
The latexgit Package

Thomas Weise
Institute of Applied Optimization

School of Artificial Intelligence and Big Data
Hefei University, Hefei 230601, Anhui, China
tweise@hfuu.edu.cn · tweise@ustc.edu.cn

December 5, 2023

Abstract

This LATEX package works in combination with the Python package
latexgit. It offers the command \gitLoad, which can load a file from a
git repository, optionally post-process it, and then provide a local path to
the file as macro \gitFile and the URL to the original file in \gitUrl. Us-
ing the \gitFile macro, you can then include the file in LATEX directly or
load it as source code listing. The functionality is implemented by storing
the git requests in the aux file of the project during the first pdflatex pass.
The aux file is then processed by the Python package which performs the
actual git queries, stores the result in local files, and adds the resolved paths
to the aux file. During the first pdflatex run, \gitFile and \gitUrl offer
dummy results. However, after the resolution via the Python package, in
the second pdflatex run they then point to the right data.

Contents

1 Introduction 2
1.1 Addressed Problem and Use Case 2
1.2 Provided Functionality . 2

2 Usage 2
2.1 Installation . 3
2.2 Loading the Package . 3
2.3 Querying a File from a git Repository 4
2.4 Executing the Python Package . 4

3 Provided Macros 4
3.1 Examples . 5
3.2 Minimal Working Example . 5
3.3 The Second Example: Multiple Files and Post-Processing 8
3.4 The Third Example: Using the listings Package 11
3.5 The Fourth Example: Using Git Commands in Macros 12

4 Implementation 14

1

mailto:tweise@hfuu.edu.cn
mailto:tweise@ustc.edu.cn

1 Introduction

1.1 Addressed Problem and Use Case

Let’s say you want to make teaching material in the field of computer science. In
a wide variety of computer science fields, you may want to include source code
examples in your lecture script or slides. The standard way is to either write some
pseudo-code or program-like snippets. Usually these neither compile nor are they
maintained well and they are often riddled with mistakes. That is not nice.

What we want is to have snippets of “real” code. Code that we can compile,
unit test, and run. Now such code naturally would not be sprinkled into our LATEX
teaching material sources. That would be a mess to organize and maintain.

A natural location for source code examples is a separate git repository.
Maybe on GitHub, maybe somewhere else. If I wanted to do a lecture on, say,
optimization algorithms, I would like to have the optimization algorithms imple-
mented in an actual useful fashion. I would put them into a repository where I
can build and test these real codes as a complete and separate piece of work.

Then I want to use them in my lecture scripts (written in LATEX) as well.
However, I do not want to copy them there. I want that my lecture scripts directly
reference the git repository with the real code. I want them to “include” the
examples from there. If I change the code in the git repository and then re-
compile my teaching material, these changes should automatically be reflected
there.

That is the use case we tackle here. We offer a solution to the question

“How can we include snippets of code from a separate, complex code
basis (located in a git repository) into our LATEX documents?”

1.2 Provided Functionality

It does so by offering a combination of a LATEX package (this package here) and
a Python program (published at https://pypi.org/projects/latexgit). This
LATEX provides the command \gitLoad that can load a specific file (its second ar-
gument) from a specific git repository (its first argument) and, optionally, pipe the
file contents through a program for post-processing (the third argument, which can
be left empty). Such requests are stored in the aux file during the first pdflatex
pass, then resolved by the Python program, and their results become available in
the second pdflatex pass via the commands \gitFile and \gitUrl.

2 Usage

Using the package requires the following steps:

1. Obviously, both the LATEX package and its Python companion package must
be installed (see Section 2.1).

2. In your document, you need to load the package in the preamble (see Sec-
tion 2.2).

3. Then you can make git queries and using the paths to files holding their
results (see Section 2.3).

2

https://thomasweise.github.io/moptipy
https://thomasweise.github.io/moptipy
https://pypi.org/projects/latexgit
https://thomasweise.github.io/latexgit_tex
https://thomasweise.github.io/latexgit_py

4. Finally, the Python package can carry them out after the first pdflatex run
and in the next pdflatex run, \gitFile and \gitUrl are defined appropri-
ately, see Section 2.4.

If your LATEX document is called article.tex, then you have at least the
following workflow:

pdflatex article

python3 -m latexgit.aux article

pdflatex article

Comprehensive examples are provided in Section 3.1.

2.1 Installation

2.1.1 LATEX Package

First, make sure that you have the latexgit.sty either installed or inside your
document’s directory. For this, there are several options:

1. You can just download the file from https://thomasweise.github.io/

latexgit_tex/latexgit.sty directly. You can now copy it into the folder
of your document.

2. You can download latexgit.dtx and latexgit.ins from https://thomasweise.

github.io/latexgit_tex/latexgit.dtx and https://thomasweise.github.
io/latexgit_tex/latexgit.ins. You can then execute

pdflatex latexgit.ins

and you should get the style file latexgit.sty. You can now copy it into
the folder of your document.

