
The latexgit Package

Thomas Weise
Institute of Applied Optimization

School of Artificial Intelligence and Big Data
Hefei University, Hefei 230601, Anhui, China
tweise@hfuu.edu.cn · tweise@ustc.edu.cn

September 21, 2024

Abstract

This LATEX package works in combination with the Python package
latexgit. It offers the command \gitLoad, which can load a file from a
git repository, optionally post-process it, and then provide a local path to
the file as macro \gitFile and the URL to the original file in \gitUrl. Us-
ing the \gitFile macro, you can then include the file in LATEX directly or
load it as source code listing. It also offers the command \gitExec, which
can execute an arbitrary command, either in the current directory or in-
side a directory of a git repository and fetch the standard output into a
local file, the path to which is made available to the file again as macro
\gitFile and the URL to the repository in which the command was exe-
cuted becomes \gitUrl. The functionality is implemented by storing the
git requests in the aux file of the project during the first pdflatex pass.
The aux file is then processed by the Python package which performs the
actual git queries, stores the result in local files, and adds the resolved paths
to the aux file. During the first pdflatex run, \gitFile and \gitUrl offer
dummy results. However, after the resolution via the Python package, in
the second pdflatex run they then point to the right data.

Contents

1 Introduction 2
1.1 Addressed Problem and Use Case 2
1.2 Provided Functionality . 2

2 Usage 3
2.1 Installation . 3
2.2 Loading the Package . 4
2.3 Querying a File from a git Repository 4
2.4 Executing a Command (optionally inside a git Repository 4
2.5 Executing the Python Package . 5
2.6 A Note on Virtual Environments 5

1

mailto:tweise@hfuu.edu.cn
mailto:tweise@ustc.edu.cn

3 Provided Macros 6
3.1 Examples . 7
3.2 Minimal Working Example . 7
3.3 The Second Example: Multiple Files and Post-Processing 10
3.4 The Third Example: Using the listings Package 13
3.5 The Fourth Example: Using Git Commands in Macros 14
3.6 The Fifth Example: Capturing the Output of a Program 16
3.7 The Sixth Example: Capturing the Output of a Program Executed

Inside a git Repository . 17
3.8 The Seventh Example: Capturing the Output of Multiple Programs

Executed Inside Different git Repositories 18

4 Implementation 20

1 Introduction

1.1 Addressed Problem and Use Case

Let’s say you want to make teaching material in the field of computer science. In
a wide variety of computer science fields, you may want to include source code
examples in your lecture script or slides. The standard way is to either write some
pseudo-code or program-like snippets. Usually these neither compile nor are they
maintained well and they are often riddled with mistakes. That is not nice.

What we want is to have snippets of “real” code. Code that we can compile,
unit test, and run. Now such code naturally would not be sprinkled into our LATEX
teaching material sources. That would be a mess to organize and maintain.

A natural location for source code examples is a separate git repository.
Maybe on GitHub, maybe somewhere else. If I wanted to do a lecture on, say,
optimization algorithms, I would like to have the optimization algorithms imple-
mented in an actual useful fashion. I would put them into a repository where I
can build and test these real codes as a complete and separate piece of work.

Then I want to use them in my lecture scripts (written in LATEX) as well.
However, I do not want to copy them there. I want that my lecture scripts directly
reference the git repository with the real code. I want them to “include” the
examples from there. If I change the code in the git repository and then re-
compile my teaching material, these changes should automatically be reflected
there.

That is the use case we tackle here. We offer a solution to the question

“How can we include snippets of code from a separate, complex code
basis (located in a git repository) into our LATEX documents?”

Additionally, sometimes we want to execute the code from that repository and
capture the standard output. This output could then be displayed as listing next
to the code. This package also provides this functionality.

1.2 Provided Functionality

It does so by offering a combination of a LATEX package (this package here) and
a Python program (published at https://pypi.org/projects/latexgit). This

2

https://thomasweise.github.io/moptipy
https://thomasweise.github.io/moptipy
https://pypi.org/projects/latexgit

LATEX provides the command \gitLoad that can load a specific file (its second
argument) from a specific git repository (its first argument) and, optionally, pipe
the file contents through a program for post-processing (the third argument, which
can be left empty). It also provides the command \gitExec, which, too, has
three arguments. This time, the first two arguments (the git repository URL and
the path to a directory inside the repository in which the command should be
executed) can be left empty. The third argument, however, is the command line
to be executed whose standard output should be fetched. Both types of requests
are stored in the aux file during the first pdflatex pass, then resolved by the
Python program, and their results become available in the second pdflatex pass
via the commands \gitFile and \gitUrl.

2 Usage

Using the package requires the following steps:

1. Obviously, both the LATEX package and its Python companion package must
be installed (see Section 2.1).

2. In your document, you need to load the package in the preamble (see Sec-
tion 2.2).

3. Then you can make git queries and using the paths to files holding their
results (see Section 2.3).

4. Finally, the Python package can carry them out after the first pdflatex run
and in the next pdflatex run, \gitFile and \gitUrl are defined appropri-
ately, see Section 2.5.

If your LATEX document is called article.tex, then you have at least the
following workflow:

pdflatex article

python3 -m latexgit.aux article

pdflatex article

Comprehensive examples are provided in Section 3.1.

2.1 Installation

2.1.1 LATEX Package

First, make sure that you have the latexgit.sty either installed or inside your
document’s directory. For this, there are several options:

1. You can just download the file from https://thomasweise.github.io/

latexgit_tex/latexgit.sty directly. You can now copy it into the folder
of your document.

2. You can download latexgit.dtx and latexgit.ins from https://thomasweise.

github.io/latexgit_tex/latexgit.dtx and https://thomasweise.github.
io/latexgit_tex/latexgit.ins. You can then execute

pdflatex latexgit.ins

3

https://thomasweise.github.io/latexgit_tex
https://thomasweise.github.io/latexgit_py
https://thomasweise.github.io/latexgit_tex/latexgit.sty
https://thomasweise.github.io/latexgit_tex/latexgit.sty
https://thomasweise.github.io/latexgit_tex/latexgit.dtx
https://thomasweise.github.io/latexgit_tex/latexgit.dtx
https://thomasweise.github.io/latexgit_tex/latexgit.ins
https://thomasweise.github.io/latexgit_tex/latexgit.ins

and you should get the style file latexgit.sty. You can now copy it into
the folder of your document.

3. Or you can download the latexgit.tds.zip file from https://thomasweise.

github.io/latexgit_tex/latexgit.tds.zip and unpack it into your TEX
tree. If you know what that is.

2.1.2 Python Package

The Python package is available at https://github.com/thomasWeise/latexgit_
py, https://thomasweise.github.io/latexgit_py, and https://pypi.org/

project/latexgit. You can most easily install it from PyPI by doing

pip install latexgit

2.2 Loading the Package

Load this package using

\usepackage{latexgit}

The package has no options or parameters. Loading it will automatically load
the packages alphalph and filecontents as well, see Section 4.

