pycommons.math package¶
Common maths routines. Mathematics routines combining integers and floats. These routines try to return results with the highest possible precision, ideally as integers. If floating point values need to be converted to integers, then we round towards the nearest integer numbers, whereas 0.5 is always rounded up and -0.5 is always rounded down. Thus, 1.5 becomes 2 and -1.5 becomes -2. Compute a ceiling division of two integers. the rounded-up result of the division Turn a floating point number into an integer fraction. If we want to translate a floating point number to an integer fraction, then we have several possible ways to go about this. The reason is that, due to the loss in precision when representing fractions as floating point numbers, several different integer fractions can produce the exactly same floating point number. One choice would be to use However, as said, there may be multiple such fractions. And some of them may be more “compact” than others. A second approach would be to first represent the floating point value as a string. The string that this produces also represents exactly this floating point value, obviously. Now we can translate the string to a fraction - and this can give us a different result. Which of the two is right? Both of them are. Kind of. So I’d figure we test both and stick with the the integer fraction TypeError – if value is neither an integer nor a float ValueError – if value is not finite Try to divide a float by an int at best precision. a/b, but always finite ValueError – if either one of the arguments or the final result would not be finite TypeError – if either one of a or b is neither an integer nor a float Attempt to convert a float to an integer. This method will convert a floating point number to an integer if the floating point number was representing an exact integer. This is the case if it has a) no fractional part and b) is in the range -9007199254740992…9007199254740992, i.e., the range where +1 and -1 work without loss of precision. value ( an int if value can be represented as int without loss of precision, val otherwise TypeError – if value is neither an instance of int nor of float ValueError – if value is a float, but not finite Try to add a floating point number to an integer. a + b or the best possible approximation thereof TypeError – if a is not an integer or if b is neither a float nor an integer ValueError – if b or the result is not finite # exact result: 10796862382206072.70684135 >>> try_int_add(10796862236149287, 146056785.70684135) 10796862382206073 >>> 10796862236149287 + 146056785.70684135 1.0796862382206074e+16 # exact result: -11909678744561796.5206623 >>> try_int_add(-11909677351933537, -1392628259.5206623) -11909678744561797 >>> -11909677351933537 + -1392628259.5206623 -1.1909678744561796e+16 # exact result: 8991519996993845.25 >>> try_int_add(9257476766666634, -265956769672788.75) 8991519996993845 >>> 9257476766666634 + -265956769672788.75 8991519996993845.0 exact result: 20601962663817202800007836095739946419534015091420431778715465940577471030.192914550695235 >>> v = int(“20601962663817202800007836095739946419534015091420431778715465940577470980”) >>> try_int_add(v, 50.192914550695235) 20601962663817202800007836095739946419534015091420431778715465940577471030 >>> v + 50.192914550695235 2.0601962663817203e+73 Try to divide two integers at best precision. Floating point divisions can incur some loss of precision. We try to avoid this here as much as possible. First, we check if a is divisible by b without any fractional part. If this is true, then we can do a pure integer division without loss of any precision. In other words, if a % b == 0, then a / b is itself an integer, i.e., can be represented exactly. Otherwise, it will have a fractional part, so it would ideally be a float. Well. What if the integer a is really large? Converting it to floating point number may then incur a loss of precision. And why do we convert it to a float in the first place? To properly represent the fractional part. Because the integer part is a // b is an integer. The fractional part f is then by definition f = (a % b) // b == (a - b*(a // b)) / b. Obviously, 0<f<1. It may be entirely possible that we lose several full integer digits by converting the integer a to a float … just to then be able to add a fraction f. So this loss of precision may be much larger than the little fractional part that we would add (which will always be in (0, 1). In such a case, it may be much better to stay in the realm of integers and instead lose the fractional part. Thus, we also test whether multiplying the result of the floating point computation with b is closer to a than integer results rounded in either direction. During this procedure, we try to pick the result closest to the original value. This, however, may only be possible if we can actually compute the difference. If we deal with floating point numbers and integers, some integers may simply be too large for being ever converted to a float. In this case, we remain entirely in the integer realm and only round if need be. a/b, either as int or as float but always a finite value ZeroDivisionError – if b==0 TypeError – if a or b are not integers Try to multiply an integer with an int or float as exactly as possible. a * b ValueError – if b or the result is not finite TypeError – if a is not an integer or if b is neither an integer nor a float # exact result: -111038109230780524.216538356 >>> try_int_mul(197262324754, -562895.673916714) -111038109230780524 >>> 197262324754 * -562895.673916714 -1.1103810923078053e+17 # exact result: -805144077682.7549712841791 >>> try_int_mul(609329061, -1321.3616897926931) -805144077682.755 >>> 609329061 * -1321.3616897926931 -805144077682.755 # exact result: -88939650274621002534.99 >>> try_int_mul(-6548165, 13582377700412.406) -88939650274621004172 >>> -6548165 * 13582377700412.406 -8.8939650274621e+19 # exact result: -2236563847561524626.733 >>> try_int_mul(21396228, -104530754091.86725) -2236563847561524627 >>> 21396228 * -104530754091.86725 -2.2365638475615245e+18 # exact result: -92649832027598387270282.5408 >>> try_int_mul(29187432758, -3174305626527.0176) -92649832027598386631807 >>> 29187432758 * -3174305626527.0176 -9.264983202759838e+22 # exact result: 47954872443652456553018463.12996 >>> try_int_mul(-317420410641789, -151076839534.96564) 47954872443652455666473176 >>> -317420410641789 * -151076839534.96564 4.795487244365246e+25 # exact result: 369200712310299349798.80066193866 >>> try_int_mul(8136505182920565, 45375.834465796564) 369200712310299353646 >>> 8136505182920565 * 45375.834465796564 3.6920071231029936e+20 # exact result: 431520767093145743090.73845486 >>> try_int_mul(40196153594795, 10735374.619252708) 431520767093145743091 >>> 40196153594795 * 10735374.619252708 4.315207670931457e+20 # exact result: -250242005217172713.52783326 >>> try_int_mul(27941562579, -8955905.90217194) -250242005217172703 >>> 27941562579 * -8955905.90217194 -2.502420052171727e+17 # exact result: -6563728914129924.848948421 >>> try_int_mul(-672426819, 9761253.906991959) -6563728914129925 >>> -672426819 * 9761253.906991959 -6563728914129925.0 # exact result: 14493050353163113.126430160675 >>> try_int_mul(240712887635, 60208.867483403505) 14493050353163113 >>> 240712887635 * 60208.867483403505 1.4493050353163114e+16 # exact result: 805460953505875910367.5205722154 >>> try_int_mul(1812115257906061, 444486.6020479314) 805460953505875915662 >>> 1812115257906061 * 444486.6020479314 8.054609535058759e+20 # exact result: -1384354228892504466.5554728510606 >>> try_int_mul(6815245310862468, -203.12610416033795) -1384354228892504435 >>> 6815245310862468 * -203.12610416033795 -1.3843542288925043e+18 # exact result: -572028608656496.423924280629596728 >>> try_int_mul(11587431214834713, -0.049366300265425656) -572028608656496.4 >>> 11587431214834713 * -0.049366300265425656 -572028608656496.4 # exact result: 1128618866534760.28918431873755142 >>> try_int_mul(16354919666787217, 0.06900791257487526) 1128618866534760.2 >>> 16354919666787217 * 0.06900791257487526 1128618866534760.2 # exact result: -2507326755278071.50624700782133248 >>> try_int_mul(13217245192529664, -0.18970116077556032) -2507326755278071.5 >>> 13217245192529664 * -0.18970116077556032 -2507326755278071.5 # exact result: 696151526057376.88027486041356184 >>> try_int_mul(-10333677547666606, -0.06736725844658964) 696151526057376.9 >>> -10333677547666606 * -0.06736725844658964 696151526057376.9 # exact result: -958450150333374.5128889837837098 >>> try_int_mul(12016909016999122, -0.0797584594322509) -958450150333374.6 >>> 12016909016999122 * -0.0797584594322509 -958450150333374.6 # exact result: 5115993211447460900.43715653698 >>> try_int_mul(45247701671134, 113066.36630145647) 5115993211447460734 >>> 45247701671134 * 113066.36630145647 5.115993211447461e+18 # exact result: -125197981872321984234 >>> try_int_mul(-15606149727, 8022349142.0) -125197981872321984234 >>> -15606149727 * 8022349142.0 -1.2519798187232199e+20 # exact result: -348481045.61578014504 >>> try_int_mul(6636, -52513.71995415614) -348481045.6157802 >>> 6636 * -52513.71995415614 -348481045.6157802 # exact result: -339789407482572717.3787168852228 >>> try_int_mul(6921658507965838, -49.0907500119406) -339789407482572714 >>> 6921658507965838 * -49.0907500119406 -3.3978940748257274e+17 # exact result: -7952338024951495584.4756757 >>> try_int_mul(-131722798246, 60371766.54947795) -7952338024951495584 >>> -131722798246 * 60371766.54947795 -7.952338024951496e+18 # exact result: 374987726685442496656857448.375 >>> try_int_mul(-197846874313873, -1895343194002.375) 374987726685442496656857448 >>> -197846874313873 * -1895343194002.375 3.749877266854425e+26 # exact result: 10775411722410520324.9 >>> try_int_mul(187295, 57531763914736.22) 