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Introduction

• There are many optimization algorithms.

• For solving an optimization problem, we want to use the algorithm most suitable for it.
• What does this mean?
• And how do we find this algorithm?
• Hopefully this lesson will help answering these questions.
• As a complement to this lesson, I suggest the report “Benchmarking in Optimization: Best

Practice and Open Issues”6 on arXiv.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• What does exponential growth mean?
• Let’s say we have a number of cities s.

and a runtime as a function f(s) in this log-log
plot.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• A linear function means that the runtime f(s) grows slowly with s.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• A quadratic function (a straight line in log-log plots) is also OK.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• A quartic function f(s) = s4 gets quite large for growing s.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• A quartic function exceeds the number of milliseconds per day at s ≈ 512.
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• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• But this is nothing compared to the exponential function f(s) = 1.1s. . .
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• A runtime of 1.1s becomes infeasible for s > 512.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• For larger bases, the runtime grows even faster.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.
• If we would enumerate all possible tours of s cities in a TSP, that would be s!.

10
20

10
25

10
30

10
35

10
40

10
100

1000

1 million

1 billion

1 trillion

64 12816 32 256 512 1024 2048

ms per day

f(s)

s

10
15

8421



Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.

• But we can find just some tour very quickly.
• Of course the quality of that tour will be lower.
• Is there something in between?
• (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible

as fast as possible.
• Optimization often means to make a trade-off between solution quality and runtime.

consumed runtime: very much / too (?) long
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.

• Of course the quality of that tour will be lower: the tour will be longer than the best one.

• Is there something in between?
• (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible

as fast as possible.
• Optimization often means to make a trade-off between solution quality and runtime.

very little / fast consumed runtime very much / too (?) long
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.

• Is there something in between?

• (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible
as fast as possible.

• Optimization often means to make a trade-off between solution quality and runtime.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.

• (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible
as fast as possible.

• Optimization often means to make a trade-off between solution quality and runtime.

Different algorithms offer different

trade-offs between runtime and

solution quality.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP)2,27,39,61.

• Optimization often means to make a trade-off between solution quality and runtime.

Different algorithms offer different

trade-offs between runtime and

solution quality. Good algorithms

resulting from research push the

frontier of what can be achieved

towards the bottom-left corner.

very little / fast consumed runtime very much / too (?) long
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• There are two main views on what performance is29,30,62,63.

:
1. Solution quality reached after a certain runtime

2. Runtime to reach a certain solution quality
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What is Runtime?

• What actually is runtime?



Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm in ms.

• Advantages

:
• Results in many works reported in this format

• A quantity that makes physical sense
• Includes all “hidden complexities” of an algorithm implementation (memory management,

matrix operations, data structures, . . . )

• Disadvantages

:
• Strongly machine dependent and inherently incomparable over different machines

• Measurements are only valuable for a few years
• Can be biased by “outside effects,” e.g., OS, scheduling, other processes, I/O, swapping, . . .

• Hardware, software, OS, programming language, etc. all have nothing to do with the
optimization algorithm itself and are relevant only in a specific application. . .

• . . . for research they may be less interesting, while for a specific application they do matter.
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Objective Function Evaluations: FEs

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.

• Advantages

:
• Results in many works reported in this format (or FEs can be deduced)

• Machine-independent, theory-related measure
• Cannot be influenced by “outside effects”
• In many optimization problems, computing the objective value is the most time consuming

task

• Disadvantages

:
• No clear relationship to real runtime

• Does not contain “hidden complexities” of algorithm
• 1 FE: very different costs in different situations!61
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Do not count generations

• In an evolutionary algorithm (EA)5,59, in each generation (= iteration), a set of new
solution is created and evaluated.

• Traditionally, the number of generations passed until some goal was reached was used in
the EA community.

• Do not use the number of generations in your EA as time measure! Instead count the
FEs.

, because:

• The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

• Often, the mapping between generations and FEs is not clear

, for example
• Do you evaluate offspring solutions that are identical to their parents?

• Is a local search involved that refines some or all solutions in the population?
• In a (µ + λ)-EA, is the first population of size µ + λ, λ, or µ?
• What if the population size changes adaptively?

• I suggest to prefer FEs over generations if you want to count algorithm steps.
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Runtime

• I suggest to always measure both the consumed FEs and the runtime in milliseconds.

• Anyway, with what we have learned, we can rewrite the two views by choosing a time
measure29,62
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1. Solution quality reached after a certain number of FEs

2. Milliseconds needed to reach a certain solution quality
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Which view is better?

• Number of FEs needed to reach a certain objective function value
• Preferred by, e.g., the BBOB/COCO benchmark suite29

:
• Measuring the time needed to reach a target function value allows meaningful statements

such as “Algorithm A is two/ten/hundred times faster than Algorithm B in solving this
problem.”

• However, there is no interpretable meaning to the fact that Algorithm A reaches a function
value that is two/ten/hundred times smaller than the one reached by Algorithm B.

• “Benchmarking Theory Perspective”

• Sometimes problematic: What if one run does not reach the goal quality?
• Then, alternative measures need to be computed, such as the ERT3,47 or PAR2 and

PAR108,36.
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Which view is better?

• Best objective function value reached after a certain number of FEs

• Preferred by many benchmark suites such as55.
• Practice Perspective: Best results achievable with given time budget wins.
• This perspective maybe less suitable for scientific benchmarking, but surely is useful in

practice.
• “How good is the tour for the TSP that we can find in 5 minutes with our algorithm?”
• Always well-defined, because vertical cuts can always be reached.
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Views on Performance

• No official consensus on which view is “better.”