2.3 Querying a File from a git Repository

To query a file stored at path path inside from a git repository available under
URL repositoryURL, you would specify the command

\gitLoad{repositoryURL}{path}{}

After this command is executed, a local path to the file becomes available in the
fully-expandable command \gitFile. The full URL to the file in the git repos-
itory, including the current commit id, becomes available in the fully-expandable
command \gitUrl. Both \gitFile and \gitUrl will be overwritten every time
\gitLoad or \gitExec (see later) are invoked. You can invoke \gitLoad any
number of times.

The third parameter, left empty in the above example, can specify an optional
post-processing commend. If it is not left empty, this command will be executed
in the shell. The contents of the file loaded from the git repository will be piped
to the stdin of the command. The stdout of the command will be piped to a file
and \gitFile will then contain the path to this file instead. For example, under
Linux, you could use the head command to return only the first 5 lines of a file as
follows:

\gitLoad{repositoryURL}{path}{head -n 5}

2.4 Executing a Command (optionally inside a git Reposi-
tory

Sometimes, we want to execute a program and fetch its standard output.

\gitExec{repositoryURL}{path}{theCommand}

4

https://thomasweise.github.io/latexgit_tex/latexgit.tds.zip
https://thomasweise.github.io/latexgit_tex/latexgit.tds.zip
https://github.com/thomasWeise/latexgit_py
https://github.com/thomasWeise/latexgit_py
https://thomasweise.github.io/latexgit_py
https://pypi.org/project/latexgit
https://pypi.org/project/latexgit
https://www.man7.org/linux/man-pages/man1/head.1.html

The most common use case of our package is that you want to execute a program
which is part of a git repository. In this case, you would put the URL of the
repository in repositoryURL and the relative path to the directory inside the
repository in which the command should be invoked as path. If you want to
invoke the command in the root folder of the repository, put . as path. The
theCommand then holds the command line to be executed. Notice: You can also
leave both repositoryURL and path blank. In this case, the command is executed
in the current folder. (The use case for this is to fetch the output of stuff like
python3 --version.) Anyway, after this command is executed, a local path to the
file with the captured standard output becomes available in the fully-expandable
command \gitFile. If the command was executed in a git repository, then the
URL to the git repository becomes available in the fully-expandable command
\gitUrl (otherwise, this command expands to the empty string). Both \gitFile

and \gitUrl will be overwritten every time \gitLoad or \gitExec are invoked.
You can invoke \gitLoad any number of times.

2.5 Executing the Python Package

During the first pdflatex run, \gitFile points to an empty dummy file
(\jobname.latexgit.dummy) and \gitUrl points to http://example.com. Both
commands will only expand to useful information if the Python package latexgit
is applied to the project’s aux file. This works very similar to BibTEX. If the name
of your TEX file is myfile.tex, then you would execute

python3 -m latexgit.aux myfile

More specifically, the Python package processes the aux files, so for a specific aux
file myfile.aux, you could also do:

python3 -m latexgit.aux myfile.aux

After this, in the next pass of pdflatex, \gitFile and \gitUrl will contain
the right paths and URLs.

2.6 A Note on Virtual Environments

The following only applies if you have installed this package inside a virtual envi-
ronment. It also only applies in conjunction with version 0.8.17 or newer of the
latexgit Python package.

If you are running this package inside a virtual environment, it is important
that you create this environment using the --copies setting and not using the
(default) --symlinks parameter. In other words, you should have created the
virtual environment as follows, where venvDir is the directory inside of which the
virtual environment is created.

python3 -m venv --copies venvDir

If you create the environment like this (and activated), then our package will
automatically pick it up and use its Python interpreter for any invocation of
python3 or python3.x (where x is the minor version of the interpreter). If you
use the --symlinks parameter to create the environment, then invocations of the
Python interpreter from our package may instead result in the system’s Python
interpreter.

5

https://pypi.org/project/latexgit/0.8.17/

3 Provided Macros

Here we discuss the macros that can directly be accessed by the user to make use
of the functionality of the latexgit package. The implementation of these macros
is given in Section 4 and several examples can be found in Section 3.1.

The macro \gitLoad{⟨repositoryURL⟩}{⟨path⟩}{⟨postProcessing⟩} provides a\gitLoad

local path to a file from a git repository.

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.com/

thomasWeise/latexgit_tex or ssh://git@github.com/thomasWeise/latexgit_
tex or any other valid repository URL.

{⟨path⟩} is then the path to the file within the repository. This could be, for example,
latex/latexgit.dtx.

{⟨postProcessing⟩} Can either be empty, in which case the repository is downloaded and the
the local path to the file is returned. It can also be shell command, e.g.,
head -n 5. In this case, the contents of the file are piped to stdin of the
command and the text written to the stdout by the command is stored in
a file whose path is returned.

After invoking this command, two new commands will be defined:

\gitFile returns the path to the file that was loaded and/or post-processed.

\gitUrl returns the full URL to the file in the git repository online. This com-
mand works for GitHub, but it may not provide the correct URL for other
repository types.

The macro \gitExec{⟨repositoryURL⟩}{⟨path⟩}{⟨theCommand⟩} provides a\gitExec

local path to a file containing the captures standard output of a command (that
may have been executed inside a directory inside a git repository).

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.com/

thomasWeise/latexgit_tex or ssh://git@github.com/thomasWeise/latexgit_
tex or any other valid repository URL. You can also leave this parameter
empty if no git repository should be used.

{⟨path⟩} is the path to a directory within the repository. This could be, for example,
latex or .. If path is provided, then this will be the working directory
where the command is executed. If you want to execute a command in the
root directory of a git repository, you can put . here.

{⟨theCommand⟩} This is the command which should be executed. If repositoryURL and
path are provided, then the repository will be downloaded and path will be
resolved relative to the repository root directory. theCommand will then be
executed in this directory. If neither repositoryURL nor path are provided,
theCommand is executed in the current directory. Either way, its stdout is
captured in a file whose path is returned.

After invoking this command, two new commands will be defined:

\gitFile returns the path to the file in which the standard output is stored.

6

https://github.com/thomasWeise/latexgit_tex
https://github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex
https://github.com/thomasWeise/latexgit_tex
https://github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex

Listing 1: A minimal working example for using the latexgit package, rendered
as Figure 1. The contents of dummy.tex are shown in Listing 2.� �

1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{verbatim}% for loading data

4 \begin{document}%
5 A\gitLoad{https://github.com/thomasWeise/latexgit tex}{examples/dummy.tex}{}B%
6 C\input{\gitFile}D%
7 \end{document}%
� �
\gitUrl returns the full URL to the git repository, if any was specified, or the empty

string otherwise. online. This command works for GitHub, but it may not
provide the correct URL for other repository types.

The macro \gitFile returns the path to the file with the contents of the latest\gitFile

\gitLoad or \gitExec request. During the first pdflatex pass, this will be the
path to a dummy file. After the Python package has been applied to the aux file,
then \gitFile will point to the proper file during the next pdflatex pass.