10775411722410520091 >>> 187295 * 57531763914736.22 1.077541172241052e+19 Try to compute the square root of a potentially large integer. value ( the square root ValueError – if value is negative TypeError – if value is not an integer # exact result: 67108864.0000000074505805969238277 >>> try_int_sqrt(4503599627370497) 67108864 >>> 67108864 * 67108864 4503599627370496 >>> sqrt(4503599627370497) 67108864.0 >>> sqrt(4503599627370497) * sqrt(4503599627370497) 4503599627370496.0 # exact result: 1592262918131443.14115595358963 >>> try_int_sqrt(2535301200456458802993406410753) 1592262918131443.2 >>> sqrt(2535301200456458802993406410753) 1592262918131443.2 # exact result: 6369051672525772.564623814 >>> try_int_sqrt(40564819207303340847894502572033) 6369051672525773 >>> sqrt(40564819207303340847894502572033) 6369051672525773.0 # exact result: 50952413380206180.51699051486817387 >>> try_int_sqrt(2596148429267413814265248164610049) 50952413380206181 >>> sqrt(2596148429267413814265248164610049) 5.0952413380206184e+16 # exact result: 47695509376267.99690952215843525 >>> try_int_sqrt(2274861614661668407597778085) 47695509376267.99 >>> sqrt(2274861614661668407597778085) 47695509376267.99 # exact result: 9067560306493833.1123015448971368313360 >>> try_int_sqrt(82220649911902536690031728766315) 9067560306493833 >>> sqrt(82220649911902536690031728766315) 9067560306493832.0 exact result: 109836762562089755439710412785302291476310964802292886550311415346968690934362496833960954250583272879636740982263693728593951807995466301001184452657840914432 >>> try_int_sqrt(int(“12064114410120881697684249086315471354100504503497011563593230129923244688987454586741947156276531487416450850028801674329627080999958126358211839195533902044386710183415792069701368078118158360793576698212191168580174892152827542937880954483101341506291035205862448784848059094859987648259778470316291228729945882624”)) 109836762562089755439710412785302291476310964802292886550311415346968690934362496833960954250583272879636740982263693728593951807995466301001184452657840914432 # exact result: 112519976.73369080909552361 >>> try_int_sqrt(12660745164150321) 112519976.73369081 >>> 112519976.73369081 * 112519976.73369081 1.2660745164150322e+16 >>> sqrt(12660745164150321) 112519976.7336908 >>> 112519976.7336908 * 112519976.7336908 1.2660745164150318e+16 # exact result: 94906265.624251558157461955425 >>> try_int_sqrt(9007199254740993) 94906265.62425156 >>> 94906265.62425156 * 94906265.62425156 9007199254740994.0 >>> sqrt(9007199254740993) 94906265.62425156 >>> 94906265.62425156 * 94906265.62425156 9007199254740994.0 # exact result: 126969687.206733737782866 >>> try_int_sqrt(16121301469375805) 126969687.20673373 >>> 126969687.20673373 * 126969687.20673373 1.6121301469375804e+16 >>> sqrt(16121301469375805) 126969687.20673373 >>> 126969687.20673373 * 126969687.20673373 1.6121301469375804e+16 # exact result: 94906265.6242515686941740831 # here we are off a bit! >>> try_int_sqrt(9007199254740995) 94906265.62425156 >>> 94906265.62425156 * 94906265.62425156 9007199254740994.0 >>> sqrt(9007199254740995) 94906265.62425157 >>> 94906265.62425157 * 94906265.62425157 9007199254740996.0 # exact result: 102406758.28296330267545316 >>> try_int_sqrt(10487144142025273) 102406758.2829633 >>> 102406758.2829633 * 102406758.2829633 1.0487144142025274e+16 >>> sqrt(10487144142025273) 102406758.28296329 >>> 102406758.28296329 * 102406758.28296329 1.048714414202527e+16 # exact result: 101168874.5492688823358 >>> try_int_sqrt(10235141177565705) 101168874.54926889 >>> 101168874.54926889 * 101168874.54926889 1.0235141177565706e+16 >>> sqrt(10235141177565705) 101168874.54926887 >>> 101168874.54926887 * 101168874.54926887 1.0235141177565702e+16 # exact result: 123961449.976073299398431984 >>> try_int_sqrt(15366441080170523) 123961449.9760733 >>> 123961449.9760733 * 123961449.9760733 1.5366441080170522e+16 >>> sqrt(15366441080170523) 123961449.97607331 >>> 123961449.97607331 * 123961449.97607331 1.5366441080170526e+16 # exact result: 4760418939079673.01527272985 >>> try_int_sqrt(22661588475548439582669426672241) 4760418939079673 >>> 4760418939079673 * 4760418939079673 22661588475548439437260241786929 >>> sqrt(22661588475548439582669426672241) 4760418939079673.0 >>> 4760418939079673.0 * 4760418939079673.0 2.266158847554844e+31 # exact result: 5712179292532910.79362200453777547 >>> try_int_sqrt(32628992270041785263905793906381) 5712179292532911 >>> 5712179292532911 * 5712179292532911 32628992270041787621642018133921 >>> sqrt(32628992270041785263905793906381) 5712179292532911.0 >>> 5712179292532911.0 * 5712179292532911.0 3.2628992270041787e+31 Tools for working with prime numbers. Provide a sequence of prime numbers. This function is a generator that returns the prime numbers in their natural order starting at 2. It will return numbers at most up to the given maximum value. For this purpose, it iteratively builds something like the Sieve of Eratosthenes. maximum ( the prime numbers Some tools for ranking data. the type of the key to use during ranking alias of TypeVar(‘K’) the rank type: must either be int, float, or a union of both alias of TypeVar(‘R’, int, float, int | float) the type of the element to sort during ranking alias of TypeVar(‘T’) the output type var alias of TypeVar(‘X’) Rank the elements in a data source based on a given key function. The default behavior of this function is to basically sort the data from source and return tuples with the rank and the data element in a list. The result list is sorted by the keys of the object. By default, ranks start at 0 and increase in steps of 2. The ranks of objects that would have the same rank are resolved by averaging their ranks. This is why we increment ranks in steps of 2: This way, the mean of two ranks is always an integer: >>> rank([3, 6, 6, 12]) [(0, 3), (3, 6), (3, 6), (6, 12)] This averaging can be modified by providing a rank_join function that computes a joint rank for objects as well as a rank_offset: >>> rank([3, 6, 6, 12], rank_join=lambda a, b: 0.5 * (a + b)) [(0.0, 3), (1.5, 6), (1.5, 6), (3.0, 12)] However, the result of rank_offset + rank_join(a, b) must always be either an int or a float and also always finite and never negative, for any two non-negative integers a and b. The key function must compute a key for each element of source which can be used for sorting. By default, it returns the element itself. But it can be customized. >>> rank((6, 5, 3, 4, 0, 7)) [(0, 0), (2, 3), (4, 4), (6, 5), (8, 6), (10, 7)] The output function is used to create the records to be placed in the list returned by this function. Its input are the rank, the object, and its computed key. By default, it creates tuples of the rank and the object obtained from source. You can customize this as well: >>> rank([5, 7, 4, 9, 2, 1]) [(0, 1), (2, 2), (4, 4), (6, 5), (8, 7), (10, 9)] key ( output ( rank_join ( rank_offset ( a list with the objects generated by the output function, which by default are tuples of rank and object A simple and immutable basic statistics record. Bases: A csv parser for sample statistics. Parse a row of data that may be empty. the sample statistic, if the row contains data, else None Bases: A class for CSV writing of Get the bottom footer comments. Attach an empty row of the correct shape to the output. This function may be needed in cases where the statistics are part of other records that sometimes do not contain the record. the optional row data Render a single sample statistics to a CSV row. data ( the row iterator Bases: An immutable record with sample statistics of one quantity. Try to represent this object as single number, if possible. needs_n ( an integer or float if this objects minimum equals its maximum, the object itself otherwise Get the the TypeError – if an object of the wrong type is passed in as self Get the arithmetic mean ( the arithmetic mean ( TypeError – if an object of the wrong type is passed in as self Get the geometric mean ( the geometric mean ( TypeError – if an object of the wrong type is passed in as self Get the the TypeError – if an object of the wrong type is passed in as self Get the the TypeError – if an object of the wrong type is passed in as self Get the number the number TypeError – if an object of the wrong type is passed in as self Get the standard deviation mean ( the standard deviation ( TypeError – if an object of the wrong type is passed in as self Obtain the largest of the three mean values. The arithmetic mean value, i.e., the sum of the The geometric mean value, if defined. This is the Obtain the smallest of the three mean values. Create a statistics object from an iterable of integers or floats. As bottom line, this function will forward computations to the a statistics representing the statistics over source Corner cases where the standard deviation resulting from compact fractions deviates very much from the standard deviation resulting from normalized fractions: Here the standard deviation becomes meaningless. If you compute it based on converting all values to floats, you get something like 0.435. You get the same result if you represent all values directly as Fractions. However, if you represent the float values as more compact Fractions, i.e., as Fractions that map to the exactly same floats but have smaller denominators, you get a standard deviation of 9.32+64. Basically, the difference is 65 orders of magnitude. But the source numbers would be exactly the same… The reason is the limited range of floats. >>> dd = (7.588550360256754e+81, int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845697”), int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845697”), … 7.588550360256754e+81, 7.588550360256754e+81, 7.588550360256754e+81, … int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845696”), 7.588550360256754e+81, 7.588550360256754e+81, … 