 307, 320, 331).

[81] Edgar Frank “Ted” Codd. “A Relational Model of Data for Large Shared Data Banks”. Commu-
nications of the ACM (CACM) 13(6):377–387, June 1970. New York, NY, USA: Association
for Computing Machinery (ACM). ISSN: 0001-0782. doi:10.1145/362384.362685. URL:
https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf (visited on 2025-01-05)
(cit. on pp. 3, 11, 12, 196–198, 295, 331, 335).

[82] Edgar Frank “Ted” Codd. “An Evaluation Scheme for Database Management Systems
that are claimed to be Relational”. In: Second International Conference on Data Engineer-
ing (ICDE’1986). Feb. 5–7, 1986, Los Angeles, CA, USA. Los Alamitos, CA, USA: IEEE Com-
puter Society, pp. 720–729. ISBN: 978-0-8186-0655-7. doi:10.1109/ICDE.1986.7266284.
URL: https://www.fsmwarden.com/Codd/An%20evaluation%20scheme%20(1986).pdf
(visited on 2025-04-10). Keynote Address. ©1985 CW Communications, Inc., excerpted from
Computerworld [84] (cit. on pp. 199, 347).

[83] Edgar Frank “Ted” Codd. Further Normalization of the Data Base Relational Model. IBM Re-
search Report RJ909. San Jose, CA, USA: IBM Research Laboratory, Aug. 31, 1971. URL:
https://forum.thethirdmanifesto.com/wp-content/uploads/asgarosforum/987737/
00-efc-further-normalization.pdf (visited on 2025-05-04). Reprinted in and presented
at [337] (cit. on pp. 307, 320, 331).

https://isbnsearch.org/isbn/978-1-4503-3920-9
https://doi.org/10.1145/1282480.1282492
https://www.ietf.org/rfc/rfc4253.txt
https://www.ietf.org/rfc/rfc4253.txt
http://oak.cs.ucla.edu/classes/cs143
http://oak.cs.ucla.edu/classes/cs143
https://isbnsearch.org/isbn/978-0-7686-8177-2
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1868-5137
https://doi.org/10.1007/S12652-021-03232-7
https://isbnsearch.org/isbn/978-1-83546-911-8
https://isbnsearch.org/isbn/978-1-119-72233-5
https://www.fsmwarden.com/Codd/Normalized%20data%20base%20structure_%20a%20brief%20tutorial(1971,%20nov).pdf
https://www.fsmwarden.com/Codd/Normalized%20data%20base%20structure_%20a%20brief%20tutorial(1971,%20nov).pdf
https://www.fsmwarden.com/Codd/Normalized%20data%20base%20structure_%20a%20brief%20tutorial(1971,%20nov).pdf
https://isbnsearch.org/isbn/978-1-4503-7300-5
https://doi.org/10.1145/1734714.1734716
https://doi.org/10.1145/1734714.1734716
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/362384.362685
https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://isbnsearch.org/isbn/978-0-8186-0655-7
https://doi.org/10.1109/ICDE.1986.7266284
https://www.fsmwarden.com/Codd/An%20evaluation%20scheme%20(1986).pdf
https://forum.thethirdmanifesto.com/wp-content/uploads/asgarosforum/987737/00-efc-further-normalization.pdf
https://forum.thethirdmanifesto.com/wp-content/uploads/asgarosforum/987737/00-efc-further-normalization.pdf

BIBLIOGRAPHY 347

[84] Edgar Frank “Ted” Codd. “Is your DBMS really relational? (Part 1)”. Computerworld
19:ID1, Oct. 14, 1985. Framingham, MA, USA: CW Communications, Inc. and Needham,
MA, USA: Foundry (formerly IDG Communications, Inc.) ISSN: 0010-4841. URL:
https : / / thaumatorium . com / articles / the - papers - of - ef - the - coddfather -
codd/1985a- is- your- dbms- really- relational (visited on 2025-04-10). See also the
Keynote Address [82] (cit. on pp. 199, 346).

[85] Coding Gears and Train Your Brain. YAML Fundamentals for DevOps, Cloud and IaC Engineers.
Birmingham, England, UK: Packt Publishing Ltd, Mar. 2022. ISBN: 978-1-80324-243-9 (cit. on
pp. 2, 338).

[86] Timothy W. Cole and Myung-Ja K. Han. XML for Catalogers and Metadata Librarians (Third
Millennium Cataloging). 1st ed. Dublin, OH, USA: Libraries Unlimited, May 23, 2013. ISBN: 978-
1-59884-519-8 (cit. on pp. 2, 338).

[87] “Combining Queries (UNION , INTERSECT , EXCEPT)”. In: PostgreSQL Documentation. 17.4. The
PostgreSQL Global Development Group (PGDG), Feb. 20, 2025. Chap. 7.4. URL: https:
//www.postgresql.org/docs/17/queries-union.html (visited on 2025-02-27) (cit. on
p. 100).

[88] “Common and Proper Nouns: What’s the difference? Learn which ones get capitals.” In: Apr. 6–
May 12, 2023. URL: https://www.merriam-webster.com/grammar/common-and-proper-
nouns-whats-the-difference (visited on 2025-03-29) (cit. on pp. 164, 165).

[89] “Conditional Expressions”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global De-
velopment Group (PGDG), Feb. 20, 2025. Chap. 9.18. URL: https://www.postgresql.org/
docs/17/functions-conditional.html (visited on 2025-05-06) (cit. on p. 297).

[90] “Connection URIs”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 32.1.1.2. URL: https://www.postgresql.org/docs/
17/libpq-connect.html#LIBPQ-CONNSTRING-URIS (visited on 2025-02-25) (cit. on p. 79).

[91] Connections: Local Networks. Mountain View, CA, USA: Computer History Museum (CHM),
1996–2025. URL: https://www.computerhistory.org/revolution/networking/19/381
(visited on 2025-01-21) (cit. on p. 12).

[92] “Constraints”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 5.5. URL: https://www.postgresql.org/docs/
17/ddl-constraints.html (visited on 2025-02-28) (cit. on pp. 92, 101, 108, 227).

[93] Stephen Arthur Cook. “The Complexity of Theorem-Proving Procedures”. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing (STOC’1971). May 3–5, 1971, Shaker
Heights, OH, USA. Ed. by Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman. New
York, NY, USA: Association for Computing Machinery (ACM), 1971, pp. 151–158. ISBN: 978-
1-4503-7464-4. doi:10.1145/800157.805047 (cit. on p. 334).

[94] Fernando J. Corbató, Marjorie Merwin-Daggett, Robert C. Daley, R. J. Creasy, J. D. Hellwig,
Richard H. Orenstein, and L. K. Korn. The Compatible Time-Sharing System: A Programmer’s
Guide. Cambridge, MA, USA: Massachusetts Institute of Technology (MIT) Computation Center
and MIT Press, 1963–1964. URL: https://www.ibiblio.org/apollo/Documents/CTSS_
ProgrammersGuide.pdf (visited on 2025-01-08). Second Printing May, 1964 (cit. on p. 9).

[95] Fernando J. Corbató and Victor A. Vyssotsky. “Introduction and Overview of the Multics Sys-
tem”. In: 1965 Fall Joint Computer Conference (AFIPS’1965, Fall, Part 1). Nov. 30–Dec. 1,
1965, Las Vegas, NV, USA. Ed. by Robert W. Rector. New York, NY, USA: Association
for Computing Machinery (ACM), Nov.–Dec. 1965, pp. 185–196. ISBN: 978-1-4503-7885-7.
doi:10.1145/1463891.1463912. URL: https://www.multicians.org/fjcc1.html (visited
on 2025-01-08) (cit. on p. 10).

[96] Carlos Coronel and Steven Morris. Database Systems: Design, Implementation, & Management.
13th ed. Boston, MA, USA: Cengage Learning, Jan. 2018. ISBN: 978-1-337-62790-0 (cit. on
p. 17).

[97] Country Codes. Tech. rep. ISO 3166. ISO 3166 Maintenance Agenc, c/o International Organiza-
tion for Standardization (ISO): ISO 3166 Maintenance Agenc, c/o International Organization for
Standardization (ISO), 2020. URL: https://www.iso.org/iso-3166-country-codes.html
(visited on 2025-04-11) (cit. on p. 195).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=0010-4841
https://thaumatorium.com/articles/the-papers-of-ef-the-coddfather-codd/1985a-is-your-dbms-really-relational
https://thaumatorium.com/articles/the-papers-of-ef-the-coddfather-codd/1985a-is-your-dbms-really-relational
https://isbnsearch.org/isbn/978-1-80324-243-9
https://isbnsearch.org/isbn/978-1-59884-519-8
https://isbnsearch.org/isbn/978-1-59884-519-8
https://www.postgresql.org/docs/17/queries-union.html
https://www.postgresql.org/docs/17/queries-union.html
https://www.merriam-webster.com/grammar/common-and-proper-nouns-whats-the-difference
https://www.merriam-webster.com/grammar/common-and-proper-nouns-whats-the-difference
https://www.postgresql.org/docs/17/functions-conditional.html
https://www.postgresql.org/docs/17/functions-conditional.html
https://www.postgresql.org/docs/17/libpq-connect.html#LIBPQ-CONNSTRING-URIS
https://www.postgresql.org/docs/17/libpq-connect.html#LIBPQ-CONNSTRING-URIS
https://www.computerhistory.org/revolution/networking/19/381
https://www.postgresql.org/docs/17/ddl-constraints.html
https://www.postgresql.org/docs/17/ddl-constraints.html
https://isbnsearch.org/isbn/978-1-4503-7464-4
https://isbnsearch.org/isbn/978-1-4503-7464-4
https://doi.org/10.1145/800157.805047
https://www.ibiblio.org/apollo/Documents/CTSS_ProgrammersGuide.pdf
https://www.ibiblio.org/apollo/Documents/CTSS_ProgrammersGuide.pdf
https://isbnsearch.org/isbn/978-1-4503-7885-7
https://doi.org/10.1145/1463891.1463912
https://www.multicians.org/fjcc1.html
https://isbnsearch.org/isbn/978-1-337-62790-0
https://www.iso.org/iso-3166-country-codes.html

BIBLIOGRAPHY 348

[98] “ CREATE SEQUENCE”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Develop-
ment Group (PGDG), Feb. 20, 2025. URL: https://www.postgresql.org/docs/current/
sql-createsequence.html (visited on 2025-04-22) (cit. on pp. 253, 274).

[99] “ CREATE TABLE”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. URL: https://www.postgresql.org/docs/17/sql-
createtable.html (visited on 2025-04-21) (cit. on pp. 91, 247).

[100] “ CREATE VIEW”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https://www.postgresql.
org/docs/17/sql-createview.html (visited on 2025-03-03) (cit. on pp. 110, 112).

[101] Ignacio Samuel Crespo-Martínez, Adrián Campazas Vega, Ángel Manuel Guerrero-Higueras,
Virginia Riego-Del Castillo, Claudia Álvarez-Aparicio, and Camino Fernández Llamas. “SQL
Injection Attack Detection in Network Flow Data”. Computers & Security 127:103093, Apr.
2023. Amsterdam, The Netherlands: Elsevier B.V. ISSN: 0167-4048. doi:10.1016/J.COSE.
2023.103093 (cit. on p. 336).

[102] “Crow’s Foot Notation – Relationship Symbols and How to Read Diagrams”. In: #DATABASE.
Oakland, CA, USA: Free Code Camp, Inc., June 6, 2022. URL: https://www.freecodecamp.
org/news/crows-foot-notation-relationship-symbols-and-how-to-read-diagrams
(visited on 2025-04-06) (cit. on p. 186).

[103] “ csv – CSV File Reading and Writing”. In: Python 3 Documentation. The Python Standard
Library. Beaverton, OR, USA: Python Software Foundation (PSF), 2001–2025. URL: https:
//docs.python.org/3/library/csv.html (visited on 2024-11-14) (cit. on p. 331).

[104] Cuneiform Tablets: From the Reign of Gudea of Lagash to Shalmanassar III. Washington, DC,
USA: Library of Congress. URL: https://www.loc.gov/collections/cuneiform-tablets
(visited on 2025-01-08). See also [229, 412] (cit. on pp. 8, 357, 369).

[105] Erik Dahlström, Patrick Dengler, Anthony Grasso, Chris Lilley, Cameron McCormack, Doug
Schepers, Jonathan Watt, Jon Ferraiolo, Jun Fujisawa, and Dean Jackson, eds. Scalable Vector
Graphics (SVG) 1.1 (Second Edition). W3C Recommendation. Wakefield, MA, USA: World
Wide Web Consortium (W3C), Aug. 16, 2011. URL: http://www.w3.org/TR/2011/REC-
SVG11-20110816 (visited on 2024-12-17) (cit. on p. 337).

[106] Robert C. Daley and Peter G. Neumann. “A General-Purpose File System for Secondary Storage”.
In: 1965 Fall Joint Computer Conference (AFIPS’1965, Fall, Part 1). Nov. 30–Dec. 1, 1965, Las
Vegas, NV, USA. Ed. by Robert W. Rector. New York, NY, USA: Association for Computing
Machinery (ACM), Nov.–Dec. 1965, pp. 213–229. ISBN: 978-1-4503-7885-7. doi:10.1145/
1463891.1463915. URL: https://www.multicians.org/fjcc4.html (visited on 2025-01-
08) (cit. on p. 10).

[107] Daniela E. Damian, James Chisan, Lakshminarayanan Vaidyanathasamy, and Yogendra Pal. “Re-
quirements Engineering and Downstream Software Development: Findings from a Case Study”.
Empirical Software Engineering: An International Journal 10(3):255–283, July 2005. London,
England, UK: Springer Nature Limited. ISSN: 1382-3256. doi:10.1007/S10664-005-1288-4.
URL: https://www.researchgate.net/publication/220277938 (visited on 2025-03-27)
(cit. on p. 158).

[108] Database Language SQL. Tech. rep. ANSI X3.135-1986. Washington, DC, USA: American
National Standards Institute (ANSI), 1986 (cit. on pp. 13, 82, 336).

[109] Database Language SQL. International Standard ISO 9075-1987. Geneva, Switzerland: Interna-
tional Organization for Standardization (ISO), 1987 (cit. on pp. 13, 82, 336).

[110] Christopher J. Date. An Introduction to Database Systems. 8th ed. Hoboken, NJ, USA: Pearson
Education, Inc., July 2003. ISBN: 978-0-321-19784-9 (cit. on pp. 17, 295, 307, 320, 331, 334).

[111] Date and Time – Representations for Information Interchange – Part 1: Basic Rules. International
Standard ISO 8601-1:2019(E), Edition 1. Geneva, Switzerland: International Organization for
Standardization (ISO), Feb. 2019 (cit. on pp. 106, 138).

[112] “Date/Time Functions and Operators”. In: PostgreSQL Documentation. 17.4. The PostgreSQL
Global Development Group (PGDG), Feb. 20, 2025. Chap. 9.9. URL: https://www.postgres
ql.org/docs/17/functions-datetime.html (visited on 2025-05-01) (cit. on pp. 284, 288,
337).

https://www.postgresql.org/docs/current/sql-createsequence.html
https://www.postgresql.org/docs/current/sql-createsequence.html
https://www.postgresql.org/docs/17/sql-createtable.html
https://www.postgresql.org/docs/17/sql-createtable.html
https://www.postgresql.org/docs/17/sql-createview.html
https://www.postgresql.org/docs/17/sql-createview.html
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0167-4048
https://doi.org/10.1016/J.COSE.2023.103093
https://doi.org/10.1016/J.COSE.2023.103093
https://www.freecodecamp.org/news/crows-foot-notation-relationship-symbols-and-how-to-read-diagrams
https://www.freecodecamp.org/news/crows-foot-notation-relationship-symbols-and-how-to-read-diagrams
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://www.loc.gov/collections/cuneiform-tablets
http://www.w3.org/TR/2011/REC-SVG11-20110816
http://www.w3.org/TR/2011/REC-SVG11-20110816
https://isbnsearch.org/isbn/978-1-4503-7885-7
https://doi.org/10.1145/1463891.1463915
https://doi.org/10.1145/1463891.1463915
https://www.multicians.org/fjcc4.html
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1382-3256
https://doi.org/10.1007/S10664-005-1288-4
https://www.researchgate.net/publication/220277938
https://isbnsearch.org/isbn/978-0-321-19784-9
https://www.postgresql.org/docs/17/functions-datetime.html
https://www.postgresql.org/docs/17/functions-datetime.html

BIBLIOGRAPHY 349

[113] “Date/Time Types”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Develop-
ment Group (PGDG), Feb. 20, 2025. Chap. 8.5. URL: https://www.postgresql.org/docs/
17/datatype-datetime.html (visited on 2025-02-28) (cit. on p. 337).

[114] “Dates”. In: Cambridge Dictionary English (UK). Cambridge, England, UK: Cambridge University
Press & Assessment, 2025. URL: https://dictionary.cambridge.org/grammar/british-
grammar/dates (visited on 2025-01-21) (cit. on p. 333).

[115] Matt David and Blake Barnhill. How to Teach People SQL. San Francisco, CA, USA: The Data
School, Chart.io, Inc., Dec. 10, 2019–Apr. 10, 2023. URL: https://dataschool.com/how-
to-teach-people-sql (visited on 2025-02-27) (cit. on pp. 82, 336).

[116] Matt David and Blake Barnhill. “Syntax Conventions”. In: How to Teach People SQL. San
Francisco, CA, USA: The Data School, Chart.io, Inc., July 28, 2020. URL: https://datascho
ol.com/how-to-teach-people-sql/syntax-conventions (visited on 2025-02-27) (cit. on
pp. 83, 328).

[117] Donald W. Davies. Proposal for a Digital Communication Network. Tech. rep. London, England,
UK: National Physical Laboratory (NPL), June 1966. URL: https://www.dcs.gla.ac.uk/
~wpc/grcs/Davies05.pdf (visited on 2025-01-21) (cit. on p. 12).

[118] Donald W. Davies. Proposal for the Development of a National Communications Service for On-
Line Data Processing. Tech. rep. London, England, UK: National Physical Laboratory (NPL),
Dec. 8, 1965 (cit. on p. 12).

[119] Donald W. Davies. Remote On-line Data Processing and its Communication Needs. Tech. rep.
London, England, UK: National Physical Laboratory (NPL), Nov. 10, 1965 (cit. on p. 12).

[120] Alan M. Davis, Óscar Dieste Tubío, Ann M. Hickey, Natalia Juristo Juzgado, and Ana María
Moreno. “Effectiveness of Requirements Elicitation Techniques: Empirical Results Derived
from a Systematic Review”. In: 14th IEEE International Conference on Requirements
Engineering (RE’2006). Sept. 11–15, 2006, Minneapolis/St. Paul, MN, USA. Los Alamitos,
CA, USA: IEEE Computer Society, pp. 176–185. ISSN: 1090-705X. ISBN: 978-0-7695-2555-6.
doi:10.1109/RE.2006.17 (cit. on p. 158).

[121] DB-Engines Ranking of Relational DBMS (June 2025). Cambridge, England, UK: Red Gate
Software Ltd., June 2025. URL: https://db-engines.com/en/ranking/relational+dbms
(visited on 2025-06-01) (cit. on pp. 13, 15).

[122] Database Administrators. New York, NY, USA: Stack Exchange Inc. URL: https://dba.
stackexchange.com (visited on 2025-02-27) (cit. on p. 18).

[123] “Default Values”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 5.2. URL: https://www.postgresql.org/docs/
current/ddl-default.html (visited on 2025-04-23) (cit. on p. 253).

[124] Paul Deitel, Harvey Deitel, and Abbey Deitel. Internet & World Wide Web: How to Program.
5th ed. Hoboken, NJ, USA: Pearson Education, Inc., Nov. 2011. ISBN: 978-0-13-299045-5 (cit.
on p. 338).

[125] “ DELETE”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Devel-
opment Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https :
//www.postgresql.org/docs/17/sql- delete.html (visited on 2025-03-07) (cit. on
p. 116).

[126] Justin Dennison, Cherokee Boose, and Peter van Rysdam. Intro to NumPy. Centennial, CO,
USA: ACI Learning. Birmingham, England, UK: Packt Publishing Ltd, June 2024. ISBN: 978-
1-83620-863-1 (cit. on pp. 117, 334).

[127] Adam “djeada” Djellouli. Database Notes. Berlin, Germany, Feb. 2022–Mar. 2025. URL: https:
//adamdjellouli.com/articles/databases_notes (visited on 2025-03-27) (cit. on p. 18).

[128] Adam “djeada” Djellouli. “Database Requirements Analysis”. In: Database Notes. Berlin, Ger-
many, Mar. 11, 2025. URL: https://adamdjellouli.com/articles/databases_notes/
02_database_design/01_requirements_analysis (visited on 2025-03-27) (cit. on p. 156).