The macro \gitUrl returns the URL from which the file corresponding to the\gitUrl

latest \gitLoad request was downloaded. Alternatively, it returns the URL of
the git repository of the last \gitExec invocation. This command is designed to
work with GitHub. It will be the repository URL combine with the path of the file
inside the repository and the commit has code. The Url thus points to the exact
same version of the file that was downloaded (and optionally post-processed).

During the first pdflatex pass, this will be https://example.com. After the
Python package has been applied to the aux file, then \gitUrl will point to the
proper file during the next pdflatex pass.

3.1 Examples

Here we provide a set of examples for the use of the package. Each example
demonstrates another facet of the package and, at the same time, serves as test
case. The first example given in Section 3.2 is a Minimal Working Example, i.e.,
just provides the barest bones. It shows you how to import a single file from a git
repository. The second example in Section 3.3 shows you how to import multiple
different files from different repositories (which equates to just using the same
command multiple times) and how to use post-processors. The third example in
Section 3.4 shows how to create beautiful (to my standards) listings by including
code from a git repository, post-processing it, and loading it as a listing. Finally,
the fourth example in Section 3.5 shows that you can also define macros for your
favorite repository and post-processors to have a more convenient way to import
files from git.

3.2 Minimal Working Example

This minimal working example shows how to load a file from a git repository and
directly \input its contents. The result can be seen in Figure 2.

7

https://example.com

Listing 2: The contents of the file dummy.tex included from git in Listing 1.� �
1 This is a dummy text file.
2 It just contains this text, nothing else.
3 It can directly be included into \LaTeX.
4 Since we directly \verb=\input= it, it can also contain macros.
5 And math: $1+2=\sqrt{9}$.
� �

As you can see in Listing 1, we first load the package latexgit in line 2.
Inside the document, we define a git request via the \gitLoad command. This
command takes the URL of a git repository as first parameter. in this case, this
is https://github.com/thomasWeise/latexgit_tex, which happens to be the
URL where you can find the repository of this package on GitHub. The second
parameter is a path to the file in this repository relative to the repository root.
In this case, this is the path to the file examples/dummy.tex, whose contents you
can find in Listing 2.

The third parameter shall be ignored for now.
After defining the request, we can now use two commands, \gitFile and

\gitUrl. In this Minimal Working Example, we shall only consider the first one.
This command expands to a local path of a file with the contents downloaded
from the git repository.

Well, during the first LATEX or pdflatex run, it just points to a dummy file
with the name \jobname.latexgit.dummy, where \jobname evaluates to the name
of the main LATEX document, say article for article.tex. At that point, the
dummy file’s content is a single space character followed by a newline.

After the first pdflatex pass, you can apply the Python processor (see Sec-
tion 2.1.2) as follows:

python3 -m latexgit.aux jobname

Where jobname shall be replaced with the main file name, again article for
article.tex, for instance.

This command then downloads the file from git and puts it into a path that
can locally accessed by LATEX. Usually, it will create a folder __git__ in your
project’s directory and place the file there.

Anyway, during the second LATEX or pdflatex pass, \gitFile points to a valid
file path with actual contents. By doing \input{\gitFile}, we here include this
file (remember, its contents are given in Listing 2) as if it was part of our normal
LATEX project. The result of this pass is shown in Figure 1.

If this example was stored as example_1.tex, then it could be built via

pdflatex example_1

python3 -m latexgit.aux example_1

pdflatex example_1

If we look back at the Listing 1 of our main file, you will notice the four blue
marks A, B, C, and D. These are just normal letters, colored and emphasized for
your convenience. I put them there so that you can see where the action takes
place. \gitLoad produces no output, so “ABC” come out next to each other.

8

https://github.com/thomasWeise/latexgit_tex

ABCThis is a dummy text file. It just contains this text, nothing else. It
can directly be included into LATEX. Since we directly \input it, it can also
contain macros. And math: 1 + 2 =

√
9. D

1

Figure 1: The rendered result of Listing 1 (with trimmed page margins and bot-
tom).

\input{\gitFile} between C and D loads and directly includes the example file,
so this is where its content appear.

One small interesting thing is that, since we directly \input the file, its contents
are interpreted as LATEX code. This means that you could construct a document
by inputting files from different git repositories.

However, this is not the envisioned use case. The envisioned use case is to
include source codes and snippets from source codes as listings. We will show how
this could be done in the next example.

Side note: Our Python companion package latexgit downloads the git repos-
itories into a folder called __git__ by default. If you do not delete the folder, the
same repository will not be downloaded again but the downloaded copy will be
used. This significantly increases speed and reduces bandwidth when applying the
latexgit command several times.

9

3.3 The Second Example: Multiple Files and Post-Processing

In Listing 3 we, use latexgit to download and present two different files from
two different GitHub repositories. We also show how post-processing can work,
once using the aforementioned simple head -n 5 command available in the Linux
shell and also by using the Python code formatting tool offered by the latexgit

Python package. The result can be seen in Figure 2.

Listing 3: An example using the latexgit package, rendered as Figure 2.� �
1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{verbatim}% for loading a file verbatim

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \begin{document}%
6 %

7 \section{First File}%
8 First, we load a file from the GitHub repository
9 ‘‘\url{https://github.com/thomasWeise/latexgit\ py}’’, where the Python complement

10 package of our \LaTeX\ package is located. We will then include this file verbatim
11 without any modification.
12

13 \gitLoad{https://github.com/thomasWeise/pycommons}{pycommons/io/console.py}{}%
14 % now, \gitFile and \gitUrl are defined and can be used.

15 \verbatiminput{\gitFile}% print the contents of the file

16 The above file was loaded from URL \url{\gitUrl}.% print the url

17 %

18 \clearpage\section{Second File}%
19 We now load the same file again, but this time retain only the first five lines.
20 We do this by specifying that the file contents should be piped through
21 ‘‘\verb=head −n 5=’’ before inclusion.
22 \gitLoad{https://github.com/thomasWeise/pycommons}{%
23 pycommons/io/console.py}{head −n 5}%
24 % now, \gitFile and \gitUrl are defined and can be used.

25 \verbatiminput{\gitFile}% print the contents of the file

26 The above file was loaded from URL \url{\gitUrl}.% print the url

27 %

28 \clearpage\section{Third File}%
29 We now load a file from the ‘‘\url{https://github.com/thomasWeise/moptipy}’’
30 GitHub repository. The contents of this file will be piped through the Python code
31 formatter, which retains only a snippet of the code and removes type hints and
32 comments, while keeping the doc strings. (It doesn’t really matter what it does,
33 it is just postprocessing.)
34 \gitLoad{https://github.com/thomasWeise/moptipy}{moptipy/api/encoding.py}{%
35 python3 −m latexgit.formatters.python −−labels book −−args doc}% post−processor

36 % now, \gitFile and \gitUrl are defined and can be used.