3. Or you can download the latexgit.tds.zip file from https://thomasweise.

github.io/latexgit_tex/latexgit.tds.zip and unpack it into your TEX
tree. If you know what that is.

2.1.2 Python Package

The Python package is available at https://github.com/thomasWeise/latexgit_
py, https://thomasweise.github.io/latexgit_py, and https://pypi.org/

project/latexgit. You can most easily install it from PyPI by doing

pip install latexgit

2.2 Loading the Package

Load this package using

\usepackage{latexgit}

The package has no options or parameters. Loading it will automatically load
the packages alphalph and filecontents as well, see Section 4.

3

https://thomasweise.github.io/latexgit_tex/latexgit.sty
https://thomasweise.github.io/latexgit_tex/latexgit.sty
https://thomasweise.github.io/latexgit_tex/latexgit.dtx
https://thomasweise.github.io/latexgit_tex/latexgit.dtx
https://thomasweise.github.io/latexgit_tex/latexgit.ins
https://thomasweise.github.io/latexgit_tex/latexgit.ins
https://thomasweise.github.io/latexgit_tex/latexgit.tds.zip
https://thomasweise.github.io/latexgit_tex/latexgit.tds.zip
https://github.com/thomasWeise/latexgit_py
https://github.com/thomasWeise/latexgit_py
https://thomasweise.github.io/latexgit_py
https://pypi.org/project/latexgit
https://pypi.org/project/latexgit

2.3 Querying a File from a git Repository

To query a file stored at path thePath inside from a git repository available under
URL theUrl, you would specify the command

\gitLoad{theUrl}{theFile}{}

After this command is executed, a local path to the file becomes available in the
fully-expandable command \gitFile. The full URL to the file in the git repos-
itory, including the current commit id, becomes available in the fully-expandable
command \gitUrl. Both \gitFile and \gitUrl will be overwritten every time
\gitLoad is invoked. You can invoke \gitLoad any number of times.

The third parameter, left empty in the above example, can specify an optional
post-processing commend. If it is not left empty, this command will be executed
in the shell. The contents of the file loaded from the git repository will be piped
to the stdin of the command. The stdout of the command will be piped to a file
and \gitFile will then contain the path to this file instead. For example, under
Linux, you could use the head command to return only the first 5 lines of a file as
follows:

\gitLoad{theUrl}{theFile}{head -n 5}

2.4 Executing the Python Package

During the first pdflatex run, \gitFile points to an empty dummy file
(\jobname.latexgit.dummy) and \gitUrl points to http://example.com. Both
commands will only expand to useful information if the Python package latexgit
is applied to the project’s aux file. This works very similar to BibTEX. If the name
of your TEX file is myfile.tex, then you would execute

python3 -m latexgit.aux myfile

More specifically, the Python package processes the aux files, so for a specific aux
file myfile.aux, you could also do:

python3 -m latexgit.aux myfile.aux

After this, in the next pass of pdflatex, \gitFile and \gitUrl will contain
the right paths and URLs.

3 Provided Macros

Here we discuss the macros that can directly be accessed by the user to make use
of the functionality of the latexgit package. The implementation of these macros
is given in Section 4 and several examples can be found in Section 3.1.

The macro \gitLoad{⟨repositoryURL⟩}{⟨path⟩}{⟨postProcessing⟩} provides a\gitLoad

local path to a file from a git repository.

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.com/

thomasWeise/latexgit_tex or ssh://git@github.com/thomasWeise/latexgit_
tex or any other valid repository URL.

4

https://www.man7.org/linux/man-pages/man1/head.1.html
https://github.com/thomasWeise/latexgit_tex
https://github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex

{⟨path⟩} is then the path to the file within the repository. This could be, for example,
latex/latexgit.dtx.

{⟨postProcessing⟩} Can either be empty, in which case the repository is downloaded and the
the local path to the file is returned. It can also be shell command, e.g.,
head -n 5. In this case, the contents of the file are piped to stdin of the
command and the text written to the stdout by the command is stored in
a file whose path is returned.

After invoking this command, two new commands will be defined:

\gitFile returns the path to the file that was loaded and/or post-processed.

\gitUrl returns the fully URL to the file in the git repository online. This com-
mand works for GitHub, but it may not provide the correct URL for other
repository types.

The macro \gitFile returns the path to the file with the contents of the\gitFile

latest \gitLoad request. During the first pdflatex pass, this will be the path to
a dummy file. After the Python package has been applied to the aux file, then
\gitFile will point to the proper file during the next pdflatex pass.

The macro \gitUrl returns the URL from which the file corresponding to the\gitUrl

latest \gitLoad request was downloaded. This command is designed to work with
GitHub. It will be the repository URL combine with the path of the file inside
the repository and the commit has code. The Url thus points to the exact same
version of the file that was downloaded (and optionally post-processed).