7.588550360256754e+81, 7.588550360256754e+81, int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845696”), int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845697”), int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845696”), int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845696”), int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845697”), 7.588550360256754e+81, … int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845697”), int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845697”), int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845697”), 7.588550360256754e+81, … int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845696”), int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845696”), 7.588550360256754e+81, … 7.588550360256754e+81, int(“7588550360256754183279148073529370729071901715047420004889892225542594864082845696”), 7.588550360256754e+81, … 7.588550360256754e+81, 7.588550360256754e+81) >>> s = from_samples(dd) >>> s.stddev 0.4354941703556927 >>> stat_stddev(dd) 0.4354941703556927 >>> ddx = tuple(map(__to_frac, dd)) >>> ds = sum(ddx) >>> dss = sum(ddy * ddy for ddy in ddx) >>> __limited_root((dss - (ds * ds / len(dd))) / (len(dd) - 1), 2) 93206175962530968626911348905791729797971161757128018983942059951 >>> ddx = tuple(map(Fraction, dd)) >>> ds = sum(ddx) >>> dss = sum(ddy * ddy for ddy in ddx) >>> __limited_root((dss - (ds * ds / len(dd))) / (len(dd) - 1), 2) 0.4354941703556927 Create a sample statistics from a single number. value ( n ( the sample statistics Get a function returning the dimension from dimension ( a TypeError – if dimension is not a string ValueError – if dimension is unknownSubmodules¶
pycommons.math.int_math module¶
>>> ceil_div(1, 1)
1
>>> ceil_div(-1, 1)
-1
>>> ceil_div(-1, -1)
1
>>> ceil_div(1, -1)
-1
>>> ceil_div(98, 98)
1
>>> ceil_div(98, 99)
1
>>> ceil_div(98, 97)
2
>>> ceil_div(98, -97)
-1
>>> ceil_div(-98, -97)
2
>>> ceil_div(-98, 97)
-1
>>> ceil_div(3, 1)
3
>>> ceil_div(3, -1)
-3
>>> ceil_div(-3, 1)
-3
>>> ceil_div(-3, -1)
3
>>> ceil_div(3, 2)
2
>>> ceil_div(3, -2)
-1
>>> ceil_div(-3, 2)
-1
>>> ceil_div(-3, -2)
2
>>> ceil_div(3, 3)
1
>>> ceil_div(3, 4)
1
>>> ceil_div(3, -4)
0
>>> ceil_div(-3, 4)
0
>>> ceil_div(-3, -4)
1
>>> ceil_div(4, 1)
4
>>> ceil_div(4, 2)
2
>>> ceil_div(4, 3)
2
>>> ceil_div(4, 4)
1
>>> ceil_div(4, 5)
1
>>> ceil_div(4, 23242398)
1
>>> ceil_div(4, -23242398)
0
>>> ceil_div(-4, 23242398)
0
>>> ceil_div(-4, -23242398)
1
>>> ceil_div(0, 1)
0
>>> ceil_div(0, -1)
0
>>> ceil_div(-0, 1)
0
>>> ceil_div(-0, -1)
0
>>> try:
... ceil_div(1, 0)
... except ZeroDivisionError as ze:
... print(ze)
integer division or modulo by zero
>>> try:
... ceil_div(-1, 0)
... except ZeroDivisionError as ze:
... print(ze)
integer division or modulo by zero
>>> try:
... ceil_div(1, -0)
... except ZeroDivisionError as ze:
... print(ze)
integer division or modulo by zero
>>> try:
... ceil_div(-1, -0)
... except ZeroDivisionError as ze:
... print(ze)
integer division or modulo by zero
float.as_integer_ratio()
, which turns the binary representation of the floating point number to an integer fraction. This is the canonical way that, without losing any precision, will return an integer fraction that fits exactly to the floating point value.float.as_integer_ratio()
default result - unless the string path provides a more compact representation. As simple yard stick, in such cases, we use the fraction with the smaller denominator. If the demoninators are the same, then we use the one with the smaller absolute numerator.>>> float_to_frac(0.1)
(1, 10)
>>> float_to_frac(1e-1)
(1, 10)
>>> float_to_frac(1e-20)
(1, 100000000000000000000)
>>> 1e-20.as_integer_ratio()
(6646139978924579, 664613997892457936451903530140172288)
>>> float_to_frac(1e-30)
(1, 1000000000000000000000000000000)
>>> float_to_frac(1e30)
(1000000000000000000000000000000, 1)
>>> float_to_frac(1000)
(1000, 1)
>>> float_to_frac(1000.567)
(1000567, 1000)
>>> float_to_frac(1.234e-5)
(617, 50000000)
>>> float_to_frac(1.234e5)
(123400, 1)
>>> float_to_frac(0)
(0, 1)
>>> 0 / 1
0.0
>>> float_to_frac(-5376935265607590)
(-5376935265607590, 1)
>>> -5376935265607590 / 1
-5376935265607590.0
>>> float_to_frac(4)
(4, 1)
>>> 4 / 1
4.0
>>> float_to_frac(-21844.45693689149)
(-2184445693689149, 100000000000)
>>> -2184445693689149 / 100000000000
-21844.45693689149
>>> float_to_frac(-3010907.436657168)
(-188181714791073, 62500000)
>>> -188181714791073 / 62500000
-3010907.436657168
>>> float_to_frac(13660.023207762431)
(1877419294078101, 137438953472)
>>> 1877419294078101 / 137438953472
13660.023207762431
>>> float_to_frac(438027.68586526066)
(58791080797933, 134217728)
>>> 58791080797933 / 134217728
438027.68586526066
>>> float_to_frac(-8338355882.478134)
(-546462491114087, 65536)
>>> -546462491114087 / 65536
-8338355882.478134
>>> float_to_frac(-32835294.95774138)
(-275442417964869, 8388608)
>>> -275442417964869 / 8388608
-32835294.95774138
>>> float_to_frac(-0.8436071305882418)
(-3799268758964299, 4503599627370496)
>>> -3799268758964299 / 4503599627370496
-0.8436071305882418
>>> float_to_frac(-971533.786640197)
(-32599264379521, 33554432)
>>> -32599264379521 / 33554432
-971533.786640197
>>> float_to_frac(187487280836.01147)
(767947902304303, 4096)
>>> 767947902304303 / 4096
187487280836.01147
>>> float_to_frac(24214223389953.125)
(193713787119625, 8)
>>> 193713787119625 / 8
24214223389953.125
>>> float_to_frac(2645.112807929305)
(363541536137187, 137438953472)
>>> 363541536137187 / 137438953472
2645.112807929305
>>> float_to_frac(92129361.64291245)
(1545674200225257, 16777216)
>>> 1545674200225257 / 16777216
92129361.64291245
>>> float_to_frac(7218177.564653773)
(1937614786056805, 268435456)
>>> 1937614786056805 / 268435456
7218177.564653773
>>> float_to_frac(-1.4589908563595052e+16)
(-14589908563595052, 1)
>>> -14589908563595052 / 1
-1.4589908563595052e+16
>>> float_to_frac(-1.607745417434216e+16)
(-16077454174342160, 1)
>>> -16077454174342160 / 1
-1.607745417434216e+16
>>> float_to_frac(-952261813.8291152)
(-595163633643197, 625000)
>>> -595163633643197 / 625000
-952261813.8291152
>>> float_to_frac(124.69515801820336)
(779344737613771, 6250000000000)
>>> 779344737613771 / 6250000000000
124.69515801820336
>>> float_to_frac(1.041491959175676e+16)
(10414919591756760, 1)
>>> 10414919591756760 / 1
1.041491959175676e+16
>>> float_to_frac(1.4933667846659504e+16)
(14933667846659504, 1)
>>> 14933667846659504 / 1
1.4933667846659504e+16
>>> float_to_frac(-6.034817133993009e-05)
(-271784001959, 4503599627370496)
>>> -271784001959 / 4503599627370496
-6.034817133993009e-05
>>> float_to_frac(-2.682658826813622e-05)
(-1887753327, 70368744177664)
>>> -1887753327 / 70368744177664
-2.682658826813622e-05
>>> float_to_frac(6.342974725370709e-05)
(17853886631, 281474976710656)
>>> 17853886631 / 281474976710656
6.342974725370709e-05
>>> float_to_frac(8.759559844406795e-05)
(3081996129, 35184372088832)
>>> 3081996129 / 35184372088832
8.759559844406795e-05
>>> float_to_frac(-9.6e-09)
(-3, 312500000)
>>> -3 / 312500000
-9.6e-09
>>> float_to_frac(-0.4)
(-2, 5)
>>> -2 / 5
-0.4
>>> float_to_frac(2e-10)
(1, 5000000000)
>>> 1 / 5000000000
2e-10
>>> float_to_frac(0.3)
(3, 10)
>>> 3 / 10
0.3
>>> float_to_frac(-3e-09)
(-3, 1000000000)
>>> -3 / 1000000000
-3e-09
>>> float_to_frac(1e-07)
(1, 10000000)
>>> 1 / 10000000
1e-07
>>> float_to_frac(-8e-08)
(-1, 12500000)
>>> -1 / 12500000
-8e-08
>>> float_to_frac(-0.01)
(-1, 100)
>>> -1 / 100
-0.01
>>> float_to_frac(1e-08)
(1, 100000000)
>>> 1 / 100000000
1e-08
>>> float_to_frac(0.01)
(1, 100)
>>> 1 / 100
0.01
>>> float_to_frac(-2e-06)
(-1, 500000)
>>> -1 / 500000
-2e-06
>>> float_to_frac(-6e-08)
(-3, 50000000)
>>> -3 / 50000000
-6e-08
>>> float_to_frac(7e-05)
(7, 100000)
>>> 7 / 100000
7e-05
>>> float_to_frac(-1e+40)
(-10000000000000000000000000000000000000000, 1)
>>> -10000000000000000000000000000000000000000 / 1
-1e+40
>>> float_to_frac(1e+40)
(10000000000000000000000000000000000000000, 1)
>>> 10000000000000000000000000000000000000000 / 1
1e+40
>>> try_float_int_div(10, 2)
5
>>> try_float_int_div(10.0, 2)
5
>>> try_float_int_div(10, 3)
3.3333333333333335
>>> try_float_int_div(-10, 2)
-5
>>> try_float_int_div(-10.2, 2)
-5.1
>>> try_float_int_div(-10.0, 2)
-5
>>> try_float_int_div(-10, 3)
-3.3333333333333335
>>> print(type(try_float_int_div(10.0, 2)))
<class 'int'>
>>> print(type(try_float_int_div(10.0, 3)))
<class 'float'>
>>> try:
... try_float_int_div(10, 0.5)
... except TypeError as te:
... print(te)
b should be an instance of int but is float, namely 0.5.
>>> from math import inf, nan
>>> try:
... try_float_int_div(1.0, 0)
... except ZeroDivisionError as zde:
... print(zde)
integer division or modulo by zero
>>> try:
... try_float_int_div(inf, 0)
... except ValueError as ve:
... print(ve)
Value must be finite, but is inf.
>>> try:
... try_float_int_div(-inf, 0)
... except ValueError as ve:
... print(ve)
Value must be finite, but is -inf.
>>> try:
... try_float_int_div(nan, 0)
... except ValueError as ve:
... print(ve)
Value must be finite, but is nan.
>>> try:
... try_float_int_div(1, inf)
... except TypeError as te:
... print(te)
b should be an instance of int but is float, namely inf.
>>> try:
... try_float_int_div("y", 1)
... except TypeError as te:
... print(te)
value should be an instance of any in {float, int} but is str, namely 'y'.
>>> try:
... try_float_int_div(1, "x")
... except TypeError as te:
... print(te)
b should be an instance of int but is str, namely 'x'.
int
| float
) – the input value, which must either be int or float>>> print(type(try_int(10.5)))
<class 'float'>
>>> print(type(try_int(10)))
<class 'int'>
>>> from math import inf, nan, nextafter
>>> type(try_int(0.0))
<class 'int'>
>>> type(try_int(0.5))
<class 'float'>
>>> try:
... try_int(inf)
... except ValueError as ve:
... print(ve)
Value must be finite, but is inf.
