moptipy.mock package
Mock parts of the moptipy API (mainly for testing purposes).moptipy.mock.components module
Generate random mock experiment parameters.
- class moptipy.mock.components.Algorithm(name, strength, jitter, complexity)[source]
Bases: object
An immutable algorithm description record.
- complexity:
float
The algorithm complexity, in (0, 1), larger values are worst
- static create(n, forbidden=None, random=Generator(PCG64) at 0x7FF744B360A0)[source]
Create a set of fixed mock algorithms.
- Parameters:
n (int
) – the number of algorithms to generate
random (Generator
, default: Generator(PCG64) at 0x7FF744B360A0
) – a random number generator
forbidden (Any
| None
, default: None
) – the forbidden names and strengths and so on
- Return type:
tuple
[Algorithm
, ...
]
- Returns:
a tuple of algorithms
- jitter:
float
The algorithm jitter, in (0, 1), larger values are worst
- name:
str
The algorithm name.
- strength:
float
The algorithm strength, in (0, 1), larger values are worst
- class moptipy.mock.components.BasePerformance(algorithm, instance, performance, jitter, speed)[source]
Bases: object
An algorithm applied to a problem instance description record.
- algorithm:
Algorithm
the algorithm.
- static create(instance, algorithm, random=Generator(PCG64) at 0x7FF744B360A0)[source]
Compute the basic performance of an algorithm on a problem instance.
- Parameters:
instance (Instance
) – the instance tuple
algorithm (Algorithm
) – the algorithm tuple
random (Generator
, default: Generator(PCG64) at 0x7FF744B360A0
) – the random number generator
- Return type:
BasePerformance
- Returns:
a tuple of the performance in (0, 1); bigger values are worse, and a jitter in (0, 1), where bigger values are worse
- instance:
Instance
the problem instance
- jitter:
float
the performance jitter, in (0, 1), larger values are worst
- performance:
float
the base performance, in (0, 1), larger values are worst
- speed:
float
the time per FE, in (0, 1), larger values are worst
- class moptipy.mock.components.Experiment(instances, algorithms, applications, per_instance_seeds)[source]
Bases: object
An immutable experiment description.
- algorithm_applications(algorithm)[source]
Get the applications of an algorithm to the instances.
- Parameters:
algorithm (str
| Algorithm
) – the algorithm
- Return type:
tuple
[BasePerformance
, ...
]
- Returns:
the applications
- algorithm_names:
tuple
[str
, ...
] the algorithm names
- algorithms:
tuple
[Algorithm
, ...
] The algorithms.
- applications:
tuple
[BasePerformance
, ...
] The applications of the algorithms to the instances.
- static create(n_instances, n_algorithms, n_runs, random=Generator(PCG64) at 0x7FF744B360A0)[source]
Create an experiment definition.
- Parameters:
n_instances (int
) – the number of instances
n_algorithms (int
) – the number of algorithms
n_runs (int
) – the number of per-instance runs
random (Generator
, default: Generator(PCG64) at 0x7FF744B360A0
) – the random number generator to use
- Return type:
Experiment
- get_algorithm(name)[source]
Get an algorithm by name.
- Parameters:
name (str
) – the algorithm name
- Return type:
Algorithm
- Returns:
the algorithm instance
- get_instance(name)[source]
Get an instance by name.
- Parameters:
name (str
) – the instance name
- Return type:
Instance
- Returns:
the instance
- instance_applications(instance)[source]
Get the applications of the algorithms to a specific instance.
- Parameters:
instance (str
| Instance
) – the instance
- Return type:
tuple
[BasePerformance
, ...
]
- Returns:
the applications
- instance_names:
tuple
[str
, ...
] the instance names
- instances:
tuple
[Instance
, ...
] The instances.
- per_instance_seeds:
tuple
[tuple
[int
, ...
]] The random seeds per instance.
- seeds_for_instance(instance)[source]
Get the seeds for the specified instance.
- Parameters:
instance (str
| Instance
) – the instance
- Return type:
tuple
[int
, ...
]
- Returns:
the seeds
- class moptipy.mock.components.Instance(name, hardness, jitter, scale, best, worst, attractors)[source]
Bases: object
An immutable instance description record.