During the first pdflatex pass, this will be https://example.com. After the
Python package has been applied to the aux file, then \gitUrl will point to the
proper file during the next pdflatex pass.

3.1 Examples

Here we provide a set of examples for the use of the package. Each example
demonstrates another facet of the package and, at the same time, serves as test
case. The first example given in Section 3.2 is a Minimal Working Example, i.e.,
just provides the barest bones. It shows you how to import a single file from a git
repository. The second example in Section 3.3 shows you how to import multiple
different files from different repositories (which equates to just using the same
command multiple times) and how to use post-processors. The third example in
Section 3.4 shows how to create beautiful (to my standards) listings by including
code from a git repository, post-processing it, and loading it as a listing. Finally,
the fourth example in Section 3.5 shows that you can also define macros for your
favorite repository and post-processors to have a more convenient way to import
files from git.

3.2 Minimal Working Example

This minimal working example shows how to load a file from a git repository and
directly \input its contents. The result can be seen in Figure 2.

As you can see in Listing 1, we first load the package latexgit in line 2.
Inside the document, we define a git request via the \gitLoad command. This
command takes the URL of a git repository as first parameter. in this case, this

5

https://example.com

Listing 1: A minimal working example for using the latexgit package, rendered
as Figure 1. The contents of dummy.tex are shown in Listing 2.� �

1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{verbatim}% for loading data

4 \begin{document}%
5 A\gitLoad{https://github.com/thomasWeise/latexgit tex}{examples/dummy.tex}{}B%
6 C\input{\gitFile}D%
7 \end{document}% � �

Listing 2: The contents of the file dummy.tex included from git in Listing 1.� �
1 This is a dummy text file.
2 It just contains this text, nothing else.
3 It can directly be included into \LaTeX.
4 Since we directly \verb=\input= it, it can also contain macros.
5 And math: $1+2=\sqrt{9}$. � �

is https://github.com/thomasWeise/latexgit_tex, which happens to be the
URL where you can find the repository of this package on GitHub. The second
parameter is a path to the file in this repository relative to the repository root.
In this case, this is the path to the file examples/dummy.tex, whose contents you
can find in Listing 2.

The third parameter shall be ignored for now.
After defining the request, we can now use two commands, \gitFile and

\gitUrl. In this Minimal Working Example, we shall only consider the first one.
This command expands to a local path of a file with the contents downloaded
from the git repository.

Well, during the first LATEX or pdflatex run, it just points to a dummy file
with the name \jobname.latexgit.dummy, where \jobname evaluates to the name
of the main LATEX document, say article for article.tex. At that point, the
dummy file’s content is a single space character followed by a newline.

After the first pdflatex pass, you can apply the Python processor (see Sec-
tion 2.1.2) as follows:

python3 -m latexgit.aux jobname

Where jobname shall be replaced with the main file name, again article for
article.tex, for instance.

This command then downloads the file from git and puts it into a path that
can locally accessed by LATEX. Usually, it will create a folder __git__ in your
project’s directory and place the file there.

Anyway, during the second LATEX or pdflatex pass, \gitFile points to a valid
file path with actual contents. By doing \input{\gitFile}, we here include this
file (remember, its contents are given in Listing 2) as if it was part of our normal
LATEX project. The result of this pass is shown in Figure 1.

If this example was stored as example_1.tex, then it could be built via

6

https://github.com/thomasWeise/latexgit_tex

ABCThis is a dummy text file. It just contains this text, nothing else. It
can directly be included into LATEX. Since we directly \input it, it can also
contain macros. And math: 1 + 2 =

√
9. D

1

Figure 1: The rendered result of Listing 1 (with trimmed page margins and bot-
tom).

pdflatex example_1

python3 -m latexgit.aux example_1

pdflatex example_1

If we look back at the Listing 1 of our main file, you will notice the four blue
marks A, B, C, and D. These are just normal letters, colored and emphasized for
your convenience. I put them there so that you can see where the action takes
place. \gitLoad produces no output, so “ABC” come out next to each other.
\input{\gitFile} between C and D loads and directly includes the example file,
so this is where its content appear.

One small interesting thing is that, since we directly \input the file, its contents
are interpreted as LATEX code. This means that you could construct a document
by inputting files from different git repositories.

However, this is not the envisioned use case. The envisioned use case is to
include source codes and snippets from source codes as listings. We will show how
this could be done in the next example.

Side note: Our Python companion package latexgit downloads the git repos-
itories into a folder called __git__ by default. If you do not delete the folder, the
same repository will not be downloaded again but the downloaded copy will be
used. This significantly increases speed and reduces bandwidth when applying the
latexgit command several times.

