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Programming with Python

This is a course on programming with the Python language at Hefei University (合肥
大学).

The website with the teaching material of this course is
https://thomasweise.github.io/programmingWithPython (see also the QR-code
at the bottom right). There, you can find the course book and these
slides. The repository with the example Python programs can be found
at https://github.com/thomasWeise/programmingWithPythonCode.

https://thomasweise.github.io/programmingWithPython
https://github.com/thomasWeise/programmingWithPythonCode
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Introduction

• This course aims to teach you programming using the programming language Python.

• What does programming mean?
• Programming means that we delegate a task to the computer.
• We have this job to do, this thing.
• Maybe it is too complicated and time consuming to do.
• Maybe it is something that we have to do very often.
• Maybe it is something that we cannot, physically, do.
• Maybe we are just lazy.
• So we want that the computer does it for us.
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Introduction

• Whenever we delegate a task to another person, we need to explain it.

• If you are a chef in a kitchen, you have to tell the junior trainee chef: “First you wash the
potatoes, then peel the potato skin, then you wash the potatoes again, and then you cook
them.”

• If you are visiting the hairdresser to get your hair done, you would say something like:
“Wash my hair, then cut it down to 1cm on the top, trim the sides, then color it green.”

• You provide the other person with a clear and unambiguous sequence of instructions in a
language they can understand.

• In this book, you will learn to do the same — with computers.
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Programming

Definition (Computer Program) A computer program is an unambiguous sequence of
computational instructions for a computer to achieve a specific goal.

Definition (Programming) Programming is the activity or job of writing computer
programs19.



Programming

• In the vast majority of situations, we do not create a program to just use it one single time.

• This is similar to the real life situation of work delegation again.
• If you were a chef, you basically “input” the “program” cook potatoes into the junior

trainee once.
• In the future, you would like to be able go to them and invoke this program again by

saying: “Please cook 2kg of potatoes.”
• Our “programs” often even have implicit parameters, like the quantity of 2kg mentioned

above.
• Maybe you go to the hairdresser again and want to say: “Same as usual, but today color it

blue.”
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• In our day-to-day interactions, creating reusable and parameterized programs happens very
often and very implicitly.

• We usually do not think about this in any explicit terms.
• But when we program computers, we do think about this explicitly.
• Right from the start.
• Therefore programming is only one part of software development.



Programming

• In our day-to-day interactions, creating reusable and parameterized programs happens very
often and very implicitly.

• We usually do not think about this in any explicit terms.

• But when we program computers, we do think about this explicitly.
• Right from the start.
• Therefore programming is only one part of software development.



Programming

• In our day-to-day interactions, creating reusable and parameterized programs happens very
often and very implicitly.

• We usually do not think about this in any explicit terms.
• But when we program computers, we do think about this explicitly.

• Right from the start.
• Therefore programming is only one part of software development.



Programming

• In our day-to-day interactions, creating reusable and parameterized programs happens very
often and very implicitly.

• We usually do not think about this in any explicit terms.
• But when we program computers, we do think about this explicitly.
• Right from the start.

• Therefore programming is only one part of software development.



Programming

• In our day-to-day interactions, creating reusable and parameterized programs happens very
often and very implicitly.

• We usually do not think about this in any explicit terms.
• But when we program computers, we do think about this explicitly.
• Right from the start.
• Therefore programming is only one part of software development.



Developing Software

• Later in your job, you want to develop a program that can be used to solve a specific task.

1. You write the program.

2. You now have the file with the program code.
3. The problem is solved.

• Is it that easy?

No.

1. You may wonder whether you made any mistake.

People make mistakes.

The more complex
the task we tackle, the more (program code) we write, the more likely it is that we make
some small error somewhere.

You must test your program.

2. What if someone else is going to use your program later?

You need to write clear
documentation.

3. What if your program or packages provides functions that others can use?

The input and
output datatypes must be clearly specified.

4. What if someone else is supposed to read your code and work with it?

Your code must be
readable, clear, and follow common coding styles24.

• All of these things must be considered!
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Developing Software

• Developing software is more than writing programs.

• Most jobs are more than just the associated “main work”

• Let’s say that you need to go to a doctor to undergo some procedure.

• You hope that they have been trained well in doing operations.
• But you simply expect that they were also trained to wash their hands before surgery.

• It is the same for programmers!

• Let’s say that your boss asks you to write a program.

• They hope that you can write a program that “works.”
• But they expect that the code that you produced is readable, was tested, and is documented.

• I do not want to go to a surgeon who does not wash their hands before operating on me.
• And I will not teach you programming without emphasizing code cleanliness.
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• But we will at discuss several issues beyond that, things that belong into your tool belt,

that can make you a good programmer.
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1. Because Python is a very widely-used programming language3,4.

2. Python is intensely used in AI21, ML22, and Data Science8 as well as optimization, which
are among the most important areas of future technology.

3. There exists a very large set of powerful libraries supporting both research and application
development in these fields, including NumPy5,9,11, Pandas2,13, Scikit-learn18,20,
SciPy11,25, TensorFlow1,12, PyTorch17,20, Matplotlib10,11,16, SimPy27, and moptipy26, just
to name a few.

4. Python is very easy to learn7,23. It has a simple and clean syntax and enforces a readable
structure of programs. Python has expressive built-in types likes lists, tuples, and
dictionaries.
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learn a programming language.
• You also have to understand the tools surrounding it, the best practices, the coding

guidelines, how to test programs, how to document programs, and so on.
• You need a good understanding of the most important components of software

development.
• I will try to teach you programming together with several of such aspects.
• We will use the Python programming language

, because it is easy to learn

, widely used

,
has a rich environment of useful packages
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