Coverage for moptipy / algorithms / so / hill_climber.py: 100%
23 statements
« prev ^ index » next coverage.py v7.12.0, created at 2025-11-24 08:49 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2025-11-24 08:49 +0000
1"""
2The implementation of the basic hill climbing algorithm `hc`.
4The algorithm starts by applying the nullary search operator, an
5implementation of :meth:`~moptipy.api.operators.Op0.op0`, to sample one fully
6random solution. This is the first best-so-far solution. In each step, it
7applies the unary operator, an implementation of
8:meth:`~moptipy.api.operators.Op1.op1`, to the best-so-far solution to obtain
9a new, similar solution. If this new solution is strictly better than the
10current best-so-far solution, it replaces this solution. Otherwise, it is
11discarded.
13The hill climbing algorithm is a simple local search that only accepts
14strictly improving moves. It is thus similar to the randomized local search
15(`rls`) implemented in :class:`~moptipy.algorithms.so.rls.RLS`, which, however,
16accepts non-deteriorating moves. We also provide `hcr`, a variant of the hill
17climber that restarts automatically with a certain number of moves were not
18able to improve the current best-so-far solution in class :class:`~moptipy.\
19algorithms.so.hill_climber_with_restarts.HillClimberWithRestarts`.
211. Stuart Jonathan Russell and Peter Norvig. *Artificial Intelligence: A
22 Modern Approach (AIMA)*. 2nd edition. 2002. Upper Saddle River, NJ, USA:
23 Prentice Hall International Inc. ISBN: 0-13-080302-2
242. Steven S. Skiena. *The Algorithm Design Manual.* 2nd edition. 2008.
25 London, UK: Springer-Verlag. ISBN: 978-1-84800-069-8.
26 http://doi.org/10.1007/978-1-84800-070-4.
273. David Stifler Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis.
28 How Easy Is Local Search? Journal of Computer and System Sciences.
29 37(1):79-100. August 1988. http://doi.org/10.1016/0022-0000(88)90046-3
30 http://www2.karlin.mff.cuni.cz/~krajicek/jpy2.pdf
314. James C. Spall. *Introduction to Stochastic Search and Optimization.*
32 April 2003. Estimation, Simulation, and Control -- Wiley-Interscience
33 Series in Discrete Mathematics and Optimization, volume 6. Chichester, West
34 Sussex, UK: Wiley Interscience. ISBN: 0-471-33052-3.
35 http://www.jhuapl.edu/ISSO/
365. Holger H. Hoos and Thomas Stützle. *Stochastic Local Search: Foundations
37 and Applications.* 2005. ISBN: 1493303732. In The Morgan Kaufmann Series in
38 Artificial Intelligence. Amsterdam, The Netherlands: Elsevier.
396. Thomas Weise. *Optimization Algorithms.* 2021. Hefei, Anhui, China:
40 Institute of Applied Optimization (IAO), School of Artificial Intelligence
41 and Big Data, Hefei University. http://thomasweise.github.io/oa/
427. Thomas Weise. *Global Optimization Algorithms - Theory and Application.*
43 2009. http://www.it-weise.de/projects/book.pdf
44"""
45from typing import Callable, Final
47from numpy.random import Generator
49from moptipy.api.algorithm import Algorithm1
50from moptipy.api.operators import Op0, Op1
51from moptipy.api.process import Process
54# start book
55class HillClimber(Algorithm1):
56 """
57 The stochastic hill climbing algorithm only accepts improving moves.
59 In each step, a hill climber creates a modified copy `new_x` of the
60 current best solution `best_x`. If `new_x` is better than `best_x`,
61 it becomes the new `best_x`. Otherwise, it is discarded.
62 """
64 def solve(self, process: Process) -> None:
65 """
66 Apply the hill climber to an optimization problem.
68 :param process: the black-box process object
69 """
70 # Create records for old and new point in the search space.
71 best_x = process.create() # record for best-so-far solution
72 new_x = process.create() # record for new solution
73 # Obtain the random number generator.
74 random: Final[Generator] = process.get_random()
76 # Put function references in variables to save time.
77 evaluate: Final[Callable] = process.evaluate # the objective
78 op1: Final[Callable] = self.op1.op1 # the unary operator
79 should_terminate: Final[Callable] = process.should_terminate
81 # Start at a random point in the search space and evaluate it.
82 self.op0.op0(random, best_x) # Create 1 solution randomly and
83 best_f: int | float = evaluate(best_x) # evaluate it.
85 while not should_terminate(): # Until we need to quit...
86 op1(random, new_x, best_x) # new_x = neighbor of best_x
87 new_f: int | float = evaluate(new_x)
88 if new_f < best_f: # new_x is _better_ than best_x?
89 best_f = new_f # Store its objective value.
90 best_x, new_x = new_x, best_x # Swap best and new.
91# end book
93 def __init__(self, op0: Op0, op1: Op1) -> None:
94 """
95 Create the hill climber.
97 :param op0: the nullary search operator
98 :param op1: the unary search operator
99 """
100 super().__init__("hc", op0, op1)