>>> try:
... try_int(-inf)
... except ValueError as ve:
... print(ve)
Value must be finite, but is -inf.
>>> try:
... try_int(nan)
... except ValueError as ve:
... print(ve)
Value must be finite, but is nan.
>>> try:
... try_int("blab") # noqa # type: off
... except TypeError as te:
... print(te)
value should be an instance of any in {float, int} but is str, namely 'blab'.
>>> type(try_int(9007199254740992.0))
<class 'int'>
>>> try_int(9007199254740992.0)
9007199254740992
>>> too_big = nextafter(9007199254740992.0, inf)
>>> print(too_big)
9007199254740994.0
>>> type(try_int(too_big))
<class 'float'>
>>> type(try_int(-9007199254740992.0))
<class 'int'>
>>> try_int(-9007199254740992.0)
-9007199254740992
>>> type(try_int(-too_big))
<class 'float'>
>>> try_int_add(5, 7)
12
>>> try_int_add(5, 7.0)
12
>>> try_int_add(0, -8670.320148166094)
-8670.320148166094
>>> 0 + -8670.320148166094
-8670.320148166094
>>> try_int_add(-63710, 100.96227261264141)
-63609.03772738736
>>> -63710 + 100.96227261264141
-63609.03772738736
>>> try_int_add(77, 12975.955050422272)
13052.955050422272
>>> 77 + 12975.955050422272
13052.955050422272
>>> try_int_add(-308129344193738, 62995516.01169562)
-308129281198222
>>> -308129344193738 + 62995516.01169562
-308129281198222.0
>>> try_int_add(-2158504468760619, -1.3773316665252534e+16)
-1.5931821134013152e+16
>>> -2158504468760619 + -1.3773316665252534e+16
-1.5931821134013152e+16
>>> try_int_add(-960433622582960, 1.491132239895968e+16)
1.395088877637672e+16
>>> -960433622582960 + 1.491132239895968e+16
1.395088877637672e+16
>>> v = int("-91666501312414085408333198553755526631169610879455816489173691561634548053405237489064")
>>> try_int_add(v, 6.147962494740932e+217)
6.147962494740932e+217
>>> v + 6.147962494740932e+217
6.147962494740932e+217
>>> try:
... try_int_add(2.0, 1)
... except TypeError as te:
... print(te)
a should be an instance of int but is float, namely 2.0.
>>> try:
... try_int_add(2, "1")
... except TypeError as te:
... print(te)
b should be an instance of any in {float, int} but is str, namely '1'.
>>> from math import inf
>>> try:
... try_int_add(2, inf)
... except ValueError as ve:
... print(ve)
b=inf is not finite
>>> print(try_int_div(10, 2))
5
>>> print(try_int_div(10, -2))
-5
>>> print(try_int_div(-10, 2))
-5
>>> print(try_int_div(-10, -2))
5
>>> print(type(try_int_div(10, 2)))
<class 'int'>
>>> print(try_int_div(10, 3))
3.3333333333333335
>>> print(try_int_div(-10, 3))
-3.3333333333333335
>>> print(try_int_div(10, -3))
-3.3333333333333335
>>> print(try_int_div(-10, -3))
3.3333333333333335
>>> print(type(try_int_div(10, 3)))
<class 'float'>
>>> print(try_int_div(9007199254740992, 1))
9007199254740992
>>> print(try_int_div(2109792310235001520128, 234234))
9007199254740992
>>> print(try_int_div(2109792310235001520128, 234235))
9007160801054503
>>> print(try_int_div(2109792310235001520128, 234233))
9007237708755818
>>> large = 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
>>> try:
... large / 1
... except OverflowError as oe:
... print(oe)
integer division result too large for a float
>>> try_int_div(large, 1)
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
>>> try_int_div(large * 7, 1 * 7)
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
>>> res = try_int_div(large, 7)
>>> print(res)
176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841
>>> large - (res * 7)
3
>>> res = try_int_div(large - 1, 7)
>>> print(res)
176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841
>>> (large - 1) - (res * 7)
2
>>> res = try_int_div(large + 1, 7)
>>> print(res)
176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366841446208112716049382700176366842
>>> (large + 1) - (res * 7)
-3
>>> try:
... try_int_div(0, 0)
... except ZeroDivisionError as zde:
... print(zde)
integer division or modulo by zero
>>> try:
... try_int_div(1, 0)
... except ZeroDivisionError as zde:
... print(zde)
integer division or modulo by zero
>>> try:
... try_int_div(-1, 0)
... except ZeroDivisionError as zde:
... print(zde)
integer division or modulo by zero
>>> try_int_div(153, 17)
9
>>> try_int_div(-153, 17)
-9
>>> try_int_div(626240198453350272215815210991, 180)
3479112213629723734532306728
>>> try_int_div(-626240198453350272215815210991, 180)
-3479112213629723734532306728
>>> try_int_div(312641328808813509022862142116, 184)
1699137656569638635993815990
>>> try_int_div(-312641328808813509022862142116, 184)
-1699137656569638635993815990
>>> try_int_div(300228563787891776398328530521, 6)
50038093964648629399721421754
>>> try_int_div(300228563787891776398328530520, 6)
50038093964648629399721421753
>>> try_int_div(-300228563787891776398328530521, 6)
-50038093964648629399721421754
>>> try_int_div(153, -17)
-9
>>> try_int_div(-153, -17)
9
>>> try_int_div(626240198453350272215815210991, -180)
-3479112213629723734532306728
>>> try_int_div(-626240198453350272215815210991, -180)
3479112213629723734532306728
>>> try_int_div(312641328808813509022862142116, -184)
-1699137656569638635993815990
>>> try_int_div(-312641328808813509022862142116, -184)
1699137656569638635993815990
>>> try_int_div(300228563787891776398328530521, -6)
-50038093964648629399721421754
>>> try_int_div(-300228563787891776398328530521, -6)
50038093964648629399721421754
>>> try_int_div(471560594207063922064065980174, 160)
2947253713794149512900412376
>>> try_int_div(7995687632, 605623302520652727304862084393)
1.3202410803417417e-20
>>> try_int_div(308201705551808339041017943851, 23)
13400074154426449523522519298
>>> try_int_div(899348944156468188933109403939, 54)
16654610076971633128390914888
>>> try_int_div(494818043590514116668712249977, 42)
11781381990250336111159815476
>>> try_int_div(738070379515233920, 205)
3600343314708458
>>> try_int_div(3502315235185234554036893628, 2914324106703)
1201759003787480
>>> try_int_div(7410628973168661103, 3869)
1915386139356076.8
>>> try_int_div(1230161216449799063065724370370, 4689247521470)
262336592559346126
>>> try_int_div(1052870426843577701006624798274, 28)
37602515244413489321665171367
>>> try_int_div(218235816140080518429116, 65180391)
3348182065064330.5
>>> try_int_div(542681063252950460111634072, 1417)
382978873149576894927053
>>> try_int_div(6347580784084238615827, 9508617)
667560885466754.9
>>> try_int_div(25864142832167873073008, 8621014)
3000127691727199.5
>>> try_int_div(35377667634669293542601414338, 8678403583)
4076517909811212054
>>> try_int_div(1423204593957046760175, 6)
237200765659507793363
>>> try_int_div(1959151753859121847452742, 155502)
12598884605079817928
>>> try_int_div(153429321515534965993379305, 15165212220)
10117189215010864
>>> try_int_div(638685779810794590594721888599, 6355644831674)
100491106209686119
>>> try_int_div(14634805, 3163458943542033136)
4.626203551614245e-12
>>> try_int_div(2728490692514068837390, 1134)
2406076448425104795
>>> try_int_div(52133244, 2145832361321597595907)
2.4295115005112346e-14
>>> try_int_div(989732710522254024, 870)
1137623805197993.2
>>> try_int_div(1015, 4100715151904)
2.475178017494646e-10
>>> try_int_div(750731, 60649291746)
1.2378231936228884e-05
>>> try_int_div(7972413701754221571302566, 1660418690)
4801447821425222
>>> try_int_div(356135676699525125944, 46208)
7707229845471025
>>> try_int_div(10448177882855961291672, 1739414)
6006722886475538
>>> try_int_div(739391142068058031063862, 8456)
87439822855730609161
>>> try_int_div(316514845935646909034735039673, 32172)
9838208564455020173900753
>>> try_int_div(4158458869534984918534998087, 30)
138615295651166163951166603
>>> try_int_div(102306108211747181839762853503, 29118)
3513500522417308257427119
>>> all(try_int_div(1, y) == (1 / y) for y in range(2, 10))
True
>>> all(try_int_div(2, y) == (2 / y) for y in range(3, 10))
True
>>> try_int_div(820432337843942760, 85)
9652145151105209
>>> try_int_div(84050617, 3577089862)
0.023496926340286613
>>> try_int_div(812060021745358856, 996816531)
814653445.7356013
>>> try_int_div(38029336, 472982612237)
8.040324319775297e-05
>>> try_int_div(50229909719349513, 9)
5581101079927724
>>> try_int_div(61320503685013026, 2728161164469337)
22.476862614874392
>>> try_int_div(23134400382350491, 8)
2891800047793811.5
>>> try_int_div(12510965, 67561917605841203)
1.8517776645993746e-10
>>> try_int_div(27246707584980173, 4)
6811676896245043
>>> try_int_div(135385235231741420, 6)
22564205871956903
>>> try_int_div(90, 153429501803)
5.865886217603572e-10
>>> try_int_div(734553401849288248, 951111)
772310909924.5916
>>> try_int_div(9820998979656, 4239082999146)
2.3167744018304255
>>> try_int_div(133105116441194557, 17)
7829712731834974
>>> try_int_div(1004604250960040176, 14)
71757446497145727
>>> try_int_div(246148731190755584, 6)
41024788531792597
>>> try_int_div(991564, 72057594037927936)
1.3760714789867734e-11
>>> try_int_div(2623725286393384, 139634775865757)
18.789912972079378
>>> try_int_div(63010439554808723, 9)
7001159950534303
>>> try_int_div(2801452, 427673)
6.550453266865105
>>> try_int_div(14177411351567, 349688426689780)
0.04054298132132421
>>> try_int_div(126660394112336947, 368)
344185853566133
>>> try_int_div(1031427640916897886, 7)
147346805845271127
>>> try_int_div(33290935002573849, 2)
16645467501286925
>>> try_int_div(209062743096233332, 64)
3266605360878646
>>> try_int_div(253174817711179642, 57)
4441663468617186.5
>>> try_int_div(29462133006911895, 24943246)
1181166757.8033707
>>> try_int_div(93475849985676023, 60673699562)
1540632.1134276118
>>> try_int_div(-16, -16)
1
>>> try_int_div(242, 150)
1.6133333333333333
>>> try_int_div(-547, -698)
0.7836676217765043
>>> try_int_div(463, 105)
4.40952380952381
>>> try_int_div(-148, -203)
0.729064039408867
>>> try_int_div(0, -25)
0
>>> try_int_div(24, -177)
-0.13559322033898305
>>> try_int_div(-166, 186)
-0.8924731182795699
>>> try_int_div(-608143760099358008316, 16)
-38008985006209875520
>>> try_int_div(-6917198296130591233, 2932)
-2359208150112753
>>> try_int_div(-40068404846647758412, 2431)
-16482272664190769
>>> try_int_div(809884532216820092, -80)
-10123556652710251
>>> try_int_div(-9428902965475478968, -1946)
4845273877428304
>>> try_int_div(94881103250893722164, 174)
545293696844216794