[129] Slobodan Dmitrović. Modern C for Absolute Beginners: A Friendly Introduction to the C Pro-
gramming Language. New York, NY, USA: Apress Media, LLC, Mar. 2024. ISBN: 979-8-8688-
0224-9 (cit. on p. 331).

https://www.postgresql.org/docs/17/datatype-datetime.html
https://www.postgresql.org/docs/17/datatype-datetime.html
https://dictionary.cambridge.org/grammar/british-grammar/dates
https://dictionary.cambridge.org/grammar/british-grammar/dates
https://dataschool.com/how-to-teach-people-sql
https://dataschool.com/how-to-teach-people-sql
https://dataschool.com/how-to-teach-people-sql/syntax-conventions
https://dataschool.com/how-to-teach-people-sql/syntax-conventions
https://www.dcs.gla.ac.uk/~wpc/grcs/Davies05.pdf
https://www.dcs.gla.ac.uk/~wpc/grcs/Davies05.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1090-705X
https://isbnsearch.org/isbn/978-0-7695-2555-6
https://doi.org/10.1109/RE.2006.17
https://db-engines.com/en/ranking/relational+dbms
https://dba.stackexchange.com
https://dba.stackexchange.com
https://www.postgresql.org/docs/current/ddl-default.html
https://www.postgresql.org/docs/current/ddl-default.html
https://isbnsearch.org/isbn/978-0-13-299045-5
https://www.postgresql.org/docs/17/sql-delete.html
https://www.postgresql.org/docs/17/sql-delete.html
https://isbnsearch.org/isbn/978-1-83620-863-1
https://isbnsearch.org/isbn/978-1-83620-863-1
https://github.com/djeada
https://adamdjellouli.com/articles/databases_notes
https://adamdjellouli.com/articles/databases_notes
https://github.com/djeada
https://adamdjellouli.com/articles/databases_notes/02_database_design/01_requirements_analysis
https://adamdjellouli.com/articles/databases_notes/02_database_design/01_requirements_analysis
https://isbnsearch.org/isbn/979-8-8688-0224-9
https://isbnsearch.org/isbn/979-8-8688-0224-9

BIBLIOGRAPHY 350

[130] Pooyan Doozandeh and Frank E. Ritter. “Some Tips for Academic Writing and Using Mi-
crosoft Word”. XRDS: Crossroads, The ACM Magazine for Students 26(1):10–11, Aut. 2019.
New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 1528-4972. doi:10.
1145/3351470 (cit. on p. 334).

[131] Ingy döt Net, Tina Müller, Pantelis Antoniou, Eemeli Aro, Thomas Smith, Oren Ben-Kiki, and
Clark C. Evans. YAML Ain’t Markup Language (YAML™) version 1.2. Revision 1.2.2. Seattle,
WA, USA: YAML Language Development Team, Oct. 1, 2021. URL: https://yaml.org/
spec/1.2.2 (visited on 2025-01-05) (cit. on pp. 2, 338).

[132] “ DROP DATABASE”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https://www.postgresql.
org/docs/17/sql-dropdatabase.html (visited on 2025-03-05) (cit. on p. 146).

[133] “ DROP TABLE”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https://www.postgresql.
org/docs/17/sql-droptable.html (visited on 2025-03-05) (cit. on p. 146).

[134] “ DROP USER”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Devel-
opment Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https :
//www.postgresql.org/docs/17/sql-dropuser.html (visited on 2025-03-05) (cit. on
p. 146).

[135] “ DROP VIEW”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Devel-
opment Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https :
//www.postgresql.org/docs/17/sql-dropview.html (visited on 2025-03-05) (cit. on
p. 145).

[136] Paul Duplys and Roland Schmitz. TLS Cryptography In-Depth. Birmingham, England, UK:
Packt Publishing Ltd, Jan. 2024. ISBN: 978-1-80461-195-1 (cit. on p. 337).

[137] Jacques Dutka. “The Early History of the Factorial Function”. Archive for History of Exact Sci-
ences 43(3):225–249, Sept. 1991. Heidelberg, Baden-Württemberg, Germany: Springer-Verlag
GmbH Germany. ISSN: 0003-9519. doi:10.1007/BF00389433. Communicated by Umberto
Bottazzini (cit. on p. 331).

[138] Russell J.T. Dyer. Learning MySQL and MariaDB. Sebastopol, CA, USA: O’Reilly Media, Inc.,
Mar. 2015. ISBN: 978-1-4493-6290-4 (cit. on pp. 14, 334).

[139] Donald E. Eastlake 3rd and Aliza R. Panitz. Reserved Top Level DNS Names. Request for
Comments (RFC) 2606. Wilmington, DE, USA: Internet Engineering Task Force (IETF), June
1999. URL: https://www.ietf.org/rfc/rfc2606.txt (visited on 2025-02-27) (cit. on
p. 333).

[140] Christof Ebert and Jozef De Man. “Requirements Uncertainty: Influencing Factors and Concrete
Improvements”. In: 27th International Conference on Software Engineering (ICSE’2005).
May 15–21, 2005, St. Louis, MO, USA. Ed. by Gruia-Catalin Roman, William G. Griswold, and
Bashar Nuseibeh. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE)
and New York, NY, USA: Association for Computing Machinery (ACM), pp. 553–560.
ISSN: 0270-5257. ISBN: 978-1-58113-963-1. doi:10 . 1109 / ICSE . 2005 . 1553601 (cit. on
p. 158).

[141] Phillip J. Eby. Python Web Server Gateway Interface v1.0.1. Python Enhancement Pro-
posal (PEP) 3333. Beaverton, OR, USA: Python Software Foundation (PSF), Sept. 26–Oct. 4,
2010. URL: https://peps.python.org/pep-3333 (visited on 2025-03-04) (cit. on p. 332).

[142] ECMAScript Language Specification. Standard ECMA-262, 3rd Edition. Geneva, Switzerland:
Ecma International, Dec. 1999. URL: https://ecma-international.org/wp-content/
uploads/ECMA-262_3rd_edition_december_1999.pdf (visited on 2024-12-15) (cit. on
p. 333).

[143] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems. 7th ed. Hoboken,
NJ, USA: Pearson Education, Inc., June 2015. ISBN: 978-0-13-397077-7 (cit. on pp. 16, 150,
155, 156, 295, 307, 320, 331, 334).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=1528-4972
https://doi.org/10.1145/3351470
https://doi.org/10.1145/3351470
https://yaml.org/spec/1.2.2
https://yaml.org/spec/1.2.2
https://www.postgresql.org/docs/17/sql-dropdatabase.html
https://www.postgresql.org/docs/17/sql-dropdatabase.html
https://www.postgresql.org/docs/17/sql-droptable.html
https://www.postgresql.org/docs/17/sql-droptable.html
https://www.postgresql.org/docs/17/sql-dropuser.html
https://www.postgresql.org/docs/17/sql-dropuser.html
https://www.postgresql.org/docs/17/sql-dropview.html
https://www.postgresql.org/docs/17/sql-dropview.html
https://isbnsearch.org/isbn/978-1-80461-195-1
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0003-9519
https://doi.org/10.1007/BF00389433
https://isbnsearch.org/isbn/978-1-4493-6290-4
https://www.ietf.org/rfc/rfc2606.txt
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0270-5257
https://isbnsearch.org/isbn/978-1-58113-963-1
https://doi.org/10.1109/ICSE.2005.1553601
https://peps.python.org/pep-3333
https://ecma-international.org/wp-content/uploads/ECMA-262_3rd_edition_december_1999.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_3rd_edition_december_1999.pdf
https://isbnsearch.org/isbn/978-0-13-397077-7

BIBLIOGRAPHY 351

[144] Gordon C. Everest. “Basic Data Structure Models Explained with a Common Example”. In:
Fifth Texas Conference on Computing Systems (Computing Systems’1976). Oct. 18–19, 1976,
Austin, TX, USA. Long Beach, CA, USA: IEEE Computer Society Publications Office, pp. 39–
46. ISSN: 0730-8310. URL: https://www.researchgate.net/publication/291448084
(visited on 2025-04-04) (cit. on pp. 166, 183).

[145] Steve Fanning, Vasudev Narayanan, “flywire”, Olivier Hallot, Jean Hollis Weber, Jenna Sargent,
Pulkit Krishna, Dan Lewis, Peter Schofield, Jochen Schiffers, Robert Großkopf, Jost Lange, Mar-
tin Fox, Hazel Russman, Steve Schwettman, Alain Romedenne, Andrew Pitonyak, Jean-Pierre
Ledure, Drew Jensen, and Randolph Gam. Base Guide 7.3. Revision 1. Based on LibreOf-
fice 7.3 Community. Berlin, Germany: The Document Foundation, Aug. 2022. URL: https:
//books.libreoffice.org/en/BG73/BG73-BaseGuide.pdf (visited on 2025-01-13) (cit. on
pp. iii, 15, 20, 43, 144, 330, 333).

[146] Luca Ferrari and Enrico Pirozzi. Learn PostgreSQL. 2nd ed. Birmingham, England, UK: Packt
Publishing Ltd, Oct. 2023. ISBN: 978-1-83763-564-1 (cit. on pp. iii, 14, 17, 20, 23, 78, 330,
331, 335).

[147] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, and Tim Berners-Lee.
Hypertext Transfer Protocol -- HTTP/1.1. Request for Comments (RFC) 2068. Wilmington,
DE, USA: Internet Engineering Task Force (IETF), Jan. 1997. URL: https://www.ietf.org/
rfc/rfc2068.txt (visited on 2025-02-05) (cit. on p. 332).

[148] Roy T. Fielding, Mark Nottingham, and Julian F. Reschke. HTTP Semantics. Request for
Comments (RFC) 9110. Wilmington, DE, USA: Internet Engineering Task Force (IETF), June
2022. URL: https://www.ietf.org/rfc/rfc9110.txt (visited on 2025-02-05) (cit. on
p. 332).

[149] Eric Fischer. “A Brief History of the ‘ls’ Command”. Linux Gazette, Dec. 1999. Seattle, WA,
USA: Specialized Systems Consultants, Inc. URL: https://www.linuxdoc.org/LDP/LG/
issue48/fischer.html (visited on 2025-05-30) (cit. on p. 10).

[150] Christiane Floyd, Wolf-Michael Mehl, Fanny-Michaela Reisin, Gerhard Schmidt, and Gregor
Wolf. “Out of Scandinavia: Alternative Approaches to Software Design and System Develop-
ment”. Human-Computer Interaction 4(4):253–350, 1989. London, England, UK: Taylor and
Francis Ltd. ISSN: 0737-0024. doi:10.1207/S15327051HCI0404_1 (cit. on pp. 159, 335).

[151] Keith D. Foote. A Brief History of Database Management. Studio City, CA, USA: Dataversity
Digital LLC, Oct. 25, 2021. URL: https : / / www . dataversity . net / brief - history -
database-management (visited on 2025-01-11) (cit. on p. 8).

[152] “Foreign Keys”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 5.5.5. URL: https://www.postgresql.org/docs/
17/ddl-constraints.html#DDL-CONSTRAINTS-FK (visited on 2025-02-28) (cit. on pp. 105,
108).

[153] Kevin P. Gaffney, Martin Prammer, Laurence C. Brasfield, D. Richard Hipp, Dan R. Kennedy,
and Jignesh M. Patel. “SQLite: Past, Present, and Future”. Proceedings of the VLDB En-
dowment (PVLDB) 15(12):3535–3547, Aug. 2022. Irvine, CA, USA: Very Large Data Bases
Endowment Inc. ISSN: 2150-8097. doi:10.14778/3554821.3554842. URL: https://www.
vldb.org/pvldb/vol15/p3535-gaffney.pdf (visited on 2025-01-12). All papers in this issue
were presented at the 48th International Conference on Very Large Data Bases (VLDB 2022),
Sept. 5-9, 2022, hybrid/Sydney, NSW, Australia (cit. on pp. 15, 336).

[154] Jonas Gamalielsson and Björn Lundell. “Long-Term Sustainability of Open Source Software
Communities beyond a Fork: A Case Study of LibreOffice”. In: 8th IFIP WG 2.13 International
Conference on Open Source Systems: Long-Term Sustainability OSS’2012. Sept. 10–13, 2012,
Hammamet, Tunisia. Ed. by Imed Hammouda, Björn Lundell, Tommi Mikkonen, and Walt
Scacchi. Vol. 378. IFIP Advances in Information and Communication Technology (IFIPAICT).
Heidelberg, Baden-Württemberg, Germany: Springer-Verlag GmbH Germany, 2012, pp. 29–47.
ISSN: 1868-4238. ISBN: 978-3-642-33441-2. doi:10.1007/978-3-642-33442-9_3 (cit. on
pp. 15, 43, 333).

[155] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The Complete
Book. 2nd ed. Hoboken, NJ, USA: Pearson Education, Inc., May 2008. ISBN: 978-0-13-187325-4
(cit. on p. 17).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=0730-8310
https://www.researchgate.net/publication/291448084
https://github.com/flywire
https://books.libreoffice.org/en/BG73/BG73-BaseGuide.pdf
https://books.libreoffice.org/en/BG73/BG73-BaseGuide.pdf
https://isbnsearch.org/isbn/978-1-83763-564-1
https://www.ietf.org/rfc/rfc2068.txt
https://www.ietf.org/rfc/rfc2068.txt
https://www.ietf.org/rfc/rfc9110.txt
https://www.linuxdoc.org/LDP/LG/issue48/fischer.html
https://www.linuxdoc.org/LDP/LG/issue48/fischer.html
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0737-0024
https://doi.org/10.1207/S15327051HCI0404_1
https://www.dataversity.net/brief-history-database-management
https://www.dataversity.net/brief-history-database-management
https://www.postgresql.org/docs/17/ddl-constraints.html#DDL-CONSTRAINTS-FK
https://www.postgresql.org/docs/17/ddl-constraints.html#DDL-CONSTRAINTS-FK
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2150-8097
https://doi.org/10.14778/3554821.3554842
https://www.vldb.org/pvldb/vol15/p3535-gaffney.pdf
https://www.vldb.org/pvldb/vol15/p3535-gaffney.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1868-4238
https://isbnsearch.org/isbn/978-3-642-33441-2
https://doi.org/10.1007/978-3-642-33442-9_3
https://isbnsearch.org/isbn/978-0-13-187325-4

BIBLIOGRAPHY 352

[156] Aakanksha Gaur, Gloria Lotha, Tara Ramanathan, Erik Gregersen, Emily Rodriguez, Anthony
Lin, Parul Jain, and William L. Hosch. List of Windows Versions. Ed. by The Editors of Ency-
clopaedia Britannica. Chicago, IL, USA: Encyclopædia Britannica, Inc., Jan. 15, 2009–Feb. 19,
2025. URL: https://www.britannica.com/technology/list-of-Windows-versions
(visited on 2024-12-14) (cit. on p. 151).

[157] “Generated Columns”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Develop-
ment Group (PGDG), Feb. 20, 2025. Chap. 5.4. URL: https://www.postgresql.org/docs/
17/ddl-generated-columns.html (visited on 2025-04-23) (cit. on pp. 95, 253, 288).

[158] Sebastian Gerstl. “IBM 350 – Ein Kühlschrankmonster mit unvorstellbarer Datenmenge: Die
Festplatte wird 60”. In: elektronikpraxis.de. Würzburg, Bayern, Germany: Vogel Communications
Group GmbH & Co. KG, Sept. 13, 2016. URL: https://www.elektronikpraxis.de/ein-
kuehlschrankmonster-mit-unvorstellbarer-datenmenge-die-festplatte-wird-60-
a-549932 (visited on 2025-05-29) (cit. on p. 10).

[159] Michael Gertz and Bertram Ludäscher. “Introduction to Relational Databases”. In: ECS 165A
Winter 2011 – Introduction to Database Systems. Ed. by Todd J. Green. Davis, CA, USA:
University of California, Davis, Win. 2011. Chap. 1. URL: https://web.cs.ucdavis.edu/
~green/courses/ecs165a-w11/1-intro.pdf (visited on 2025-03-25) (cit. on p. 156).

[160] Gleek.io. Prague, Czech Republic: Blocshop s.r.o., 2024. URL: https://www.gleek.io/blog
(visited on 2025-04-05).

[161] Alan Goldfine and Patricia Konig. A Technical Overview of the Information Resource Dictionary
System. Tech. rep. NBSIR 85-3164. Gaithersburg, MD, USA: U.S. Department of Commerce,
National Bureau of Standards, Center for Programming Science and Technology, Institute for
Computer Sciences and Technology, Apr. 1985. URL: https://nvlpubs.nist.gov/nistpub
s/Legacy/IR/nbsir85-3164.pdf (visited on 2025-03-29) (cit. on p. 12).

[162] Michael Goodwin. What is an API? Armonk, NY, USA: International Business Machines Corpo-
ration (IBM), Apr. 9, 2024. URL: https://www.ibm.com/topics/api (visited on 2024-12-12)
(cit. on p. 331).

[163] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. The Morgan
Kaufmann Series in Data Management Systems. Burlington, MA, USA/San Mateo, CA, USA:
Morgan Kaufmann Publishers, Sept. 1992. ISBN: 978-1-55860-190-1 (cit. on p. 7).

[164] “Conceptual Modeling using the Entity-Relationship Model”. In: ECS 165A Winter 2011 – Intro-
duction to Database Systems. Ed. by Todd J. Green. Davis, CA, USA: University of California,
Davis, Win. 2011. Chap. 2. URL: https://web.cs.ucdavis.edu/~green/courses/
ecs165a-w11/2-er.pdf (visited on 2025-03-27) (cit. on pp. 164, 174–177, 183).

[165] Todd J. Green, ed. ECS 165A Winter 2011 – Introduction to Database Systems. Davis, CA,
USA: University of California, Davis, Win. 2011. URL: https://web.cs.ucdavis.edu/
~green/courses/ecs165a-w11 (visited on 2025-03-25) (cit. on p. 16).

[166] Todd J. Green, ed. ECS 165B Spring 2011 – Database System Implementation. Davis, CA, USA:
University of California, Davis, Spr. 2011. URL: https://web.cs.ucdavis.edu/~green/
courses/ecs165b-s11 (visited on 2025-04-04) (cit. on p. 16).

[167] Dawn Griffiths. Excel Cookbook – Receipts for Mastering Microsoft Excel. Sebastopol, CA,
USA: O’Reilly Media, Inc., May 2024. ISBN: 978-1-0981-4332-9 (cit. on pp. 2, 334).

[168] Ilya Grigorik. HTTP Protocols. Sebastopol, CA, USA: O’Reilly Media, Inc., Dec. 2017.
ISBN: 978-1-4920-3046-1 (cit. on p. 332).

[169] Christian Grün. “Pushing XML Main Memory Databases to their Limits”. In: Tagungsband zum
18. GI-Workshop über Grundlagen von Datenbanken. 18th GI-Workshop on the Foundations of
Databases. June 6–9, 2006, Wittenberg, Sachsen-Anhalt, Germany. Ed. by Stefan Brass and
Alexander Hinneburg, pp. 60–64. URL: https://dbs.informatik.uni-halle.de/GvD2006/
gvd06_gruen.pdf (cit. on p. 195).

[170] Christian Grün, Alexander Holupirek, and Michael Seiferle. BaseX. Konstanz,
Baden-Württemberg, Germany: BaseX GmbH, Jan. 2010–Mar. 2025. URL: https :
//basex.org (visited on 2025-04-09) (cit. on p. 195).

https://www.britannica.com/technology/list-of-Windows-versions
https://www.postgresql.org/docs/17/ddl-generated-columns.html
https://www.postgresql.org/docs/17/ddl-generated-columns.html
https://www.elektronikpraxis.de/ein-kuehlschrankmonster-mit-unvorstellbarer-datenmenge-die-festplatte-wird-60-a-549932
https://www.elektronikpraxis.de/ein-kuehlschrankmonster-mit-unvorstellbarer-datenmenge-die-festplatte-wird-60-a-549932
https://www.elektronikpraxis.de/ein-kuehlschrankmonster-mit-unvorstellbarer-datenmenge-die-festplatte-wird-60-a-549932
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11/1-intro.pdf
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11/1-intro.pdf
https://www.gleek.io/blog
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir85-3164.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir85-3164.pdf
https://www.ibm.com/topics/api
https://isbnsearch.org/isbn/978-1-55860-190-1
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11/2-er.pdf
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11/2-er.pdf
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11
https://web.cs.ucdavis.edu/~green/courses/ecs165b-s11
https://web.cs.ucdavis.edu/~green/courses/ecs165b-s11
https://isbnsearch.org/isbn/978-1-0981-4332-9
https://isbnsearch.org/isbn/978-1-4920-3046-1
https://dbs.informatik.uni-halle.de/GvD2006/gvd06_gruen.pdf
https://dbs.informatik.uni-halle.de/GvD2006/gvd06_gruen.pdf
https://basex.org
https://basex.org

BIBLIOGRAPHY 353

[171] Pranshu Gupta, Ramon A. Mata-Toledo, and Morgan D. Monger. “Database Development
Life Cycle”. Journal of Information Systems and Operations Management (JISOM) 5(1):8–17,
May 2011. Bucharest (Bucureşti), Romania: Romanian-American University (RAU), Scientific
Research Department. ISSN: 1843-4711. URL: http://www.rebe.rau.ro/RePEc/rau/
jisomg/SP11/JISOM-SP11-A1.pdf (visited on 2025-03-20) (cit. on pp. 151–156).

[172] Donald J. Haderle and Cynthia M. Saracco. “The History and Growth of IBM’s DB2”. IEEE An-
nals of the History of Computing 35(2):54–66, Apr. 2013–June 2014. Piscataway, NJ, USA: In-
stitute of Electrical and Electronics Engineers (IEEE). ISSN: 1058-6180. doi:10.1109/MAHC.
2012.55 (cit. on pp. 13, 15, 332).

[173] Thomas Haigh. “How Charles Bachman Invented the DBMS, A Foundation of Our Digital
World”. Communications of the ACM (CACM) 59(7):25–30, July 2016. New York, NY, USA: As-
sociation for Computing Machinery (ACM). ISSN: 0001-0782. doi:10.1145/2935880. URL:
https://cacm.acm.org/opinion/how- charles- bachman- invented- the- dbms- a-
foundation-of-our-digital-world (visited on 2025-05-08) (cit. on pp. 10, 11, 195).

[174] Terry Halpin and Tony Morgan. Information Modeling and Relational Databases. 3rd ed. Burling-
ton, MA, USA/San Mateo, CA, USA: Morgan Kaufmann Publishers, July 2024. ISBN: 978-0-
443-23791-1 (cit. on pp. 3, 17, 335).

[175] Jan L. Harrington. Relational Database Design and Implementation. 4th ed. Burlington, MA,
USA/San Mateo, CA, USA: Morgan Kaufmann Publishers, Apr. 2016. ISBN: 978-0-12-849902-3
(cit. on pp. 3, 17, 335).

[176] Charles R. Harris, K. Jarrod Millman, Stéfan van der Walt, Ralf Gommers, Pauli “pv” Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime
Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. “Array
programming with NumPy”. Nature 585:357–362, 2020. London, England, UK: Springer Nature
Limited. ISSN: 0028-0836. doi:10.1038/S41586-020-2649-2 (cit. on pp. 117, 334).