• This also strongly depends on the situation.
• If we can actually always solve the problem to a “natural” goal quality (e.g., to optimality),

then we should prefer the horizontal cut (time-to-target) method.
• If we have clear application requirements specifying a fixed budget, then we should prefer

the fixed-budget approach.
• Otherwise, the best approach may be: Evaluate algorithm according to both methods.61–63

• Maybe cast a net of several horizontal and vertical cuts, to get a better picture. . .
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3. from simple or well-known algorithms
4. from experience
5. from prior, small-scale experiments
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Problem Instances and Randomized Algorithms

• For each optimization problem (like the TSP) there are several instances (e.g., different
sets of cities that need to be visited).

• Some instances will be easy, some will be hard.

• We always must use multiple different problem instances to get reliable results.
• Performance indicators need to be computed for each instance and also summarized over

several instances.

• Special situation: Randomized Algorithms

:
• Performance values cannot be given as an “absolute” value!

• 1 run = 1 application of an optimization algorithm to a problem, runs are independent from
all prior runs.

• Results can be different for each run!
• Executing a randomized algorithm one time does not give reliable information.
• Statistical evaluation over sets of runs necessary.
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Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.
• A distribution is the asymptotic result of the ideal process.
• Statistical parameters of the distribution can be estimated from a sample.
• Example: Dice Throw
• How likely is it to roll a 1, 2, 3, 4, 5, or 6?
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Important Distinction

• Crucial Difference: distribution and sample
• A sample is what we measure.
• A distribution is the asymptotic result of the ideal process.
• Statistical parameters of the distribution can be estimated from a sample.
• Example: Dice Throw
• How likely is it to roll a 1, 2, 3, 4, 5, or 6?
• All statistically determined parameters are just estimates based on measurements.

• The parameters of a random process cannot be measured directly, but only be estimated
from multiple measures.
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Measures of the Average

• Assume that we have obtained a sample A = (a0, a1, . . . , an−1) of n observations from an
experiment.

, e.g., we have measured the qualities ai of the best discovered solutions of
n = 101 independent runs of an optimization algorithm.

• We usually want to reduce this set of numbers to a single value which can give us an
impression of what the “average outcome” (or result quality is).

• Three of the most common options for doing so, for estimating the “center” of a
distribution, are the arithmetic mean, the median, and the geometric mean.
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Arithmetic Mean

Definition: Arithmetic Mean

The arithmetic mean mean(A) is an estimate of the expected value of a distribution from
which a dataset was sampled.

It is computed on data sample A = (a0, a1, . . . , an−1)
as the sum of all n elements ai in the sample data A divided by the total number n of
values.

mean(A) =
1
n

n−1∑

i=0

ai (1)
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Sample Median

Definition: Median

The median median(A) is the value separating the bigger-valued half from the smaller-
valued half of a data sample.

Its estimate is the value right in the middle of a sorted data
sample A = (a0, a1, . . . , an−1) where ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1).

median(A) =

{
an−1

2
if n is odd

1
2

(
an

2−1 + an
2

)
otherwise

if ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1) (2)
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Outliers

• Sometimes the data contains outliers26,43.

, i.e., observations which are much different
from the other measurements.

• They may represent measurement errors or observations which have been been disturbed
by unusual effects.

• For example, maybe the operating system was updating itself during a run of one of our
algorithms and, thus, took away some of the computation budget.

• In my experiments here, there are sometimes outliers in the time that it takes to create
and evaluate the first candidate solution.

• But outliers are actually important. So I say this right now. I will also say it again later.
But I am afraid that you may tune out during the following example. So remember:
Outliers are important. Anyway. . .
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outliers in terms of the time needed for the first
function evaluation (FE): Normally, the first FE
completes in less than 1ms, but in very few of
the runs it needs more than 2ms, sometimes even
10ms! This may be because of scheduling or other
OS issues and does not reflect the normal behavior
of the algorithm implementation.
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Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)
B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

• We find that

• mean(A) = 1
19

∑18
i=0 ai = 133

19 = 7

and
• mean(B) = 1

19

∑18
i=0 bi = 10′127

19 = 553

, while

• median(A) = a9 = 6

and

• median(B) = b9 = 6.

• The median is not affected by the outliers.
• mean(B) = 553 is a value completely different from anything that actually occurs in B. . .

. . . it gives us a completely wrong impression.
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Outliers can be important!

• If you think about it, where could outliers in our experiments come from?

1. The operating systems scheduling or other strange effects could mess with our timing.

This
could cause worse results.

But usually this is already it.

2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

• Instead, most likely there could be
• bugs in our code!

• Bugs in our code are the most important number one reason for outliers!

• Yes, also in your code! (Btw: Please use unit test45,51,56.)

• Or: bad (but rare) worst-case behaviors of our algorithm!

Imagine that:

Your algorithm can actually solve the TSP or Maximum Satisfiability
(MaxSAT) problem in polynomial time on 90% of all instances. . .

. . . but on 10%, it
needs exponential time.

If you just look at the median runtime, you may think you
discovered something awesome.

Actually, this is quite common. . .

• Thus, we may actually want that outliers influence our statistics. . .
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Figure 17. Left: Scaling of instance hardness with problem size forWalkSAT, approx. optimal noise,

applied to Random-3-SAT test-sets. Right: Functional approximations of median and 0.98 percentile;

the median seems to grow polynomially with n while the 0.98 percentile clearly shows exponential

growth.

(Taken from the paper “Local Search Algorithms for SAT: An Empirical
Evaluation” by Hoos and Stützle, coloring added manually32.)
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Geometric Mean

OK, arithmetic mean, median . . . but what about the geometric mean?