37 \verbatiminput{\gitFile}% print the contents of the file

38 The above file was loaded from URL \url{\gitUrl}.% print the url

39 %

40 \end{document}%
� �
10

The file example_2.tex shown in Listing 3 begins by loading our latexgit

package as well as package verbatim, which is later used to display the included
files. The document creates three sections, each of which is used to display one
imported file.

The first section loads one Python source file from our Python companion
package latexgit py. The sources of this package are available in the GitHub
repository https://github.com/thomasWeise/latexgit_py. We download the
file latexgit/utils/console.py, which is just a small utility for printing log
strings to the output together with a time mark. The full git request contains
these two components.

Issuing this request will set the command \gitFile to the local file contain-
ing the downloaded contents of latexgit/utils/console.py from the repository
https://github.com/thomasWeise/latexgit_py. The command \gitUrl will
expand to the URL pointing to the downloaded version of the file in the original
repository. This command, at the present time, is only really valid for GitHub.
It builds a URL relative to the original repository based on the commit ID that
was valid when the file was downloaded from the repository. Therefore, the URL
then points to the exact same contents that were put into the file. Anyway, the
file contents and the generated URL are displayed in Figure 2a.

The second section of the example document queries the same file again. How-
ever, this time, the third parameter of \gitLoad is specified. If the third parameter
is left blank, the downloaded file will be provided as-is. However, especially if we
would like to include some snippets of a more complex source file, we sometimes
do not want to have the complete original contents. In this case, we can specify
a post-processing command as third parameter. This command will be executed
in the shell The contents of the downloaded file will then be piped into the stdin
of the command and everything that the command writes to its stdout will be
collected in a file. \gitFile then returns the path to that file.

Since you can provide arbitrary commands as post-processors, this allows you
to do, well, arbitrary post-processing. This could include re-formatting of code
or selecting only specific lines from the file. The command can have arguments,
separated by spaces, allowing you to pass information such as line indices or other
instructions to your post-processing command.

In the example, we use the standard Linux command head -n 5, which writes
the first five lines that were written to its stdin to its stdout.

The resulting output in Figure 2b looks thus similar to Figure 2a, but only
imports ths first five lines from the downloaded file.

If this example was stored as example_2.tex, then it could be built via

pdflatex example_2

python3 -m latexgit.aux example_2

pdflatex example_2

Side note: Such post-processing steps are cached by the Python companion
package latexgit in the __git__ folder as well.

Finally, in the third section, of Listing 3, we import a file from the sources of
our Python package for metaheuristic optimization (moptipy). The sources of this
package are located on GitHub at https://github.com/thomasWeise/moptipy.
We download the file moptipy/api/encoding.py, which offers a convenient API
for implementing an encoding which translates from the search to the solution
space (but that would lead too far here). Either way, this is a file that has lots

11

https://thomasweise.github.io/latexgit_py
https://github.com/thomasWeise/latexgit_py
https://github.com/thomasWeise/latexgit_py
https://thomasweise.github.io/moptipy
https://github.com/thomasWeise/moptipy

1 First File

First, we load a file from the GitHub repository “https://github.com/thomasWeise/
latexgit_py”, where the Python complement package of our LATEX package is
located. We will then include this file verbatim without any modification.

"""The ‘logger‘ routine for writing a log string to stdout."""

import datetime

from contextlib import AbstractContextManager, nullcontext

from typing import Callable, Final

from pycommons.processes.caller import is_doc_test

#: the "now" function

__DTN: Final[Callable[[], datetime.datetime]] = datetime.datetime.now

def logger(message: str, note: str = "",

lock: AbstractContextManager = nullcontext(),

do_print: bool = not is_doc_test()) -> None:

"""

Write a message to the console log.

The line starts with the current date and time, includes the note, and

then the message string after an ": ".

This function can use a ‘lock‘ context to prevent multiple processes or

threads to write to the console at the same time.

:param message: the message

:param note: a note to put between the time and the message

:param lock: the lock to prevent multiple threads to write log

output at the same time

:param do_print: really print the output, by default ‘False‘ if this

method is called from a "doctest", ‘True‘ otherwise

>>> from io import StringIO

>>> from contextlib import redirect_stdout

>>> sio = StringIO()

>>> dt1 = datetime.datetime.now()

>>> with redirect_stdout(sio):

... logger("hello world!", do_print=True)

>>> line = sio.getvalue().strip()

>>> print(line[line.index(" ", line.index(" ") + 1) + 1:])

hello world!

>>> dt2 = datetime.datetime.now()

>>> dtx = datetime.datetime.strptime(line[:26], "%Y-%m-%d %H:%M:%S.%f")

1

(a) Page 1 of the pdf compiled from List-
ing 3.

>>> dt1 <= dtx <= dt2

True

>>> sio = StringIO()

>>> with redirect_stdout(sio):

... logger("hello world!", "note", do_print=True)

>>> line = sio.getvalue().strip()

>>> print(line[line.index("n"):])

note: hello world!

>>> from contextlib import AbstractContextManager

>>> class T:

... def __enter__(self):

... print("x")

... def __exit__(self, exc_type, exc_val, exc_tb):

... print("y")

>>> sio = StringIO()

>>> with redirect_stdout(sio):

... logger("hello world!", "", T(), do_print=True)

>>> sio.seek(0)

0

>>> lines = sio.readlines()

>>> print(lines[0].rstrip())

x

>>> l = lines[1]

>>> print(l[l.index(" ", l.index(" ") + 1) + 1:].rstrip())

hello world!

>>> print(lines[2].rstrip())

y

>>> sio = StringIO()

>>> with redirect_stdout(sio):

... logger("hello world!", "note", T(), do_print=True)

>>> sio.seek(0)

0

>>> lines = sio.readlines()

>>> print(lines[0].rstrip())

x

>>> l = lines[1]

>>> print(l[l.index("n"):].rstrip())

note: hello world!

>>> print(lines[2].rstrip())

y

>>> logger("hello world") # not printed in doctests

2

(b) Page 2 of the pdf compiled from List-
ing 3.

>>> logger("hello world", do_print=False) # not printed anyway

"""

if do_print:

text: Final[str] = f"{__DTN()}{note}: {message}"

with lock:

print(text, flush=True) # noqa

The above file was loaded from URL https://github.com/thomasWeise/pycommons/

blob/4c857ac0adc8d4e7d46e75d5c7c6460b3bc8faae/pycommons/io/console.

py.

3

(c) Page 3 of the pdf compiled from Listing 3.

Figure 2: The rendered result of Listing 3 (with trimmed page margins and bot-
toms).

of content. So we want to select certain contents while ignoring other. We also
remove all Python type hints and all comments from the source and then reformat
it.

Luckily, our latexgit Python package also offers a Python code formatter,
namely the executable module latexgit.formatters.python. This module takes a
set of parameters such as limiting labels that denote the start and end of code
snippets (in this case, the label “book”) to include as well args telling the system
which part of the “omittable” code to preserve (in this case, preserve docstrings
and delete everything else that is non-essential). If you are interested in such post-
processing, feel invited to check out the documentation of the Python companion
package at https://thomasweise.github.io/latexgit_py. Either way, the file
is downloaded, piped through this post-processor, and the result is included as
shown in Figure 2c.