[177] Peter Haumer, Klaus Pohl, and Klaus Weidenhaupt. “Requirements Elicitation and Validation
with Real World Scenes”. IEEE Transactions on Software Engineering 24-12(12):1036–1054,
1998. Los Alamitos, CA, USA: IEEE Computer Society. ISSN: 0098-5589. doi:10.1109/32.
738338 (cit. on p. 159).

[178] Michael Hausenblas. Learning Modern Linux. Sebastopol, CA, USA: O’Reilly Media, Inc., Apr.
2022. ISBN: 978-1-0981-0894-6 (cit. on pp. 21, 333).

[179] Lars Heide. “Shaping a Technology: American Punched Card Systems 1880-1914”. IEEE Annals
of the History of Computing 19(4):28–41, Oct.–Dec. 1997. Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers (IEEE). ISSN: 1058-6180. doi:10.1109/85.627897 (cit. on
p. 8).

[180] Christian Heimes. defusedxml 0.7.1: XML Bomb Protection for Python stdlib Modules. Mar. 8,
2021. URL: https://pypi.org/project/defusedxml (visited on 2024-12-15) (cit. on
p. 338).

[181] Matthew Helmke. Ubuntu Linux Unleashed 2021 Edition. 14th ed. Reading, MA, USA: Addis-
on-Wesley Professional, Aug. 2020. ISBN: 978-0-13-668539-5 (cit. on pp. 14, 22, 333, 337).

[182] Michael J. Hernandez. Database Design for Mere Mortals: 25th Anniversary Edition. 4th ed.
Reading, MA, USA: Addison-Wesley Professional, Dec. 2020. ISBN: 978-0-13-678813-3 (cit. on
p. 17).

[183] D. Richard Hipp et al. “Well-Known Users of SQLite”. In: SQLite. Charlotte, NC, USA: Hipp,
Wyrick & Company, Inc. (Hwaci), Jan. 2, 2023. URL: https://www.sqlite.org/famous.
html (visited on 2025-01-12) (cit. on pp. 15, 336).

[184] “History of Units”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. B.6. URL: https://www.postgresql.org/docs/17/
datetime-units-history.html (visited on 2025-03-01) (cit. on pp. 106, 108).

[185] Jeffrey A. Hoffer, Venkataraman Ramesh, and Heikki Topi. Modern Database Management.
13th ed. Hoboken, NJ, USA: Pearson Education, Inc., Mar. 2021. ISBN: 978-0-13-477365-0
(cit. on p. 16).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=1843-4711
http://www.rebe.rau.ro/RePEc/rau/jisomg/SP11/JISOM-SP11-A1.pdf
http://www.rebe.rau.ro/RePEc/rau/jisomg/SP11/JISOM-SP11-A1.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1058-6180
https://doi.org/10.1109/MAHC.2012.55
https://doi.org/10.1109/MAHC.2012.55
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/2935880
https://cacm.acm.org/opinion/how-charles-bachman-invented-the-dbms-a-foundation-of-our-digital-world
https://cacm.acm.org/opinion/how-charles-bachman-invented-the-dbms-a-foundation-of-our-digital-world
https://isbnsearch.org/isbn/978-0-443-23791-1
https://isbnsearch.org/isbn/978-0-443-23791-1
https://isbnsearch.org/isbn/978-0-12-849902-3
https://github.com/pv
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0028-0836
https://doi.org/10.1038/S41586-020-2649-2
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0098-5589
https://doi.org/10.1109/32.738338
https://doi.org/10.1109/32.738338
https://isbnsearch.org/isbn/978-1-0981-0894-6
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1058-6180
https://doi.org/10.1109/85.627897
https://pypi.org/project/defusedxml
https://isbnsearch.org/isbn/978-0-13-668539-5
https://isbnsearch.org/isbn/978-0-13-678813-3
https://www.sqlite.org/famous.html
https://www.sqlite.org/famous.html
https://www.postgresql.org/docs/17/datetime-units-history.html
https://www.postgresql.org/docs/17/datetime-units-history.html
https://isbnsearch.org/isbn/978-0-13-477365-0

BIBLIOGRAPHY 354

[186] Manuel Hoffmann, Frank Nagle, and Yanuo Zhou. The Value of Open Source Software. Working
Paper 24-038. Boston, MA, USA: Harvard Business School, Jan. 1, 2024. URL: https://www.
hbs.edu/ris/Publication%20Files/24-038_51f8444f-502c-4139-8bf2-56eb4b65c58
a.pdf (visited on 2025-06-04) (cit. on pp. 14, 335).

[187] Steve Hollasch. “IEEE Standard 754 Floating Point Numbers”. In: CSE401: Introduction to
Compiler Construction. Seattle, WA, USA: University of Washington, Jan. 8, 1997. URL: https:
//courses.cs.washington.edu/courses/cse401/01au/details/fp.html (visited on
2024-07-05) (cit. on p. 93).

[188] Herman Hollerith. Apparatus for Compiling Statistics. United States Patent US-0395783-A.
Washington, DC, USA: United States Patent Office, Sept. 23, 1884–Jan. 8, 1889. URL: https:
//ppubs.uspto.gov/pubwebapp/static/pages/ppubsbasic.html (visited on 2025-01-07)
(cit. on p. 8).

[189] Herman Hollerith. Machine for Tabulating Statistics. United States Patent 526,130. Washington,
DC, USA: United States Patent Office, Aug. 20, 1892–Sept. 18, 1894. URL: https://ppubs.
uspto.gov/pubwebapp/static/pages/ppubsbasic.html (visited on 2025-01-07) (cit. on
pp. 8, 9).

[190] “Use the following business rules to create a Crow’s Foot ERD”. In: Database Administrators.
Ed. by zz Z. New York, NY, USA: Stack Exchange Inc., Apr. 13, 2020–Oct. 27, 2024. URL:
https://dba.stackexchange.com/questions/264891 (visited on 2025-04-25) (cit. on
p. 185).

[191] “ VARCHAR Primary Key – MySQL”. In: Database Administrators. Ed. by marc_s. New York, NY,
USA: Stack Exchange Inc., Oct. 22, 2014–Feb. 5, 2016. URL: https://dba.stackexchange.
com/questions/80806 (visited on 2025-02-27) (cit. on p. 95).

[192] “How do I read ERD Notation (Crow’s Feet) to convert to Natural Language?” In: Database
Administrators. Ed. by raddevus. New York, NY, USA: Stack Exchange Inc., Feb. 17, 2016–
June 22, 2018. URL: https://dba.stackexchange.com/questions/129551 (visited on
2025-04-06) (cit. on p. 184).

[193] “Why is naming a table’s Primary Key column “Id” considered bad practice? [closed]”. In: Soft-
ware Engineering. Ed. by Jean-Philippe Leclerc. New York, NY, USA: Stack Exchange Inc.,
Oct. 17, 2011–Dec. 22, 2024. URL: https://softwareengineering.stackexchange.com/
questions/114728 (visited on 2025-02-27) (cit. on pp. 95, 328).

[194] “When should a database table use timestamps?” In: Software Engineering. Ed. by GWed.
New York, NY, USA: Stack Exchange Inc., Jan. 29, 2014–Sept. 16, 2016. URL: https://
softwareengineering.stackexchange.com/questions/225903 (visited on 2025-02-27)
(cit. on p. 337).

[195] John Hunt. A Beginners Guide to Python 3 Programming. 2nd ed. Undergraduate Topics in
Computer Science (UTICS). Cham, Switzerland: Springer, 2023. ISBN: 978-3-031-35121-1.
doi:10.1007/978-3-031-35122-8 (cit. on pp. 20, 54, 335).

[196] John D. Hunter. “Matplotlib: A 2D Graphics Environment”. Computing in Science & Engineer-
ing 9(3):90–95, May–June 2007. Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers (IEEE). ISSN: 1521-9615. doi:10.1109/MCSE.2007.55 (cit. on p. 334).

[197] John D. Hunter, Darren Dale, Eric Firing, Michael Droettboom, and The Matplotlib Develop-
ment Team. Matplotlib: Visualization with Python. Austin, TX, USA: NumFOCUS, Inc., 2012–
2025. URL: https://matplotlib.org (visited on 2025-02-02) (cit. on p. 334).

[198] “Identity Columns”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 5.3. URL: https://www.postgresql.org/docs/17/
ddl-identity-columns.html (visited on 2025-02-27) (cit. on pp. 95, 253).

[199] IEEE Recommended Practice for Software Requirements Specifications. IEEE Std 830-1998.
New York, NY, USA: Institute of Electrical and Electronics Engineers (IEEE), Oct. 20, 1998.
doi:10.1109/IEEESTD.1998.88286. URL: https://cse.msu.edu/~cse870/IEEEXplore-
SRS-template.pdf (visited on 2025-03-27). Superseded by [384] (cit. on pp. 159, 336, 367).

[200] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754™-2019 (Revision of IEEE Std
754-2008). New York, NY, USA: Institute of Electrical and Electronics Engineers (IEEE),
June 13, 2019 (cit. on p. 93).

https://www.hbs.edu/ris/Publication%20Files/24-038_51f8444f-502c-4139-8bf2-56eb4b65c58a.pdf
https://www.hbs.edu/ris/Publication%20Files/24-038_51f8444f-502c-4139-8bf2-56eb4b65c58a.pdf
https://www.hbs.edu/ris/Publication%20Files/24-038_51f8444f-502c-4139-8bf2-56eb4b65c58a.pdf
https://courses.cs.washington.edu/courses/cse401/01au/details/fp.html
https://courses.cs.washington.edu/courses/cse401/01au/details/fp.html
https://ppubs.uspto.gov/pubwebapp/static/pages/ppubsbasic.html
https://ppubs.uspto.gov/pubwebapp/static/pages/ppubsbasic.html
https://ppubs.uspto.gov/pubwebapp/static/pages/ppubsbasic.html
https://ppubs.uspto.gov/pubwebapp/static/pages/ppubsbasic.html
https://dba.stackexchange.com/users/206441
https://dba.stackexchange.com/questions/264891
https://dba.stackexchange.com/users/807
https://dba.stackexchange.com/questions/80806
https://dba.stackexchange.com/questions/80806
https://dba.stackexchange.com/users/87381
https://dba.stackexchange.com/questions/129551
https://softwareengineering.stackexchange.com/users/38802
https://softwareengineering.stackexchange.com/questions/114728
https://softwareengineering.stackexchange.com/questions/114728
https://softwareengineering.stackexchange.com/users/74944
https://softwareengineering.stackexchange.com/questions/225903
https://softwareengineering.stackexchange.com/questions/225903
https://isbnsearch.org/isbn/978-3-031-35121-1
https://doi.org/10.1007/978-3-031-35122-8
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1521-9615
https://doi.org/10.1109/MCSE.2007.55
https://matplotlib.org
https://www.postgresql.org/docs/17/ddl-identity-columns.html
https://www.postgresql.org/docs/17/ddl-identity-columns.html
https://doi.org/10.1109/IEEESTD.1998.88286
https://cse.msu.edu/~cse870/IEEEXplore-SRS-template.pdf
https://cse.msu.edu/~cse870/IEEEXplore-SRS-template.pdf

BIBLIOGRAPHY 355

[201] IEEE Standard for Information Technology--Portable Operating System Inter-
faces (POSIX(TM))--Part 2: Shell and Utilities. IEEE Std 1003.2-1992. New York,
NY, USA: Institute of Electrical and Electronics Engineers (IEEE), June 23, 1993. URL: https:
//mirror.math.princeton.edu/pub/oldlinux/Linux.old/Ref-docs/POSIX/all.pdf
(visited on 2025-03-27). Board Approved: 1992-09-17, ANSI Approved: 1993-04-05. See
unapproved draft IEEE P1003.2 Draft 11.2 of Sept. 1991 at the url (cit. on p. 335).

[202] Information Technology – Database Languages – SQL – Part 1: Framework (SQL/Frame-
work), Part 1. International Standard ISO/IEC 9075-1:2023(E), Sixth Edition, (ANSI X3.135).
Geneva, Switzerland: International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC), June 2023. URL: https://standards.iso.org/ittf/
PubliclyAvailableStandards/ISO_IEC_9075-1_2023_ed_6_-_id_76583_Publication_
PDF_(en).zip (visited on 2025-01-08). Consists of several parts, see https://modern-
sql.com/standard for information where to obtain them. (Cit. on pp. 13, 82, 336).

[203] Information Technology -- Modeling Languages -- Part 2: Syntax and Semantics for
IDEF1X97 (IDEFobject). ISO/IEC/IEEE International Standard 31320-2-2012(E). Geneva,
Switzerland: International Organization for Standardization (ISO), International Electrotech-
nical Commission (IEC), and New York, NY, USA: Institute of Electrical and Electronics
Engineers (IEEE), Sept. 15–Oct. 30, 2012. doi:10.1109/IEEESTD.2012.6357338 (cit. on
pp. 166, 333).

[204] Information Technology – Universal Coded Character Set (UCS). International Standard
ISO/IEC 10646:2020. Geneva, Switzerland: International Organization for Standardiza-
tion (ISO) and International Electrotechnical Commission (IEC), Dec. 2020 (cit. on pp. 337,
372).

[205] Joseph Ingeno. Software Architect’s Handbook. Birmingham, England, UK: Packt Publishing
Ltd, Aug. 2018. ISBN: 978-1-78862-406-0 (cit. on pp. 151, 152, 154, 158, 159, 336).

[206] “ INSERT...RETURNING”. In: MariaDB Server Documentation. Milpitas, CA, USA: MariaDB,
2025. URL: https : / / mariadb . com / kb / en / insertreturning (visited on 2025-04-24)
(cit. on pp. 248, 274).

[207] Python 3 Documentation. Installing Python Modules. Beaverton, OR, USA: Python Software
Foundation (PSF), 2001–2025. URL: https://docs.python.org/3/installing (visited on
2024-08-17) (cit. on p. 335).

[208] Introduction to the Dewey Decimal Classification. Dublin, OH, USA: Ohio College Library Cen-
ter (OCLC), May 17, 2019. URL: https://www.oclc.org/content/dam/oclc/dewey/
versions/print/intro.pdf (visited on 2025-05-28) (cit. on p. 8).

[209] IP2Location™ ISO 3166-2 Subdivision Code. Bayan Baru, Pulau Pinang, Malaysia: Hexasoft
Development Sdn. Bhd., Apr. 16, 2025. URL: https://www.ip2location.com/free/
iso3166-2 (visited on 2025-04-29) (cit. on p. 195).

[210] Jay E. Israel, James G. Mitchell, and Howard E. Sturgis. Separating Data From Function in a
Distributed File System. Blue and White Series CSL-78-5. Palo Alto, CA, USA: Xerox Palo Alto
Research Center (PARC), Sept. 1978 (cit. on p. 12).

[211] Robert Johansson. Numerical Python: Scientific Computing and Data Science Applications with
NumPy, SciPy and Matplotlib. New York, NY, USA: Apress Media, LLC, Dec. 2018. ISBN: 978-
1-4842-4246-9 (cit. on pp. 117, 334, 336).

[212] “Joined Tables”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 7.2.1.1. URL: https://www.postgresql.org/docs/
17/queries-table-expressions.html#QUERIES-JOIN (visited on 2025-03-01) (cit. on
pp. 108, 227).

[213] “exit – Terminate a Process”. In: POSIX.1-2024: The Open Group Base Specifications Issue 8,
IEEE Std 1003.1™-2024 Edition. Ed. by Andrew Josey. Piscataway, NJ, USA: Institute of Elec-
trical and Electronics Engineers (IEEE) and San Francisco, CA, USA: The Open Group, Aug. 8,
2024. URL: https://pubs.opengroup.org/onlinepubs/9799919799/functions/exit.
html (visited on 2024-10-30) (cit. on p. 332).

https://mirror.math.princeton.edu/pub/oldlinux/Linux.old/Ref-docs/POSIX/all.pdf
https://mirror.math.princeton.edu/pub/oldlinux/Linux.old/Ref-docs/POSIX/all.pdf
https://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_9075-1_2023_ed_6_-_id_76583_Publication_PDF_(en).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_9075-1_2023_ed_6_-_id_76583_Publication_PDF_(en).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_9075-1_2023_ed_6_-_id_76583_Publication_PDF_(en).zip
https://modern-sql.com/standard
https://modern-sql.com/standard
https://doi.org/10.1109/IEEESTD.2012.6357338
https://isbnsearch.org/isbn/978-1-78862-406-0
https://mariadb.com/kb/en/insertreturning
https://docs.python.org/3/installing
https://www.oclc.org/content/dam/oclc/dewey/versions/print/intro.pdf
https://www.oclc.org/content/dam/oclc/dewey/versions/print/intro.pdf
https://www.ip2location.com/free/iso3166-2
https://www.ip2location.com/free/iso3166-2
https://isbnsearch.org/isbn/978-1-4842-4246-9
https://isbnsearch.org/isbn/978-1-4842-4246-9
https://www.postgresql.org/docs/17/queries-table-expressions.html#QUERIES-JOIN
https://www.postgresql.org/docs/17/queries-table-expressions.html#QUERIES-JOIN
https://pubs.opengroup.org/onlinepubs/9799919799/functions/exit.html
https://pubs.opengroup.org/onlinepubs/9799919799/functions/exit.html

BIBLIOGRAPHY 356

[214] “Locale”. In: POSIX.1-2024: The Open Group Base Specifications Issue 8, IEEE Std 1003.1™-
2024 Edition. Ed. by Andrew Josey. Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers (IEEE) and San Francisco, CA, USA: The Open Group, Aug. 8, 2024. Chap. XBD 7.
URL: https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap07.
html (visited on 2025-01-21) (cit. on p. 333).

[215] Andrew Josey, ed. POSIX.1-2024: The Open Group Base Specifications Issue 8,
IEEE Std 1003.1™-2024 Edition. Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers (IEEE) and San Francisco, CA, USA: The Open Group, Aug. 8, 2024. URL:
https://pubs.opengroup.org/onlinepubs/9799919799 (visited on 2024-10-30).

[216] “stderr, stdin, stdout – Standard I/O Streams”. In: POSIX.1-2024: The Open Group Base Specifi-
cations Issue 8, IEEE Std 1003.1™-2024 Edition. Ed. by Andrew Josey. Piscataway, NJ, USA: In-
stitute of Electrical and Electronics Engineers (IEEE) and San Francisco, CA, USA: The Open
Group, Aug. 8, 2024. URL: https://pubs.opengroup.org/onlinepubs/9799919799/
functions/stdin.html (visited on 2024-10-30) (cit. on p. 336).

[217] Sean P. Kane and Karl Matthias. Docker: Up & Running. 3rd ed. Sebastopol, CA, USA: O’Reilly
Media, Inc., Apr. 2023. ISBN: 978-1-0981-3182-1 (cit. on p. 332).

[218] Bill Karwin. SQL Antipatterns: Avoiding the Pitfalls of Database Programming. Flower Mound,
TX, USA: Pragmatic Bookshelf by The Pragmatic Programmers, L.L.C., June 2017. ISBN: 978-
1-934356-55-5 (cit. on p. 17).

[219] Shannon Kempe and Paul Williams. A Short History of the ER Diagram and Information Mod-
eling. Studio City, CA, USA: Dataversity Digital LLC, Sept. 25, 2012. URL: https://www.
dataversity.net/a-short-history-of-the-er-diagram-and-information-modeling
(visited on 2025-03-06) (cit. on pp. 12, 166, 332).

[220] Alfons Kemper and André Eickler. Datenbanksysteme: Eine Einführung. De Gruyter Studium.
Berlin, Germany: Walter de Gruyter GmbH, 2015. ISBN: 978-3-11-044375-2 (cit. on p. 17).

[221] William (Bill) Kent. “A Simple Guide to Five Normal Forms in Relational Database Theory”.
Communications of the ACM (CACM) 26(2):120–125, Sept. 1982–Feb. 1983. New York, NY,
USA: Association for Computing Machinery (ACM). ISSN: 0001-0782. doi:10.1145/358024.
358054. URL: https : / / www . cs . dartmouth . edu / ~cs61 / Resources / Papers / CACM %
20Kent%20Five%20Normal%20Forms.pdf (visited on 2025-05-03) (cit. on pp. 295, 307, 311,
320, 331, 334).

[222] Tom Kilburn, R. Bruce Payne, and David J. Howarth. “The Atlas Supervisor”. In: Eastern Joint
Computer Conference: Computers – Key to Total Systems Control, (AFIPS’1961, Eastern).
Dec. 12–14, 1961, Washington, DC, USA. Ed. by Willis H. Ware. New York, NY, USA: Asso-
ciation for Computing Machinery (ACM), Dec. 1961, pp. 279–294. ISBN: 978-1-4503-7873-4.
doi:10.1145/1460764.1460786. URL: https://www.chilton-computing.org.uk/acl/
technology/atlas/p019.htm (visited on 2025-01-08) (cit. on p. 9).

[223] Won Kim. “Relational Database Systems”. ACM Computing Surveys (CSUR) 11(3):187–211,
Sept. 1979. New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0360-
0300. doi:10.1145/356778.356780 (cit. on p. 11).

[224] Dmitry Kirsanov. The Book of Inkscape. 2nd ed. San Francisco, CA, USA, Nov. 2021. ISBN: 978-
1-7185-0175-1 (cit. on p. 333).

[225] Barbara Klein, Richard Alan Long, Kenneth Ray Blackman, Diane Lynne Goff, Stephen P.
Nathan, Moira McFadden Lanyi, Margaret M. Wilson, John Butterweck, and Sandra L. Sherrill.
Introduction to IMS: Your Complete Guide to IBM Information Management System. 2nd ed.
Indianapolis, IN, USA: IBM Press, Mar. 13, 2012. ISBN: 978-0-13-288687-1 (cit. on pp. 11,
195).