Definition: Geometric Mean

The geometric mean geom(A) is the nth root of the product of n positive values.

geom(A) = n

√√√√
n−1∏

i=0

ai (3)

geom(A) = exp

(
1
n

n−1∑

i=0

log ai

)
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Normalized Data

• Often, our data is somehow normalized.

• Let’s say we solve the problem instances I1 to I3 with the different algorithms A1 to A3.
• We measure the required runtimes as follows:
• The arithmetic mean values are the same.
• We can conclude that the three algorithms offer the same performance in average over

these benchmark instances.
• But often the measured numbers “look messier” and are harder to compare at first glance.
• So often we want to normalize them by picking one algorithm as “standard” and dividing

them by its measurements.
• Let’s say A1 was a well-known heuristic, maybe we even took its results from a paper, and

we want to use it as baseline for comparison and normalize our data by it.
• OK, so we get this table with normalized values, which allow us to make sense of the data

at first glance.
• If we now compute the arithmetic mean

, then A1 is best

and A3 looks worst.

• According to the median

, A3 is best

and A2 is worst!

• Only the geometric mean still indicates that the algorithms perform the same. . .
• Hm.

OK, then let’s normalize using the results of A2 instead.

• OK, so we get this table with normalized values.
• If we now compute the arithmetic mean

, then A2 is best

and A1 looks worst.

• According to the median

, A1 is best

and A3 is worst!

• Only the geometric mean still indicates that the algorithms perform the same. . .
• The geometric mean is the only meaningful average if we have normalized data!24

• And we very often have normalized data.
• For example, at least half of the papers on the Job Shop Scheduling Problem (JSSP)

normalize the result qualities they obtain on benchmark instances with the Best Known
Solutions (BKSes).

and then compute the arithmetic mean.
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I2
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I3

40 s 10 s 20 s
mean: 23.33 s 23.33 s 23.33 s

median: 20.00 s 20.00 s 20.00 s
geom: 20.00 s 20.00 s 20.00 s

A1 A2 A3
I1 1.00 2.00 4.00
I2 1.00 2.00 0.50
I3 1.00 0.25 0.50

mean: 1.00 1.42 1.67
median: 1.00 2.00 0.50

geom: 1.00 1.00 1.00
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them by its measurements.
• Let’s say A1 was a well-known heuristic, maybe we even took its results from a paper, and
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• OK, so we get this table with normalized values, which allow us to make sense of the data

at first glance.
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• OK, so we get this table with normalized values.
• If we now compute the arithmetic mean

, then A2 is best

and A1 looks worst.

• According to the median

, A1 is best

and A3 is worst!

• Only the geometric mean still indicates that the algorithms perform the same. . .
• The geometric mean is the only meaningful average if we have normalized data!24

• And we very often have normalized data.
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Arithmetic Mean vs. Median vs. Geometric Mean

• Most publications report arithmetic mean results, many report median results, almost none
report geometric means.

• The median is more robust against outliers compared to the arithmetic mean.

, however, in
normal application scenarios, there are very few acceptable reasons for outliers.

• We therefore want to know both the arithmetic mean and the median
• If there are outliers, the value of the arithmetic mean itself may be very different from any

actually observed value, while the median is (almost always) similar to some actual
measurements.

• Often, our data is implicitly or explicitly normalized.

, e.g.,
• if we divide result qualities by results of well-known heuristics or BKSes

or
• if we normalize the runtime using another algorithm as standard.

• Then, the arithmetic mean and median can be very misleading and the geometric mean
must be computed.

• I think: On raw data, compute all three measures of average, and pay special attention to
the one looking the worst.

On normalized data, compute the geometric mean.

, but also
consider the arithmetic mean and median if and only if they make your algorithm look
worse.
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• Then, the arithmetic mean and median can be very misleading and the geometric mean
must be computed.

• I think: On raw data, compute all three measures of average, and pay special attention to
the one looking the worst.

On normalized data, compute the geometric mean.

, but also
consider the arithmetic mean and median if and only if they make your algorithm look
worse.
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Measures of the Spread

• The average gives us a good impression about the central value or location of a
distribution.

• It does not tell us much about the range of the data.
• We do not know whether the data we have measured is very similar to the median or

whether it may differ very much from the mean.
• An average alone is not very meaningful – if we known nothing about the range of the

data.
• We can therefore compute a measure of dispersion, i.e., a value that tells us whether the

observations are stretched and spread far or squeezed tight around the center.
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Sample Variance

Definition: Variance

The variance of a distribution is the expectation of the squared deviation of the underlying
random variable from its expected value.

Definition: Sample Variance

The variance var(A) of a data sample A = (a0, a1, . . . , an−1) with n observations can
be estimated as:
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Standard Deviation

Definition: Sample Standard Deviation

The standard deviation sd(A) of a data sample A = (a0, a1, . . . , an−1) with n observa-
tions is the square root of the estimated variance var(A).

sd(A) =
√

var(A)



Standard Deviation

• Small standard deviations indicate that the observations tend to be similar to the mean.

• Large standard deviations indicate that they tend to be far from the mean.
• Small standard deviations in optimization results and runtime indicate that the algorithm

is reliable.
• Large standard deviations indicate unreliable algorithms.

, but may also offer a potential
that could be exploited.

: Given enough time, we can restart algorithms several times and
expect to get different (and thus sometimes better) solutions.
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Quantiles

Definition: Sample Quantile

The q-quantiles are the cut points that divide a sorted data sample A = (a0, a1, . . . , an−1)
where ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1) into q equally-sized parts.

quantilekq (A) be the
kth q-quantile, with k ∈ 1 . . . (q − 1), i.e., there are q − 1 of the q-quantiles.

h = (n− 1)kq

quantilekq (A) =

{
ah if h is integer
a⌊h⌋ + (h− ⌊h⌋) ∗

(
a⌊h⌋+1 − a⌊h⌋

)
otherwise

• Quantiles are a generalized form of the median.