>>> try_int_div(558275776531402194, 196)
2848345798629603
>>> try_int_div(-5470954588630039684, -1425)
3839266377985993
>>> x = 52051907638184435686872083537997907834107397007408814104887055550626511625845155723435063364217885064987648273962363266643258572981136271430475196005811602816646869998761185517191667091818147736824340296222486666685948327106641344727853102203836313167806475289935694133683049416723665601922267867434230737563866877449592092646396784184383416539429598515786254896942626288280150268099746112877929289098786464747626881458668531793337750321167315312933603
>>> y = -139035476157512619782372181650126748736515125323507714345345535042071715351921681111638693456863646113210365045493352
>>> try_int_div(x, y)
-374378605207314720094873468836285633819929467061778300817269205498029513654024335132657459712666159214003174298773666703405454946223841058239933063485284313917060605484807243931457368242922416188904775387320134342062089255750862700497112616274728625215898978448963212698759159253800300962780904741771804645167943738988195771748632862162
>>> x = -237109974966504499065814155407507423756681813587992549276765875591466431785344954996723447284617738104563308335316636469414432945133872626562475145374718725305151916427038036160126112481184822188724826978273877612735658682500079452861107249299705282771925489140453114202884715335597378262368587555388033455119839506838214696423221276537787120528956164822252461892023157114027990382279583239059206677270588696258299518968279166470115508549546141742280327582498733595995697631187168710055335569609973997123439124471957303314220
>>> y = 2334357864974069231374511460880647203368457446428751178156068064378701796266433578371331497
>>> try_int_div(x, y)
-101573961098350440775039372298606794268469908577045401233130406288914282929188932483098022322818292556808620921656421644626989332901774307649479556618765285719954166516175417395319059113103751869677101061235848687846595854209154914381056640460582835505879418330902968200425941036454902030259440742425865934402069701651060764452872598704792440109834741980880533133349797622848020171153886834216445854191456742632611734684212485945595091
>>> x = 404100618846427932016026701491154140173947347613235450808470202962525253475728363668578430367548923168022182089413673609247435979940879600240187921742390653841150636438854369236710256224057607718115525186887758631639670824684023800548396685446620580303449643060159456830119838355315387882955924376571688222936921907566552043295097596971886346318138834494618220051900614717964461315530742161850062785306859778524746068148875909170944464910610460508750707051996751159775959805908309
>>> try_int_div(x, 455824846955327759894405021890034373481341853483437732)
886526089013377189427996129993958071440873972886348047699607747079616995543085620471927592765951912973058793385603301586629745150439814928912960267883664004127028245021824961458395565167629644085878157979069058008993075503852835979746848469931029741786475757184040552964154543887801327785586554297569583388146919245416237227940140677498927052487483630425657258239092995434299050034021769275549143357256693312576946435784210430
>>> x = -62329367861908430940060052330176958472405117526359796910825196228967182245151500849289063274091725415958639937290004620530027871949062475188176026655230475873682972201137642189143060727745274448518821915960488822897219191054331592679999119684641100513616523230906534113360817155818558407515396114454951055109084276990314617394966989996319564551198318944224505455969489515428690282113755080383328799009405959846487733552322199361433571441631699077621235779724223724145601506861527256455350316142
>>> y = -672227780379448967615099076221459579351218967417588220
>>> try_int_div(x, y)
92720607034011138790424924296260670427062526706986360227104870508211266764385374648400977097912400864248921190734351362277539276710856469258726616773893885766234994122772733590708011238049750176667082969644614903930265971589853266748072438948982007225613262945519147005987394933957619545642204000520363285890959448412497427025259922404568388012229950024924085644606386184930267142505617327729864850535306650812894643758024556770793387750201
>>> try:
... try_int_div(1.0, 2)
... except TypeError as te:
... print(te)
a should be an instance of int but is float, namely 1.0.
>>> try:
... try_int_div(1, 2.0)
... except TypeError as te:
... print(te)
b should be an instance of int but is float, namely 2.0.
>>> try_int_mul(6, 5)
30
>>> try_int_mul(4, -2493374.0)
-9973496
>>> 4 * -2493374.0
-9973496.0
>>> try_int_mul(4, 0.687279486538305)
2.74911794615322
>>> 4 * 0.687279486538305
2.74911794615322
>>> try_int_mul(14059, 1.0673811010650016e+16)
1.5006310899872858e+20
>>> 14059 * 1.0673811010650016e+16
1.5006310899872858e+20
>>> aa = int("131853736830103986330358609231966527684353023330238338702287614652255017637688725497413841587504968776817592912265408771992845011229930897105528797412214008383330709731057075605034370259681835287681493225337651390572165677853314573952850041988465295832577950678186093485844861830998534026537308637591256017106983759509895599714369247370057549223306422774777546884919382044527420457991975491785609852030831998308070776211565814942350933642672902063132158594646597242361650005228312919254855")
>>> try_int_mul(aa, -2.6624992899981142e+135)
-351060480693750064453835292428076534998065626248205859394224131928297807375572486365608096664361429217283292718296360530276771619617508933170356074498812028442512109317126269695469503808824028263913213453615797077741562068054477787260819949647198753734696904695444416894546646340086090596255528370630342399126802523139567432239948562798671234539502947563959737236970890902877424384275539763076905795866685950545559899950633512202500980940635430054665554875703308334026066509069233835834019214049819194441000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
>>> try_int_mul(2366231432701, 9061910680864392.0)
2.1442577893390244e+28
>>> 2366231432701 * 9061910680864392.0
2.1442577893390244e+28
>>> try_int_mul(11382697409900285, 7338977711.446167)
8.35373625873942e+25
>>> 11382697409900285 * 7338977711.446167
8.35373625873942e+25
>>> try_int_mul(34207518885, -6554.28955920917)
-224205983874406
>>> 34207518885 * -6554.28955920917
-224205983874406.0
>>> try_int_mul(35107, -165228482913.08173)
-5800676349629560
>>> 35107 * -165228482913.08173
-5800676349629560.0
>>> try_int_mul(0, 2.4281702332336544e+16)
0
>>> 0 * 2.4281702332336544e+16
0.0
>>> try_int_mul(12299117359251193, 9482167930204820.0)
1.1662229619371705e+32
>>> 12299117359251193 * 9482167930204820.0
1.1662229619371705e+32
>>> try_int_mul(-11025104822925196, 0.20926918490209712)
-2307214699753735.5
>>> -11025104822925196 * 0.20926918490209712
-2307214699753735.5
>>> try_int_mul(9772540954912922, -0.46316069211643107)
-4526256832413637
>>> 9772540954912922 * -0.46316069211643107
-4526256832413637.0
>>> a = -5687274133508874816611305835797802819969961090128107452007652532733682706778467556029446216090564515834530364339892682290523912804494560564153530543461393244816871985111746417931778069774416531277246135816681482485108855666554914988361150741132171265507858468795070096289596042533878836544303330516292056063762566783850836390861237578792994183593881591562639566572019685623123444496557488817481392619745509951116076463739023482649084091928996990245119032766058028744
>>> try_int_mul(a, 1.6152587208080178e+161)
-918641914177607297827455991165295995836557166831605550508325736176299541250102111474283401930557851066812578894747108796107686090646758701549663456812644903400002663168724888028469498708301060108509510035047069876769552404298042911001628323193080493646299015542596054871017084303004624332857182391257042528016853330531550759467217065784070822365293999505935628319741788998888566529338832854426979755461349553493001975082014113349588730810004510932264935937782349254851477073806364320000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
>>> a = 376560847831303570078539963816877133955751936352717499709764264061014957138918056943674235279041759617345256275395548431153753927815716233292447297269149929791925360073769054144096521088071580437368293552550840688369260826544997483426231840509951147268005485849616999574389651325135400971622625145852205361365860049799886307339513408795931018211062302039146270522678371572821101974821796182780210158355368107881592427373376547394885537235348770037983728077456443610490231815763426207048140659081123096064113083255321
>>> try_int_mul(a, 3.4397561272117625e+192)
1295277483595782584113508134012218246618268914040678972148674688561811055625456456384068479726658262580902601368645111896604812576906622456500132582458740709871353454447990870037772268620268164970923685555289554000241109967840034930596196955500638683411789710844172886586592715303399853135479663325522628185668993832759921988370244741262443120790998474861798058615147133179552690852974601759806640400706511946084833181519650211981318066286687021298869095295901261701816146501989018193091814958202143246046408892578628261894621913262500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
>>> a = 129139500057625933922412781529753661193714022177289159193286727341869510538391068183373334814894358463049932698275602586001788553855337370614701810798567624656761308982494637834371899037091828942757328272879402878026516716840890321410558877108818475215456025987413249018189775618174448780086119164868545066265500186250891155310591180702358002
>>> try_int_mul(a, 1107055232.6334295)
142964559278459864122721473504338769103625425952771716003208051292041747018242273419932246881285681017872061407201342792874210512835357631625320661082072819079131257940844247255813910836282210665242651249270543058782206016019503066516405897455766109486696367661876404069863634518158697939624092648038619836809751492028454165243512720617990761805723389
>>> try_int_mul(1202489289292969, 2.1583639585424923e+306)
2595409542543320772685210126638700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
>>> try:
... try_int_mul(5.0, 1)
... except TypeError as te:
... print(te)
a should be an instance of int but is float, namely 5.0.