[226] Bernd Klein. Einführung in Python 3 – Für Ein- und Umsteiger. 3., überarbeitete. München,
Bayern, Germany: Carl Hanser Verlag GmbH & Co. KG, 2018. ISBN: 978-3-446-45208-4. doi:10.
3139/9783446453876 (cit. on p. 20).

[227] Leonard Kleinrock. “An Early History of the Internet [History of Communications]”. IEEE Com-
munications Magazine 48(8):26–36, Aug. 2010. Piscataway, NJ, USA: Institute of Electrical
and Electronics Engineers (IEEE). ISSN: 0163-6804. doi:10.1109/MCOM.2010.5534584. URL:
https://www.researchgate.net/publication/262316090 (visited on 2025-05-29) (cit. on
p. 12).

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap07.html
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap07.html
https://pubs.opengroup.org/onlinepubs/9799919799
https://pubs.opengroup.org/onlinepubs/9799919799/functions/stdin.html
https://pubs.opengroup.org/onlinepubs/9799919799/functions/stdin.html
https://isbnsearch.org/isbn/978-1-0981-3182-1
https://isbnsearch.org/isbn/978-1-934356-55-5
https://isbnsearch.org/isbn/978-1-934356-55-5
https://www.dataversity.net/a-short-history-of-the-er-diagram-and-information-modeling
https://www.dataversity.net/a-short-history-of-the-er-diagram-and-information-modeling
https://isbnsearch.org/isbn/978-3-11-044375-2
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/358024.358054
https://doi.org/10.1145/358024.358054
https://www.cs.dartmouth.edu/~cs61/Resources/Papers/CACM%20Kent%20Five%20Normal%20Forms.pdf
https://www.cs.dartmouth.edu/~cs61/Resources/Papers/CACM%20Kent%20Five%20Normal%20Forms.pdf
https://isbnsearch.org/isbn/978-1-4503-7873-4
https://doi.org/10.1145/1460764.1460786
https://www.chilton-computing.org.uk/acl/technology/atlas/p019.htm
https://www.chilton-computing.org.uk/acl/technology/atlas/p019.htm
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0360-0300
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0360-0300
https://doi.org/10.1145/356778.356780
https://isbnsearch.org/isbn/978-1-7185-0175-1
https://isbnsearch.org/isbn/978-1-7185-0175-1
https://isbnsearch.org/isbn/978-0-13-288687-1
https://isbnsearch.org/isbn/978-3-446-45208-4
https://doi.org/10.3139/9783446453876
https://doi.org/10.3139/9783446453876
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0163-6804
https://doi.org/10.1109/MCOM.2010.5534584
https://www.researchgate.net/publication/262316090

BIBLIOGRAPHY 357

[228] Leonard Kleinrock. Information Flow in Large Communication Nets, Ph.D. Thesis Proposal.
Cambridge, MA, USA: Massachusetts Institute of Technology (MIT), May 31, 1961. URL:
https://www.lk.cs.ucla.edu/data/files/Kleinrock/Information%20Flow%20in%
20Large%20Communication%20Nets.pdf (visited on 2025-01-20) (cit. on pp. 11, 12).

[229] Leah Knobel and Neely Tucker. “It’s As If It Was Written in. . . Clay. For 4,200 Years”. Timeless
Stories from the Library of Congress, Nov. 22, 2021. Washington, DC, USA: Library of Congress.
ISSN: 2836-9459. URL: https://blogs.loc.gov/loc/2021/11/its-as-if-it-was-
written-in-clay-for-4200-years (visited on 2025-01-08). See also [104] (cit. on pp. 8,
348).

[230] Katie Kodes. Intro to XML, JSON, & YAML. London, England, UK: Payhip, 2019–Sept. 4,
2020 (cit. on pp. 2, 338).

[231] Petr Kozelek. Audit Trail – Tracing Data Changes in Database. Toronto, ON, Canada: Code-
Project, Aug. 30, 2010. URL: https://www.codeproject.com/Articles/105768/Audit-
Trail-Tracing-Data-Changes-in-Database (visited on 2025-04-09) (cit. on p. 195).

[232] Tim Kraska and Michael Cafarella. 6.5830/6.5831: Database Systems. Cambridge, MA, USA:
Massachusetts Institute of Technology (MIT), Aut. 2024. URL: https://dsg.csail.mit.
edu/6.5830 (visited on 2025-01-08) (cit. on p. 16).

[233] Tim Kraska and Michael Cafarella. “Introduction to Databases”. In: 6.5830/6.5831: Database
Systems. Cambridge, MA, USA: Massachusetts Institute of Technology (MIT), Aut. 2024.
Chap. 1. URL: https://dsg.csail.mit.edu/6.5830/lectures/lec1.pdf (visited on
2025-01-08) (cit. on pp. 11, 195).

[234] Andrew M. Kuchling. Python 3 Documentation. Regular Expression HOWTO. Beaverton, OR,
USA: Python Software Foundation (PSF), 2001–2025. URL: https://docs.python.org/3/
howto/regex.html (visited on 2024-11-01) (cit. on p. 335).

[235] Darl Kuhn and Thomas Kyte. Expert Oracle Database Architecture: Techniques and Solutions
for High Performance and Productivity. 4th ed. New York, NY, USA: Apress Media, LLC, Nov.
2021. ISBN: 978-1-4842-7499-6 (cit. on pp. 15, 18, 334).

[236] Animesh Kumar, Sandip Dutta, and Prashant Pranav. “Analysis of SQL Injection Attacks in the
Cloud and in WEB Applications”. Security and Privacy 7(3), May–June 2024. Chichester, West
Sussex, England, UK: John Wiley and Sons Ltd. ISSN: 2475-6725. doi:10.1002/SPY2.370
(cit. on p. 336).

[237] E. A. Kurako and V. L. Orlov. “Database Migration from ORACLE to PostgreSQL”. 49(5):455–
463, Oct. 2023. doi:10.1134/S0361768823050055 (cit. on p. 15).

[238] James F. Kurose and Keith Ross. Computer Networking: A Top Down Approach. 8th ed. Hobo-
ken, NJ, USA: Pearson Education, Inc., Mar. 30, 2020. ISBN: 978-0-13-668155-7 (cit. on pp. 11,
12, 335).

[239] Jay LaCroix. Mastering Ubuntu Server. 4th ed. Birmingham, England, UK: Packt Publishing
Ltd, Sept. 2022. ISBN: 978-1-80323-424-3 (cit. on p. 336).

[240] Joan Lambert and Curtis Frye. Microsoft Office Step by Step (Office 2021 and Microsoft 365).
Hoboken, NJ, USA: Microsoft Press, Pearson Education, Inc., June 2022. ISBN: 978-0-13-
754493-6 (cit. on pp. 15, 334).

[241] Charles Landau. TensorFlow Deep Dive: Build, Train, and Deploy Machine Learning Models
with TensorFlow. Sebastopol, CA, USA: O’Reilly Media, Inc., Dec. 2023 (cit. on pp. 117, 337).

[242] Łukasz Langa. Literature Overview for Type Hints. Python Enhancement Proposal (PEP) 482.
Beaverton, OR, USA: Python Software Foundation (PSF), Jan. 8, 2015. URL: https://peps.
python.org/pep-0482 (visited on 2024-10-09) (cit. on p. 337).

[243] Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David
B. Shmoys. “Sequencing and Scheduling: Algorithms and Complexity”. In: Production Planning
and Inventory. Ed. by Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H.
Zipkin. Vol. IV of Handbooks of Operations Research and Management Science. Amsterdam,
The Netherlands: Elsevier B.V., 1993. Chap. 9, pp. 445–522. ISSN: 0927-0507. ISBN: 978-0-
444-87472-6. doi:10.1016/S0927-0507(05)80189-6. URL: http://alexandria.tue.nl/
repository/books/339776.pdf (visited on 2023-12-06) (cit. on p. 334).

https://www.lk.cs.ucla.edu/data/files/Kleinrock/Information%20Flow%20in%20Large%20Communication%20Nets.pdf
https://www.lk.cs.ucla.edu/data/files/Kleinrock/Information%20Flow%20in%20Large%20Communication%20Nets.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2836-9459
https://blogs.loc.gov/loc/2021/11/its-as-if-it-was-written-in-clay-for-4200-years
https://blogs.loc.gov/loc/2021/11/its-as-if-it-was-written-in-clay-for-4200-years
https://www.codeproject.com/Articles/105768/Audit-Trail-Tracing-Data-Changes-in-Database
https://www.codeproject.com/Articles/105768/Audit-Trail-Tracing-Data-Changes-in-Database
https://dsg.csail.mit.edu/6.5830
https://dsg.csail.mit.edu/6.5830
https://dsg.csail.mit.edu/6.5830/lectures/lec1.pdf
https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/regex.html
https://isbnsearch.org/isbn/978-1-4842-7499-6
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2475-6725
https://doi.org/10.1002/SPY2.370
https://doi.org/10.1134/S0361768823050055
https://isbnsearch.org/isbn/978-0-13-668155-7
https://isbnsearch.org/isbn/978-1-80323-424-3
https://isbnsearch.org/isbn/978-0-13-754493-6
https://isbnsearch.org/isbn/978-0-13-754493-6
https://peps.python.org/pep-0482
https://peps.python.org/pep-0482
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0927-0507
https://isbnsearch.org/isbn/978-0-444-87472-6
https://isbnsearch.org/isbn/978-0-444-87472-6
https://doi.org/10.1016/S0927-0507(05)80189-6
http://alexandria.tue.nl/repository/books/339776.pdf
http://alexandria.tue.nl/repository/books/339776.pdf

BIBLIOGRAPHY 358

[244] Kent D. Lee and Steve Hubbard. Data Structures and Algorithms with Python. Undergraduate
Topics in Computer Science (UTICS). Cham, Switzerland: Springer, 2015. ISBN: 978-3-319-
13071-2. doi:10.1007/978-3-319-13072-9 (cit. on pp. 20, 54, 335).

[245] Jukka Lehtosalo, Ivan Levkivskyi, Jared Hance, Ethan Smith, Guido van Rossum, Jelle “JelleZi-
jlstra” Zijlstra, Michael J. Sullivan, Shantanu Jain, Xuanda Yang, Jingchen Ye, Nikita Sobolev,
and Mypy Contributors. Mypy – Static Typing for Python. San Francisco, CA, USA: GitHub Inc,
2024. URL: https://github.com/python/mypy (visited on 2024-08-17) (cit. on p. 334).

[246] Marc-André Lemburg. Python Database API Specification v2.0. Python Enhancement Pro-
posal (PEP) 249. Beaverton, OR, USA: Python Software Foundation (PSF), Apr. 12, 1999.
URL: https://peps.python.org/pep-0249 (visited on 2025-02-02) (cit. on pp. 54, 335).

[247] Reuven M. Lerner. Pandas Workout. Shelter Island, NY, USA: Manning Publications, June 2024.
ISBN: 978-1-61729-972-8 (cit. on pp. 117, 335).

[248] LibreOffice – The Document Foundation. Berlin, Germany: The Document Foundation, 2024.
URL: https://www.libreoffice.org (visited on 2024-12-12) (cit. on pp. 2, 15, 43, 333,
334).

[249] Joseph Carl Robnett “Lick” Licklider. MEMORANDUM FOR: Members and Affiliates of
the Intergalactic Computer Network. Washington, DC, USA: Advanced Research Projects
Agency (ARPA), Apr. 23, 1963. URL: https://worrydream.com/refs/Licklider_1963_-
_Members_and_Affiliates_of_the_Intergalactic_Computer_Network.pdf (visited on
2025-01-20) (cit. on p. 12).

[250] Tony Loton. “Data Modeling: Entity-Relationship Diagram (ER Diagram)”. In: ModernAna-
lyst.com. Calabasas, CA, USA: Modern Analyst Media, LLC, 2006–2025. URL: https://
www.modernanalyst.com/Resources/Articles/tabid/115/ID/2008/Data-Modeling-
Entity-Relationship-Diagram-ER-Diagram.aspx (visited on 2025-04-05) (cit. on pp. 185,
186).

[251] Marc Loy, Patrick Niemeyer, and Daniel Leuck. Learning Java. 5th ed. Sebastopol, CA, USA:
O’Reilly Media, Inc., Mar. 2020. ISBN: 978-1-4920-5627-0 (cit. on p. 333).

[252] Peter Luschny. A New Kind of Factorial Function. Highland Park, NJ, USA: The OEIS Foun-
dation Inc., Oct. 4, 2015. URL: https://oeis.org/A000142/a000142.pdf (visited on
2024-09-29) (cit. on p. 331).

[253] Mark Lutz. Learning Python. 6th ed. Sebastopol, CA, USA: O’Reilly Media, Inc., Mar. 2025.
ISBN: 978-1-0981-7130-8 (cit. on p. 335).

[254] Stuart Macfarlane. A Brief History of Databases. Claymont, DE, USA: Sutori Website Admin-
istrator/HSTRY LTD., Nov. 1, 2024. URL: https://www.sutori.com/en/story/a-brief-
history-of-databases (visited on 2025-01-10) (cit. on p. 8).

[255] Machine Readable Travel Documents. Part 3: Specifications Common to all MRTDs. Eighth
Edition. Tech. rep. Doc 9303. Montreal, QC, Canada: International Civil Aviation Organiza-
tion (ICAO), 2021. URL: https://www.icao.int/publications/documents/9303_p3_
cons_en.pdf (visited on 2025-04-03) (cit. on p. 180).

[256] Robert W. Mantha. “Data Flow and Data Structure Modeling for Database Requirements De-
termination: A Comparative Study”. MIS Quarterly: Management Information Systems Quar-
terly (MISQ) 11(4):531–545, Dec. 1987. Minneapolis, MN, USA: University of Minnesota –
Twin Cities. ISSN: 0276-7783 (cit. on p. 159).

[257] MariaDB Server Documentation. Milpitas, CA, USA: MariaDB, 2025. URL: https://mariadb.
com/kb/en/documentation (visited on 2025-04-24) (cit. on p. 334).

[258] “Ferranti Computing Systems Atlas 1 Brochure: 1962”. In: Chilton Computing. Ed. by Victoria
Marshall. Swindon, Wiltshire, England, UK: Science and Technology Facilities Council (STFC),
UK Research and Innovation (UKRI), May 2, 2025. URL: https://www.chilton-computing.
org.uk/acl/technology/atlas/p002.htm (visited on 2025-05-29) (cit. on pp. 9, 10).

[259] “Mathematical Functions and Operators”. In: PostgreSQL Documentation. 17.4. The Post-
greSQL Global Development Group (PGDG), Feb. 20, 2025. Chap. 9.3. URL: https://www.
postgresql.org/docs/17/functions-math.html (visited on 2025-02-27) (cit. on p. 96).

https://isbnsearch.org/isbn/978-3-319-13071-2
https://isbnsearch.org/isbn/978-3-319-13071-2
https://doi.org/10.1007/978-3-319-13072-9
https://github.com/JelleZijlstra
https://github.com/JelleZijlstra
https://github.com/python/mypy
https://peps.python.org/pep-0249
https://isbnsearch.org/isbn/978-1-61729-972-8
https://www.libreoffice.org
https://worrydream.com/refs/Licklider_1963_-_Members_and_Affiliates_of_the_Intergalactic_Computer_Network.pdf
https://worrydream.com/refs/Licklider_1963_-_Members_and_Affiliates_of_the_Intergalactic_Computer_Network.pdf
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/2008/Data-Modeling-Entity-Relationship-Diagram-ER-Diagram.aspx
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/2008/Data-Modeling-Entity-Relationship-Diagram-ER-Diagram.aspx
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/2008/Data-Modeling-Entity-Relationship-Diagram-ER-Diagram.aspx
https://isbnsearch.org/isbn/978-1-4920-5627-0
https://oeis.org/A000142/a000142.pdf
https://isbnsearch.org/isbn/978-1-0981-7130-8
https://www.sutori.com/en/story/a-brief-history-of-databases
https://www.sutori.com/en/story/a-brief-history-of-databases
https://www.icao.int/publications/documents/9303_p3_cons_en.pdf
https://www.icao.int/publications/documents/9303_p3_cons_en.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0276-7783
https://mariadb.com/kb/en/documentation
https://mariadb.com/kb/en/documentation
https://www.chilton-computing.org.uk/acl/technology/atlas/p002.htm
https://www.chilton-computing.org.uk/acl/technology/atlas/p002.htm
https://www.postgresql.org/docs/17/functions-math.html
https://www.postgresql.org/docs/17/functions-math.html

BIBLIOGRAPHY 359

[260] Steve McConnel. “From the Editor – An Ounce of Prevention”. IEEE Software 18(3), May–June
2001. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE). ISSN: 0740-
7459. doi:10.1109/MS.2001.922718 (cit. on p. 158).

[261] Steve McConnel. Rapid Development: Taming Wild Software Schedules. Hoboken, NJ, USA:
Microsoft Press, Pearson Education, Inc., July 1996. ISBN: 978-1-55615-900-8 (cit. on pp. 154,
159, 333, 335).

[262] Ron McFadyen and Cindy Miller. Relational Databases and Microsoft Access. 3rd ed. Palatine,
IL, USA: Harper College, 2014–2019. URL: https://harpercollege.pressbooks.pub/
relationaldatabases (visited on 2025-04-11) (cit. on pp. 15, 18, 334).

[263] Michael McLaughlin. MySQL Workbench: Data Modeling & Development. Oracle Press. New
York, NY, USA: McGraw-Hill, Apr. 9, 2013. ISBN: 978-0-07-179188-5 (cit. on pp. 201, 334).

[264] MDS: Melvil Decimal System. Portland, ME, USA: LibraryThing, Inc., 2025. URL: https:
//www.librarything.com/mds (visited on 2025-05-29) (cit. on p. 9).

[265] Jim Melton and Alan R. Simon. SQL: 1999 – Understanding Relational Language Components.
The Morgan Kaufmann Series in Data Management Systems. Burlington, MA, USA/San Mateo,
CA, USA: Morgan Kaufmann Publishers, June 2001. ISBN: 978-1-55860-456-8 (cit. on pp. 17,
82, 336).

[266] Carl Meyer. Python Virtual Environments. Python Enhancement Proposal (PEP) 405. Beaver-
ton, OR, USA: Python Software Foundation (PSF), June 13, 2011–May 24, 2012. URL: https:
//peps.python.org/pep-0405 (visited on 2024-12-25) (cit. on p. 338).

[267] Microsoft Word. Redmond, WA, USA: Microsoft Corporation, 2024. URL: https://www.
microsoft.com/en-us/microsoft-365/word (visited on 2024-12-12) (cit. on p. 334).

[268] Zsolt Nagy. Regex Quick Syntax Reference: Understanding and Using Regular Expressions. New
York, NY, USA: Apress Media, LLC, Aug. 2018. ISBN: 978-1-4842-3876-9 (cit. on p. 335).

[269] Constantine Nalimov. Crow’s Foot Notation in Entity-Relationship Diagrams. Prague, Czech
Republic: Blocshop s.r.o., Sept. 2, 2020. URL: https://www.gleek.io/blog/crows-foot-
notation (visited on 2025-04-05) (cit. on pp. 184, 186).

[270] Constantine Nalimov. ER Diagram for a Hospital Management System (Crow’s Foot Notation).
Prague, Czech Republic: Blocshop s.r.o., Dec. 3, 2012. URL: https://www.gleek.io/blog/
erd-hospital-management (visited on 2025-04-05) (cit. on p. 186).

[271] Adrien “anayrat” Nayrat. “PostgreSQL: Deferrable Constraints”. In: Select * from Adrien. Va-
lence, Drôme, Rhône-Alpes, France, Aug. 13, 2016. URL: https://blog.anayrat.info/
en/2016/08/13/postgresql-deferrable-constraints (visited on 2025-04-10) (cit. on
p. 190).

[272] Catherine Nelson. Software Engineering for Data Scientists. Sebastopol, CA, USA: O’Reilly
Media, Inc., Apr. 2024. ISBN: 978-1-0981-3620-8 (cit. on pp. 151, 152, 154, 336).

[273] Cameron Newham and Bill Rosenblatt. Learning the Bash Shell – Unix Shell Programming: Cov-
ers Bash 3.0. 3rd ed. Sebastopol, CA, USA: O’Reilly Media, Inc., 2005. ISBN: 978-0-596-00965-6
(cit. on p. 331).

[274] Thomas Nield. An Introduction to Regular Expressions. Sebastopol, CA, USA: O’Reilly Me-
dia, Inc., June 2019. ISBN: 978-1-4920-8255-2 (cit. on p. 335).

[275] “Numeric Types”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 8.1. URL: https://www.postgresql.org/docs/17/
datatype-numeric.html (visited on 2025-02-27) (cit. on pp. 94, 108).

[276] NumPy Team. NumPy. San Francisco, CA, USA: GitHub Inc and Austin, TX, USA: NumFO-
CUS, Inc. URL: https://numpy.org (visited on 2025-02-02) (cit. on pp. 117, 334).

[277] Kevin C. O’Kane. The Mumps Programming Language. North Charleston, SC, USA: CreateS-
pace Independent Publishing Platform, June 19, 2008. ISBN: 978-1-4382-4338-2 (cit. on p. 195).