7

3.3 The Second Example: Multiple Files and Post-Processing

In Listing 3 we, use latexgit to download and present two different files from
two different GitHub repositories. We also show how post-processing can work,
once using the aforementioned simple head -n 5 command available in the Linux
shell and also by using the Python code formatting tool offered by the latexgit

Python package. The result can be seen in Figure 2.

Listing 3: An example using the latexgit package, rendered as Figure 2.� �
1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{verbatim}% for loading a file verbatim

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \begin{document}%
6 %

7 \section{First File}%
8 First, we load a file from the GitHub repository
9 ‘‘\url{https://github.com/thomasWeise/latexgit\ py}’’, where the Python complement

10 package of our \LaTeX\ package is located. We will then include this file verbatim
11 without any modification.
12

13 \gitLoad{https://github.com/thomasWeise/latexgit py}{latexgit/utils/console.py}{}%
14 % now, \gitFile and \gitUrl are defined and can be used.

15 \verbatiminput{\gitFile}% print the contents of the file

16 The above file was loaded from URL \url{\gitUrl}.% print the url

17 %

18 \clearpage\section{Second File}%
19 We now load the same file again, but this time retain only the first five lines.
20 We do this by specifying that the file contents should be piped through
21 ‘‘\verb=head −n 5=’’ before inclusion.
22 \gitLoad{https://github.com/thomasWeise/latexgit py}{%
23 latexgit/utils/console.py}{head −n 5}%
24 % now, \gitFile and \gitUrl are defined and can be used.

25 \verbatiminput{\gitFile}% print the contents of the file

26 The above file was loaded from URL \url{\gitUrl}.% print the url

27 %

28 \clearpage\section{Third File}%
29 We now load a file from the ‘‘\url{https://github.com/thomasWeise/moptipy}’’
30 GitHub repository. The contents of this file will be piped through the Python code
31 formatter, which retains only a snippet of the code and removes type hints and
32 comments, while keeping the doc strings. (It doesn’t really matter what it does,
33 it is just postprocessing.)
34 \gitLoad{https://github.com/thomasWeise/moptipy}{moptipy/api/encoding.py}{%
35 python3 −m latexgit.formatters.python −−labels book −−args doc}% post−processor

36 % now, \gitFile and \gitUrl are defined and can be used.

37 \verbatiminput{\gitFile}% print the contents of the file

38 The above file was loaded from URL \url{\gitUrl}.% print the url

39 %

40 \end{document}% � �
8

The file example_2.tex shown in Listing 3 begins by loading our latexgit

package as well as package verbatim, which is later used to display the included
files. The document creates three sections, each of which is used to display one
imported file.

The first section loads one Python source file from our Python companion
package latexgit py. The sources of this package are available in the GitHub
repository https://github.com/thomasWeise/latexgit_py. We download the
file latexgit/utils/console.py, which is just a small utility for printing log
strings to the output together with a time mark. The full git request contains
these two components.

Issuing this request will set the command \gitFile to the local file contain-
ing the downloaded contents of latexgit/utils/console.py from the repository
https://github.com/thomasWeise/latexgit_py. The command \gitUrl will
expand to the URL pointing to the downloaded version of the file in the original
repository. This command, at the present time, is only really valid for GitHub.
It builds a URL relative to the original repository based on the commit ID that
was valid when the file was downloaded from the repository. Therefore, the URL
then points to the exact same contents that were put into the file. Anyway, the
file contents and the generated URL are displayed in Figure 2a.

The second section of the example document queries the same file again. How-
ever, this time, the third parameter of \gitLoad is specified. If the third parameter
is left blank, the downloaded file will be provided as-is. However, especially if we
would like to include some snippets of a more complex source file, we sometimes
do not want to have the complete original contents. In this case, we can specify
a post-processing command as third parameter. This command will be executed
in the shell The contents of the downloaded file will then be piped into the stdin
of the command and everything that the command writes to its stdout will be
collected in a file. \gitFile then returns the path to that file.

Since you can provide arbitrary commands as post-processors, this allows you
to do, well, arbitrary post-processing. This could include re-formatting of code
or selecting only specific lines from the file. The command can have arguments,
separated by spaces, allowing you to pass information such as line indices or other
instructions to your post-processing command.

In the example, we use the standard Linux command head -n 5, which writes
the first five lines that were written to its stdin to its stdout.

The resulting output in Figure 2b looks thus similar to Figure 2a, but only
imports ths first five lines from the downloaded file.

If this example was stored as example_2.tex, then it could be built via

pdflatex example_2

python3 -m latexgit.aux example_2

pdflatex example_2

Side note: Such post-processing steps are cached by the Python companion
package latexgit in the __git__ folder as well.