• The quantile2
1(A) is the median of A

• 4-quantiles are called quartiles.
• We often consider percentiles or write things like “98% quantile” or “0.98 percentile” or

“98% percentile” meaning quantile98
100.
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Standard Deviation: Example
• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)
mean(A) = 7

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)
mean(B) = 533

var(A) =
1

19− 1

19∑

i=1

(ai − mean(A))2 =
198
18

= 11

var(B) =
1

19− 1

19∑

i=1

(bi − mean(B))2 =
94′763′306

18
≈ 5′264′628

sd(A) =
√

var A =
√

11 ≈ 3.3

sd(B) =
√

var B =

√
94′763′306

18
≈ 2294

• Being based on the arithmetic mean, the variance and standard deviation are heavily
influenced by outliers – with all pros and cons coming with that. . .
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Quantiles: Example

• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10’008)

quantile1
4(A) = quantile1

4(B) = 4.5
quantile3

4(A) = quantile3
4(B) = 9

• Being generalizations of the median, the quantiles are little influenced by outliers – with all
pros and cons coming with that. . .
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Further Example

• The implicit assumption that mean± sd is a meaningful range is not always true!

• Such a shape is possible in optimization

:
• The global optimum marks a lower bound for the possible objective values.

• A good algorithm often returns results which are close-to-optimal.
• There may be a long tail of few but significantly worse runs.
• A statement such as “For this TSP instance, our algorithm can find tours with a length of

100± 120 km.” makes little sense. . .
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Statistical Comparisons



Introduction

• We can now, e.g., perform 20 runs each with two different optimization algorithms on one
problem instance and compute the medians of a performance indicator.

• Likely, they will be different.
• For one of the two algorithms, the results will be better.
• What does this mean?
• It means that one of the two algorithms is better.

with a certain probability.

• If we say “A is better than B,” we have a certain probability p to be wrong.
• The statement “A is better than B” makes only sense after we have decided about an

upper bound α for the acceptable error probability p! (and if p < α, obviously)
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Statistical Tests

• Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and

• get a result (e.g., “The median of A is bigger than the median of B”) together with an
error probability p that the conclusion is wrong.

• If p is less than a previously chosen significance level (upper bound) α, we can accept the
conclusion.

• Otherwise, the observation is not significant.

and must be ignored.

• But how can we arrive at such statements? How can we even estimate a probability to be
wrong?

• Disclaimer: I am not a mathematician. What follows are simplified explanations of
concepts.



Statistical Tests

• Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and
• get a result (e.g., “The median of A is bigger than the median of B”) together with an

error probability p that the conclusion is wrong.

• If p is less than a previously chosen significance level (upper bound) α, we can accept the
conclusion.

• Otherwise, the observation is not significant.

and must be ignored.

• But how can we arrive at such statements? How can we even estimate a probability to be
wrong?

• Disclaimer: I am not a mathematician. What follows are simplified explanations of
concepts.



Statistical Tests

• Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and
• get a result (e.g., “The median of A is bigger than the median of B”) together with an

error probability p that the conclusion is wrong.
• If p is less than a previously chosen significance level (upper bound) α, we can accept the

conclusion.

• Otherwise, the observation is not significant.

and must be ignored.

• But how can we arrive at such statements? How can we even estimate a probability to be
wrong?

• Disclaimer: I am not a mathematician. What follows are simplified explanations of
concepts.



Statistical Tests

• Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and
• get a result (e.g., “The median of A is bigger than the median of B”) together with an

error probability p that the conclusion is wrong.
• If p is less than a previously chosen significance level (upper bound) α, we can accept the

conclusion.
• Otherwise, the observation is not significant.

and must be ignored.
• But how can we arrive at such statements? How can we even estimate a probability to be

wrong?
• Disclaimer: I am not a mathematician. What follows are simplified explanations of

concepts.



Statistical Tests

• Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and
• get a result (e.g., “The median of A is bigger than the median of B”) together with an

error probability p that the conclusion is wrong.
• If p is less than a previously chosen significance level (upper bound) α, we can accept the

conclusion.
• Otherwise, the observation is not significant and must be ignored.

• But how can we arrive at such statements? How can we even estimate a probability to be
wrong?

• Disclaimer: I am not a mathematician. What follows are simplified explanations of
concepts.



Statistical Tests

• Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and
• get a result (e.g., “The median of A is bigger than the median of B”) together with an

error probability p that the conclusion is wrong.
• If p is less than a previously chosen significance level (upper bound) α, we can accept the

conclusion.
• Otherwise, the observation is not significant and must be ignored.
• But how can we arrive at such statements? How can we even estimate a probability to be

wrong?

• Disclaimer: I am not a mathematician. What follows are simplified explanations of
concepts.



Statistical Tests

• Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and
• get a result (e.g., “The median of A is bigger than the median of B”) together with an

error probability p that the conclusion is wrong.
• If p is less than a previously chosen significance level (upper bound) α, we can accept the

conclusion.
• Otherwise, the observation is not significant and must be ignored.
• But how can we arrive at such statements? How can we even estimate a probability to be

wrong?
• Disclaimer: I am not a mathematician. What follows are simplified explanations of

concepts.



Example for Underlying Idea

• Coin flip game: We flip a coin. If it is heads, I give you 1 RMB, if it is tails, you give me
1 RMB.