>>> try:
... try_int_mul(5, "x")
... except TypeError as te:
... print(te)
b should be an instance of any in {float, int} but is str, namely 'x'.
>>> from math import inf
>>> try:
... try_int_mul(5, inf)
... except ValueError as ve:
... print(ve)
b=inf is not finite
int
) – the value>>> try_int_sqrt(0)
0
>>> try_int_sqrt(1)
1
>>> try_int_sqrt(2)
1.4142135623730951
>>> try_int_sqrt(3)
1.7320508075688772
>>> try_int_sqrt(4)
2
>>> try_int_sqrt(5)
2.23606797749979
>>> try_int_sqrt(6)
2.449489742783178
>>> try_int_sqrt(7)
2.6457513110645907
>>> try_int_sqrt(8)
2.8284271247461903
>>> try_int_sqrt(9)
3
>>> try_int_sqrt(1156)
34
>>> 34 * 34
1156
>>> sqrt(1156)
34.0
>>> 34.0 * 34.0
1156.0
>>> try_int_sqrt(1005)
31.701734968294716
>>> 31.701734968294716 * 31.701734968294716
1005.0
>>> sqrt(1005)
31.701734968294716
>>> 31.701734968294716 * 31.701734968294716
1005.0
>>> try_int_sqrt(12369445361672285)
111218008.26157734
>>> sqrt(12369445361672285)
111218008.26157734
>>> try:
... try_int_sqrt(-1)
... except ValueError as ve:
... print(ve)
Compute the root of -1 ... really?
>>> try:
... try_int_sqrt(1.0)
... except TypeError as te:
... print(te)
value should be an instance of int but is float, namely 1.0.
pycommons.math.primes module¶
int
, default: 4294967296
) – the maximum number to consider>>> list(primes(-1))
[]
>>> list(primes(0))
[]
>>> list(primes(1))
[]
>>> list(primes(2))
[2]
>>> list(primes(3))
[2, 3]
>>> list(primes(4))
[2, 3]
>>> list(primes(5))
[2, 3, 5]
>>> list(primes(6))
[2, 3, 5]
>>> list(primes(7))
[2, 3, 5, 7]
>>> list(primes(8))
[2, 3, 5, 7]
>>> list(primes(9))
[2, 3, 5, 7]
>>> list(primes(10))
[2, 3, 5, 7]
>>> list(primes(11))
[2, 3, 5, 7, 11]
>>> list(primes(12))
[2, 3, 5, 7, 11]
>>> list(primes(13))
[2, 3, 5, 7, 11, 13]
>>> list(primes(14))
[2, 3, 5, 7, 11, 13]
>>> list(primes(15))
[2, 3, 5, 7, 11, 13]
>>> list(primes(16))
[2, 3, 5, 7, 11, 13]
>>> list(primes(17))
[2, 3, 5, 7, 11, 13, 17]
>>> list(primes(18))
[2, 3, 5, 7, 11, 13, 17]
>>> list(primes(19))
[2, 3, 5, 7, 11, 13, 17, 19]
>>> list(primes(20))
[2, 3, 5, 7, 11, 13, 17, 19]
>>> list(primes(199))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]
>>> list(primes(200))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]
>>> list(primes(201))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]
>>> list(primes(1000))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
>>> try:
... for t in primes(1.0):
... pass
... except TypeError as te:
... print(te)
maximum should be an instance of int but is float, namely 1.0.
pycommons.math.rank module¶
>>> rank([3, 6, 6, 12], rank_join=min, rank_offset=1)
[(1, 3), (2, 6), (2, 6), (4, 12)]
>>> rank([3, 6, 6, 12], rank_join=max, rank_offset=1)
[(1, 3), (3, 6), (3, 6), (4, 12)]
>>> sorted(rank({"a", "c", "X", "y", "x", "xx", "L", "l"}, key=str.lower))
[(0, 'a'), (2, 'c'), (5, 'L'), (5, 'l'), (9, 'X'), (9, 'x'), (12, 'xx'), (14, 'y')]
>>> rank([5, 7, 4, 9, 2, 1], output=lambda rr, oo, kk: f"{rr}:{oo}")
['0:1', '2:2', '4:4', '6:5', '8:7', '10:9']
>>> rank([5, 7, 4, 19, 2, 1], key=str,
... output=lambda rr, oo, kk: (rr, oo, kk))
[(0, 1, '1'), (2, 19, '19'), (4, 2, '2'), (6, 4, '4'), (8, 5, '5'), (10, 7, '7')]
Callable
[[TypeVar
(T
)], TypeVar
(K
)], default: <function <lambda> at 0x7ff44db08ea0>
) – a function returning the key for a given objectCallable
[[TypeVar
(R
, int
, float
, int
| float
), TypeVar
(T
), TypeVar
(K
)], TypeVar
(X
)], default: <function <lambda> at 0x7ff44db09a80>
) – a function creating the output object, receiving the rank, original object, and key as inputCallable
[[int
, int
], TypeVar
(R
, int
, float
, int
| float
)], default: <function <lambda> at 0x7ff44db08860>
) – a function for joining a maximum and minimum index of an object to a rank; by default this returns the sum of bothint
, default: 0
) – an offset to be added to the ranks>>> rank({})
[]
>>> rank([12])
[(0, 12)]
>>> rank([12, 3])
[(0, 3), (2, 12)]
>>> rank([3, 12], rank_offset=2)
[(2, 3), (4, 12)]
>>> rank([12, 12])
[(1, 12), (1, 12)]
>>> rank([12, 12], output=lambda rr, tt, kk: rr)
[1, 1]
>>> rank([-1, 0, 4, 3, 3, 5, 6, 1])
[(0, -1), (2, 0), (4, 1), (7, 3), (7, 3), (10, 4), (12, 5), (14, 6)]
>>> rank([-1, 0, 4, 3, 3, 5, 6, 1], rank_join=lambda a, b: 0.5 * (a + b))
[(0.0, -1), (1.0, 0), (2.0, 1), (3.5, 3), (3.5, 3), (5.0, 4), (6.0, 5), (7.0, 6)]
>>> sorted(rank(("a", "B", "c", "b", "A", "A", "cc"), key=str.casefold))
[(2, 'A'), (2, 'A'), (2, 'a'), (7, 'B'), (7, 'b'), (10, 'c'), (12, 'cc')]
>>> try:
... rank(1)
... except TypeError as te:
... print(te)
source should be an instance of typing.Iterable but is int, namely 1.
>>> try:
... rank([], key=1)
... except TypeError as te:
... print(te)
key should be a callable but is int, namely 1.
>>> try:
... rank([], output=1)
... except TypeError as te:
... print(te)
output should be a callable but is int, namely 1.
>>> try:
... rank([], rank_join=1)
... except TypeError as te:
... print(te)
rank_join should be a callable but is int, namely 1.
>>> try:
... rank([], rank_offset="x")
... except TypeError as te:
... print(te)
rank_offset should be an instance of any in {float, int} but is str, namely 'x'.
>>> from math import inf, nan
>>> try:
... rank([], rank_offset=inf)
... except ValueError as ve:
... print(ve)
rank_offset=inf should be finite
>>> try:
... rank([], rank_offset=nan)
... except ValueError as ve:
... print(ve)
rank_offset=nan should be finite
>>> try:
... rank([1, 2, 3], rank_join=lambda a, b: "x")
... except TypeError as te:
... print(te)
rank_join(0, 0) should be an instance of any in {float, int} but is str, namely 'x'.
>>> try:
... rank([1, 2, 3], rank_join=lambda a, b: inf)
... except ValueError as ve:
... print(ve)
rank inf=rank_join(0, 0) + 0 is not finite and non-negative.
>>> try:
... rank([1, 2, 3], rank_join=lambda a, b: nan)
... except ValueError as ve:
... print(ve)
rank nan=rank_join(0, 0) + 0 is not finite and non-negative.
pycommons.math.sample_statistics module¶
CsvReader
[SampleStatistics
]>>> from pycommons.io.csv import csv_read
>>> csv = ["n;min;mean;med;geom;max;sd",
... "3;2;3;4;3;10;5", "6;2;;;;;0", "1;;;2;;;", "3;;;;;0;",
... "4;5;12;32;11;33;7"]
>>> for p in csv_read(csv, CsvReader, CsvReader.parse_row):
... print(p)
3;2;4;3;3;10;5
6;2;2;2;2;2;0
1;2;2;2;2;2;None
3;0;0;0;None;0;0
4;5;32;12;11;33;7
>>> csv = ["value", "1", "3", "0", "-5", "7"]
>>> for p in csv_read(csv, CsvReader, CsvReader.parse_row):
... print(p)
1;1;1;1;1;1;None
1;3;3;3;3;3;None
1;0;0;0;None;0;None
1;-5;-5;-5;None;-5;None
1;7;7;7;7;7;None
>>> csv = ["n;m;sd", "1;3;", "3;5;0"]
>>> for p in csv_read(csv, CsvReader, CsvReader.parse_row):
... print(p)
1;3;3;3;3;3;None
3;5;5;5;5;5;0
>>> csv = ["n;m", "1;3", "3;5"]
>>> for p in csv_read(csv, CsvReader, CsvReader.parse_row):
... print(p)
1;3;3;3;3;3;None
3;5;5;5;5;5;0
>>> print(CsvReader.parse_optional_row(None, ["1"]))
None
>>> print(CsvReader.parse_optional_row(CsvReader({"v": 0}), ["1"]))
1;1;1;1;1;1;None
>>> print(CsvReader.parse_optional_row(CsvReader({"v": 0}), [""]))
None
CsvWriter
[SampleStatistics
]SampleStatistics
.>>> for p in CsvWriter.get_footer_bottom_comments(None):
... print(p[:70])
This CSV output has been created using the versatile CSV API of pycomm
Sample statistics were computed using pycommons.math.sample_statistics
You can find pycommons at https://thomasweise.github.io/pycommons.