- attractors:
tuple
[int
, ...
] The set of attractors, i.e., local optima - including best and worst
- best:
int
The best (smallest) possible objective value
- static create(n, forbidden=None, random=Generator(PCG64) at 0x7FF744B360A0)[source]
Create a set of fixed problem instances.
- Parameters:
n (int
) – the number of instances to generate
random (Generator
, default: Generator(PCG64) at 0x7FF744B360A0
) – a random number generator
forbidden (Any
| None
, default: None
) – the forbidden names and hardnesses
- Return type:
tuple
[Instance
, ...
]
- Returns:
a tuple of instances
- hardness:
float
The instance hardness, in (0, 1), larger values are worst
- jitter:
float
The instance jitter, in (0, 1), larger values are worst
- name:
str
The instance name.
- scale:
float
The instance scale, in (0, 1), larger values are worst
- worst:
int
The worst (largest) possible objective value
- moptipy.mock.components.fixed_random_generator()[source]
Get the single, fixed random generator for the dummy experiment API.
- Return type:
Generator
- Returns:
the random number generator
- moptipy.mock.components.get_run_seeds(instance, n_runs)[source]
Get the seeds for the runs.
- Parameters:
- Return type:
tuple
[int
, ...
]
- Returns:
a tuple of seeds
moptipy.mock.end_results module
Compute the end result of one mock run.
- class moptipy.mock.end_results.EndResults(experiment, results, max_fes=None, max_time_millis=None)[source]
Bases: object
An immutable set of end results.
- static create(experiment, max_fes=None, max_time_millis=None)[source]
Create the end results for a given experiment.
- Parameters:
experiment (Experiment
) – the experiment
max_fes (int
| None
, default: None
) – the maximum number of FEs
max_time_millis (int
| None
, default: None
) – the maximum time
- Return type:
EndResults
- Returns:
the end results
- experiment:
Experiment
The experiment.
- max_fes:
int
| None
The maximum permitted FEs.
- max_time_millis:
int
| None
The maximum permitted milliseconds.
- results:
tuple
[EndResult
, ...
] The end results.
- results_for_algorithm(algorithm)[source]
Get the end results per algorithm.
- Parameters:
algorithm (str
| Algorithm
) – the algorithm
- Return type:
tuple
[EndResult
, ...
]
- Returns:
the end results
- results_for_instance(instance)[source]
Get the end results per instance.
- Parameters:
instance (str
| Instance
) – the instance
- Return type:
tuple
[EndResult
, ...
]
- Returns:
the end results
- moptipy.mock.end_results.end_result(performance, seed, max_fes=None, max_time_millis=None)[source]
Compute the end result of a mock run.
- Parameters:
performance (BasePerformance
) – the performance record
seed (int
) – the random seed
max_fes (int
| None
, default: None
) – the maximum number of FEs
max_time_millis (int
| None
, default: None
) – the maximum time
- Return type:
EndResult
- Returns:
the end result record
moptipy.mock.mo_problem module
The mock multi-objective optimization problem.
- class moptipy.mock.mo_problem.MockMOProblem(objectives, weights)[source]
Bases: WeightedSum
A mock-up of a multi-objective optimization problem.
- static for_dtype(n, dtype)[source]
Create a mock multi-objective problem.
- Parameters:
- Return type:
MockMOProblem
- Returns:
the mock multi-objective problem
- get_objectives()[source]
Get the internal objective functions.
- Return type:
tuple
[MockObjective
, ...
]
- Returns:
the internal mock objective functions
- sample(fs)[source]
Sample one vector of ojective values.
- Parameters:
fs (ndarray
) – the array to receive the objective values
- Return type:
int
| float
- Returns:
the scalarized objective values
moptipy.mock.objective module
A mock-up of an objective function.
- class moptipy.mock.objective.MockObjective(is_int=True, lb=-inf, ub=inf, fmin=None, fattractors=None, fmax=None, seed=None)[source]
Bases: Objective
A mock-up of an objective function.
- evaluate(x)[source]
Return a mock objective value.
- Parameters:
x – the candidate solution
- Return type:
float
| int
- Returns:
the objective value
- fattractors:
Final
[tuple
[int
| float
, ...