Finally, in the third section, of Listing 3, we import a file from the sources of
our Python package for metaheuristic optimization (moptipy). The sources of this
package are located on GitHub at https://github.com/thomasWeise/moptipy.
We download the file moptipy/api/encoding.py, which offers a convenient API
for implementing an encoding which translates from the search to the solution
space (but that would lead too far here). Either way, this is a file that has lots

9

https://thomasweise.github.io/latexgit_py
https://github.com/thomasWeise/latexgit_py
https://github.com/thomasWeise/latexgit_py
https://thomasweise.github.io/moptipy
https://github.com/thomasWeise/moptipy

1 First File

First, we load a file from the GitHub repository “https://github.com/thomasWeise/
latexgit_py”, where the Python complement package of our LATEX package is
located. We will then include this file verbatim without any modification.

"""The ‘logger‘ routine for writing a log string to stdout."""

import datetime

from typing import Callable, Final

#: the "now" function

__DTN: Final[Callable[[], datetime.datetime]] = datetime.datetime.now

def logger(message: str) -> None:

"""

Write a message to the log.

:param message: the message

"""

print(f"{__DTN()}: {message}", flush=True) # noqa

The above file was loaded from URL https://github.com/thomasWeise/latexgit_

py/blob/b1ce42942dfd021272a9bcab5462983660c666c4/latexgit/utils/console.

py.

1

(a) Page 1 of the pdf compiled from List-
ing 3.

2 Second File

We now load the same file again, but this time retain only the first five lines. We
do this by specifying that the file contents should be piped through “head -n 5”
before inclusion.

"""The ‘logger‘ routine for writing a log string to stdout."""

import datetime

from typing import Callable, Final

#: the "now" function

The above file was loaded from URL https://github.com/thomasWeise/latexgit_

py/blob/b1ce42942dfd021272a9bcab5462983660c666c4/latexgit/utils/console.

py.

2

(b) Page 2 of the pdf compiled from List-
ing 3.

3 Third File

We now load a file from the “https://github.com/thomasWeise/moptipy”
GitHub repository. The contents of this file will be piped through the Python
code formatter, which retains only a snippet of the code and removes type hints
and comments, while keeping the doc strings. (It doesn’t really matter what it
does, it is just postprocessing.)

class Encoding(Component):

"""The encoding translates from a search space to a solution space."""

def decode(self, x, y):

"""

Translate from search- to solution space.

Map a point ‘x‘ from the search space to a point ‘y‘

in the solution space.

:param x: the point in the search space, remaining unchanged.

:param y: the destination data structure for the point in the

solution space, whose contents will be overwritten

"""

The above file was loaded from URL https://github.com/thomasWeise/moptipy/

blob/2db0c6cb461a118ef702130fd2d78a7466c43a09/moptipy/api/encoding.

py.

3

(c) Page 3 of the pdf compiled from Listing 3.

Figure 2: The rendered result of Listing 3 (with trimmed page margins and bot-
toms).

of content. So we want to select certain contents while ignoring other. We also
remove all Python type hints and all comments from the source and then reformat
it.

Luckily, our latexgit Python package also offers a Python code formatter,
namely the executable module latexgit.formatters.python. This module takes a
set of parameters such as limiting labels that denote the start and end of code
snippets (in this case, the label “book”) to include as well args telling the system
which part of the “omittable” code to preserve (in this case, preserve docstrings
and delete everything else that is non-essential). If you are interested in such post-
processing, feel invited to check out the documentation of the Python companion
package at https://thomasweise.github.io/latexgit_py. Either way, the file
is downloaded, piped through this post-processor, and the result is included as
shown in Figure 2c.

10

https://thomasweise.github.io/latexgit_py/latexgit.formatters.html#module-latexgit.formatters.python
https://thomasweise.github.io/latexgit_py
https://thomasweise.github.io/latexgit_py

Listing 4: An example using the listings package, rendered as Figure 3.� �
1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{xcolor}% to be able to use colors

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \usepackage{listings}% importing external code

6 \lstset{language=Python,basicstyle=\small\ttfamily,%
7 keywordstyle=\ttfamily\color{teal!90!black}\bfseries,%
8 identifierstyle=,commentstyle=\color{gray}\footnotesize,%
9 stringstyle=\ttfamily\color{red!90!black},%

10 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
11 backgroundcolor=\color{black!10!yellow!5!white}}%
12 \begin{document}%
13 %

14 Behold the beautiful \autoref{l}.%
15 %

16 \gitLoad{https://github.com/thomasWeise/moptipy}{%
17 moptipy/algorithms/so/rls.py}{%
18 python3 −m latexgit.formatters.python −−labels book}% post−processor

19 %

20 \lstinputlisting[label=l,caption={%
21 The RLS Algorithm. (\href{\gitUrl}{src})}]{\gitFile}%
22 %

23 \end{document}% � �
3.4 The Third Example: Using the listings Package

Finally, as third example, let us show the interaction with the package listings.
This is not much different from using the package verbatim in the second example
above. I just wanted to show you how it looks like. Also, I wanted to show the
intended use of \gitUrl: You can use it to put some small “(src)” link in the
listing’s caption. This way, you can create teaching material where every listing is
linked to the correct version of source code online without splattering long URLs
into your text. Anyway. The source code of the third example is given in Listing 4
and the compiled result as Figure 3.