>>> try:
... list(CsvWriter([from_single_value(1)]).get_optional_row("x"))
... except TypeError as te:
... print(str(te)[:53])
data should be an instance of any in {None, float, in
SampleStatistics
) – the data sample statisticsobject
bool
, default: True
) – if this is True, the default, then the object is only turned into a single number if alsp n==1. Otherwise, n is ignoredint
| float
| SampleStatistics
>>> s = from_single_value(10, 1)
>>> s.compact() == 10
True
>>> s.compact() == s.compact(True)
True
>>> s = from_single_value(10, 2)
>>> s.compact() is s
True
>>> s.compact() == s.compact(True)
True
>>> s = from_single_value(10, 2)
>>> s.compact(False) == 10
True
>>> s = SampleStatistics(2, 1, 2, 4, 3, 5, 3)
>>> s.compact() is s
True
>>> s = SampleStatistics(2, 1, 2, 4, 3, 5, 3)
>>> s.compact(False) is s
True
>>> try:
... s.compact(1)
... except TypeError as te:
... print(te)
needs_n should be an instance of bool but is int, namely 1.
>>> try:
... s.compact(None)
... except TypeError as te:
... print(te)
needs_n should be an instance of bool but is None.
maximum
of all the samples.maximum
of all the samples>>> SampleStatistics(5, 3, 5, 6, 4, 7, 2).get_maximum()
7
>>> try:
... SampleStatistics.get_maximum(None)
... except TypeError as te:
... print(str(te)[:20])
self should be an in
mean_arith
) of all the samples.mean_arith
) of all the samples.>>> SampleStatistics(5, 3, 5, 6, 4, 7, 2).get_mean_arith()
6
>>> try:
... SampleStatistics.get_mean_arith(None)
... except TypeError as te:
... print(str(te)[:20])
self should be an in
mean_geom
) of all the samples.mean_geom
) of all the samples, None if the geometric mean is not defined.>>> SampleStatistics(5, 3, 5, 6, 4, 7, 2).get_mean_geom()
4
>>> try:
... SampleStatistics.get_mean_geom(None)
... except TypeError as te:
... print(str(te)[:20])
self should be an in
median
of all the samples.median
of all the samples.>>> SampleStatistics(5, 3, 5, 6, 4, 7, 2).get_median()
5
>>> try:
... SampleStatistics.get_median(None)
... except TypeError as te:
... print(str(te)[:20])
self should be an in
minimum
of all the samples.minimum
of all the samples>>> SampleStatistics(5, 3, 5, 6, 4, 7, 2).get_minimum()
3
>>> try:
... SampleStatistics.get_minimum(None)
... except TypeError as te:
... print(str(te)[:20])
self should be an in
n
of samples.n
of samples.>>> SampleStatistics(5, 3, 5, 6, 4, 7, 2).get_n()
5
>>> try:
... SampleStatistics.get_n(None)
... except TypeError as te:
... print(str(te)[:20])
self should be an in
stddev
) of all the samples.stddev
) of all the samples, None if the standard deviation is not defined, i.e., if there is only a single sample>>> SampleStatistics(5, 3, 5, 6, 4, 7, 2).get_stddev()
2
>>> try:
... SampleStatistics.get_stddev(None)
... except TypeError as te:
... print(str(te)[:20])
self should be an in
>>> SampleStatistics(1, 0, 0.0, 0, None, 0.0, None).max_mean()
0
>>> SampleStatistics(2, 1, 2, 4.0, 3, 6, 0.2).max_mean()
4
>>> SampleStatistics(2, 1, 3.2, 4.0, 3, 6, 0.2).max_mean()
4
>>> SampleStatistics(2, 1, 5.2, 4.0, 3, 6, 0.2).max_mean()
5.2
int
| float
¶n
data samples divided by n
.int
| float
| None
¶n
-th root of the product of all data samples. This value will be None if there was any sample which is not greater than 0.>>> SampleStatistics(1, 0, 0.0, 0, None, 0.0, None).min_mean()
0
>>> SampleStatistics(2, 1, 2, 4.0, 3, 6, 0.2).min_mean()
2
>>> SampleStatistics(2, 1, 3.2, 4.0, 3, 6, 0.2).min_mean()
3
>>> SampleStatistics(2, 1, 5.2, 4.0, 3, 6, 0.2).min_mean()
3
statistics
routines that ship with Python if nothing else works. However, sometimes, something else may work: In particular, if the data consists of only integers. In this case, it just might be possible to compute the statistics very accurately with integer precision, where possible. Also, otherwise, we can often accummulate the data using instances of fractions.Fraction
. Indeed, even the statistics
routines may do this, but they convert to float in cases of non-1 denominators, even if the integer presentation was much more accurate.>>> s = from_samples([0.0])
>>> s.n
1
>>> s.minimum
0
>>> s.maximum
0
>>> print(s.mean_geom)
None
>>> s.median
0
>>> print(s.stddev)
None
>>> s = from_samples([1.0])
>>> s.n
1
>>> s.minimum
1
>>> s.maximum
1
>>> print(s.mean_geom)
1
>>> s.median
1
>>> print(s.stddev)
None
>>> s = from_samples([1.0, 1])
>>> s.n
2
>>> s.minimum
1
>>> s.maximum
1
>>> print(s.mean_geom)
1
>>> s.median
1
>>> print(s.stddev)
0
>>> s = from_samples([0, 0.0])
>>> s.n
2
>>> s.minimum
0
>>> s.maximum
0
>>> print(s.mean_geom)
None
>>> s.median
0
>>> print(s.stddev)
0
>>> from statistics import stdev as stat_stddev
>>> dd = [1.5, 2.5]
>>> s = from_samples(dd)
>>> s.n
2
>>> s.minimum
1.5
>>> s.maximum
2.5
>>> print(s.mean_geom)
1.9364916731037085
>>> stat_geomean(dd)
1.9364916731037085
>>> s.median
2
>>> print(s.stddev)
0.7071067811865476
>>> stat_stddev(dd)
0.7071067811865476
>>> dd = [1.0, 2.0]
>>> s = from_samples(dd)
>>> s.n
2
>>> s.minimum
1
>>> s.maximum
2
>>> print(s.mean_geom)
1.4142135623730951
>>> (1 * 2) ** 0.5
1.4142135623730951
>>> stat_geomean(dd)
1.414213562373095
>>> s.median
1.5
>>> print(s.stddev)
0.7071067811865476
>>> stat_stddev(dd)
0.7071067811865476
>>> dd = [1.0, 2.0, 3.0]
>>> s = from_samples(dd)
>>> s.n
3
>>> s.minimum
1
>>> s.maximum
3
>>> print(s.mean_geom)
1.8171205928321397
>>> (1 * 2 * 3) ** (1 / 3)
1.8171205928321397
>>> stat_geomean(dd)
1.8171205928321397
>>> s.median
2
>>> print(s.stddev)
1
>>> stat_stddev(dd)
1.0
>>> dd = [1.0, 0, 3.0]
>>> s = from_samples(dd)
>>> s.n
3
>>> s.minimum
0
>>> s.maximum
3
>>> print(s.mean_geom)
None
>>> s.median
1
>>> print(s.stddev)
1.5275252316519468
>>> stat_stddev(dd)
1.5275252316519468
>>> dd = [1.0, -2, 3.0]
>>> s = from_samples(dd)
>>> s.n
3
>>> s.minimum
-2
>>> s.maximum
3
>>> print(s.mean_geom)
None
>>> s.median
1
>>> print(s.stddev)
2.516611478423583
>>> stat_stddev(dd)
2.516611478423583
>>> dd = [1e5, 2e7, 3e9]
>>> s = from_samples(dd)
>>> s.n
3
>>> s.minimum
100000
>>> s.maximum
3000000000
>>> print(s.mean_geom)
18171205.928321395
>>> (100000 * 20000000 * 3000000000) ** (1 / 3)
18171205.92832138
>>> 100000 * (((100000 // 100000) * (20000000 // 100000) * (
... 3000000000 // 100000)) ** (1 / 3))
18171205.92832139
>>> print(s.mean_geom ** 3)
5.999999999999999e+21
>>> print(18171205.92832139 ** 3)
5.999999999999995e+21
>>> s.median
20000000
>>> print(s.stddev)
1726277112.7487035
>>> stat_stddev(dd)
1726277112.7487035
>>> dd = [3.3, 2.5, 3.7, 4.9]
>>> s = from_samples(dd)
>>> s.n
4
>>> s.minimum
2.5
>>> s.maximum
4.9
>>> print(s.mean_geom)
3.4971393519216964
>>> 3.4971393519216964 ** 4
149.5725
>>> (3.3 * 2.5 * 3.7 * 4.9) ** 0.25
3.497139351921697
>>> s.median
3.5
>>> s.stddev
1.0000000000000002
>>> stat_stddev(dd)
1.0000000000000002
>>> dd = [3, 1, 2, 5]
>>> s = from_samples(dd)
>>> print(s.minimum)
1
>>> print(s.maximum)
5
>>> print(s.mean_arith)
2.75
>>> print(s.median)
2.5
>>> print(f"{s.mean_geom:.4f}")
2.3403
>>> print(f"{s.min_mean():.4f}")
2.3403
>>> print(f"{s.max_mean()}")
2.75
>>> dd = [8, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13,
... 13, 13, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16]
>>> s = from_samples(dd)
>>> print(s.minimum)
8
>>> print(s.maximum)
16
>>> print(s.mean_arith)
12.5
>>> print(s.median)
13
>>> print(s.mean_geom)
12.197150265022891
>>> stat_geomean(dd)
12.19715026502289
>>> print(s.stddev)
2.673602092336881
>>> stat_stddev(dd)
2.673602092336881
>>> dd = [3, 4, 7, 14, 15, 16, 26, 28, 29, 30, 31, 31]
>>> s = from_samples(dd)
>>> print(s.minimum)
3
>>> print(s.maximum)
31
>>> print(s.mean_arith)
19.5
>>> print(s.median)
21
>>> print(s.mean_geom)
15.354984483655892
>>> stat_geomean(dd)
15.354984483655894
>>> k = 1
>>> for i in dd:
... k *= i
>>> k
171787904870400
>>> len(dd)
12
>>> k ** (1 / 12)
15.354984483655889
>>> 15.354984483655889 ** 12
171787904870399.62
>>> 15.354984483655894 ** 12
171787904870400.34
>>> 15.354984483655892 ** 12
171787904870400.1
>>> print(s.stddev)
10.917042556563484
>>> print(str(stat_stddev(dd))[:-1])