12

https://thomasweise.github.io/latexgit_py/latexgit.formatters.html#module-latexgit.formatters.python
https://thomasweise.github.io/latexgit_py
https://thomasweise.github.io/latexgit_py

Listing 4: An example using the listings package, rendered as Figure 3.� �
1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{xcolor}% to be able to use colors

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \usepackage{listings}% importing external code

6 \lstset{language=Python,basicstyle=\small\ttfamily,%
7 keywordstyle=\ttfamily\color{teal!90!black}\bfseries,%
8 identifierstyle=,commentstyle=\color{gray}\footnotesize,%
9 stringstyle=\ttfamily\color{red!90!black},%

10 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
11 backgroundcolor=\color{black!10!yellow!5!white}}%
12 \begin{document}%
13 %

14 Behold the beautiful \autoref{l}.%
15 %

16 \gitLoad{https://github.com/thomasWeise/moptipy}{%
17 moptipy/algorithms/so/rls.py}{%
18 python3 −m latexgit.formatters.python −−labels book}% post−processor

19 %

20 \lstinputlisting[label=l,caption={%
21 The RLS Algorithm. (\href{\gitUrl}{src})}]{\gitFile}%
22 %

23 \end{document}%
� �
3.4 The Third Example: Using the listings Package

Finally, as third example, let us show the interaction with the package listings.
This is not much different from using the package verbatim in the second example
above. I just wanted to show you how it looks like. Also, I wanted to show the
intended use of \gitUrl: You can use it to put some small “(src)” link in the
listing’s caption. This way, you can create teaching material where every listing is
linked to the correct version of source code online without splattering long URLs
into your text. Anyway. The source code of the third example is given in Listing 4
and the compiled result as Figure 3.

If this example was stored as example_3.tex, then it could be built via

pdflatex example_3

python3 -m latexgit.aux example_3

pdflatex example_3

Side note: If you actually check the source code of the RLS algorithm, which
is linked to by the “(src)” in the caption of the example and that is displayed in
the example, you will find that it actually uses Python type hints. It also has a
comprehensive doc-string and is commented well. In source code of a real project,
we do want this. In a listing in a book, we do not. The post-processor command

python3 -m latexgit.formatters.python --labels book

only keeps the code between the labels “# start book” and “# end book.” It also
removes all non-essential stuff such as type hints, comments, and the doc-string.

13

https://thomasweise.github.io/moptipy/_modules/moptipy/algorithms/so/rls.html
https://thomasweise.github.io/moptipy/_modules/moptipy/algorithms/so/rls.html

Behold the beautiful Listing 1.

Listing 1: The RLS Algorithm. (src)� �
1 class RLS(Algorithm1):

2 def solve(self , process):

3 best_x = process.create ()

4 new_x = process.create ()

5 random = process.get_random ()

6

7 evaluate = process.evaluate

8 op1 = self.op1.op1

9 should_terminate = process.should_terminate

10

11 self.op0.op0(random , best_x)

12 best_f = evaluate(best_x)

13

14 while not should_terminate ():

15 op1(random , new_x , best_x)

16 new_f = evaluate(new_x)

17 if new_f <= best_f:

18 best_f = new_f

19 best_x , new_x = new_x , best_x
� �

1

Figure 3: The rendered result of Listing 4 (with trimmed page margins and bot-
tom).

Then it re-formats the code to save space. Again, check out the documentation of
our latexgit Python companion package at https://thomasweise.github.io/
latexgit_py. This is the main intended use case of our package: Be able to have
nicely documented “real” code and to use parts of it in teaching materials.

3.5 The Fourth Example: Using Git Commands in Macros

The goal of the fourth example is to show that we can also put the commands from
our latexgit package into LATEXmacros. We define a new command \moptipySrc

with three parameters. moptipy is a Python package that implements lots of
metaheuristic algorithms. We could want to load several files from such a repos-
itory https://github.com/thomasWeise/moptipy and post-process and display
them all in the same way. Then, it would be annoying to always do \gitLoad,
\lstinputlisting, and spell out the post-processor each time. So we put all of
this into a single command whose first argument is the label to put for the listing,
whose second command is the caption to use, and whose third command is the
path relative to the folder “moptipy” in the git repository. In Listing 5, we can
then simply call \moptipySrc and it will do the whole process of loading a file
from the right repository, post-processing it, putting a floating listing, and even
putting a small “(src)” into the caption of the listing. The results are shown in
Figure 4 and can be obtained via

pdflatex example_4

python3 -m latexgit.aux example_4

pdflatex example_4

(if the example code from Listing 5 was stored in a file called example_4.tex,
that is.)

14

https://thomasweise.github.io/latexgit_py
https://thomasweise.github.io/latexgit_py
https://thomasweise.github.io/moptpiy
https://github.com/thomasWeise/moptipy
https://thomasweise.github.io/moptpiy

Listing 5: An example using commands from the latexgit package in macros,
rendered as Figure 4.� �

1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{xcolor}% to be able to use colors

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \usepackage{listings}% importing external code

6 \lstset{language=Python,basicstyle=\small\ttfamily,%
7 keywordstyle=\ttfamily\color{teal!90!black}\bfseries,%
8 identifierstyle=,commentstyle=\color{gray}\footnotesize,%
9 stringstyle=\ttfamily\color{red!90!black},%

10 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
11 backgroundcolor=\color{black!10!yellow!5!white}}%
12 %

13 \gdef\moptipySrc#1#2#3{%
14 \gitLoad{https://github.com/thomasWeise/moptipy}{moptipy/#3}{%
15 python3 −m latexgit.formatters.python −−labels book}%
16 \lstinputlisting[float,label={#1},caption={#2˜(\href{\gitUrl}{src})}]{\gitFile}}
17 %

18 \begin{document}%
19 %

20 Behold the beautiful \autoref{a} and \autoref{b}.%
21 %

22 \moptipySrc{a}{Randomized Sampling}{algorithms/random sampling.py}
23 \moptipySrc{b}{Randomized Local Search}{algorithms/so/rls.py}
24 %

25 \end{document}%
� �

Listing 1: Randomized Sampling (src)� �
1 class RandomSampling(Algorithm0):

2 def solve(self , process):

3 x = process.create ()

4 random = process.get_random ()

5

6 evaluate = process.evaluate

7 op0 = self.op0.op0

8 should_terminate = process.should_terminate

9

10 while not should_terminate ():

11 op0(random , x)

12 evaluate(x)
� �
Behold the beautiful Listing 1 and Listing 2.

1

(a) Page 1 of the pdf compiled from List-
ing 5.