• We play 160 times.
• I win 128 times. You win 32 times.
• Did I cheat? Is my coin “fixed?” (i.e., is your chance to win ̸= 0.5)
• Assumption: I cheat. (alternative hypothesis H1)
• It is impossible to compute my winning probability if I cheated. . .
• Counter-Assumption: I did not cheat. (null hypothesis H0)
• How likely is it that I win at least 128 times if I did not cheat?
• (What we will do right now is called binomial test.)
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Example for Underlying Idea

• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are q = P (head) = P (tail) = 0.5.
• Flipping a coin n times is a Bernoulli Process
• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:
• For winning at least z = 128 times, we need to compute:

P (k ≥ z|n) =
n∑

i=z

P (i|n)
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Example for Underlying Idea

• Question: How likely is it that I win at least 128 times if I did not cheat?

• If the coin was an ideal coin, the chance that I win at least 128 out of 160 times is
about 4 · 10−15.

• If you claim that I cheat, your chance to be wrong is about 4 · 10−15.
• Thus, if we cannot accept a chance p to be wrong higher than a significance level α = 1%,

we can still say:

The observation is significant, I did likely cheat.
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A More Specific Example for Tests

• We want to compare two algorithms A and B on a given problem instance.

• We have conducted a small experiment and measured objective values of their final results
in a few runs in form of the two data sets A and B, respectively:

A = (2, 5, 6, 7, 9, 10)
B = (1, 3, 4, 8)

• From this, we can estimate the arithmetic means:

mean(A) =
39
6

= 6.5

mean(B) =
16
4

= 4
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mean(A) =
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6

= 6.5
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4

= 4

• It looks like algorithm B may produce the smaller objective values.

• But is this assumption justified based on the data we have?
• Is the difference between mean(A) and mean(B) significant at a threshold of α = 2%?
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A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything.

• Let us therefore assume as null hypothesis H0 the observed difference did just happen by
chance and, well, A ≡ B.

• Then, this would mean that the data samples A and B stem from the same algorithm (as
A ≡ B).

• The division into the two sets would only be artificial, an artifact of our experimental
design.

• Instead of having two data samples, we only have one, namely the union set O with 10
elements:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
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A More Specific Example

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same probability

• |O| = 10
• There are

(10
4

)
= 210 different ways to draw 4 (or 6) elements from O

• If H0 holds, all have the same probability
• There are 27 such combinations with a mean of less or equal 4.
• The probability p to observe a situation at least as extreme as A and B under H0 is thus:

p =
#cases C : mean(C) ≤ mean(B)

#all cases
=

27
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=
9
70
≈ 0.1286
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A More Specific Example

1 """ Enumerate all combinations of numbers 1 to 10. """
2 mean_lower_or_equal_to_4 = 0 # how often did we find a mean <= 4
3 total_combinations = 0 # total number of tested combinations
4
5 for i in range(1, 11): # i goes from 1 to 10
6 for j in range(1, i): # j goes from 1 to i - 1
7 for k in range(1, j): # k goes from 1 to j - 1
8 for l in range(1, k): # l goes from 1 to k - 1
9 if ((i + j + k + l) / 4) <= 4: # check for extreme case

10 mean_lower_or_equal_to_4 += 1 # count extreme case
11 total_combinations += 1 # count all combinations
12
13 print(f" combinations with mean <= 4: {mean_lower_or_equal_to_4}")
14 print(f"total number of combinations: {total_combinations}")
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A More Specific Example

• Extreme cases into the other direction are the same, because if mean(B) ≤ 4 then
mean(A) ≥ 6.5 for any division A ∪B = O and vice versa.

:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• So – of course – we could have also done the test the other way around with the same
result!
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A More Specific Example

• The probability p to observe a constallation at least as extreme as A or B under H0 is
thus:

p =
#cases C : mean(C) ≤ mean(B)

#all cases
=

27
210

=
9
70
≈ 0.1286

• If we claim that A and B are from distributions with means as different as observed. . .
• . . . we are wrong with probability p ≈ 0.13
• At a significance level of α = 2%, the means of A and B are not significantly different!

(2% < 0.13)
• Actually: This here is an example for an Randomization Test11,22.
• The method here is only feasible for small sample sets, real tests are more sophisticated
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• Statistical tests are more elegant mathematical approaches than the example shown
before.

In order to work, they have preconditions, they make certain assumptions.
• There are two types of tests:

1. Parametric Tests
2. Non-Parametric Tests
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1. Parametric Tests

• Assume that the data samples follow a certain distribution

• Examples12: t-test (assumes normal distribution)
• The distribution of the data we measure is unknown. . .
• . . . and usually not normal nor symmetric (see the further quantiles/stddev plot example).
• The condition for using such tests often cannot be met (known distribution)
• Parametric tests should usually not be used here!
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• Statistical tests are more elegant mathematical approaches than the example shown
before. In order to work, they have preconditions, they make certain assumptions.

• There are two types of tests:
1. Parametric Tests
2. Non-Parametric Tests

• Make few assumption about the distribution from which the data was sampled.

• Examples59: the Wilcoxon rank sum test with continuity correction (also called
Mann-Whitney U test7,31,44,53), Fisher’s Exact Test23, the Sign Test28,53, the
Randomization Test11,22, and Wilcoxon’s Signed Rank Test65.

• These tests are more robust (less assumptions)
• This usually is the kind of test we want to use.
• They work similar to the previous test example, but with larger sample sizes
• Often, the most suitable test is the Mann-Whitney U test.
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• All kinds of algorithm modules and parameters have some kind of impact on the
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• If I have two different algorithms A and B, logic dictates that their performance is also
different.