10.91704255656348
>>> dd = [375977836981734264856247621159545315,
... 1041417453269301410322718941408784761,
... 2109650311556162106262064987699051941]
>>> s = from_samples(dd)
>>> print(s.minimum)
375977836981734264856247621159545315
>>> print(s.maximum)
2109650311556162106262064987699051941
>>> print(s.mean_arith)
1175681867269065927147010516755794006
>>> stat_mean(dd)
1.1756818672690659e+36
>>> print(s.median)
1041417453269301410322718941408784761
>>> print(s.mean_geom)
938280139276529201997232316081385153
>>> stat_geomean(dd)
9.38280139276522e+35
>>> str(dd[0] * dd[1] * dd[2])[:60]
'826033329443972563356247815302467930409182372405786485790679'
>>> str(938280139276529201997232316081385153 ** 3)[:60]
'826033329443972563356247815302467929164458081790138679285598'
>>> str(int(9.38280139276522e+35) ** 3)[:60]
'826033329443953666416831847378532327244986484162191539691938'
>>> print(s.stddev)
874600058269081159245960567663054887
>>> stat_stddev(dd)
8.746000582690812e+35
>>> dd = [104275295274308290135253194482044160663473778025704,
... 436826861307375084714000787588311944456580437896461,
... 482178404791292289021955619498303854464057392180997,
... 521745351662201002493923306143082542601267608373030,
... 676289718505789968602970820038005797309334755525626]
>>> s = from_samples(dd)
>>> print(s.minimum)
104275295274308290135253194482044160663473778025704
>>> print(s.maximum)
676289718505789968602970820038005797309334755525626
>>> print(s.mean_arith)
444263126308193326993620745549949659898942794400364
>>> stat_mean(dd)
4.442631263081933e+50
>>> print(s.median)
482178404791292289021955619498303854464057392180997
>>> print(s.mean_geom)
378318848166864995660791573439112525534046591591759
>>> stat_geomean(dd)
3.78318848166862e+50
>>> print(s.stddev)
210311926886813737006941586539087921260462032505870
>>> stat_stddev(dd)
2.1031192688681374e+50
>>> dd = [4, 5, 5, 6, 6, 6, 6, 6, 8, 8]
>>> s = from_samples(dd)
>>> print(s.mean_geom)
5.884283961687533
>>> print(stat_geomean(dd))
5.884283961687533
>>> dd = [4, 4, 4, 5, 5, 8]
>>> s = from_samples(dd)
>>> print(s.mean_geom)
4.836542350243914
>>> print(stat_geomean(dd))
4.8365423502439135
>>> dd = [2, 8, 11, 17, 26, 30, 32]
>>> s = from_samples(dd)
>>> print(s.mean_geom)
13.327348017053906
>>> print(stat_geomean(dd))
13.327348017053906
>>> dd = [2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]
>>> s = from_samples(dd)
>>> print(s.mean_geom)
3.4710522375429465
>>> print(stat_geomean(dd))
3.471052237542947
>>> dd = [3, 4, 4, 5, 6, 8, 8, 8, 8]
>>> s = from_samples(dd)
>>> print(s.mean_geom)
5.653305998922543
>>> print(stat_geomean(dd))
5.653305998922543
>>> dd = [16, 17, 19, 20, 20, 21, 22, 23, 24, 24, 25, 26, 29, 31,
... 31, 31, 32, 32, 32]
>>> s = from_samples(dd)
>>> print(s.mean_geom)
24.419566831650357
>>> print(stat_geomean(dd))
24.41956683165036
>>> dd = [66, 68, 69, 70, 72, 73, 73, 79, 81, 87, 94, 99, 100, 102, 103,
... 112, 118, 119, 123, 123]
>>> s = from_samples(dd)
>>> print(s.mean_geom)
89.45680043258344
>>> print(stat_geomean(dd))
89.45680043258346
>>> dd = [44, 63, 63, 68, 68, 68, 70, 74, 74, 80, 95, 108, 110, 128]
>>> s = from_samples(dd)
>>> print(s.mean_geom)
76.68646417360762
>>> print(stat_geomean(dd))
76.68646417360763
>>> try:
... from_samples(None)
... except TypeError as te:
... print(te)
source should be an instance of typing.Iterable but is None.
>>> from_samples((int("34321354472872354942019350661824880247844254573312782740274335009242834156372188002285290074477536810411720141041"), int("45431788008354832695126092828840751261426775316001998077250558561959304806690567285991174956892786401583087254156"), int("35473203294104466229269097724582630304968924904656920211268628173495602053843032960943121516556362641127137000879"))).mean_arith
38408781925110551288804847071749420604746651597990567009597840581565913672301929416406528849308895284373981465359
>>> dd = [-7.737125245533627e+25] * 28
>>> dd[2] = -7.737125245533626e+25
>>> s = from_samples(dd)
>>> s.stddev
1623345050.6245058
>>> stat_stddev(dd)
1623345050.6245058
>>> ddx = tuple(map(__to_frac, dd))
>>> ds = sum(ddx)
>>> dss = sum(ddy * ddy for ddy in ddx)
>>> from math import sqrt
>>> sqrt((dss - (ds * ds / 28)) / 27)
1889822365.0461361
>>> try:
... from_samples(1)
... except TypeError as te:
... print(te)
source should be an instance of typing.Iterable but is int, namely 1.
>>> try:
... from_samples([])
... except ValueError as ve:
... print(ve)
Data source cannot be empty.
int
| float
| SampleStatistics
) – the single valueint
, default: 1
) – the number of samples, i.e., the number of times this value occurred>>> s = from_single_value(10, 2)
>>> print(s.stddev)
0
>>> s.minimum == s.maximum == s.mean_arith == s.mean_geom \
... == s.median == 10
True
>>> s is from_single_value(s, s.n)
True
>>> s = from_single_value(10, 1)
>>> print(s.stddev)
None
>>> s.minimum == s.maximum == s.mean_arith == s.mean_geom \
... == s.median == 10
True
>>> s is from_single_value(s, s.n)
True
>>> s = from_single_value(-10, 2)
>>> print(s.stddev)
0
>>> s.minimum == s.maximum == s.mean_arith == s.median == -10
True
>>> print(s.mean_geom)
None
>>> s is from_single_value(s, s.n)
True
>>> s = from_single_value(-10, 1)
>>> print(s.stddev)
None
>>> s.minimum == s.maximum == s.mean_arith == s.median == -10
True
>>> print(s.mean_geom)
None
>>> s is from_single_value(s, s.n)
True
>>> s = from_single_value(10.5, 2)
>>> print(s.stddev)
0
>>> s.minimum == s.maximum == s.mean_arith == s.mean_geom \
... == s.median == 10.5
True
>>> s is from_single_value(s, s.n)
True
>>> s = from_single_value(10.5, 1)
>>> print(s.stddev)
None
>>> s.minimum == s.maximum == s.mean_arith == s.mean_geom \
... == s.median == 10.5
True
>>> s is from_single_value(s, s.n)
True
>>> s = from_single_value(-10.5, 2)
>>> print(s.stddev)
0
>>> s.minimum == s.maximum == s.mean_arith == s.median == -10.5
True
>>> print(s.mean_geom)
None
>>> s is from_single_value(s, s.n)
True
>>> s = from_single_value(-10.5, 1)
>>> print(s.stddev)
None
>>> s.minimum == s.maximum == s.mean_arith == s.median == -10.5
True
>>> print(s.mean_geom)
None
>>> s is from_single_value(s, s.n)
True
>>> try:
... from_single_value(None)
... except TypeError as te:
... print(str(te)[:20])
value should be an i
>>> try:
... from_single_value("a")
... except TypeError as te:
... print(str(te)[:20])
value should be an i
>>> try:
... from_single_value(1, None)
... except TypeError as te:
... print(str(te)[:20])
n should be an insta
>>> try:
... from_single_value(1, "a")
... except TypeError as te:
... print(str(te)[:20])
n should be an insta
>>> try:
... from_single_value(s, 12)
... except ValueError as ve:
... print(str(ve)[:20])
Incompatible numbers
>>> try:
... from_single_value(inf)
... except ValueError as ve:
... print(str(ve)[:20])
value=inf is not fin
SampleStatistics
.str
) – the dimensionCallable
[[SampleStatistics
], int
| float
| None
]Callable
that returns the value corresponding to the dimension>>> getter(KEY_N) is SampleStatistics.get_n
True
>>> getter(KEY_MINIMUM) is SampleStatistics.get_minimum
True
>>> getter(KEY_MEAN_ARITH) is SampleStatistics.get_mean_arith
True
>>> getter(KEY_MEDIAN) is SampleStatistics.get_median
True
>>> getter(KEY_MEAN_GEOM) is SampleStatistics.get_mean_geom
True
>>> getter(KEY_MAXIMUM) is SampleStatistics.get_maximum
True
>>> getter(KEY_STDDEV) is SampleStatistics.get_stddev
True
>>> s = SampleStatistics(5, 3, 5, 6, 4, 7, 2)
>>> getter(KEY_N)(s)
5
>>> getter(KEY_MINIMUM)(s)
3
>>> getter(KEY_MEAN_ARITH)(s)
6
>>> getter(KEY_MEDIAN)(s)
5
>>> getter(KEY_MEAN_GEOM)(s)
4
>>> getter(KEY_MAXIMUM)(s)
7
>>> getter(KEY_STDDEV)(s)
2
>>> try:
... getter(None)
... except TypeError as te:
... print(te)
descriptor 'strip' for 'str' objects doesn't apply to a 'NoneType' object
>>> try:
... getter(1)
... except TypeError as te:
... print(te)
descriptor 'strip' for 'str' objects doesn't apply to a 'int' object
>>> try:
... getter("hello")
... except ValueError as ve:
... print(ve)
Unknown SampleStatistics dimension 'hello'.