Listing 2: Randomized Local Search (src)� �
1 class RLS(Algorithm1):

2 def solve(self , process):

3 best_x = process.create ()

4 new_x = process.create ()

5 random = process.get_random ()

6

7 evaluate = process.evaluate

8 op1 = self.op1.op1

9 should_terminate = process.should_terminate

10

11 self.op0.op0(random , best_x)

12 best_f = evaluate(best_x)

13

14 while not should_terminate ():

15 op1(random , new_x , best_x)

16 new_f = evaluate(new_x)

17 if new_f <= best_f:

18 best_f = new_f

19 best_x , new_x = new_x , best_x
� �

2

(b) Page 2 of the pdf compiled from List-
ing 5.

Figure 4: The rendered result of Listing 5 (with trimmed page margins and bot-
toms).

15

3.6 The Fifth Example: Capturing the Output of a Pro-
gram

The goal of the fifth example is to show that we can capture the output of a
program. In Listing 6, we just invoke python3 --version and capture the output
in a file. We then load this file as listing. The results are shown in Figure 5 and
can be obtained via

pdflatex example_5

python3 -m latexgit.aux example_5

pdflatex example_5

(if the example code from Listing 6 was stored in a file called example_5.tex,
that is.)

Listing 6: An example of capturing the output of a program, rendered as Figure 5.� �
1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{xcolor}% to be able to use colors

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \usepackage{listings}% importing external code

6 \lstset{language={},basicstyle=\small\ttfamily,%
7 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
8 backgroundcolor=\color{black!10!yellow!5!white}}%
9 %

10 \begin{document}%
11 %

12 Check the output of a simple command in \autoref{lst:out}:
13 %

14 \gitExec{}{}{python3 −−version}%
15 \lstinputlisting[float,label={lst:out},caption={%
16 The result of \texttt{python3 {−}{−} version}.}]{\gitFile}
17 %

18 \end{document}%
� �
16

Listing 1: The result of python3 -- version.� �
1 Python 3.12.6
� �

Check the output of a simple command in Listing 1:

1

Figure 5: The rendered result of Listing 6 (with trimmed page margins and bot-
toms).

3.7 The Sixth Example: Capturing the Output of a Pro-
gram Executed Inside a git Repository

The goal of the sixth example is to show that we can capture the output of a
program – but this time we execute it inside a git repository. In Listing 7, we
invoke a program which is part of the examples suite of the pycommons utility
package. We capture its standard output in a file. We then load this file as listing.
The results are shown in Figure 6 and can be obtained via

pdflatex example_6

python3 -m latexgit.aux example_6

pdflatex example_6

(if the example code from Listing 7 was stored in a file called example_6.tex,
that is.)

Listing 7: An example of capturing the output of a program executed inside a git
repository, rendered as Figure 6.� �

1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{xcolor}% to be able to use colors

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \usepackage{listings}% importing external code

6 \lstset{language={},basicstyle=\small\ttfamily,%
7 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
8 backgroundcolor=\color{black!10!yellow!5!white}}%
9 %

10 \begin{document}%
11 %

12 Check the output of a simple command in \autoref{lst:out}:
13 %

14 \gitExec{}{}{python3 −−version}%
15 \lstinputlisting[float,label={lst:out},caption={%
16 The result of \texttt{python3 {−}{−} version}.}]{\gitFile}
17 %

18 \end{document}%
� �
17

https://github.com/thomasWeise/pycommons

Listing 1: The result of command executed inside a git repository.� �
1 This i s a temporary d i r e c t o r y : ’/tmp/tmpzyyozq99 ’ .
2 I t i s c reated via temp dir () , i t s path i s s to red in ’ td ’ , and i t i s de l e t ed (with a l l o f i t s contents i n s i d e) once the ’ with ’−block ends .
3 This i s a temporary f i l e : ’/tmp/tmppi7elmw0 ’ .
4 I t i s c reated via t emp f i l e () , i t s path i s s to red in ’ t f ’ , and i t i s de l e t ed automat i ca l ly once the ’ with ’−block ends .
5 You can a l s o c r ea t e a temp f i l e ’/tmp/ tmpu zni3 v /tmpm a 47 g ’ i n s i d e any d i r ec to ry , even a temp d i r e c t o r y ’/tmp/ tmpu zni3 v ’ and have them de l e t ed once your are done .
� �

Check the output of a command executed inside a git repository in Listing 1:

1

Figure 6: The rendered result of Listing 7 (with trimmed page margins and bot-
toms).

3.8 The Seventh Example: Capturing the Output of Multi-
ple Programs Executed Inside Different git Repositories

The goal of the seventh example is to show that we can capture the out-
put of multiple programs from inside different git repositories. In Listing 8,
we invoke the same program as in Listing 7 and of two programs which are
part of the examples suite of the Programming with Python book. The
examples can be found in the repository https://github.com/thomasWeise/

programmingWithPythonCode, whereas the book can be downloaded from https:

//github.com/thomasWeise/programmingWithPython. We capture the standard
output of both programs in three files. We then load these file as listings. The
results are shown in Figure 7 and can be obtained via

pdflatex example_7

Listing 8: An example of capturing the output of three programs executed inside
different git repositories, rendered as Figure 7.� �

1 \documentclass{article}%
2 \usepackage{latexgit}% use our package

3 \usepackage{xcolor}% to be able to use colors

4 \usepackage[colorlinks]{hyperref}% for printing the URL

5 \usepackage{listings}% importing external code

6 \lstset{language={},basicstyle=\small\ttfamily,%
7 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
8 backgroundcolor=\color{black!10!yellow!5!white}}%
9 %

10 \begin{document}%
11 %

12 Check the output of a simple command in \autoref{lst:out}:
13 %

14 \gitExec{}{}{python3 −−version}%
15 \lstinputlisting[float,label={lst:out},caption={%
16 The result of \texttt{python3 {−}{−} version}.}]{\gitFile}
17 %

18 \end{document}%
� �
18

https://github.com/thomasWeise/programmingWithPython
https://github.com/thomasWeise/programmingWithPythonCode
https://github.com/thomasWeise/programmingWithPythonCode
https://github.com/thomasWeise/programmingWithPython
https://github.com/thomasWeise/programmingWithPython

Check the output of three programs executed inside a git repository in List-
ing 1, Listing 2, and Listing 3:

Listing 1: The result of command executed inside a git repository.� �
1 This i s a temporary d i r e c t o r y : ’/tmp/tmpzyyozq99 ’ .
2 I t i s c reated via temp dir () , i t s path i s s to red in ’ td ’ , and i t i s de l e t ed (with a l l o f i t s contents i n s i d e) once the ’ with ’−block ends .
3 This i s a temporary f i l e : ’/tmp/tmppi7elmw0 ’ .
4 I t i s c reated via t emp f i l e () , i t s path i s s to red in ’ t f ’ , and i t i s de l e t ed automat i ca l ly once the ’ with ’−block ends .
5 You can a l s o c r ea t e a temp f i l e ’/tmp/ tmpu zni3 v /tmpm a 47 g ’ i n s i d e any d i r ec to ry , even a temp d i r e c t o r y ’/tmp/ tmpu zni3 v ’ and have them de l e t ed once your are done .
� �

Listing 2: The first program, which prints “Hello World!”.� �
1 Hel lo World !
� �

Listing 3: The second program with if end else-if.� �
1 A person o f 42 years i s in t h e i r m id l i f e .
� �

1

Figure 7: The rendered result of Listing 8 (with trimmed page margins and bot-
toms).

python3 -m latexgit.aux example_7

pdflatex example_7

(if the example code from Listing 8 was stored in a file called example_7.tex,
that is.)