• But is this difference usually significant?
• From the viewpoint of statistics: Probably yes.
• If I just conduct enough runs, maybe thousands, or millions, than even a difference of

0.001% in performance will pass a test as significant.
• To be practically significant, the measured difference of results should be large enough and

statistically significant already with few runs, say, 11 or 21, not just with ≥ 100 runs.
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• N Algorithms ⇒ k = N(N − 1)/2 statistical tests (e.g., Mann-Whitney U)
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E = 1− ((1− α)k)
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: Use α′ = α/k as significance level instead of
α, then the overall probability E to make an error will remain E ≤ α.
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Testing is Not Enough



The question of termination

• Literature usually reports tuples “(instance, result, runtime)”

• Papers often use different termination criteria
• Anytime Algorithms10

: Always have approximate solution, refine it iteratively

• One measure point per run or instance does not tell the whole story!
• Using statistical tests cannot solve this issue (still: at one point in time).
• We should have the “whole performance curves!”

. . . ideally mean or median curves over
several runs!
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Other Stuff



New Algorithms and Problems

• There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm.

I think this is not a good idea.
• If we introduce a new optimization algorithm, we should test it on well-known,

well-established benchmark problems.

For such problems, results from other well-known
and well-established algorithms exist – so we can compare our algorithm to them and
investigate its performance objectively.

• If we introduce a new optimization problem, we should apply well-known and
well-established algorithms to it.

This way we get proper baseline results and can
understand whether the problem is hard for the state-of-the-art and/or how far this
state-of-the-art allows us to go.

• If we have two “moving parts” at the same time, it is hard to understand whether an
algorithm is good and whether a problem is hard.

• If you have an own new algorithm on a new problem and use other algorithms for
comparision, you might be tempted to just use the most basic configurations of these
algorithms.

Then your algorithm might look good, while it actually is not.

• Know the standard benchmark instances for your field!
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Reproducibility

• Your experiments should be well-documented and reproducible.

• In the ideal case, someone else can run your code and get the same results.
• For this purpose, you should make your code available, e.g., put it on GitHub or

zenodo.org.
• If your experiments are time-consuming, also make sure to properly store all your results in

human- and machine-readable form, ideally in a comma-separated values (CSV) format.
• You should make an archive such that a) I can directly run the same experiments that you

did and b) also have all the data and tools to create the same statistics and figures.
• But what if someone finds an error in work?
• That is OK.
• Better they find it in your code that you voluntarily provided than after going through

significant re-implementation effort. . .
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Cheating

What are typical bad / cheating behavior in research on optimization?

• Cherry-Picking

• Sometimes, results may be straight up fabricated.
• Misleading statistics are reported
• Uneven configuration effort
• Incomparable results are reported.
• Misleading significance in test results (high α, many runs, no corrections).

Reproducibility prevents cheating and misunderstandings!
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Summary

• The optimization algorithms we consider in this lecture are randomized.

• Comparing them must be done in a statistical way using data from multiple runs
• Two views on performance

:
1. best result after fixed number of FEs/runtime

2. number of FEs/runtime needed to get certain result

• For every single algorithm/configuration, compute

:
1. arithmetic and geometric mean and median of key performance indicators

2. quartiles or top/bottom 1% quantile to get a feeling for the usual range of values
3. don’t trust just arithmetic mean or standard deviation alone
4. geometric mean if the data is normalized

• Use non-parametric statistical tests with corrections for multiple comparisons.
• Do not only collect one data sample per run, try to plot progress curves.
• Use well-known benchmarks, provide your source code!
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Programming with Python

We have a freely available course book on Programming with Python at
https://thomasweise.github.io/programmingWithPython, with focus on practical
software development using the Python ecosystem of tools60.

CHAPTER 15. THE DISTRIBUTED VERSION CONTROL SYSTEM GIT
303

(15.1.16) Many Python projects come with a file
requirements.txt or requirements-dev.txt . As
discussed in Section 14.2, these list the libraries that
the projects depend on. Our example repository also
has a file requirements.txt , stating that it needs li-
brary psycopg. This dependency is marked with yellow
color, because it is not installed in the virtual environment.

(15.1.17) Clicking on the warnings symbol reveals this
issue.

(15.1.18) Indeed: If we look at the .venv directory in the
directory view, we cannot find the psycopg package. (15.1.19) So we click on the requirements warning. . .

(15.1.20) . . . and then on Show Quick-Fixes (or press Alt +

Enter ).
(15.1.21) In the menu that opens up, we se-
lect Install all missing packages .

Figure 15.1: Cloning a Git (or GitHub) repository in PyCharm and configuring a virtual environment for

it.

Here, obviously, user is thomasWeise , which is my personal GitHub account, and repository is

databasesCode . The URL that will be copied to the clipboard by clicking the button in Figure 15.1.2

is https://github.com/thomasWeise/databasesCode.git. If you wanted to clone the repository

with the example codes for this book instead, you would use https://github.com/thomasWeise/

programmingWithPythonCode.git.It is important to understand, however, that creating projects by cloning Git repositories is by no

means restricted to GitHub. As stated before, Git is a client-server application. You could work in an

enterprise that runs its own Git server. You could work with other Git-based repository hosts like gitee.

Regardless of what Git service you use, you could use the very same way to type in the corresponding

repository URL and then clone the repository in the same way. Only the structure of the URLs may be
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84Listing 4.3: A Python program showing several steps of the approximation of π using the method of

LIU Hui (刘徽). (stored in file pi_liu_hui.py; output in Listing 4.4)
1 from math import pi, sqrt2
3 print(f"We use Liu Hui's Method to Approximate \u03c0\u2248{pi}.")

4 e = 6 # the number of edges: We start with a hexagon , i.e., e=6.