[278] Kevin C. O’Kane. The Mumps Programming Language. Cedar Falls, IA, USA: University of
Northern Iowa, Apr. 4, 2025. URL: https://www.cs.uni.edu/~okane (visited on 2025-04-
04) (cit. on p. 195).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=0740-7459
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0740-7459
https://doi.org/10.1109/MS.2001.922718
https://isbnsearch.org/isbn/978-1-55615-900-8
https://harpercollege.pressbooks.pub/relationaldatabases
https://harpercollege.pressbooks.pub/relationaldatabases
https://isbnsearch.org/isbn/978-0-07-179188-5
https://www.librarything.com/mds
https://www.librarything.com/mds
https://isbnsearch.org/isbn/978-1-55860-456-8
https://peps.python.org/pep-0405
https://peps.python.org/pep-0405
https://www.microsoft.com/en-us/microsoft-365/word
https://www.microsoft.com/en-us/microsoft-365/word
https://isbnsearch.org/isbn/978-1-4842-3876-9
https://www.gleek.io/blog/crows-foot-notation
https://www.gleek.io/blog/crows-foot-notation
https://www.gleek.io/blog/erd-hospital-management
https://www.gleek.io/blog/erd-hospital-management
https://github.com/anayrat
https://blog.anayrat.info/en/2016/08/13/postgresql-deferrable-constraints
https://blog.anayrat.info/en/2016/08/13/postgresql-deferrable-constraints
https://isbnsearch.org/isbn/978-1-0981-3620-8
https://isbnsearch.org/isbn/978-0-596-00965-6
https://isbnsearch.org/isbn/978-1-4920-8255-2
https://www.postgresql.org/docs/17/datatype-numeric.html
https://www.postgresql.org/docs/17/datatype-numeric.html
https://numpy.org
https://isbnsearch.org/isbn/978-1-4382-4338-2
https://www.cs.uni.edu/~okane

BIBLIOGRAPHY 360

[279] Regina O. Obe and Leo S. Hsu. PostgreSQL: Up and Running. 3rd ed. Sebastopol, CA, USA:
O’Reilly Media, Inc., Oct. 2017. ISBN: 978-1-4919-6336-4 (cit. on pp. iii, 14, 20, 23, 78, 330,
335).

[280] OMG® Unified Modeling Language® (OMG UML®). Version 2.5.1. OMG Document
formal/2017-12-05. Milford, MA, USA: Object Management Group, Inc. (OMG), Dec. 2017.
URL: https://www.omg.org/spec/UML/2.5.1/PDF (visited on 2025-03-30) (cit. on pp. 166,
337).

[281] Oracle CODASYL DBMS™ – Database Administration Reference Manual. 7.4.1. Redwood
Shores, CA, USA: Oracle Corporation, Aug. 2022. URL: https://www.oracle.com/a/
tech/docs/collateral/dbm0741-dbadmin-ref.pdf (cit. on p. 195).

[282] “Oracle Timeline: Highlighting the most important moments in Oracle’s history, with commen-
tary from the people who made it happen”. Profit – The Executive Guide to Oracle Applications
12(2):26–33, May 2007. Redwood Shores, CA, USA: Oracle Corporation. ISSN: 1531-7455.
URL: https://www.oracle.com/us/corporate/profit/profit-may-07-151925.pdf
(visited on 2025-06-03) (cit. on pp. 13, 15).

[283] Richard H. Orenstein and Robert C. Daley. TO: Computation Center Staff. LDEDT and BPEDT,
the CTSS Disk Editors. Tech. rep. CC-208. Cambridge, MA, USA: Massachusetts Institute of
Technology (MIT) Computation Center, May 9, 1963. URL: https://people.csail.mit.
edu/saltzer/CTSS/CTSS- Documents/CC- Memos/CC- 208.pdf (visited on 2025-01-08)
(cit. on p. 10).

[284] Robert Orfali, Dan Harkey, and Jeri Edwards. Client/Server Survival Guide. 3rd ed. Chichester,
West Sussex, England, UK: John Wiley and Sons Ltd., Jan. 25, 1999. ISBN: 978-0-471-31615-2
(cit. on pp. 12, 331).

[285] Christopher Painter-Wakefield. A Practical Introduction to Databases. Luck, WI, USA: Rune-
stone Academy, 2022. URL: https://runestone.academy/ns/books/published/practic
al_db/index.html (visited on 2025-04-06) (cit. on p. 16).

[286] Camila A. Paiva, Raquel Maximino, Frederico Paiva, Rafael Accetta Vieira, Nicole Espanha,
João Felipe Pimentel, Igor Wiese, Marco Aurélio Gerosa, Igor Steinmacher, Leonardo Murta, and
Vanessa Braganholo. “Analyzing the Adoption of Database Management Systems throughout
the History of Open Source Projects”. Empirical Software Engineering: An International Journal
30(3):71, Feb. 2025. London, England, UK: Springer Nature Limited. ISSN: 1382-3256. doi:10.
1007/S10664-025-10627-Z. URL: https://www.authorea.com/users/677798/articles
/674742 (visited on 2025-06-04) (cit. on pp. 14, 15, 78).

[287] Ashwin Pajankar. Hands-on Matplotlib: Learn Plotting and Visualizations with Python 3. New
York, NY, USA: Apress Media, LLC, Nov. 2021. ISBN: 978-1-4842-7410-1 (cit. on p. 334).

[288] Charles C. Palmer. COSC 61 Winter 2025: Database Systems. Hanover, MD, USA: Dartmouth
College, Jan.–Mar. 2025. URL: https://www.cs.dartmouth.edu/~cs61 (visited on 2025-04-
06) (cit. on p. 16).

[289] Charles C. Palmer. “ER Modeling”. In: COSC 61 Winter 2025: Database Systems. Hanover,
MD, USA: Dartmouth College, Jan. 15, 2025. Chap. 4. URL: http://www.cs.dartmouth.
edu/~cs61/Lectures/04%20-%20ER%20Modeling/04%20-%20ER%20Modeling.pdf (visited
on 2025-04-08) (cit. on p. 189).

[290] Pandas Developers. Pandas. Austin, TX, USA: NumFOCUS, Inc. and Montreal, QC,
Canada: OVHcloud. URL: https://pandas.pydata.org (visited on 2025-02-02) (cit. on
pp. 117, 335).

[291] Burt Parker. “Introducing ANSI-X3.138-1988: A Standard for Information Resource Dictionary
System (IRDS)”. In: Second Symposium on Assessment of Quality Software Development Tools.
May 27–29, 1992, New Orleans, LA, USA. Los Alamitos, CA, USA: IEEE Computer Society,
pp. 90–99. ISBN: 978-0-8186-2620-3. doi:10.1109/AQSDT.1992.205841 (cit. on p. 12).

https://isbnsearch.org/isbn/978-1-4919-6336-4
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.oracle.com/a/tech/docs/collateral/dbm0741-dbadmin-ref.pdf
https://www.oracle.com/a/tech/docs/collateral/dbm0741-dbadmin-ref.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1531-7455
https://www.oracle.com/us/corporate/profit/profit-may-07-151925.pdf
https://people.csail.mit.edu/saltzer/CTSS/CTSS-Documents/CC-Memos/CC-208.pdf
https://people.csail.mit.edu/saltzer/CTSS/CTSS-Documents/CC-Memos/CC-208.pdf
https://isbnsearch.org/isbn/978-0-471-31615-2
https://runestone.academy/ns/books/published/practical_db/index.html
https://runestone.academy/ns/books/published/practical_db/index.html
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1382-3256
https://doi.org/10.1007/S10664-025-10627-Z
https://doi.org/10.1007/S10664-025-10627-Z
https://www.authorea.com/users/677798/articles/674742
https://www.authorea.com/users/677798/articles/674742
https://isbnsearch.org/isbn/978-1-4842-7410-1
https://www.cs.dartmouth.edu/~cs61
http://www.cs.dartmouth.edu/~cs61/Lectures/04%20-%20ER%20Modeling/04%20-%20ER%20Modeling.pdf
http://www.cs.dartmouth.edu/~cs61/Lectures/04%20-%20ER%20Modeling/04%20-%20ER%20Modeling.pdf
https://pandas.pydata.org
https://isbnsearch.org/isbn/978-0-8186-2620-3
https://doi.org/10.1109/AQSDT.1992.205841

BIBLIOGRAPHY 361

[292] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems (NeurIPS’2019). Dec. 8–14, 2019, Vancouver, BC, Canada. Ed. by Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett. San Diego, CA, USA: The Neural Information Processing Systems
Foundation (NeurIPS), 2019, pp. 8024–8035. ISBN: 978-1-7138-0793-3. URL: https :
//proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-
Abstract.html (visited on 2024-07-18) (cit. on pp. 117, 335).

[293] “Pattern Matching”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Develop-
ment Group (PGDG), Feb. 20, 2025. Chap. 9.7. URL: https://www.postgresql.org/docs/
17/functions-matching.html (visited on 2025-02-27) (cit. on p. 96).

[294] Alan Paul, Vishal Sharma, and Oluwafemi Olukoya. “SQL Injection Attack: Detection, Prioriti-
zation & Prevention”. Journal of Information Security and Applications 85:103871, Sept. 2024.
Amsterdam, The Netherlands: Elsevier B.V. ISSN: 2214-2126. doi:10.1016/J.JISA.2024.
103871 (cit. on p. 336).

[295] Linda Dailey Paulson. “Open Source Databases Move into the Marketplace”. Computer
37(7):13–15, July 2004. Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers (IEEE). ISSN: 0018-9162. doi:10.1109/MC.2004.62 (cit. on p. 14).

[296] Fabian Pedregos, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot,
and Edouard Duchesnay. “Scikit-learn: Machine Learning in Python”. Journal of Machine
Learning Research (JMLR) 12:2825–2830, Oct. 2011. Cambridge, MA, USA: MIT Press.
ISSN: 1532-4435. doi:10.5555/1953048.2078195 (cit. on pp. 117, 335).

[297] Yasset Pérez-Riverol, Laurent Gatto, Rui Wang, Timo Sachsenberg, Julian Uszkoreit, Felipe da
Veiga Leprevost, Christian Fufezan, Tobias Ternent, Stephen J. Eglen, Daniel S. Katz, Tom J.
Pollard, Alexander Konovalov, Robert M. Flight, Kai Blin, and Juan Antonio Vizcaíno. “Ten
Simple Rules for Taking Advantage of Git and GitHub”. PLOS Computational Biology 12(7),
July 14, 2016. San Francisco, CA, USA: Public Library of Science (PLOS). ISSN: 1553-7358.
doi:10.1371/JOURNAL.PCBI.1004947 (cit. on p. 332).

[298] Dušan Petković. Microsoft SQL Server 2019: A Beginner’s Guide. 7th ed. New York, NY, USA:
McGraw-Hill, Jan. 2020. ISBN: 978-1-260-45888-6 (cit. on pp. 15, 17, 334).

[299] Shari Lawrence Pfleeger and Joanne M. Atlee. Software Engineering: Theory and Practice.
Hoboken, NJ, USA: Pearson Education, Inc., Feb. 2009. ISBN: 978-0-13-606169-4 (cit. on
p. 153).

[300] Donnie Pinkston. “Converting E-R Diagrams to Relational Model”. In: CS101b – Introduction to
Relational Databases. Pasadena, CA, USA: California Institute of Technology (Caltech), Win.
2007. Chap. 17. URL: http://users.cms.caltech.edu/~donnie/dbcourse/intro0607/
lectures/Lecture17.pdf (visited on 2025-04-04) (cit. on p. 181).

[301] Donnie Pinkston. CS101b – Introduction to Relational Databases. Pasadena, CA, USA: Cal-
ifornia Institute of Technology (Caltech), Win. 2006–Spr. 2007. URL: http://users.cms.
caltech.edu/~donnie/dbcourse/intro0607 (visited on 2025-04-04) (cit. on p. 16).

[302] Donnie Pinkston. “Entity-Relationship Model II”. In: CS101b – Introduction to Relational
Databases. Pasadena, CA, USA: California Institute of Technology (Caltech), Win. 2007.
Chap. 15. URL: http : / / users . cms . caltech . edu / ~donnie / dbcourse / intro0607 /
lectures/Lecture15.pdf (visited on 2025-04-04) (cit. on p. 183).

[303] pip Developers. pip Documentation v24.3.1. Beaverton, OR, USA: Python Software Founda-
tion (PSF), Oct. 27, 2024. URL: https://pip.pypa.io (visited on 2024-12-25) (cit. on
p. 335).

https://isbnsearch.org/isbn/978-1-7138-0793-3
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://www.postgresql.org/docs/17/functions-matching.html
https://www.postgresql.org/docs/17/functions-matching.html
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2214-2126
https://doi.org/10.1016/J.JISA.2024.103871
https://doi.org/10.1016/J.JISA.2024.103871
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0018-9162
https://doi.org/10.1109/MC.2004.62
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1532-4435
https://doi.org/10.5555/1953048.2078195
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1553-7358
https://doi.org/10.1371/JOURNAL.PCBI.1004947
https://isbnsearch.org/isbn/978-1-260-45888-6
https://isbnsearch.org/isbn/978-0-13-606169-4
http://users.cms.caltech.edu/~donnie/dbcourse/intro0607/lectures/Lecture17.pdf
http://users.cms.caltech.edu/~donnie/dbcourse/intro0607/lectures/Lecture17.pdf
http://users.cms.caltech.edu/~donnie/dbcourse/intro0607
http://users.cms.caltech.edu/~donnie/dbcourse/intro0607
http://users.cms.caltech.edu/~donnie/dbcourse/intro0607/lectures/Lecture15.pdf
http://users.cms.caltech.edu/~donnie/dbcourse/intro0607/lectures/Lecture15.pdf
https://pip.pypa.io

BIBLIOGRAPHY 362

[304] Hasso Plattner. “Insert-Only”. In: A Course in In-Memory Data Management: The Inner
Mechanics of In-Memory Databases. 2nd ed. Heidelberg, Baden-Württemberg, Germany:
Springer-Verlag GmbH Germany, June 2014. Chap. Advanced Database Storage Techniques, 3,
pp. 173–180. ISBN: 978-3-642-55269-4. doi:10.1007/978- 3- 642- 55270- 0_26 (cit. on
p. 193).

[305] Pope Gregory XIII. Inter Gravissimas. Proclamation / Papal Bull. Vatican: Catholic Church,
Feb. 24, 1582 (cit. on pp. 106, 108).

[306] “POSIX Regular Expressions”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global
Development Group (PGDG), Feb. 20, 2025. Chap. 9.7.3. URL: https://www.postgresql.
org/docs/17/functions-matching.html#FUNCTIONS-POSIX-REGEXP (visited on 2025-02-
27) (cit. on pp. 102, 335).

[307] “libpq – C Library”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. Part IV. Client Interfaces, Chapter 32. URL: https:
//www.postgresql.org/docs/17/libpq.html (visited on 2025-03-05) (cit. on p. 121).

[308] PostgreSQL Documentation. 17.4. The PostgreSQL Global Development Group (PGDG), Feb.
2025. URL: https://www.postgresql.org/docs/17/index.html (visited on 2025-02-25)
(cit. on pp. 18, 83, 95, 328).

[309] PostgreSQL Essentials: Leveling Up Your Data Work. Sebastopol, CA, USA: O’Reilly Media, Inc.,
Mar. 2024 (cit. on pp. iii, 14, 20, 23, 78, 330, 335).

[310] PostgreSQL JDBC Driver. The PostgreSQL Global Development Group (PGDG), Jan. 14, 2025.
URL: https://jdbc.postgresql.org (visited on 2025-03-05) (cit. on p. 121).

[311] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. “1.1 Error,
Accuracy, and Stability”. In: Numerical Recipes: The Art of Scientific Computing. 3rd ed. Cam-
bridge, England, UK: Cambridge University Press & Assessment, 2007–2011. Chap. 1 Prelimi-
naries, pp. 8–12. ISBN: 978-0-521-88068-8. URL: https://numerical.recipes/book.html
(visited on 2024-07-27). Version 3.04 (cit. on pp. 93, 328).

[312] Roger S. Pressman and Bruce R. Maxim. Software Engineering: A Practitioner’s Ap-
proach (SEPA). 9th ed. New York, NY, USA: McGraw-Hill, 2020. ISBN: 978-1-259-87297-6
(cit. on p. 152).

[313] Programming Languages – C, Working Document of SC22/WG14. International Standard ISO/
3IEC9899:2017 C17 Ballot N2176. Geneva, Switzerland: International Organization for Stan-
dardization (ISO) and International Electrotechnical Commission (IEC), Nov. 2017. URL: ht
tps://files.lhmouse.com/standards/ISO%20C%20N2176.pdf (visited on 2024-06-29)
(cit. on p. 331).

[314] “psql – PostgreSQL Interactive Terminal”. In: PostgreSQL Documentation. 17.4. The Post-
greSQL Global Development Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL:
https://www.postgresql.org/docs/17/app-psql.html (visited on 2025-06-07) (cit. on
p. 84).

[315] Quality Management Systems – Guidelines for the Application of ISO 9001 in Local Govern-
ment. International Standard ISO 18091:2019, Edition 2. Geneva, Switzerland: International
Organization for Standardization (ISO), 2019. See [316] (cit. on p. 160).

[316] Quality Management Systems – Requirements. International Standard ISO 9001:2015, Edition 5.
Geneva, Switzerland: International Organization for Standardization (ISO), 2015 (cit. on pp. 160,
362).

[317] Saty Raghavachary. CSCI 585: Database Systems. Los Angeles, CA, USA: University of Southern
California (UCS), Spr. 2024. URL: https://bytes.usc.edu/cs585/s24-d-a-t-aaa/
lectures (visited on 2025-04-06) (cit. on p. 16).

[318] Saty Raghavachary. “ER”. In: CSCI 585: Database Systems. Los Angeles, CA, USA: University
of Southern California (UCS), Spr. 2024. URL: https://bytes.usc.edu/cs585/s24-d-a-
t-aaa/lectures/ER/slides.html (visited on 2025-04-06) (cit. on pp. 182, 184–186).

[319] RAMAC: The first random-access disk drive revolutionized how businesses use computers and
set the stage for everything from space flight to e-commerce. IBM Heritage. Armonk, NY, USA:
International Business Machines Corporation (IBM). URL: https://www.ibm.com/history/
ramac (visited on 2025-01-09) (cit. on p. 9).

https://isbnsearch.org/isbn/978-3-642-55269-4
https://doi.org/10.1007/978-3-642-55270-0_26
https://www.postgresql.org/docs/17/functions-matching.html#FUNCTIONS-POSIX-REGEXP
https://www.postgresql.org/docs/17/functions-matching.html#FUNCTIONS-POSIX-REGEXP
https://www.postgresql.org/docs/17/libpq.html
https://www.postgresql.org/docs/17/libpq.html
https://www.postgresql.org/docs/17/index.html
https://jdbc.postgresql.org
https://isbnsearch.org/isbn/978-0-521-88068-8
https://numerical.recipes/book.html
https://isbnsearch.org/isbn/978-1-259-87297-6
https://files.lhmouse.com/standards/ISO%20C%20N2176.pdf
https://files.lhmouse.com/standards/ISO%20C%20N2176.pdf
https://www.postgresql.org/docs/17/app-psql.html
https://bytes.usc.edu/cs585/s24-d-a-t-aaa/lectures
https://bytes.usc.edu/cs585/s24-d-a-t-aaa/lectures
https://bytes.usc.edu/cs585/s24-d-a-t-aaa/lectures/ER/slides.html
https://bytes.usc.edu/cs585/s24-d-a-t-aaa/lectures/ER/slides.html
https://www.ibm.com/history/ramac
https://www.ibm.com/history/ramac

BIBLIOGRAPHY 363

[320] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. 3rd ed. New York,
NY, USA: McGraw-Hill, Aug. 2002. ISBN: 978-0-07-246563-1 (cit. on p. 17).

[321] Sebastian Raschka, Yuxi Liu, and Vahid Mirjalili. Machine Learning with PyTorch and Scikit-
learn. Birmingham, England, UK: Packt Publishing Ltd, Feb. 2022. ISBN: 978-1-80181-931-2
(cit. on pp. 117, 335).

[322] Abhishek Ratan, Eric Chou, Pradeeban Kathiravelu, and Dr. M.O. Faruque Sarker. Python
Network Programming. Birmingham, England, UK: Packt Publishing Ltd, Jan. 2019. ISBN: 978-
1-78883-546-6 (cit. on pp. 12, 331).

[323] Federico Razzoli. Mastering MariaDB. Birmingham, England, UK: Packt Publishing Ltd, Sept.
2014. ISBN: 978-1-78398-154-0 (cit. on pp. 14, 334).

[324] “ re – Regular Expression Operations”. In: Python 3 Documentation. The Python Standard
Library. Beaverton, OR, USA: Python Software Foundation (PSF), 2001–2025. URL: https:
//docs.python.org/3/library/re.html#module-re (visited on 2024-11-01) (cit. on
p. 335).

[325] Robert W. Rector, ed. 1965 Fall Joint Computer Conference (AFIPS’1965, Fall, Part 1). Nov. 30–
Dec. 1, 1965, Las Vegas, NV, USA. New York, NY, USA: Association for Computing Machin-
ery (ACM), Nov.–Dec. 1965. ISBN: 978-1-4503-7885-7. doi:10.1145/1463891.

[326] Mike Reichardt, Michael Gundall, and Hans D. Schotten. “Benchmarking the Operation Times
of NoSQL and MySQL Databases for Python Clients”. In: 47th Annual Conference of the IEEE
Industrial Electronics Society (IECON’2021. Oct. 13–15, 2021, Toronto, ON, Canada. Piscat-
away, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE), Oct. 2021, pp. 1–8.
ISSN: 2577-1647. ISBN: 978-1-6654-3554-3. doi:10.1109/IECON48115.2021.9589382 (cit.
on pp. 14, 334).

[327] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Request for Com-
ments (RFC) 8446. Wilmington, DE, USA: Internet Engineering Task Force (IETF), Aug. 2018.
URL: https://www.ietf.org/rfc/rfc8446.txt (visited on 2025-02-05) (cit. on p. 337).

[328] “ RETURNING”. In: SQLite. Charlotte, NC, USA: Hipp, Wyrick & Company, Inc. (Hwaci), May 8,
2024. URL: https://sqlite.org/lang_returning.html (visited on 2025-04-24) (cit. on
pp. 248, 274).

[329] “Returning Data from Modified Rows”. In: PostgreSQL Documentation. 17.4. The PostgreSQL
Global Development Group (PGDG), Feb. 20, 2025. Chap. 6.4. URL: https://www.postgre
sql.org/docs/17/dml-returning.html (visited on 2025-04-21) (cit. on pp. 247, 274, 310,
311).