]] the mean value the function actually takes on
- fmax:
Final
[int
| float
] the maximum value the function actually takes on
- fmin:
Final
[int
| float
] the minimum value the function actually takes on
- static for_type(dtype)[source]
Create a mock objective function with values bound by a given dtype.
- Parameters:
dtype (dtype
) – the numpy data type
- Return type:
MockObjective
- Returns:
the mock objective function
- is_always_integer()[source]
Return True if evaluate()
will always return an int value.
- Return type:
bool
- Returns:
True if evaluate()
will always return an int or False if also a float may be returned.
- is_int:
Final
[bool
] is this objective integer?
- lb:
Final
[int
| float
] the lower bound
- log_parameters_to(logger)[source]
Log the special parameters of tis mock objective function.
- Return type:
None
- lower_bound()[source]
Get the lower bound of the objective value.
- Return type:
float
| int
- Returns:
the lower bound of the objective value
- name:
Final
[str
] the name of this objective function
- sample()[source]
Sample the mock objective function.
- Return type:
int
| float
- Returns:
the value of the mock objective function
- seed:
Final
[int
] the random seed
- ub:
Final
[int
| float
] the upper bound
- upper_bound()[source]
Get the upper bound of the objective value.
- Return type:
float
| int
- Returns:
the upper bound of the objective value
moptipy.mock.utils module
Utilities for mock objects.
- moptipy.mock.utils.DEFAULT_TEST_DTYPES: Final[tuple[dtype, ...]] = (dtype('float16'), dtype('float32'), dtype('float64'), dtype('float128'), dtype('int8'), dtype('int16'), dtype('int32'), dtype('int64'), dtype('uint8'), dtype('uint16'), dtype('uint32'), dtype('uint64'))
The default types to be used for testing.
- moptipy.mock.utils.make_ordered_list(definition, is_int, random)[source]
Make an ordered list of elements, filling in gaps.
This function takes a list template where some values may be defined and some may be left None. The None values are then replaced such that an overall ordered list is created where each value is larger than its predecessor. The original non-None elements are kept in place. Of course, this process may fail, in which case None is returned.
- Parameters:
definition (Sequence
[int
| float
| None
]) – a template with None for gaps to be filled
is_int (bool
) – should all generated values be integers?
random (Generator
) – the generator
- Return type:
list
[int
| float
] | None
- Returns:
the refined tuple with all values filled in
>>> from numpy.random import default_rng
>>> rg = default_rng(11)
>>> make_ordered_list([None, 10, None, None, 50], True, rg)
[-10, 10, 42, 47, 50]
>>> make_ordered_list([None, 10, None, None, 50, None, None], False, rg)
[-5.136, 10, 13.228, 15.19, 50, 115.953, 125.961]
>>> print(make_ordered_list([9, None, 10, None, None, 50], True, rg))
None
>>> make_ordered_list([8, None, 10, None, None, 50], True, rg)
[8, 9, 10, 45, 47, 50]
>>> make_ordered_list([9, None, 10, None, None, 50], False, rg)
[9, 9.568, 10, 47.576, 49.482, 50]
- moptipy.mock.utils.sample_from_attractors(random, attractors, is_int=False, lb=-inf, ub=inf)[source]
Sample from a given range using the specified attractors.
- Parameters:
random (Generator
) – the random number generator
attractors (Sequence
[int
| float
]) – the attractor points
lb (int
| float
, default: -inf
) – the lower bound
ub (int
| float
, default: inf
) – the upper bound
is_int (bool
, default: False
) – shall we sample integer values?
- Return type:
int
| float
- Returns:
the value
- Raises:
ValueError – if the sampling failed
>>> from numpy.random import default_rng
>>> rg = default_rng(11)
>>> sample_from_attractors(rg, [5, 20])
15.198106552324713
>>> sample_from_attractors(rg, [2], lb=0, ub=10, is_int=True)
3
>>> sample_from_attractors(rg, [5, 20], lb=4)
4.7448464616061665
>>> sample_from_attractors(rg, [5, 20], ub=22)
1.044618552249311
>>> sample_from_attractors(rg, [5, 20], lb=0, ub=30, is_int=True)
6
>>> sample_from_attractors(rg, [5, 20], lb=4, ub=22, is_int=True)
20