5 s = 1.0 # the side length: Initially 1, meaning the radius is also 1.

6 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

7
8 e *= 2 # We double the number of edges ...
9 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

10 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

11
12 e *= 2 # We double the number of edges.
13 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

14 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

15
16 e *= 2 # We double the number of edges.
17 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

18 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

19
20 e *= 2 # We double the number of edges.
21 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

22 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

23
24 e *= 2 # We double the number of edges.
25 s = sqrt(2 - sqrt(4 - (s ** 2)))
26 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")↓ python3 pi_liu_hui.py ↓Listing 4.4: The stdout of the program pi_liu_hui.py given in Listing 4.3.

1 We use Liu Hui 's Method to Approximate π≈3.141592653589793.

2 6 edges , side length =1.0 give us π≈3.0.
3 12 edges , side length =0.5176380902050416 give us π≈3.1058285412302498.

4 24 edges , side length =0.2610523844401031 give us π≈3.132628613281237.

5 48 edges , side length =0.13080625846028635 give us π≈3.139350203046872.

6 96 edges , side length =0.0654381656435527 give us π≈3.14103195089053.

7 192 edges , side length =0.03272346325297234 give us π≈3.1414524722853443.
Listing 4.4 shows the standard output stream (stdout) produced by this program. Indeed, each

new approximation comes closer to π. For 192 edges, we get the approximation 3.1414524722853443 .

Given that the constant pi from the math module is 3.141592653589793 , we find that the first four

digits are correct and that the number is only off by only 0.0045%! For your convenience, we also

showed the results when executing the program in PyCharm or the Ubuntu terminal in Figure 4.4. They

are obviously identical. Therefore, in the future, we will only very sporadically add such screenshots.

Instead, we will usually only print code and output pairs like Listings 4.3 and 4.4.
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Figure 4.3: Approximating the ratio of the circumference and the diameter of a circle, i.e., π, by

inscribing regular 3 ∗ 2n-gons.

hexagon is U = e∗s6 = 6∗r. The diameter of the circle is D = 2r. Assuming that the circumference of

the hexagon is an approximation of the circumference of the circle, we could approximate π as π ≈ U
D .

For e = 6 edges, this gives us π6 = 6r
2r = 3.Now this is a very coarse approximation of π. We can get closer to the actual ratio if we would

use more edges, i.e., higher values of e. The ingenious idea of LIU Hui (刘徽) is to use e-gons

with e = 3 ∗ 2n. For n = 1, we get the hexagon with e = 6. For n = 2, we double the edges and have

a dodecagon with e = 12 edges. But how do we get the edge length s12 of this dodecagon?
We can get it from the edge length s6 and radius r of the hexagon. If we use the same six corners

for the hexagon and dodecagon and connect the newly added six corners with the center of the circle,

then these connections will separate each edge of the hexagon exactly in half and do so at a 90◦ angle,

as shown again in Figure 4.3. Here, the new side length s12 is the hypotenuse of a right-angled triangle

with base s6
2 and height y. To get the height y, we can use that r = x + y and the fact that there is a

second right-angled triangle here, namely the one with base x, height s6
2 , and hypotenuse r. This gives

us x2 +
(

s6
2

)2
= r2. Let’s make things easier by choosing r = 1. We get x2 = 1 − (

s6
2

)2
= 1 − s6

2

4

and, hence, y = 1 −
√

1 − s62

4 . With this we can move on to s12
2 = y2 +

(
s6
2

)2
, which we can resolve

to s12
2 =

(
1 −

√
1 − s62

4

)2

+ s6
2

4 . Using (a − b)2 = a2 − 2ab + b2 and applying it to the first term,
we get s12

2 = 1 − 2
√

1 − s62

4 +
(
1 − s6

2

4

)
+ s6

2

4 . This then gives us s12
2 = 2 − 2

√
1 − s62

4 − s6
2

4 + s6
2

4 ,
which we can further refine to s12

2 = 2 − 2
√

1 − s62

4 . We can pull th 2 from outside the root into the
root by multiplying everything inside by 22 = 4 and get s12

2 = 2 − √
4 − s62. Thus, we have the really

elegant s12 =
√

2 − √
4 − s62.

As new approximation of π12, we now have 12∗s12
2r = 6∗s12 = 6

√
2 − √

4 − s62 = 6
√

2 − √
4 − 1 =

6
√

2 − √
3 ≈ 3.105828539. This is already quite nice. We can actually repeat this step to get to s24.

And we could continue this process by again doubling the number the edges. Repeating the above

calculations and observing Figure 4.3, we get the equation:

s2e =
√

2 −
√

4 − s2
e

(4.1)π2e =
e

2
s2e

(4.2)Now that we have learned some programming, we do no longer need to type the numbers and com-

putation steps into a calculator. Instead, we can simply write them into a program, as illustrated

in Listing 4.3. We begin by setting the number of edges e = 6 and the side length to s = 1 , still

choosing r = 1. In each iteration of the approximation, we simply set e *= 2 , which is equivalent to

e = e * 2 , to double the number of edges. We compute s = sqrt(2 - sqrt(4 - (s ** 2))) hav-

ing imported the sqrt function from the math module. We print the approximated value of π as

e * s / 2 . Notice how elegantly we use the unicode characters π and ≈ via the escapes \u03c0 and