[330] Luke Reynolds. “Comparison of Major Linux Package Management Systems”. In:
LinuxConfig.org. Sydney, NSW, Australia: TOSID Group Pty Ltd, Jan. 21, 2025. URL: https:
//linuxconfig.org/comparison- of- major- linux- package- management- systems
(visited on 2025-04-16) (cit. on p. 69).

[331] Mark Richards and Neal Ford. Fundamentals of Software Architecture: An Engineering Ap-
proach. Sebastopol, CA, USA: O’Reilly Media, Inc., Jan. 2020. ISBN: 978-1-4920-4345-4 (cit.
on pp. 12, 331).

[332] Lawrence G. Roberts. “The ARPANET & Computer Networks”. In: ACM Conference on The
History of Personal Workstations (HPW’1986). Jan. 9–10, 1986, Palo Alto, CA, USA. New York,
NY, USA: Association for Computing Machinery (ACM), Jan. 1986, pp. 51–58. ISBN: 978-0-
89791-176-4. doi:10.1145/12178.12182 (cit. on p. 12).

[333] Christopher Rogers. Design Made Easy with Inkscape 1.3. A practical guide to your journey
from beginner to pro-level vector illustration. Birmingham, England, UK: Packt Publishing Ltd,
Apr. 2023. ISBN: 978-1-80107-877-1 (cit. on p. 333).

[334] Quentin Rouland, Stojanche Gjorcheski, and Jason Jaskolka. “Eliciting a Security Architecture
Requirements Baseline from Standards and Regulations”. In: 31st IEEE International Require-
ments Engineering Conference (RE’2023), Workshops. Sept. 4–5, 2023. Ed. by Kurt Schneider,
Fabiano Dalpiaz, and Jennifer Horkoff. Hannover, Niedersachsen, Germany: Institute of Electri-
cal and Electronics Engineers (IEEE), pp. 224–229. ISSN: 2770-6826. ISBN: 979-8-3503-2692-5.
doi:10.1109/REW57809.2023.00045 (cit. on pp. 158, 159).

https://isbnsearch.org/isbn/978-0-07-246563-1
https://isbnsearch.org/isbn/978-1-80181-931-2
https://isbnsearch.org/isbn/978-1-78883-546-6
https://isbnsearch.org/isbn/978-1-78883-546-6
https://isbnsearch.org/isbn/978-1-78398-154-0
https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/re.html#module-re
https://isbnsearch.org/isbn/978-1-4503-7885-7
https://doi.org/10.1145/1463891
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2577-1647
https://isbnsearch.org/isbn/978-1-6654-3554-3
https://doi.org/10.1109/IECON48115.2021.9589382
https://www.ietf.org/rfc/rfc8446.txt
https://sqlite.org/lang_returning.html
https://www.postgresql.org/docs/17/dml-returning.html
https://www.postgresql.org/docs/17/dml-returning.html
https://linuxconfig.org/comparison-of-major-linux-package-management-systems
https://linuxconfig.org/comparison-of-major-linux-package-management-systems
https://isbnsearch.org/isbn/978-1-4920-4345-4
https://isbnsearch.org/isbn/978-0-89791-176-4
https://isbnsearch.org/isbn/978-0-89791-176-4
https://doi.org/10.1145/12178.12182
https://isbnsearch.org/isbn/978-1-80107-877-1
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2770-6826
https://isbnsearch.org/isbn/979-8-3503-2692-5
https://doi.org/10.1109/REW57809.2023.00045

BIBLIOGRAPHY 364

[335] “Row and Array Comparisons”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global
Development Group (PGDG), Feb. 20, 2025. Chap. 9.25. URL: https://www.postgresql.
org/docs/current/functions-comparisons.html (visited on 2025-05-08) (cit. on p. 298).

[336] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (AIMA). 4th ed.
Hoboken, NJ, USA: Pearson Education, Inc. ISBN: 978-1-292-40113-3. URL: https://aima.
cs.berkeley.edu (visited on 2024-06-27) (cit. on p. 331).

[337] Randall Rustin, ed. Data Base Systems: Courant Computer Science Symposium 6. May 24–25,
1971, New York, NY, USA. Englewood Cliffs, NJ, USA: Prentice-Hall, 1972. ISBN: 978-0-13-
196741-0 (cit. on p. 346).

[338] Stephen R. Schach. Object-Oriented Software Engineering. New York, NY, USA: McGraw-Hill,
Sept. 2007. ISBN: 978-0-07-352333-0 (cit. on pp. 153, 154, 334, 335).

[339] “Why not use Double or Float to represent currency?” In: Stack Overflow. Ed. by Jan Schultke.
New York, NY, USA: Stack Exchange Inc., Sept. 16, 2010–Jan. 13, 2025. URL: https://
stackoverflow.com/questions/3730019 (visited on 2025-02-27) (cit. on pp. 93, 328).

[340] Heinz Schweppe and Manuel Scholz. “Conceptual Database Design: Integrity Constraints and
Modeling Patterns”. In: Einführung in die Datenbanksysteme. Datenbanken für die Bioinfor-
matik. Berlin, Germany: Freie Universität Berlin, Apr.–Oct. 2005. Chap. 2.3/2.4. URL: https:
//www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-03-ConceptualMod
eling2-2.pdf (visited on 2025-03-27) (cit. on pp. 164, 181, 183).

[341] Heinz Schweppe and Manuel Scholz. “Conceptual Database Design: Requirement Analysis and
Modeling Languages”. In: Einführung in die Datenbanksysteme. Datenbanken für die Bioinfor-
matik. Berlin, Germany: Freie Universität Berlin, Apr.–Oct. 2005. Chap. 2.1/2.2. URL: https:
//www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-02-ConceptualMod
eling1-2.pdf (visited on 2025-03-24) (cit. on pp. 156, 164, 166).

[342] Heinz Schweppe and Manuel Scholz. Einführung in die Datenbanksysteme. Datenbanken für
die Bioinformatik. Berlin, Germany: Freie Universität Berlin, Apr.–Oct. 2005. URL: https:
//www.inf.fu-berlin.de/lehre/SS05/19517-V (visited on 2025-01-08) (cit. on p. 16).

[343] Heinz Schweppe and Manuel Scholz. “Introduction”. In: Einführung in die Datenbanksysteme.
Datenbanken für die Bioinformatik. Berlin, Germany: Freie Universität Berlin, Apr.–Oct. 2005.
Chap. 1. URL: https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/
dbs045-01-Intro-2.pdf (visited on 2025-01-08) (cit. on pp. 6, 151, 156, 195).

[344] Heinz Schweppe and Manuel Scholz. “Normalization: Quality of Relational Designs”. In: Ein-
führung in die Datenbanksysteme. Datenbanken für die Bioinformatik. Berlin, Germany: Freie
Universität Berlin, Apr.–Oct. 2005. Chap. 5. URL: https://www.inf.fu-berlin.de/lehre/
SS05/19517-V/FolienEtc/dbs05-07-FA-1-2.pdf (visited on 2025-05-06) (cit. on pp. 165,
328).

[345] Heinz Schweppe and Manuel Scholz. “Schema Definition with SQL / DDL (II)”. In: Einführung in
die Datenbanksysteme. Datenbanken für die Bioinformatik. Berlin, Germany: Freie Universität
Berlin, Apr.–Oct. 2005. Chap. 4. URL: https://www.inf.fu-berlin.de/lehre/SS05/
19517-V/FolienEtc/dbs05-06-DDLSQL-2-2.pdf (visited on 2025-05-15) (cit. on pp. 197,
308, 320, 336).

[346] Heinz Schweppe and Manuel Scholz. “Schema Design: Logical Design using the Relational Data
Model”. In: Einführung in die Datenbanksysteme. Datenbanken für die Bioinformatik. Berlin,
Germany: Freie Universität Berlin, Apr.–Oct. 2005. Chap. 3. URL: https://www.inf.fu-
berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-04-RDM1-2.pdf (visited on 2025-04-
04) (cit. on pp. 174, 197, 198, 200).

[347] Matthias Sedlmeier and Martin Gogolla. “Model Driven ActiveRecord with yEd”. In: 25th Interna-
tional Conference on Information Modelling and Knowledge Bases XXVII (EJC’2015). June 8–
12, 2015, Maribor, Štajerska, Podravska, Slovenia. Ed. by Tatjana Welzer, Hannu Jaakkola,
Bernhard Thalheim, Yasushi Kiyoki, and Naofumi Yoshida. Vol. 280. Frontiers in Artificial Intel-
ligence and Applications. Amsterdam, The Netherlands: IOS Press BV, pp. 65–76. ISSN: 0922-
6389. ISBN: 978-1-61499-610-1. doi:10.3233/978-1-61499-611-8-65 (cit. on pp. iii, 20,
57, 166, 171, 330, 338).

https://www.postgresql.org/docs/current/functions-comparisons.html
https://www.postgresql.org/docs/current/functions-comparisons.html
https://isbnsearch.org/isbn/978-1-292-40113-3
https://aima.cs.berkeley.edu
https://aima.cs.berkeley.edu
https://isbnsearch.org/isbn/978-0-13-196741-0
https://isbnsearch.org/isbn/978-0-13-196741-0
https://isbnsearch.org/isbn/978-0-07-352333-0
https://stackoverflow.com/questions/3730019
https://stackoverflow.com/questions/3730019
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-03-ConceptualModeling2-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-03-ConceptualModeling2-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-03-ConceptualModeling2-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-02-ConceptualModeling1-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-02-ConceptualModeling1-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-02-ConceptualModeling1-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V
https://www.inf.fu-berlin.de/lehre/SS05/19517-V
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs045-01-Intro-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs045-01-Intro-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-07-FA-1-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-07-FA-1-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-06-DDLSQL-2-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-06-DDLSQL-2-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-04-RDM1-2.pdf
https://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs05-04-RDM1-2.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0922-6389
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0922-6389
https://isbnsearch.org/isbn/978-1-61499-610-1
https://doi.org/10.3233/978-1-61499-611-8-65

BIBLIOGRAPHY 365

[348] Winfried Seimert. LibreOffice 7.3 – Praxiswissen für Ein- und Umsteiger. Blaufelden, Schwäbisch
Hall, Baden-Württemberg, Germany: mitp Verlags GmbH & Co. KG, Apr. 2022. ISBN: 978-3-
7475-0504-5 (cit. on pp. iii, 2, 15, 20, 43, 144, 330, 333, 334).

[349] “ SELECT”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Devel-
opment Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https :
//www.postgresql.org/docs/17/sql- select.html (visited on 2025-05-08) (cit. on
pp. 95, 96, 304).

[350] “Sequence Manipulation Functions”. In: PostgreSQL Documentation. 17.4. The PostgreSQL
Global Development Group (PGDG), Feb. 20, 2025. Chap. 9.17. URL: https://www.postg
resql.org/docs/17/functions-sequence.html (visited on 2025-04-23) (cit. on pp. 253,
274).

[351] “ SET CONSTRAINTS”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Develop-
ment Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https://www.postgre
sql.org/docs/17/sql-set-constraints.html (visited on 2025-04-10) (cit. on p. 190).

[352] Norbert Seyff, Florian Graf, Paul Grünbacher, and Neil A. M. Maiden. “The Mobile Scenario
Presenter: A Tool for in situ Requirements Discovery with Scenarios”. In: 15th IEEE International
Requirements Engineering Conference (RE’2007). Oct. 15–19, 2007, New Delhi, India. Los
Alamitos, CA, USA: IEEE Computer Society, pp. 365–366. ISSN: 1090-705X. ISBN: 978-0-
7695-2935-6. doi:10.1109/RE.2007.27 (cit. on p. 159).

[353] Yakov Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV)
Files. Request for Comments (RFC) 4180. Wilmington, DE, USA: Internet Engineering Task
Force (IETF), Oct. 2005. URL: https://www.ietf.org/rfc/rfc4180.txt (visited on
2025-02-05) (cit. on pp. 2, 331).

[354] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge, England, UK: Cambridge University Press & Assessment, July 2014.
ISBN: 978-1-107-05713-5. URL: http://www.cs.huji.ac.il/~shais/UnderstandingMach
ineLearning (visited on 2024-06-27) (cit. on p. 334).

[355] Yuriy Shamshin. “Conceptual Database Model. Entity Relationship Diagram (ERD)”. In:
Databases. Riga, Latvia: ISMA University of Applied Sciences, May 2024. Chap. 04. URL:
https://dbs.academy.lv/lection/dbs_LS04EN_erd.pdf (visited on 2025-03-29) (cit. on
pp. 164, 166, 173, 174, 181, 183, 332).

[356] Yuriy Shamshin. Databases. Riga, Latvia: ISMA University of Applied Sciences, May 2024. URL:
https://dbs.academy.lv (visited on 2025-01-11) (cit. on p. 16).

[357] Yuriy Shamshin. “Logical Data Models. Relation Model. Relation Algebra”. In: Databases. Riga,
Latvia: ISMA University of Applied Sciences, May 2024. Chap. 05. URL: https : / / dbs .
academy.lv/lection/dbs_LS05EN_rm.pdf (visited on 2025-04-10) (cit. on pp. 165, 198,
199).

[358] Yuriy Shamshin. “Mapping ER Diagrams to Relation Data Model”. In: Databases. Riga, Latvia:
ISMA University of Applied Sciences, May 2024. Chap. 06. URL: https://dbs.academy.lv/
lection/dbs_LS06EN_er2rm.pdf (visited on 2025-04-20) (cit. on pp. 228, 239, 249, 275).

[359] Yuriy Shamshin. “Normalization”. In: Databases. Riga, Latvia: ISMA University of Applied Sci-
ences, May 2024. Chap. 07a. URL: https://dbs.academy.lv/lection/dbs_LS07ENa_
normalization.pdf (visited on 2025-05-03) (cit. on pp. 295, 334).

[360] Yuriy Shamshin. “RDM Normalization. Data Anomalies. Functional Dependency. Normal
Forms.” In: Databases. Riga, Latvia: ISMA University of Applied Sciences, May 2024. Chap. 07.
URL: https://dbs.academy.lv/lection/dbs_LS07EN_normalization.pdf (visited on
2025-05-03) (cit. on pp. 295, 307, 310, 311, 334).

[361] Yuriy Shamshin. “The History of Databases”. In: Databases. Riga, Latvia: ISMA University of
Applied Sciences, May 2024. Chap. 02a. URL: https://dbs.academy.lv/lection/dbs_
LS02ENa_hist.pdf (visited on 2025-01-11) (cit. on p. 8).

[362] Mingtao Shi. “Documenting Software Requirements Specification: A Revisit”. Computer and
Information Science 3(1):17–19, Feb. 2010. Richmond Hill, ON, Canada: Canadian Center of
Science and Education (CCSE). ISSN: 1913-8989. doi:10.5539/CIS.V3N1P17 (cit. on pp. 159,
336).

https://isbnsearch.org/isbn/978-3-7475-0504-5
https://isbnsearch.org/isbn/978-3-7475-0504-5
https://www.postgresql.org/docs/17/sql-select.html
https://www.postgresql.org/docs/17/sql-select.html
https://www.postgresql.org/docs/17/functions-sequence.html
https://www.postgresql.org/docs/17/functions-sequence.html
https://www.postgresql.org/docs/17/sql-set-constraints.html
https://www.postgresql.org/docs/17/sql-set-constraints.html
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1090-705X
https://isbnsearch.org/isbn/978-0-7695-2935-6
https://isbnsearch.org/isbn/978-0-7695-2935-6
https://doi.org/10.1109/RE.2007.27
https://www.ietf.org/rfc/rfc4180.txt
https://isbnsearch.org/isbn/978-1-107-05713-5
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
https://dbs.academy.lv/lection/dbs_LS04EN_erd.pdf
https://dbs.academy.lv
https://dbs.academy.lv/lection/dbs_LS05EN_rm.pdf
https://dbs.academy.lv/lection/dbs_LS05EN_rm.pdf
https://dbs.academy.lv/lection/dbs_LS06EN_er2rm.pdf
https://dbs.academy.lv/lection/dbs_LS06EN_er2rm.pdf
https://dbs.academy.lv/lection/dbs_LS07ENa_normalization.pdf
https://dbs.academy.lv/lection/dbs_LS07ENa_normalization.pdf
https://dbs.academy.lv/lection/dbs_LS07EN_normalization.pdf
https://dbs.academy.lv/lection/dbs_LS02ENa_hist.pdf
https://dbs.academy.lv/lection/dbs_LS02ENa_hist.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1913-8989
https://doi.org/10.5539/CIS.V3N1P17

BIBLIOGRAPHY 366

[363] Ellen Siever, Stephen Figgins, Robert Love, and Arnold Robbins. Linux in a Nutshell. 6th ed. Se-
bastopol, CA, USA: O’Reilly Media, Inc., Sept. 2009. ISBN: 978-0-596-15448-6 (cit. on p. 333).

[364] Abraham “Avi” Silberschatz, Henry F. “Hank” Korth, and S. Sudarshan. Database System Con-
cepts. 7th ed. New York, NY, USA: McGraw-Hill, Mar. 2019. ISBN: 978-0-07-802215-9 (cit. on
p. 16).

[365] Bryan Sills, Brian Gardner, Kristin Marsicano, and Chris Stewart. Android Programming: The
Big Nerd Ranch Guide. 5th ed. Reading, MA, USA: Addison-Wesley Professional, May 2022.
ISBN: 978-0-13-764579-4 (cit. on p. 331).

[366] Anna Skoulikari. Learning Git. Sebastopol, CA, USA: O’Reilly Media, Inc., May 2023. ISBN: 978-
1-0981-3391-7 (cit. on p. 332).

[367] Ioannis Skoulis, Panos Vassiliadis, and Apostolos V. Zarras. “Open-Source Databases: Within,
Outside, or Beyond Lehman’s Laws of Software Evolution?” In: 26th International Conference
on Advanced Information Systems Engineering (CAiSE’2014). June 16–20, 2014, Thessaloniki,
Central Macedonia, Greece. Ed. by Matthias Jarke, John Mylopoulos, Christoph Quix, Colette
Rolland, Yannis Manolopoulos, Haralambos Mouratidis, and Jennifer Horkoff. Vol. 8484. Lecture
Notes in Computer Science (LNCS). Cham, Switzerland: Springer, pp. 379–393. ISSN: 0302-
9743. ISBN: 978-3-319-07880-9. doi:10.1007/978-3-319-07881-6_26 (cit. on p. 151).

[368] Drew Smith. Modern Apple Platform Administration – macOS and iOS Essentials (2025). Birm-
ingham, England, UK: Packt Publishing Ltd, Feb. 2025. ISBN: 978-1-80580-309-6 (cit. on
pp. 333, 334).

[369] John Miles Smith and Philip Yen-Tang Chang. “Optimizing the Performance of a Relational
Algebra Database Interface”. Communications of the ACM (CACM) 18(10):568–579, Oct. 1975.
New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0001-0782. doi:10.
1145/361020.361025 (cit. on pp. 3, 335).

[370] Software Engineering. New York, NY, USA: Stack Exchange Inc. URL: https://softwareen
gineering.stackexchange.com (visited on 2025-02-27).

[371] Il-Yeol Song and Kristin Froehlich. “Appendix A: A Practical Guide to Entity-Relationship Mod-
eling”. In: Jan. 19, 2000–May 20, 2005. URL: https://cci.drexel.edu/faculty/song/
courses/info%20605/appendix/AppendixA.PDF (visited on 2025-04-05) (cit. on p. 184).

[372] SQLite. Charlotte, NC, USA: Hipp, Wyrick & Company, Inc. (Hwaci), 2025. URL: https:
//sqlite.org (visited on 2025-04-24) (cit. on p. 336).

[373] “SQL Commands”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https://www.postgresql.
org/docs/17/sql-commands.html (visited on 2025-02-25) (cit. on pp. 82, 83, 336).

[374] “SQL Dump”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 25.1. URL: https://www.postgresql.org/docs/
17/backup-dump.html (visited on 2025-03-05) (cit. on p. 145).

[375] Pradeep Kumar Srinivasan and Graham Bleaney. Arbitrary Literal String Type. Python Enhance-
ment Proposal (PEP) 675. Beaverton, OR, USA: Python Software Foundation (PSF), Nov. 30,
2021–Feb. 7, 2022. URL: https://peps.python.org/pep-0675 (visited on 2025-03-04)
(cit. on pp. 118, 119, 336).

[376] Stack Overflow. New York, NY, USA: Stack Exchange Inc. URL: https://stackoverflow.com
(visited on 2025-02-27).

[377] “Stack Overflow 2024 Developer Survey”. In: Stack Overflow. New York, NY, USA: Stack Ex-
change Inc., May–June 2024. URL: https://survey.stackoverflow.co/2024 (visited on
2025-06-01) (cit. on pp. 13–15, 78).

[378] Bogdan Stashchuk. SSL Complete Guide 2021: HTTP to HTTPS. Birmingham, England, UK:
Packt Publishing Ltd, May 2021. ISBN: 978-1-83921-150-8 (cit. on pp. 332, 337).