If this example was stored as example_3.tex, then it could be built via

pdflatex example_3

python3 -m latexgit.aux example_3

pdflatex example_3

Side note: If you actually check the source code of the RLS algorithm, which
is linked to by the “(src)” in the caption of the example and that is displayed in
the example, you will find that it actually uses Python type hints. It also has a
comprehensive doc-string and is commented well. In source code of a real project,
we do want this. In a listing in a book, we do not. The post-processor command

python3 -m latexgit.formatters.python --labels book

only keeps the code between the labels “# start book” and “# end book.” It also
removes all non-essential stuff such as type hints, comments, and the doc-string.

11

https://thomasweise.github.io/moptipy/_modules/moptipy/algorithms/so/rls.html
https://thomasweise.github.io/moptipy/_modules/moptipy/algorithms/so/rls.html

Behold the beautiful Listing 1.

Listing 1: The RLS Algorithm. (src)� �
1 class RLS(Algorithm1):

2 def solve(self , process):

3 best_x = process.create ()

4 new_x = process.create ()

5 random = process.get_random ()

6

7 evaluate = process.evaluate

8 op1 = self.op1.op1

9 should_terminate = process.should_terminate

10

11 self.op0.op0(random , best_x)

12 best_f = evaluate(best_x)

13

14 while not should_terminate ():

15 op1(random , new_x , best_x)

16 new_f = evaluate(new_x)

17 if new_f <= best_f:

18 best_f = new_f

19 best_x , new_x = new_x , best_x � �

1

Figure 3: The rendered result of Listing 4 (with trimmed page margins and bot-
tom).

Then it re-formats the code to save space. Again, check out the documentation of
our latexgit Python companion package at https://thomasweise.github.io/
latexgit_py. This is the main intended use case of our package: Be able to have
nicely documented “real” code and to use parts of it in teaching materials.

3.5 The Fourth Example: Using Git Commands in Macros

The goal of the fourth example is to show that we can also put the commands from
our latexgit package into LATEXmacros. We define a new command \moptipySrc

with three parameters. moptipy is a Python package that implements lots of
metaheuristic algorithms. We could want to load several files from such a repos-
itory https://github.com/thomasWeise/moptipy and post-process and display
them all in the same way. Then, it would be annoying to always do \gitLoad,
\lstinputlisting, and spell out the post-processor each time. So we put all of
this into a single command whose first argument is the label to put for the listing,
whose second command is the caption to use, and whose third command is the
path relative to the folder “moptipy” in the git repository. In Listing 5, we can
then simply call \moptipySrc and it will do the whole process of loading a file
from the right repository, post-processing it, putting a floatin listing, and even
putting a small “(src)” into the caption of the listing. The results are shown in
Figure 4 and can be obtained via

pdflatex example_4

python3 -m latexgit.aux example_4

pdflatex example_4

(if the example code from Listing 5 was stored in a file called example_4.tex,
that is.)

12

https://thomasweise.github.io/latexgit_py
https://thomasweise.github.io/latexgit_py
https://thomasweise.github.io/moptpiy
https://github.com/thomasWeise/moptipy
https://thomasweise.github.io/moptpiy

Listing 5: An example using commands from the latexgit package in macros,
rendered as Figure 4.� �

1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{xcolor}% to be able to use colors

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \usepackage{listings}% importing external code

6 \lstset{language=Python,basicstyle=\small\ttfamily,%
7 keywordstyle=\ttfamily\color{teal!90!black}\bfseries,%
8 identifierstyle=,commentstyle=\color{gray}\footnotesize,%
9 stringstyle=\ttfamily\color{red!90!black},%

10 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
11 backgroundcolor=\color{black!10!yellow!5!white}}%
12 %

13 \gdef\moptipySrc#1#2#3{%
14 \gitLoad{https://github.com/thomasWeise/moptipy}{moptipy/#3}{%
15 python3 −m latexgit.formatters.python −−labels book}%
16 \lstinputlisting[float,label={#1},caption={#2˜(\href{\gitUrl}{src})}]{\gitFile}}
17 %

18 \begin{document}%
19 %

20 Behold the beautiful \autoref{a} and \autoref{b}.%
21 %

22 \moptipySrc{a}{Randomized Sampling}{algorithms/random sampling.py}
23 \moptipySrc{b}{Randomized Local Search}{algorithms/so/rls.py}
24 %

25 \end{document}% � �

Listing 1: Randomized Sampling (src)� �
1 class RandomSampling(Algorithm0):

2 def solve(self , process):

3 x = process.create ()

4 random = process.get_random ()

5

6 evaluate = process.evaluate

7 op0 = self.op0.op0

8 should_terminate = process.should_terminate

9

10 while not should_terminate ():

11 op0(random , x)

12 evaluate(x) � �
Behold the beautiful Listing 1 and Listing 2.

