Coverage for moptipy / algorithms / so / ffa / __init__.py: 100%
0 statements
« prev ^ index » next coverage.py v7.12.0, created at 2025-11-24 08:49 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2025-11-24 08:49 +0000
1"""
2Algorithms and modules based on Frequency Fitness Assignment (FFA).
4Frequency Fitness Assignment (FFA) is an algorithm plugin developed by the
5team behind `moptipy`. FFA is suitable only for problems where the number
6of different objective values is not too high. On such problems, which are
7often discrete or combinatorial, it often can improve the result quality
8that the optimization algorithms can reach, at the expense of requiring a
9larger runtime.
111. Thomas Weise, Zhize Wu, Xinlu Li, and Yan Chen. Frequency Fitness
12 Assignment: Making Optimization Algorithms Invariant under Bijective
13 Transformations of the Objective Function Value. *IEEE Transactions on
14 Evolutionary Computation* 25(2):307-319. April 2021. Preprint available at
15 arXiv:2001.01416v5 [cs.NE] 15 Oct 2020.
16 https://dx.doi.org/10.1109/TEVC.2020.3032090
172. Thomas Weise, Zhize Wu, Xinlu Li, Yan Chen, and Jörg Lässig. Frequency
18 Fitness Assignment: Optimization without Bias for Good Solutions can be
19 Efficient. *IEEE Transactions on Evolutionary Computation (TEVC)*.
20 27(4):980-992. August 2023.
21 doi: https://doi.org/10.1109/TEVC.2022.3191698
223. Thomas Weise, Mingxu Wan, Ke Tang, Pu Wang, Alexandre Devert, and Xin
23 Yao. Frequency Fitness Assignment. *IEEE Transactions on Evolutionary
24 Computation (IEEE-EC),* 18(2):226-243, April 2014.
25 https://dx.doi.org/10.1109/TEVC.2013.2251885
264. Thomas Weise, Yan Chen, Xinlu Li, and Zhize Wu. Selecting a diverse set of
27 benchmark instances from a tunable model problem for black-box discrete
28 optimization algorithms. *Applied Soft Computing Journal (ASOC),*
29 92:106269, June 2020. https://dx.doi.org/10.1016/j.asoc.2020.106269
305. Thomas Weise, Xinlu Li, Yan Chen, and Zhize Wu. Solving Job Shop Scheduling
31 Problems Without Using a Bias for Good Solutions. In *Genetic and
32 Evolutionary Computation Conference Companion (GECCO'21 Companion),*
33 July 10-14, 2021, Lille, France. ACM, New York, NY, USA.
34 ISBN 978-1-4503-8351-6. https://dx.doi.org/10.1145/3449726.3463124
356. Thomas Weise, Mingxu Wan, Ke Tang, and Xin Yao. Evolving Exact Integer
36 Algorithms with Genetic Programming. In *Proceedings of the IEEE Congress
37 on Evolutionary Computation (CEC'14), Proceedings of the 2014 World
38 Congress on Computational Intelligence (WCCI'14),* pages 1816-1823,
39 July 6-11, 2014, Beijing, China. Los Alamitos, CA, USA: IEEE Computer
40 Society Press. ISBN: 978-1-4799-1488-3.
41 https://dx.doi.org/10.1109/CEC.2014.6900292
427. Tianyu Liang, Zhize Wu, Jörg Lässig, Daan van den Berg, Sarah Louise
43 Thomson, and Thomas Weise. Addressing the Traveling Salesperson Problem
44 with Frequency Fitness Assignment and Hybrid Algorithms. *Soft Computing.*
45 2024. https://dx.doi.org/10.1007/s00500-024-09718-8
46"""