[379] Ryan K. Stephens and Ronald R. Plew. Sams Teach Yourself SQL in 21 Days. 4th ed. Sams Tech
Yourself. Indianapolis, IN, USA: SAMS Technical Publishing and Hoboken, NJ, USA: Pearson
Education, Inc., Oct. 2002. ISBN: 978-0-672-32451-2 (cit. on pp. 17, 82, 199, 336, 367).

https://isbnsearch.org/isbn/978-0-596-15448-6
https://isbnsearch.org/isbn/978-0-07-802215-9
https://isbnsearch.org/isbn/978-0-13-764579-4
https://isbnsearch.org/isbn/978-1-0981-3391-7
https://isbnsearch.org/isbn/978-1-0981-3391-7
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0302-9743
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0302-9743
https://isbnsearch.org/isbn/978-3-319-07880-9
https://doi.org/10.1007/978-3-319-07881-6_26
https://isbnsearch.org/isbn/978-1-80580-309-6
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/361020.361025
https://doi.org/10.1145/361020.361025
https://softwareengineering.stackexchange.com
https://softwareengineering.stackexchange.com
https://cci.drexel.edu/faculty/song/courses/info%20605/appendix/AppendixA.PDF
https://cci.drexel.edu/faculty/song/courses/info%20605/appendix/AppendixA.PDF
https://sqlite.org
https://sqlite.org
https://www.postgresql.org/docs/17/sql-commands.html
https://www.postgresql.org/docs/17/sql-commands.html
https://www.postgresql.org/docs/17/backup-dump.html
https://www.postgresql.org/docs/17/backup-dump.html
https://peps.python.org/pep-0675
https://stackoverflow.com
https://survey.stackoverflow.co/2024
https://isbnsearch.org/isbn/978-1-83921-150-8
https://isbnsearch.org/isbn/978-0-672-32451-2

BIBLIOGRAPHY 367

[380] Ryan K. Stephens, Ronald R. Plew, Bryan Morgan, and Jeff Perkins. SQL in 21 Tagen. Die
Datenbank-Abfragesprache SQL vollständig erklärt (in 14/21 Tagen). 6th ed. Burgthann, Bay-
ern, Germany: Markt+Technik Verlag GmbH, Feb. 1998. ISBN: 978-3-8272-2020-2. Translation
of [379] (cit. on pp. 17, 82, 199, 336).

[381] Michael Stonebraker, ed. The INGRES Papers: Anatomy of a Relational Database System. Read-
ing, MA, USA: Addison-Wesley Professional, 1986. ISBN: 978-0-201-07185-6 (cit. on p. 12).

[382] “String Functions and Operators”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global
Development Group (PGDG), Feb. 20, 2025. Chap. 9.4. URL: https://www.postgresql.
org/docs/17/functions-string.html (visited on 2025-05-06) (cit. on pp. 112, 297).

[383] Systems and Software Engineering - Software Life Cycle Processes. ISO/IEC/IEEE Interna-
tional Standard ISO/IEC/IEEE 12207-2017. Geneva, Switzerland: International Organization
for Standardization (ISO), International Electrotechnical Commission (IEC), and New York, NY,
USA: Institute of Electrical and Electronics Engineers (IEEE), Nov. 15, 2017 (cit. on p. 159).

[384] Systems and Software Engineering -- Life Cycle Processes -- Requirements Engineering, Second
Edition. ISO/IEC/IEEE International Standard ISO/IEC/IEEE 29148:2018(E). Geneva, Switzer-
land: International Organization for Standardization (ISO), International Electrotechnical Com-
mission (IEC), and New York, NY, USA: Institute of Electrical and Electronics Engineers (IEEE),
Nov. 30, 2018. doi:10.1109/IEEESTD.2018.8559686. Supersedes [199] (cit. on pp. 158, 159,
336, 354).

[385] Systems and Software Engineering -- System Life Cycle Processes, Second Edition.
ISO/IEC/IEEE International Standard ISO/IEC/IEEE 15288-2023(E). Geneva, Switzer-
land: International Organization for Standardization (ISO), International Electrotechnical
Commission (IEC), and New York, NY, USA: Institute of Electrical and Electronics
Engineers (IEEE), May 16, 2023. doi:10.1109/IEEESTD.2023.10123367 (cit. on p. 159).

[386] Mana Takahashi, Shoko Azuma, and Tokyo, Japan: Trend-Pro Co, Ltd. The Manga Guide to
Databases. San Francisco, CA, USA: No Starch Press, Jan. 2009. ISBN: 978-1-59327-190-9
(cit. on p. 17).

[387] Sinclair Target. The IBM 029 Card Punch. New York, NY, USA, June 23, 2018. URL: https:
//twobithistory.org/2018/06/23/ibm-029-card-punch.html (visited on 2025-05-29)
(cit. on p. 9).

[388] Sherif M. Tawfik and Marwa M. Abd-Elghany. “Investigating Software Requirements Through
Developed Questionnaires To Satisfy The Desired Quality Systems (Security Attribute Exam-
ple)”. In: Advanced Techniques in Computing Sciences and Software Engineering, Volume II
of the Proceedings of the 2008 International Conference on Systems, Computing Sciences and
Software Engineering (SCSS’2008), part of the International Joint Conferences on Computer,
Information, and Systems Sciences, and Engineering (CISSE’2008). Dec. 5–13, 2008, Bridge-
port, CT, USA. Ed. by Khaled M. Elleithy. Dordrecht, The Netherlands: Springer, Dec. 2009,
pp. 245–250. ISBN: 978-90-481-3659-9. doi:10.1007/978- 90-481- 3660- 5_41 (cit. on
p. 159).

[389] Allen Taylor. Introducing SQL and Relational Databases. New York, NY, USA: Apress Me-
dia, LLC, Sept. 2018. ISBN: 978-1-4842-3841-7 (cit. on pp. 3, 17, 82, 335, 336).

[390] Robert W. Taylor and Randall L. Frank. “CODASYL Data-Base Management Systems”. ACM
Computing Surveys (CSUR) 8(1):67–103, Mar. 1976. New York, NY, USA: Association for
Computing Machinery (ACM). ISSN: 0360-0300. doi:10.1145/356662.356666 (cit. on pp. 11,
195).

[391] Alkin Tezuysal and Ibrar Ahmed. Database Design and Modeling with PostgreSQL and MySQL.
Birmingham, England, UK: Packt Publishing Ltd, July 2024. ISBN: 978-1-80323-347-5 (cit. on
pp. iii, 14, 17, 20, 23, 78, 330, 334, 335).

[392] The Document Foundation Wiki: ReleasePlan. Berlin, Germany: The Document Foundation,
Jan. 21, 2011–Nov. 22, 2024. URL: https://wiki.documentfoundation.org/ReleasePlan
(visited on 2025-03-21) (cit. on p. 151).

[393] The Editors of Encyclopaedia Britannica, ed. Encyclopaedia Britannica. Chicago, IL, USA: En-
cyclopædia Britannica, Inc.

https://isbnsearch.org/isbn/978-3-8272-2020-2
https://isbnsearch.org/isbn/978-0-201-07185-6
https://www.postgresql.org/docs/17/functions-string.html
https://www.postgresql.org/docs/17/functions-string.html
https://doi.org/10.1109/IEEESTD.2018.8559686
https://doi.org/10.1109/IEEESTD.2023.10123367
https://isbnsearch.org/isbn/978-1-59327-190-9
https://twobithistory.org/2018/06/23/ibm-029-card-punch.html
https://twobithistory.org/2018/06/23/ibm-029-card-punch.html
https://isbnsearch.org/isbn/978-90-481-3659-9
https://doi.org/10.1007/978-90-481-3660-5_41
https://isbnsearch.org/isbn/978-1-4842-3841-7
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0360-0300
https://doi.org/10.1145/356662.356666
https://isbnsearch.org/isbn/978-1-80323-347-5
https://wiki.documentfoundation.org/ReleasePlan

BIBLIOGRAPHY 368

[394] The Editors of Encyclopaedia Britannica, Gloria Lotha, Aakanksha Gaur, Erik Gregersen, Swati
Chopra, and William L. Hosch. “Client-Server Architecture”. In: Encyclopaedia Britannica. Ed.
by The Editors of Encyclopaedia Britannica. Chicago, IL, USA: Encyclopædia Britannica, Inc.,
Jan. 3, 2025. URL: https://www.britannica.com/technology/client-server-archite
cture (visited on 2025-01-20) (cit. on pp. 12, 331).

[395] “The Evolution of Microsoft SQL Server”. In: Feb. 15, 2025. URL: https://peter-whyte.
com/2025/02/the-evolution-of-microsoft-sql-server (visited on 2025-06-03) (cit. on
p. 15).

[396] The IBM Punched Card: The paper on-ramp to the Information Age once held most of the
world’s data. IBM Heritage. Armonk, NY, USA: International Business Machines Corpora-
tion (IBM). URL: https://www.ibm.com/history/punched-card (visited on 2025-01-08)
(cit. on p. 8).

[397] The JSON Data Interchange Syntax. Standard ECMA-404, 2nd Edition. Geneva, Switzerland:
Ecma International, Dec. 2017. URL: https://ecma-international.org/publications-
and-standards/standards/ecma-404 (visited on 2024-12-15) (cit. on pp. 2, 333).

[398] The Python Package Index (PyPI). Beaverton, OR, USA: Python Software Foundation (PSF),
2024. URL: https://pypi.org (visited on 2024-08-17) (cit. on p. 335).

[399] Python 3 Documentation. The Python Standard Library. Beaverton, OR, USA: Python Software
Foundation (PSF), 2001–2025. URL: https://docs.python.org/3/library (visited on
2025-04-27).

[400] The Ubuntu Lifecycle and Release Cadence. London, England, UK: Canonical Ltd., Oct. 2024.
URL: https://ubuntu.com/about/release-cycle (visited on 2025-03-21) (cit. on p. 151).

[401] The Unicode Standard, Version 15.1: Archived Code Charts. South San Francisco, CA, USA:
The Unicode Consortium, Aug. 25, 2023. URL: https://www.unicode.org/Public/15.1.
0/charts/CodeCharts.pdf (visited on 2024-07-26) (cit. on p. 337).

[402] Kristian Torp, Christian S. Jensen, and Richard T. Snodgrass. “Effective Timestamping in
Databases”. 8(3-4):267–288, Feb. 2000. doi:10.1007/S007780050008. URL: https://peo
ple.cs.aau.dk/~csj/Thesis/pdf/chapter40.pdf (visited on 2025-05-01) (cit. on p. 337).

[403] Linus Torvalds. “The Linux Edge”. Communications of the ACM (CACM) 42(4):38–39, Apr.
1999. New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0001-0782.
doi:10.1145/299157.299165 (cit. on pp. 21, 333).

[404] Sherwin John C. Tragura. Mastering Flask Web and API Development. Birmingham, England,
UK: Packt Publishing Ltd, Aug. 2024. ISBN: 978-1-83763-322-7 (cit. on p. 332).

[405] “Transactions”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Development
Group (PGDG), Feb. 20, 2025. Chap. 3.4. URL: https://www.postgresql.org/docs/17/
tutorial-transactions.html (visited on 2025-04-21) (cit. on p. 247).

[406] “transitive (adjective)”. In: Feb. 20, 2025. URL: https://www.merriam- webster.com/
dictionary/transitive (visited on 2025-04-06) (cit. on p. 176).

[407] Kevin Treu. CSC-341: Database Management Systems. Greenville, SC, USA: Furman University,
Spr. 2025. URL: https://cs.furman.edu/~ktreu/csc341 (visited on 2025-04-05) (cit. on
p. 16).

[408] Kevin Treu. “Entity Relationship Modeling”. In: CSC-341: Database Management Systems.
Greenville, SC, USA: Furman University, Spr. 2025. Chap. 4. URL: https://cs.furman.
edu/~ktreu/csc341/lectures/chapter04.pdf (visited on 2025-04-05) (cit. on pp. 185,
186).

[409] Dennis Tsichritzis and Anthony Klug. “The ANSI/X3/SPARC DBMS Framework Report of
the Study Group on Database Management Systems”. Information Systems: Databases: Their
Creation, Management and Utilization 3(3):173–191, 1978. Oxford, Oxfordshire, England,
UK: Pergamon Press Ltd., now Amsterdam, The Netherlands: Elsevier B.V. ISSN: 0306-4379.
Also published as [6] (cit. on pp. 6, 341).

[410] Mariot Tsitoara. Beginning Git and GitHub: Version Control, Project Management and Team-
work for the New Developer. New York, NY, USA: Apress Media, LLC, Mar. 2024. ISBN: 979-
8-8688-0215-7 (cit. on pp. 332, 338).

https://www.britannica.com/technology/client-server-architecture
https://www.britannica.com/technology/client-server-architecture
https://peter-whyte.com/2025/02/the-evolution-of-microsoft-sql-server
https://peter-whyte.com/2025/02/the-evolution-of-microsoft-sql-server
https://www.ibm.com/history/punched-card
https://ecma-international.org/publications-and-standards/standards/ecma-404
https://ecma-international.org/publications-and-standards/standards/ecma-404
https://pypi.org
https://docs.python.org/3/library
https://ubuntu.com/about/release-cycle
https://www.unicode.org/Public/15.1.0/charts/CodeCharts.pdf
https://www.unicode.org/Public/15.1.0/charts/CodeCharts.pdf
https://doi.org/10.1007/S007780050008
https://people.cs.aau.dk/~csj/Thesis/pdf/chapter40.pdf
https://people.cs.aau.dk/~csj/Thesis/pdf/chapter40.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/299157.299165
https://isbnsearch.org/isbn/978-1-83763-322-7
https://www.postgresql.org/docs/17/tutorial-transactions.html
https://www.postgresql.org/docs/17/tutorial-transactions.html
https://www.merriam-webster.com/dictionary/transitive
https://www.merriam-webster.com/dictionary/transitive
https://cs.furman.edu/~ktreu/csc341
https://cs.furman.edu/~ktreu/csc341/lectures/chapter04.pdf
https://cs.furman.edu/~ktreu/csc341/lectures/chapter04.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0306-4379
https://isbnsearch.org/isbn/979-8-8688-0215-7
https://isbnsearch.org/isbn/979-8-8688-0215-7

BIBLIOGRAPHY 369

[411] Berik I. Tuleuov and Ademi B. Ospanova. “Minimal Systems”. In: Beginning C++ Compilers: An
Introductory Guide to Microsoft C/C++ and MinGW Compilers. Berkeley, CA, USA: Apress
Media, LLC, Jan. 2024. Chap. 9, pp. 75–83. ISBN: 978-1-4842-9562-5. doi:10.1007/978-1-
4842-9563-2_8 (cit. on p. 334).

[412] Christina Tyler. “Clay Tablets Reveal Accounting Answers”. The Gazette 10(36), Oct. 1, 1999.
URL: https://www.loc.gov/collections/cuneiform-tablets/articles-and-essays/
clay-tablets-reveal-accounting-answers (visited on 2025-01-08). Also part of [104]
(cit. on pp. 8, 348).

[413] Laurie A. Ulrich and Ken Cook. Access For Dummies. Hoboken, NJ, USA: For Dummies (Wiley),
Dec. 2021. ISBN: 978-1-119-82908-9 (cit. on pp. 15, 18, 43, 333, 334).

[414] UML Notation Guide. Version 1.1. Santa Clara, CA, USA: Rational Software Corporation, Red-
mond, WA, USA: Microsoft Corporation, Palo Alto, CA, USA: Hewlett-Packard Company, Red-
wood Shores, CA, USA: Oracle Corporation, Dallas, TX, USA: Sterling Software, Ottawa, ON,
Canada: MCI Systemhouse Corporation, Blue Bell, PA, USA: Unisys Corporation, Blue Bell, PA,
USA: ICON Computing, Santa Clara, CA, USA: IntelliCorp, Burlington, MA, USA: i-Logix, Ar-
monk, NY, USA: International Business Machines Corporation (IBM), Kanata, ON, Canada: Ob-
jecTime Limited, Chicago, IL, USA: Platinum Technology Inc., Boston, MA, USA: Ptech Inc.,
Orlando, FL, USA: Taskon A/S, Paoli, PA, USA: Reich Technologies, and Paris, Île-de-France,
France: Softeam, Sept. 1, 1997. URL: https://web.cse.msu.edu/~cse870/Materials/
uml-notation-guide-9-97.pdf (visited on 2025-03-30) (cit. on pp. 166, 337).

[415] Unicode®15.1.0. South San Francisco, CA, USA: The Unicode Consortium, Sept. 12, 2023.
ISBN: 978-1-936213-33-7. URL: https://www.unicode.org/versions/Unicode15.1.0
(visited on 2024-07-26) (cit. on p. 337).

[416] “ UPDATE”. In: PostgreSQL Documentation. 17.4. The PostgreSQL Global Devel-
opment Group (PGDG), Feb. 20, 2025. Chap. Part VI. Reference. URL: https :
//www.postgresql.org/docs/17/sql- update.html (visited on 2025-03-07) (cit. on
pp. 115, 231).

[417] “Use of Personal ID Number as Passport Number”. In: Technical Advisory Group on Machine
Readable Travel Documents. Fifteenth Meeting. May 17–21, 2004, Montreal, QC, Canada.
Vol. TAG-MRTD/15 WP/19 28/4/04. Montreal, QC, Canada: International Civil Aviation Orga-
nization (ICAO), pp. 1–2. URL: https://www.icao.int/Meetings/TAG-MRTD/Documents/
Tag-Mrtd-15/TagMrtd15_WP019_en.pdf (visited on 2025-04-03) (cit. on p. 180).

[418] “What does standard SQL or any of the non-PostgreSQL SQLs do instead of RETURNING?”
In: Database Administrators. Ed. by user210271. New York, NY, USA: Stack Exchange Inc.,
June 7–8, 2020. URL: https://dba.stackexchange.com/questions/268664 (visited on
2025-04-23) (cit. on p. 247).

[419] Marat Valiev, Bogdan Vasilescu, and James D. Herbsleb. “Ecosystem-Level Determinants of Sus-
tained Activity in Open-Source Projects: A Case Study of the PyPI Ecosystem”. In: ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/SIGSOFT FSE’2018). Nov. 4–9, 2018, Lake Buena Vista, FL, USA.
Ed. by Gary T. Leavens, Alessandro F. Garcia, and Corina S. Păsăreanu. New York, NY, USA:
Association for Computing Machinery (ACM), 2018, pp. 644–655. ISBN: 978-1-4503-5573-5.
doi:10.1145/3236024.3236062 (cit. on p. 335).

[420] Bruce M. Van Horn II and Quan Nguyen. Hands-On Application Development with PyCharm.
2nd ed. Birmingham, England, UK: Packt Publishing Ltd, Oct. 2023. ISBN: 978-1-83763-235-0
(cit. on p. 335).

[421] Guido van Rossum and Łukasz Langa. Type Hints. Python Enhancement Proposal (PEP) 484.
Beaverton, OR, USA: Python Software Foundation (PSF), Sept. 29, 2014. URL: https://
peps.python.org/pep-0484 (visited on 2024-08-22) (cit. on p. 337).

[422] Sander van Vugt. Linux Fundamentals. 2nd ed. Hoboken, NJ, USA: Pearson IT Certification,
June 2022. ISBN: 978-0-13-792931-3 (cit. on p. 333).

[423] Scott L. Vandenberg. “Conceptual Design using the Entity-Relationship Model”. In:
CSE 594: Database Management Systems. Seattle, WA, USA: University of Washington, Aut.
1999. URL: https://courses.cs.washington.edu/courses/csep544/99au/lectures/
class2.pdf (visited on 2025-03-29) (cit. on pp. 164, 166, 183).

https://isbnsearch.org/isbn/978-1-4842-9562-5
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://www.loc.gov/collections/cuneiform-tablets/articles-and-essays/clay-tablets-reveal-accounting-answers
https://www.loc.gov/collections/cuneiform-tablets/articles-and-essays/clay-tablets-reveal-accounting-answers
https://isbnsearch.org/isbn/978-1-119-82908-9
https://web.cse.msu.edu/~cse870/Materials/uml-notation-guide-9-97.pdf
https://web.cse.msu.edu/~cse870/Materials/uml-notation-guide-9-97.pdf
https://isbnsearch.org/isbn/978-1-936213-33-7
https://www.unicode.org/versions/Unicode15.1.0
https://www.postgresql.org/docs/17/sql-update.html
https://www.postgresql.org/docs/17/sql-update.html
https://www.icao.int/Meetings/TAG-MRTD/Documents/Tag-Mrtd-15/TagMrtd15_WP019_en.pdf
https://www.icao.int/Meetings/TAG-MRTD/Documents/Tag-Mrtd-15/TagMrtd15_WP019_en.pdf
https://dba.stackexchange.com/questions/268664
https://isbnsearch.org/isbn/978-1-4503-5573-5
https://doi.org/10.1145/3236024.3236062
https://isbnsearch.org/isbn/978-1-83763-235-0
https://peps.python.org/pep-0484
https://peps.python.org/pep-0484
https://isbnsearch.org/isbn/978-0-13-792931-3
https://courses.cs.washington.edu/courses/csep544/99au/lectures/class2.pdf
https://courses.cs.washington.edu/courses/csep544/99au/lectures/class2.pdf

BIBLIOGRAPHY 370

[424] Scott L. Vandenberg. “Course Introduction”. In: CSE 594: Database Management Systems.
Seattle, WA, USA: University of Washington, Aut. 1999. Chap. 1. URL: https://courses.
cs.washington.edu/courses/csep544/99au/lectures/class1.pdf (visited on 2025-03-
25) (cit. on p. 156).

[425] Scott L. Vandenberg. CSE 594: Database Management Systems. Seattle, WA, USA: University of
Washington, Aut. 1999. URL: https://courses.cs.washington.edu/courses/csep544/
99au (visited on 2025-03-25) (cit. on p. 16).

[426] Daniele “dvarrazzo” Varrazzo, Federico “fogzot” Di Gregorio, and Jason “jerickso” Erickson.
“ Connection Classes”. In: Psycopg 3 – PostgreSQL Database Adapter for Python. London,
England, UK: The Psycopg Team, June 21, 2022. URL: https://www.psycopg.org/psycop
g3/docs/api/connections.html (visited on 2025-03-04) (cit. on p. 119).

[427] Daniele “dvarrazzo” Varrazzo, Federico “fogzot” Di Gregorio, and Jason “jerickso” Erickson.
“ Cursor Classes”. In: Psycopg 3 – PostgreSQL Database Adapter for Python. London, England,
UK: The Psycopg Team, June 21, 2022. URL: https://www.psycopg.org/psycopg3/docs/
api/cursors.html (visited on 2025-03-04) (cit. on p. 119).

[428] Daniele “dvarrazzo” Varrazzo, Federico “fogzot” Di Gregorio, and Jason “jerickso” Erickson.
Psycopg. London, England, UK: The Psycopg Team, 2010–2023. URL: https://www.psycopg.
org (visited on 2025-02-02) (cit. on pp. iii, 20, 54, 118, 121, 330, 335).