1

(a) Page 1 of the pdf compiled from List-
ing 5.

Listing 2: Randomized Local Search (src)� �
1 class RLS(Algorithm1):

2 def solve(self , process):

3 best_x = process.create ()

4 new_x = process.create ()

5 random = process.get_random ()

6

7 evaluate = process.evaluate

8 op1 = self.op1.op1

9 should_terminate = process.should_terminate

10

11 self.op0.op0(random , best_x)

12 best_f = evaluate(best_x)

13

14 while not should_terminate ():

15 op1(random , new_x , best_x)

16 new_f = evaluate(new_x)

17 if new_f <= best_f:

18 best_f = new_f

19 best_x , new_x = new_x , best_x � �

2

(b) Page 2 of the pdf compiled from List-
ing 5.

Figure 4: The rendered result of Listing 5 (with trimmed page margins and bot-
toms).

13

4 Implementation

The names of all internal elements of the package are prefixed with @latexgit@.
This naming convention should prevent any name clashes with other packages.

Our latexgit package requires only one other package:

1. alphalph [1] is required to translate TEX counters to alphabetic series for
counters that are outside of the range 1 . . . 26. Basically, for each file we
include from git, we store the corresponding local path in a command of the
structure \@latexgit@pathXXX where the XXX is an alphabetical sequence
which is increasing in the form “a,”, “b,” . . . , “y,” “z,” “aa,” . . . , “ay,” “az,”
“ba,” “zy,” “zz,” “aaa,” “aab,” . . .

2. filecontents [2] is used to allow us to generate the dummy file on the fly.
This package is obsolete for the most recent LATEX version, where it simply
does nothing, but may help us to get our package to work on older systems.

1 \RequirePackage{alphalph}% Convert counters to alphabetical series.

2 \RequirePackage{filecontents}% Allow us to create the dummy file.

3 \newcount\@latexgit@counter% The counter for the git files included.

4 \@latexgit@counter0\relax% We start the counter at 0.

5 %

6 % This is the path to the dummy file.

7 % The dummy file is created directly below.

8 % The dummy file is referenced by all invocations of |\gitFile| until the

9 % Python package has been applied to the |.aux| file and has loaded the

10 % actual files.

11 \edef\@latexgit@dummyPath{\jobname.latexgit.dummy}% the dummy file

12 %

13 % Create the dummy file that replaces git files before they are loaded.

14 % This file only has one line with one single space.

15 \expandafter\begin\expandafter{filecontents*}{\@latexgit@dummyPath}

16

17 \end{filecontents*}

18 %

19 % This command does nothing and is just a placeholder in the |aux| files.

20 \protected\gdef\@latexgit@gitFile#1#2#3{}%

\gitLoad The macro \gitLoad{⟨repositoryURL⟩}{⟨path⟩}{⟨postProcessing⟩} defines a query
to a git repository. The query is stored in the aux file of the project and carried
out by the Python companion package (see Section 2.4). This macro will define
two other macros, \gitFile and \gitUrl. During the first LATEX build, these
macros will return a path to a dummy file which only has a single space character
in it followed by a newline and the URL https://example.com, respectively. As
said, \gitLoad will store all information in the aux file, which then permits the
latexgit Python package to download (and optionally post-process) the actual
file. In the second round of LATEX building, \gitFile and \gitUrl will then
return the local path to that downloaded file and the actual URL, respectively.

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.com/

thomasWeise/latexgit_tex or ssh://git@github.com/thomasWeise/latexgit_
tex or any other valid repository URL.

14

https://example.com
https://github.com/thomasWeise/latexgit_tex
https://github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex

{⟨path⟩} is then the path to the file within the repository. This could be, for example,
latex/latexgit.dtx.

{⟨postProcessing⟩} Can either be empty, in which case the repository is downloaded and the
the local path to the file is returned. It can also be shell command, e.g.,
head -n 5. In this case, the contents of the file are piped to stdin of the
command and the text written to the stdout by the command is stored in
a file whose path is returned.

21 %%

22 %% Define a query to load and post-process a file from a |git| repository.

23 %% #1 is the repository URL

24 %% #2 is the path to the file inside the repository

25 %% #3 is a command through which the file contents should be piped

26 %%% (leave #3 empty to use the file as-is)

27 \protected\gdef\gitLoad#1#2#3{%

28 \edef\@latexgit@pA{#1}% fully expand the repository URL

29 \edef\@latexgit@pB{#2}% fully expand the path into the repository

30 \edef\@latexgit@pC{#3}% fully expand the (optional) shell command

31 % Write the parameters to the aux file.