19

4 Implementation

The names of all internal elements of the package are prefixed with @latexgit@.
This naming convention should prevent any name clashes with other packages.

Our latexgit package requires only one other package:

1. alphalph [1] is required to translate TEX counters to alphabetic series for
counters that are outside of the range 1 . . . 26. Basically, for each file we
include from git, we store the corresponding local path in a command of the
structure \@latexgit@pathXXX where the XXX is an alphabetical sequence
which is increasing in the form “a,”, “b,” . . . , “y,” “z,” “aa,” . . . , “ay,” “az,”
“ba,” “zy,” “zz,” “aaa,” “aab,” . . .

2. filecontents [2] is used to allow us to generate the dummy file on the fly.
This package is obsolete for the most recent LATEX version, where it simply
does nothing, but may help us to get our package to work on older systems.

1 \RequirePackage{alphalph}% Convert counters to alphabetical series.

2 \RequirePackage{filecontents}% Allow us to create the dummy file.

3 \newcount\@latexgit@counter% The counter for the git files included.

4 \@latexgit@counter0\relax% We start the counter at 0.

5 %

6 % This is the path to the dummy file.

7 % The dummy file is created directly below.

8 % The dummy file is referenced by all invocations of |\gitFile| until the

9 % Python package has been applied to the |.aux| file and has loaded the

10 % actual files.

11 \edef\@latexgit@dummyPath{\jobname.latexgit.dummy}% the dummy file

12 %

13 % Create the dummy file that replaces git files before they are loaded.

14 % This file only has one line with one single space.

15 \expandafter\begin\expandafter{filecontents*}{\@latexgit@dummyPath}

16

17 \end{filecontents*}

18 %

19 % This command does nothing and is just a placeholder in the |aux| files.

20 \protected\gdef\@latexgit@gitFile#1#2#3{}%

21 % This command as well.

22 \protected\gdef\@latexgit@process#1#2#3{}%

\gitLoad The macro \gitLoad{⟨repositoryURL⟩}{⟨path⟩}{⟨postProcessing⟩} defines a query
to a git repository. The query is stored in the aux file of the project and carried
out by the Python companion package (see Section 2.5). This macro will define
two other macros, \gitFile and \gitUrl. During the first LATEX build, these
macros will return a path to a dummy file which only has a single space character
in it followed by a newline and the URL https://example.com, respectively. As
said, \gitLoad will store all information in the aux file, which then permits the
latexgit Python package to download (and optionally post-process) the actual
file. In the second round of LATEX building, \gitFile and \gitUrl will then
return the local path to that downloaded file and the actual URL, respectively.

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.com/

thomasWeise/latexgit_tex or ssh://git@github.com/thomasWeise/latexgit_
tex or any other valid repository URL.

20

https://example.com
https://github.com/thomasWeise/latexgit_tex
https://github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex

{⟨path⟩} is then the path to the file within the repository. This could be, for example,
latex/latexgit.dtx.

{⟨postProcessing⟩} Can either be empty, in which case the repository is downloaded and the
the local path to the file is returned. It can also be shell command, e.g.,
head -n 5. In this case, the contents of the file are piped to stdin of the
command and the text written to the stdout by the command is stored in
a file whose path is returned.

23 %%

24 %% Define a query to load and post-process a file from a |git| repository.

25 %% #1 is the repository URL

26 %% #2 is the path to the file inside the repository

27 %% #3 is a command through which the file contents should be piped

28 %%% (leave #3 empty to use the file as-is)

29 \protected\gdef\gitLoad#1#2#3{%

30 \edef\@latexgit@pA{#1}% fully expand the repository URL

31 \edef\@latexgit@pB{#2}% fully expand the path into the repository

32 \edef\@latexgit@pC{#3}% fully expand the (optional) shell command

33 % Write the parameters to the aux file.

34 \immediate\write\@mainaux{%

35 \noexpand\@latexgit@gitFile{\@latexgit@pA}{\@latexgit@pB}{\@latexgit@pC}}%

36 % Increment the counter for command names by 1.

37 \advance\@latexgit@counter by 1\relax%

38 % We now create the name of the path command based on the structure

39 % |\@latexgit@pathXXX| where |XXX| is a alphabetic sequence representing

40 % the value of |\@latexgit@counter|

41 \edef\@latexgit@pathCmd{@latexgit@path\alphalph{\the\@latexgit@counter}}%

42 % If the path command exists, then we store it as |\gitFile|.

43 \expandafter\ifcsname\@latexgit@pathCmd\endcsname\relax%

44 \xdef\gitFile{\csname\@latexgit@pathCmd\endcsname}%

45 \else%

46 % But if it does not exist, we assign |\gitFile| to the dummy path.

47 \xdef\gitFile{\@latexgit@dummyPath}%

48 \fi% If we get here, the |\gitFile| command holds a valid path.

49 % We now create the name of the url command based on the structure

50 % |\@latexgit@urlXXX| where |XXX| is a alphabetic sequence representing

51 % the value of |\@latexgit@counter|

52 \edef\@latexgit@urlCmd{@latexgit@url\alphalph{\the\@latexgit@counter}}%

53 % If the url command exists, then we store it as |\gitUrl|.

54 \expandafter\ifcsname\@latexgit@urlCmd\endcsname\relax%

55 \xdef\gitUrl{\csname\@latexgit@urlCmd\endcsname}%

56 \else%

57 % But if it does not exist, we store the example url in |\gitUrl|.

58 \xdef\gitUrl{http://example.com}%

59 \fi% If we get here, the |\gitUrl| holds a valid URL.

60 }%

\gitExec The macro \gitExec{⟨repositoryURL⟩}{⟨path⟩}{⟨theCommand⟩} defines a com-
mand to be executed either inside a git repository or in the current directory.
The query is stored in the aux file of the project and carried out by the Python
companion package (see Section 2.5). This macro will define two other macros,
\gitFile and \gitUrl. During the first LATEX build, these macros will return a
path to a dummy file which only has a single space character in it followed by

21

a newline and the URL https://example.com, respectively. As said, \gitExec
will store all information in the aux file, which then permits the latexgit Python
package to download (and optionally post-process) the actual file. In the second
round of LATEX building, \gitFile and \gitUrl will then return the local path
to the file with the standard output of the executed command and the URL to
the git repository, respectively.

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.com/

thomasWeise/latexgit_tex or ssh://git@github.com/thomasWeise/latexgit_
tex or any other valid repository URL. You can leave this argument empty
if you want to execute the command in the current directory.

{⟨path⟩} is then the path to the directory within the repository. This could be, for
example, latex. The command is executed at this directory. Use . for the
repository root. Leave this empty if no repository is used.