[429] Daniele “dvarrazzo” Varrazzo, Federico “fogzot” Di Gregorio, and Jason “jerickso” Erickson.
Psycopg 3 – PostgreSQL Database Adapter for Python. London, England, UK: The Psycopg
Team, June 21, 2022. URL: https://www.psycopg.org/psycopg3/docs (visited on 2025-
03-04).

[430] Daniele “dvarrazzo” Varrazzo, Federico “fogzot” Di Gregorio, and Jason “jerickso” Erickson.
“Static Typing”. In: Psycopg 3 – PostgreSQL Database Adapter for Python. London, England,
UK: The Psycopg Team, June 21, 2022. URL: https://www.psycopg.org/psycopg3/docs/
advanced/typing.html (visited on 2025-03-04) (cit. on pp. 119, 336).

[431] “pacman”. In: Arch Linux. Ed. by Judd Vinet, Aaron Griffin, and Levente Polyák. San Jose, CA,
USA, Oct. 16, 2005–Apr. 13, 2025. URL: https://wiki.archlinux.org/title/Pacman
(visited on 2025-04-16) (cit. on p. 69).

[432] Pauli “pv” Virtanen, Ralf Gommers, Travis E. Oliphant, Matt “mdhaber” Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, Ilhan “ilayn” Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
dregos, Paul van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python”. Nature Methods 17:261–272, Mar. 2, 2020. London, England,
UK: Springer Nature Limited. ISSN: 1548-7091. doi:10.1038/s41592-019-0686-2. URL:
http://arxiv.org/abs/1907.10121 (visited on 2024-06-26). See also arXiv:1907.10121v1
[cs.MS] 23 Jul 2019. (Cit. on pp. 117, 336).

[433] “Virtual Environments and Packages”. In: Python 3 Documentation. The Python Tutorial.
Beaverton, OR, USA: Python Software Foundation (PSF), 2001–2025. Chap. 12. URL: https:
//docs.python.org/3/tutorial/venv.html (visited on 2024-12-24) (cit. on p. 338).

[434] Abdullah Wahbeh, Surendra Sarnikar, and Omar F. El-Gayar. “Exploring the Impact of Analyst
Knowledge of Socio-Technical Concepts on Requirements Questionnaires Quality”. In: 22nd
Americas Conference on Information Systems (AMCIS’2016). Aug. 11–14, 2016, San Diego,
CA, USA. Atlanta, GA, USA: Association for Information Systems (AIS). URL: https://
scholar.dsu.edu/cgi/viewcontent.cgi?article=1016&context=bispapers (visited on
2025-03-27) (cit. on p. 159).

[435] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. The Morgan Kaufmann Series in Data
Management Systems. Burlington, MA, USA/San Mateo, CA, USA: Morgan Kaufmann Pub-
lishers, June 2001. ISBN: 978-1-55860-508-4 (cit. on p. 7).

https://courses.cs.washington.edu/courses/csep544/99au/lectures/class1.pdf
https://courses.cs.washington.edu/courses/csep544/99au/lectures/class1.pdf
https://courses.cs.washington.edu/courses/csep544/99au
https://courses.cs.washington.edu/courses/csep544/99au
https://github.com/dvarrazzo
https://github.com/fogzot
https://github.com/jerickso
https://www.psycopg.org/psycopg3/docs/api/connections.html
https://www.psycopg.org/psycopg3/docs/api/connections.html
https://github.com/dvarrazzo
https://github.com/fogzot
https://github.com/jerickso
https://www.psycopg.org/psycopg3/docs/api/cursors.html
https://www.psycopg.org/psycopg3/docs/api/cursors.html
https://github.com/dvarrazzo
https://github.com/fogzot
https://github.com/jerickso
https://www.psycopg.org
https://www.psycopg.org
https://github.com/dvarrazzo
https://github.com/fogzot
https://github.com/jerickso
https://www.psycopg.org/psycopg3/docs
https://github.com/dvarrazzo
https://github.com/fogzot
https://github.com/jerickso
https://www.psycopg.org/psycopg3/docs/advanced/typing.html
https://www.psycopg.org/psycopg3/docs/advanced/typing.html
https://wiki.archlinux.org/title/Pacman
https://github.com/pv
https://github.com/mdhaber
https://github.com/ilayn
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1548-7091
https://doi.org/10.1038/s41592-019-0686-2
http://arxiv.org/abs/1907.10121
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://scholar.dsu.edu/cgi/viewcontent.cgi?article=1016&context=bispapers
https://scholar.dsu.edu/cgi/viewcontent.cgi?article=1016&context=bispapers
https://isbnsearch.org/isbn/978-1-55860-508-4

BIBLIOGRAPHY 371

[436] Thomas Weise (汤卫思). Databases. Hefei, Anhui, China (中国安徽省合肥市): Hefei Univer-
sity (合肥大学), School of Artificial Intelligence and Big Data (人工智能与大数据学院), In-
stitute of Applied Optimization (应用优化研究所, IAO), 2025. URL: https://thomasweise.
github.io/databases (visited on 2025-01-05) (cit. on pp. iii, 2, 54, 165, 177, 332, 335, 336).

[437] Thomas Weise (汤卫思). Programming with Python. Hefei, Anhui, China (中国安徽省合肥
市): Hefei University (合肥大学), School of Artificial Intelligence and Big Data (人工智能与
大数据学院), Institute of Applied Optimization (应用优化研究所, IAO), 2024–2025. URL:
https://thomasweise.github.io/programmingWithPython (visited on 2025-01-05) (cit.
on pp. iii, 1, 4, 20, 54, 56, 78, 90, 92, 93, 102, 117, 119, 164, 165, 176, 211, 328, 334, 335).

[438] John R. Weitzel and Larry Kerschberg. “Developing Knowledge-Based Systems: Reorganizing
the System Development Life Cycle”. Communications of the ACM (CACM) 32(4):482–488,
Apr. 1989. New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 0001-
0782. doi:10.1145/63334.63340 (cit. on p. 152).

[439] Matthew West. Developing High Quality Data Models. Version: 2.0, Issue: 2.1. London, England,
UK: Shell International Limited and European Process Industries STEP Technical Liaison Exec-
utive (EPISTLE); Burlington, MA, USA/San Mateo, CA, USA: Morgan Kaufmann Publishers,
Dec. 8, 1995–Dec. 2010. ISBN: 978-0-12-375107-2. URL: https://www.researchgate.net/
publication/286610894 (visited on 2025-03-24). Edited by Julian Fowler (cit. on pp. 155,
166, 332).

[440] Randolph West. How should I store currency values in SQL Server? Calgary, AB, Canada: Born
SQL, June 3, 2020. URL: https://bornsql.ca/blog/how-should-i-store-currency-
values-in-sql-server (visited on 2025-02-27) (cit. on pp. 93, 94, 328).

[441] What is a Relational Database? Armonk, NY, USA: International Business Machines Corpo-
ration (IBM), Oct. 20, 2021–Dec. 12, 2024. URL: https://www.ibm.com/think/topics/
relational-databases (visited on 2025-01-05) (cit. on pp. 3, 335).

[442] Peter Whyte. Microsoft SQL Server DBA Blog. Edinburgh, Scotland, UK, 2018–2025. URL:
https://peter-whyte.com/sql-dba-blog (visited on 2025-06-03) (cit. on pp. 15, 18, 334).

[443] Ulf Michael “Monty” Widenius, David Axmark, and Uppsala, Sweden: MySQL AB. MySQL Ref-
erence Manual – Documentation from the Source. Sebastopol, CA, USA: O’Reilly Media, Inc.,
July 9, 2002. ISBN: 978-0-596-00265-7 (cit. on pp. 14, 334).

[444] Kevin Wilson. Python Made Easy. Birmingham, England, UK: Packt Publishing Ltd, Aug. 2024.
ISBN: 978-1-83664-615-0 (cit. on p. 335).

[445] Marianne Winslett and Vanessa Braganholo. “Richard Hipp Speaks Out on SQLite”. ACM SIG-
MOD Record 48(2):39–46, June 2019. New York, NY, USA: Association for Computing Ma-
chinery (ACM). ISSN: 0163-5808. doi:10.1145/3377330.3377338 (cit. on pp. 15, 336).

[446] “ WITH Queries (Common Table Expressions)”. In: PostgreSQL Documentation. 17.4. The Post-
greSQL Global Development Group (PGDG), Feb. 20, 2025. Chap. 7.8. URL: https://www.
postgresql.org/docs/17/queries-with.html (visited on 2025-04-21) (cit. on p. 331).

[447] “With Statement Context Managers”. In: Python 3 Documentation. The Python Language
Reference. Beaverton, OR, USA: Python Software Foundation (PSF), 2001–2025. Chap. 3.3.9.
URL: https://docs.python.org/3/reference/datamodel.html#with-statement-
context-managers (visited on 2024-12-15) (cit. on p. 119).

[448] Bernard Wong. “A Study of the Metrics for Measuring the Quality of the Requirements Spec-
ification Document”. In: International Conference on Software Engineering Research and Prac-
tice (SERP’2004), Volume 2. June 21–24, 2004, Las Vegas, NV, USA. Ed. by Hamid R. Arabnia
and Hassan Reza. USA: Computer Science Research, Education, and Applications (CSREA)
Press, pp. 549–553. ISBN: 978-1-932415-29-2. URL: https://opus.lib.uts.edu.au/
bitstream/10453/6956/1/2004000890.pdf (visited on 2025-03-27) (cit. on pp. 159, 336).

[449] Martin Yanev. PyCharm Productivity and Debugging Techniques. Birmingham, England, UK:
Packt Publishing Ltd, Oct. 2022. ISBN: 978-1-83763-244-2 (cit. on p. 335).

[450] Kinza Yasar and Craig S. Mullins. Definition: Database Management System (DBMS). Newton,
MA, USA: TechTarget, Inc., June 2024. URL: https://www.techtarget.com/searchdata
management/definition/database-management-system (visited on 2025-01-11) (cit. on
pp. 8, 332).

https://thomasweise.github.io/databases
https://thomasweise.github.io/databases
https://thomasweise.github.io/programmingWithPython
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0001-0782
https://doi.org/10.1145/63334.63340
https://isbnsearch.org/isbn/978-0-12-375107-2
https://www.researchgate.net/publication/286610894
https://www.researchgate.net/publication/286610894
https://bornsql.ca/blog/how-should-i-store-currency-values-in-sql-server
https://bornsql.ca/blog/how-should-i-store-currency-values-in-sql-server
https://www.ibm.com/think/topics/relational-databases
https://www.ibm.com/think/topics/relational-databases
https://peter-whyte.com/sql-dba-blog
https://isbnsearch.org/isbn/978-0-596-00265-7
https://isbnsearch.org/isbn/978-1-83664-615-0
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0163-5808
https://doi.org/10.1145/3377330.3377338
https://www.postgresql.org/docs/17/queries-with.html
https://www.postgresql.org/docs/17/queries-with.html
https://docs.python.org/3/reference/datamodel.html#with-statement-context-managers
https://docs.python.org/3/reference/datamodel.html#with-statement-context-managers
https://isbnsearch.org/isbn/978-1-932415-29-2
https://opus.lib.uts.edu.au/bitstream/10453/6956/1/2004000890.pdf
https://opus.lib.uts.edu.au/bitstream/10453/6956/1/2004000890.pdf
https://isbnsearch.org/isbn/978-1-83763-244-2
https://www.techtarget.com/searchdatamanagement/definition/database-management-system
https://www.techtarget.com/searchdatamanagement/definition/database-management-system

BIBLIOGRAPHY 372

[451] yEd Graph Editor Manual. Tübingen, Baden-Württemberg, Germany: yWorks GmbH, 2011–
2025. URL: https://yed.yworks.com/support/manual/index.html (visited on 2025-03-
31) (cit. on pp. iii, 20, 57, 166, 171, 330, 338).

[452] Ka-Ping Yee and Guido van Rossum. Iterators . Python Enhancement Proposal (PEP) 234.
Beaverton, OR, USA: Python Software Foundation (PSF), Jan. 30–Apr. 30, 2001. URL: https:
//peps.python.org/pep-0234 (visited on 2025-02-02) (cit. on p. 119).

[453] François Yergeau. UTF-8, A Transformation Format of ISO 10646. Request for Comments (RFC)
3629. Wilmington, DE, USA: Internet Engineering Task Force (IETF), Nov. 2003. URL: https:
//www.ietf.org/rfc/rfc3629.txt (visited on 2025-02-05). See Unicode and [204] (cit. on
p. 337).

[454] Giorgio Zarrelli. Mastering Bash. Birmingham, England, UK: Packt Publishing Ltd, June 2017.
ISBN: 978-1-78439-687-9 (cit. on p. 331).

[455] Zhenyu Zhu. “Requirements Determination and Requirements Structuring”. In: Information Sys-
tems Analysis: 6840 Papers. Ed. by Vicki L. Sauter. St. Louis, MO, USA: University of Mis-
souri-St. Louis, Aut. 2003. URL: https://www.umsl.edu/~sauterv/analysis/6840_f03_
papers/zhu (visited on 2025-03-26) (cit. on pp. 158, 159).

[456] Jelle “JelleZijlstra” Zijlstra, Mehdi “hmc-cs-mdrissi” Drissi, Alex “AlexWaygood” Waygood,
Daniele “dvarrazzo” Varrazzo, Shantanu “hauntsaninja”, François-Michel “FinchPow-
ers” L’Heureux, and Rupesh “rupeshs” Sreeraman. Issue #12554: Support PEP 675
(LiteralString). San Francisco, CA, USA: GitHub Inc, Apr. 9, 2022–Nov. 29, 2024. URL:
https://github.com/python/mypy/issues/12554 (visited on 2025-03-05) (cit. on p. 336).

[457] “中华人民共和国外国人工作许可证 (Work Permit for Foreigners of the People’s Republic of
China)”. In:百度百科 (Baidu Baike). China, Beijing (中国北京市): Baidu (百度公司), Jan. 19–
22, 2025. URL: https://baike.baidu.com/item/%E4%B8%AD%E5%8D%8E%E4%BA%BA%E6%
B0%91%E5%85%B1%E5%92%8C%E5%9B%BD%E5%A4%96%E5%9B%BD%E4%BA%BA%E5%B7%A5%E4%BD%
9C%E8%AE%B8%E5%8F%AF%E8%AF%81 (visited on 2025-04-03) (cit. on p. 180).

[458] 公民身份号码 (Citizen Identification Number). 中华人民共和国国家标准 (National Standard
of the People’s Republic of China, GB) GB11643-1999. China, Beijing (中国北京市):中华人民
共和国国家质量监督检验检疫总局 (General Administration of Quality Supervision, Inspection
and Quarantine of the People’s Republic of China), 中国国家标准化管理委员会 (Standardiza-
tion Administration of the People’s Republic of China, SAC), and 中国标准出版社 (Standards
Press of China), Jan. 19–Nov. 3, 1999. URL: https://openstd.samr.gov.cn/bzgk/
gb/newGbInfo?hcno=080D6FBF2BB468F9007657F26D60013E (visited on 2024-07-26) (cit. on
pp. 5, 205, 209).

[459] “手机号码：电话管理部门为手机设定的号码 (Mobile Phone Number: A Number Set by the
Telephone Management Department for Mobile Phones)”. In: 百度百科 (Baidu Baike). China,
Beijing (中国北京市): Baidu (百度公司), Jan. 6, 2025. URL: https://baike.baidu.com/
item/%E6%89%8B%E6%9C%BA%E5%8F%B7%E7%A0%81 (visited on 2025-04-17) (cit. on pp. 102,
206).

[460] 来华签证简介 (Introduction to Chinese Visa). China, Beijing (中国北京市): 中华人民共和国
外交部 (Ministry of Foreign Affairs of the People’s Republic of China), Nov. 20, 2019. URL:
http://cs.mfa.gov.cn/wgrlh/lhqz/lhqzjj_660596 (visited on 2025-04-03) (cit. on
p. 180).

[461] 百度百科 (Baidu Baike). China, Beijing (中国北京市): Baidu (百度公司), Apr. 20, 2006. URL:
https://baike.baidu.com (visited on 2025-04-03).

https://yed.yworks.com/support/manual/index.html
https://peps.python.org/pep-0234
https://peps.python.org/pep-0234
https://www.ietf.org/rfc/rfc3629.txt
https://www.ietf.org/rfc/rfc3629.txt
https://isbnsearch.org/isbn/978-1-78439-687-9
https://www.umsl.edu/~sauterv/analysis/6840_f03_papers/zhu
https://www.umsl.edu/~sauterv/analysis/6840_f03_papers/zhu
https://github.com/JelleZijlstra
https://github.com/hmc-cs-mdrissi
https://github.com/AlexWaygood
https://github.com/dvarrazzo
https://github.com/hauntsaninja
https://github.com/FinchPowers
https://github.com/FinchPowers
https://github.com/rupeshs
https://github.com/python/mypy/issues/12554
https://baike.baidu.com/item/%E4%B8%AD%E5%8D%8E%E4%BA%BA%E6%B0%91%E5%85%B1%E5%92%8C%E5%9B%BD%E5%A4%96%E5%9B%BD%E4%BA%BA%E5%B7%A5%E4%BD%9C%E8%AE%B8%E5%8F%AF%E8%AF%81
https://baike.baidu.com/item/%E4%B8%AD%E5%8D%8E%E4%BA%BA%E6%B0%91%E5%85%B1%E5%92%8C%E5%9B%BD%E5%A4%96%E5%9B%BD%E4%BA%BA%E5%B7%A5%E4%BD%9C%E8%AE%B8%E5%8F%AF%E8%AF%81
https://baike.baidu.com/item/%E4%B8%AD%E5%8D%8E%E4%BA%BA%E6%B0%91%E5%85%B1%E5%92%8C%E5%9B%BD%E5%A4%96%E5%9B%BD%E4%BA%BA%E5%B7%A5%E4%BD%9C%E8%AE%B8%E5%8F%AF%E8%AF%81
https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=080D6FBF2BB468F9007657F26D60013E
https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=080D6FBF2BB468F9007657F26D60013E
https://baike.baidu.com/item/%E6%89%8B%E6%9C%BA%E5%8F%B7%E7%A0%81
https://baike.baidu.com/item/%E6%89%8B%E6%9C%BA%E5%8F%B7%E7%A0%81
http://cs.mfa.gov.cn/wgrlh/lhqz/lhqzjj_660596
https://baike.baidu.com

	Title Page
	Front Matter
	Contents
	Preface

	Introduction
	Features that we want from a Database
	Data Modelling and Representation
	Data Independence
	Data Availability and Performance
	Data Integrity
	Concurrency Support and Isolation
	Durability and Data Safety
	Data Privacy and Security
	Summary

	History
	Software
	Open Source Relational Database Management Systems
	Commercial Relational Database Management Systems

	Further Reading
	Lectures at Universities
	Books on Databases in General
	Books on Specific Database Technologies
	Websites

	Getting Started
	Installing PostgreSQL
	Installing PostgreSQL under Ubuntu Linux
	Installing PostgreSQL under Microsoft Windows

	Installing LibreOffice
	Installing LibreOffice under Ubuntu Linux
	Installing LibreOffice under Microsoft Windows

	Installing Python, PyCharm, and Psycopg
	Installing Psycopg

	Installing yEd
	Installing yEd on Ubuntu Linux
	Installing yEd on Microsoft Windows

	Installing PgModeler
	Installing PgModeler under Ubuntu Linux
	Installing PgModeler under Microsoft Windows

	A Simple Example: The Factory Database
	Creating a User and the Database
	Creating a User
	Creating a new Database

	Downloading the Example Codes
	Creating Tables and Filling them with Data
	The Table product
	Creating the Table
	Inserting some Data
	Selecting Data

	The Table customer
	Creating the Table
	Inserting some Data
	Selecting Data

	The Table demand
	Creating the Table
	Inserting and Selecting some Data

	Join-based Select and Views
	Joining Tables
	Views as Virtual Tables
	Using our View

	Updating and Deleting Records
	Updating Records
	Deleting Records

	Connecting from Python
	Accessing the Database from LibreOffice Base
	Connect to the Database
	Adding Rows to a Table and Executing Views
	Relationship Diagrams
	Forms
	Reports

	Cleanup After the Example
	Summary

	Database Design and Modeling
	The Database Lifecycle
	Classical Software Engineering Design Processes
	Databases Design Processes

	Requirements Analysis
	Types of Requirements
	Requirements Gathering
	Requirements Specification Document
	Example: Teaching Management Platform
	Business Requirements
	Business Purpose
	Major Stakeholders

	Functional Requirements
	Person Management
	Date Management
	Curriculum Management
	Module Management
	Room Management
	Module Enrollment
	Exams and Deliverables
	Communication
	Administration and Backup

	Non-Functional Requirements
	Constraints
	Summary

	Conceptual Model Design
	Entities and Attributes
	Keys
	Relationships
	Weak Entities
	The Cardinality of Relationships
	Compact Crow's Foot Notation
	Database Model Selection
	Summary

	Logical Model Design
	The Relational Data Model
	Definitions
	Keys
	Relational Database Management Systems

	Mapping Conceptual Models to Logical Models
	Mapping Conceptual Entity Types to Logical Models
	Mapping Conceptual Relationships to Logical Models
	AO1BO1
	CO1DM1
	EO1FOM
	GO1HMM
	IM1JM1
	KM1LOM
	MM1NMM
	OOMPOM
	QOMRMM
	SMMTMM
	Summary

	Other Non-Relational Objects
	Weak Entities
	Relationship Attributes
	Derived Attributes
	Relationships of a Higher Degree
	Summary

	Normalization
	First Normal Form
	Composite Attributes
	The Use of Multivalued Attributes

	Second Normal Form
	Example: Room Management System
	Summary

	Third Normal Form
	Example: Student and Parent Information

	Backmatter
	Best Practices
	Best Practices
	Useful Tools
	Useful Tools
	Glossary
	SQL Commands
	Bibliography