32 \immediate\write\@mainaux{%

33 \noexpand\@latexgit@gitFile{\@latexgit@pA}{\@latexgit@pB}{\@latexgit@pC}}%

34 % Increment the counter for command names by 1.

35 \advance\@latexgit@counter by 1\relax%

36 % We now create the name of the path command based on the structure

37 % |\@latexgit@pathXXX| where |XXX| is a alphabetic sequence representing

38 % the value of |\@latexgit@counter|

39 \edef\@latexgit@pathCmd{@latexgit@path\alphalph{\the\@latexgit@counter}}%

40 % If the path command exists, then we store it as |\gitFile|.

41 \expandafter\ifcsname\@latexgit@pathCmd\endcsname\relax%

42 \xdef\gitFile{\csname\@latexgit@pathCmd\endcsname}%

43 \else%

44 % But if it does not exist, we assign |\gitFile| to the dummy path.

45 \xdef\gitFile{\@latexgit@dummyPath}%

46 \fi% If we get here, the |\gitFile| command holds a valid path.

47 % We now create the name of the url command based on the structure

48 % |\@latexgit@urlXXX| where |XXX| is a alphabetic sequence representing

49 % the value of |\@latexgit@counter|

50 \edef\@latexgit@urlCmd{@latexgit@url\alphalph{\the\@latexgit@counter}}%

51 % If the url command exists, then we store it as |\gitUrl|.

52 \expandafter\ifcsname\@latexgit@urlCmd\endcsname\relax%

53 \xdef\gitUrl{\csname\@latexgit@urlCmd\endcsname}%

54 \else%

55 % But if it does not exist, we store the example url in |\gitUrl|.

56 \xdef\gitUrl{http://example.com}%

57 \fi% If we get here, the |\gitUrl| holds a valid URL.

58 }%

References

[1] Heiko Oberdieck. The alphalph package. CTAN Comprehensive TEX Archive
Network, 2019/12/09 v2.6. URL https://ctan.org/pkg/alphalph

15

https://ctan.org/pkg/alphalph

[2] Scott Pakin. The filecontents package. CTAN Comprehensive TEX Archive
Network, April 2, 2023. URL https://ctan.org/pkg/filecontents

Change History

0.8.0

General: initial draft version 1

0.8.1
General: slightly improved

documentation 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@latexgit@counter 3,

4, 35, 38, 39, 49, 50
\@latexgit@dummyPath

. 11, 15, 45
\@latexgit@gitFile .

. 20, 33
\@latexgit@pA . . . 28, 33
\@latexgit@pB . . . 29, 33
\@latexgit@pC . . . 30, 33
\@latexgit@pathCmd .

. 39, 41, 42
\@latexgit@pathXXX . 37
\@latexgit@urlCmd .

. 50, 52, 53
\@latexgit@urlXXX . 48
\@mainaux 32
git 6, 7, 9

\gitFile 1, 4
\gitLoad 1, 4
\gitUrl 1, 4
\input 5, 6
\jobname 6
\jobname.latexgit.dummy

. 4

A
\advance 35
alphalph 3, 14, 15
\alphalph 39, 50
aux 1, 4

B
\begin 15

C
\csname 42, 53

E
\edef 11, 28, 29, 30, 39, 50
\else 43, 54
\end 17
\endcsname 41, 42, 52, 53
\expandafter . 15, 41, 52

F
filecontents 3, 14

G
\gdef 20, 27
git 1, 4
\gitFile 8,

40, 42, 44, 45, 46
\gitLoad 21
\gitUrl 51, 53, 55, 56, 57

H
head 4
http://example.com . . 4

I
\ifcsname 41, 52
\immediate 32

J
\jobname 11

L
latexgit.dtx 3

latexgit.ins 3

latexgit.sty 3

latexgit py 3

Linux 4

N

\newcount 3

\noexpand 33

P

pdflatex 1, 3, 4

\protected 20, 27

PyPI 3

Python 2, 3, 6

R

\relax 4, 35, 41, 52

\RequirePackage . . 1, 2

S

shell 4, 9

stdin 4, 5, 9

stdout 4, 5, 9

T

\the 39, 50

W

\write 32

X

\xdef 42, 45, 53, 56

16

https://ctan.org/pkg/filecontents

	Contents
	1 Introduction
	1.1 Addressed Problem and Use Case
	1.2 Provided Functionality

	2 Usage
	2.1 Installation
	2.2 Loading the Package
	2.3 Querying a File from a git Repository
	2.4 Executing the Python Package

	3 Provided Macros
	3.1 Examples
	3.2 Minimal Working Example
	3.3 The Second Example: Multiple Files and Post-Processing
	3.4 The Third Example: Using the listings Package
	3.5 The Fourth Example: Using Git Commands in Macros

	4 Implementation
	References