{⟨gitExec⟩} The command line to be executed. It can also be shell command, e.g.,
python3 --version. The standard output produced by this command is
captured as file.

61 %%

62 %% Define a query to execute a command, optionally in a |git| repository.

63 %% #1 is the repository URL, or empty if no repository is needed

64 %% #2 is the path to a directory inside the repository or empty

65 %% #3 is a command to be executed

66 \protected\gdef\gitExec#1#2#3{%

67 \edef\@latexgit@pA{#1}% fully expand the repository URL

68 \edef\@latexgit@pB{#2}% fully expand the path into the repository

69 \edef\@latexgit@pC{#3}% fully expand the (optional) shell command

70 % Write the parameters to the aux file.

71 \immediate\write\@mainaux{%

72 \noexpand\@latexgit@process{\@latexgit@pA}{\@latexgit@pB}{\@latexgit@pC}}%

73 % Increment the counter for command names by 1.

74 \advance\@latexgit@counter by 1\relax%

75 % We now create the name of the path command based on the structure

76 % |\@latexgit@pathXXX| where |XXX| is a alphabetic sequence representing

77 % the value of |\@latexgit@counter|

78 \edef\@latexgit@pathCmd{@latexgit@path\alphalph{\the\@latexgit@counter}}%

79 % If the path command exists, then we store it as |\gitFile|.

80 \expandafter\ifcsname\@latexgit@pathCmd\endcsname\relax%

81 \xdef\gitFile{\csname\@latexgit@pathCmd\endcsname}%

82 \else%

83 % But if it does not exist, we assign |\gitFile| to the dummy path.

84 \xdef\gitFile{\@latexgit@dummyPath}%

85 \fi% If we get here, the |\gitFile| command holds a valid path.

86 % We now create the name of the url command based on the structure

87 % |\@latexgit@urlXXX| where |XXX| is a alphabetic sequence representing

88 % the value of |\@latexgit@counter|

89 \edef\@latexgit@urlCmd{@latexgit@url\alphalph{\the\@latexgit@counter}}%

90 % If the url command exists, then we store it as |\gitUrl|.

91 \expandafter\ifcsname\@latexgit@urlCmd\endcsname\relax%

92 \xdef\gitUrl{\csname\@latexgit@urlCmd\endcsname}%

93 \else%

94 % But if it does not exist, we store the empty url in |\gitUrl|.

22

https://example.com
https://github.com/thomasWeise/latexgit_tex
https://github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex
ssh://git@github.com/thomasWeise/latexgit_tex

95 \xdef\gitUrl{}%

96 \fi% If we get here, the |\gitUrl| holds a valid URL or is empty.

97 }%

References

[1] Heiko Oberdieck. The alphalph package. CTAN Comprehensive TEX Archive
Network, 2019/12/09 v2.6. URL https://ctan.org/pkg/alphalph

[2] Scott Pakin. The filecontents package. CTAN Comprehensive TEX Archive
Network, April 2, 2023. URL https://ctan.org/pkg/filecontents

Change History

0.8.0

General: the initial draft version . . 1

0.8.1

General: slightly improved
documentation 1

0.8.2

General: improved latexgit.tds.zip 1

0.8.3

General: supporting arbitrary
commands via the new
latexgit py version 1

0.8.4
General: improved build process . . 1

0.8.5
General: improved examples:

added an example with
multiple git command results . . 1

0.8.6
General: the use case of virtual

environments in conjunction
with the latexgit Python
package of version 0.8.17 or
greater is documented 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@latexgit@counter .

. 3, 4, 37,
40, 41, 51, 52,
74, 77, 78, 88, 89

\@latexgit@dummyPath

. . . . 11, 15, 47, 84
\@latexgit@gitFile .

. 20, 35
\@latexgit@pA

. . . . 30, 35, 67, 72
\@latexgit@pB

. . . . 31, 35, 68, 72
\@latexgit@pC

. . . . 32, 35, 69, 72

\@latexgit@pathCmd .
. 41,
43, 44, 78, 80, 81

\@latexgit@pathXXX .
. 39, 76

\@latexgit@process .
. 22, 72

\@latexgit@urlCmd 52,
54, 55, 89, 91, 92

\@latexgit@urlXXX 50, 87
\@mainaux 34, 71
git 8, 9, 11

\gitExec 1, 4
\gitFile 1, 4, 5
\gitLoad 1, 4

\gitUrl 1, 4, 5

\input 7, 8

\jobname 8

\jobname.latexgit.dummy
. 5

A

\advance 37, 74

alphalph 4, 20, 23

\alphalph 41, 52, 78, 89

aux 1, 5

B

\begin 15

23

https://ctan.org/pkg/alphalph
https://ctan.org/pkg/filecontents

C
\csname . . 44, 55, 81, 92

E
\edef 11, 30,

31, 32, 41, 52,
67, 68, 69, 78, 89

\else 45, 56, 82, 93
\end 17
\endcsname 43, 44, 54,

55, 80, 81, 91, 92
\expandafter

. 15, 43, 54, 80, 91

F
filecontents 4, 20

G
\gdef 20, 22, 29, 66
git 1, 4
\gitExec 61
\gitFile 8, 42,

44, 46, 47, 48,
79, 81, 83, 84, 85

\gitLoad 23

\gitUrl 53,
55, 57, 58, 59,
90, 92, 94, 95, 96

H
head 4
http://example.com . . 5

I
\ifcsname 43, 54, 80, 91
\immediate 34, 71

J
\jobname 11

L
latexgit.dtx 3
latexgit.ins 3
latexgit.sty 4
latexgit py 4
Linux 4

N
\newcount 3
\noexpand 35, 72

P
pdflatex 1, 3, 5
\protected 20, 22, 29, 66
PyPI 4
Python 2, 4, 8

R
\relax 4, 37,

43, 54, 74, 80, 91
\RequirePackage . . 1, 2

S
shell 4, 11
stdin 4, 6, 11
stdout 4, 6, 11

T
\the 41, 52, 78, 89

W
\write 34, 71

X
\xdef 44, 47, 55,

58, 81, 84, 92, 95

24

	Contents
	1 Introduction
	1.1 Addressed Problem and Use Case
	1.2 Provided Functionality

	2 Usage
	2.1 Installation
	2.2 Loading the Package
	2.3 Querying a File from a git Repository
	2.4 Executing a Command (optionally inside a git Repository
	2.5 Executing the Python Package
	2.6 A Note on Virtual Environments

	3 Provided Macros
	3.1 Examples
	3.2 Minimal Working Example
	3.3 The Second Example: Multiple Files and Post-Processing
	3.4 The Third Example: Using the listings Package
	3.5 The Fourth Example: Using Git Commands in Macros
	3.6 The Fifth Example: Capturing the Output of a Program
	3.7 The Sixth Example: Capturing the Output of a Program Executed Inside a git Repository
	3.8 The Seventh Example: Capturing the Output of Multiple Programs Executed Inside Different git Repositories

	4 Implementation
	References