\u2248 , respectively, from back in Section 3.6.6 (and how nicely it indeed prints the greek character π

in the stdout in Listing 4.4). Either way, since Equations 4.1 and 4.2 are always the same, we can

simply copy-paste the lines of code for updating s , e , and printing the approximated value of π several

times.
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tweise@weise-laptop:~$ python3Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 4 + 3
7
>>> 7 * 5
35
>>> 4 + 3 * 5
19
>>> (4 + 3) * 5
35
>>> 4 - -12
16
>>> ((4 + 3) * (4 - -12) - 5) * 3321
>>> 32 // 4
8
>>> 33 // 4
8
>>> 34 // 4
8
>>> 35 // 4
8
>>> 36 // 4
9
>>> 32 / 4
8.0
>>> 33 / 4
8.25
>>> 34 / 4
8.5
>>> 35 / 4
8.75
>>> 36 / 4
9.0
>>> 33 % 4
1
>>> 34 % 4
2
>>> 35 % 4
3
>>> 36 % 4
0
>>> exit()
tweise@weise-laptop:~$

tweise@weise-laptop: ~

Figure 3.1: Examples of Python integer math in the console, part 1 (see Listing 3.1 for part 2).
In many programming languages, there are different integer datatypes with different ranges. In

Java, a byte is an integer datatype with range −27..27 − 1, a short has range −215..217 − 1, an int
has range −231..231−1, and long has range −263..263−1, for example. The draft for the C17 standard
for the C programming language lists five signed and five unsigned integer types, plus several ways to
extend them [255]. The different integer types of both languages have different ranges and sizes, and
the programmer must carefully choose which she needs to use in which situation.Python 3 only has one integer type, called int . This type has basically an unbounded range. The
Python 3 interpreter will allocate as much memory as is needed to store the number you want.2
3.2.1 Integer Arithmetics
Now, what can we do with integer numbers? We can add, subtract, multiply, divide, modulo divide,
and raise them to powers, for example.

In Figure 3.1, you can find some examples of this. (The same example is given in Listing 3.1, just
as listing instead of screenshot. We will use such listings from now on, as they convey the exactly2Ok, the range is not actually unbounded, it is bounded by the amount of memory available on your computer. . .

. . . but for all intents and purposes within this book, we can assume that int ≡ Z.
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(2.2.1) Opening the terminal un-
der Microsoft Windows: press
q + R , type in cmd , and hit

.

(2.2.2) Trying to get the Python versionvia python3 --version , but it is notinstalled.

(2.2.3) Installing it by typing python3
and hitting .

(2.2.4) The install screen, where we click Get . (2.2.5) The install screen, downloading Python.

(2.2.6) The installation is finished. (2.2.7) And the python3 --version command nowworks in the terminal.
Figure 2.2: Cropped screenshots of the installation steps for Python on Microsoft Windows.

2.2 Installing PyCharm
Just having a programming language and the corresponding interpreter on your system is not enough.Well, it is enough for just running Python programs. But it is not enough if you want to developsoftware efficiently. Are you going to write programs in a simple text editor like a caveperson? No, ofcourse not, you need an IDE, a program which allows you to do multiple of the necessary tasks involvedin the software development process under one convenient user interface. For this book, I recommendusing PyCharm [347, 373, 377], whose Community Edition is/was freely available. The installation guidefor PyCharm can be found at https://www.jetbrains.com/help/pycharm/installation-guide.html.

Notice that, as shown in Figure 2.4, the PyCharm Community Edition will be/has been replacedwith a unified edition. This means that the instructions in the following are probably outdated, butthey should still give you a reasonably good impression on what needs to be done. We will probablyeventually replace them . . . but not now.
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Figure 1.2: The twelve most popular programming languages chosen based on the GitHub pushes overthe years. Source: [29].

While I am introducing variables in Chapter 4, for example, I will also explain how to use a static codeanalysis tool designed to find type errors in variable use. Also, the text will often have references tobest practices that clarify common approaches and different code hygiene concepts. Our goal will beto learn how to do things right from the start and not put things off to later.

1.2 Why Python?

The center of this course is the Python programming language. Our goal is to get familiar withprogramming, with the programming language Python, and with the tools and ecosystem surroundingit. This makes sense for several reasons.
First, Python is one of the most successful and widely used programming languages [50]. We plotthe number of pushes to GitHub over time for the most popular programming and web developmentlanguages in Figure 1.2. We find that Python became the leading languages at some point in 2018. Inthe TIOBE index, which counts the number of hits when searching for a programming language usingmajor search engines, Python ranked one in January 2025 and was named the programming languageof the year for 2024 [159].

Python is everywhere nowadays, and it is the undisputed default language of choicein many fields.
— Paul Jansen [159], 2025

If you will do programming in any future employment or research position, chances are that Pythonknowledge will be useful. According to the 2024 annual Stack Overflow survey [311], Python was thesecond most popular programming language, after JavaScript and HTML/CSS. In GitHub’s OctoverseReport from October 2024 [115], Python is named the most popular programming language, rankingright before JavaScript.
Second, Python is intensely used [50] in the fields of Artificial Intelligence (AI) [277], MachineLearning (ML) [290], and Data Science (DS) [125, 210] as well as optimization, which are among themost important areas of future technology. Indeed, the aforementioned Octoverse report [115] statesthat the use in soft computing is one of the drivers of Python’s popularity.
Third, there exists a very large set of powerful libraries supporting both research and application de-velopment in these fields, including NumPy [81, 131, 161, 227], Pandas [21, 195, 238], Scikit-learn [242,264], SciPy [161, 357], TensorFlow [1, 185], PyTorch [239, 264], Matplotlib [149, 151, 161, 235],SimPy [386], and moptipy [365]2, just to name a few. There are also many Python packages supportingother areas of computer science, that offer, e.g., connectivity to databases (DBs) [354], or support for
2Yes, I list moptipy here, next to very well-known and widely-used frameworks, because I am its developer.

Programming with Python

Thomas Weise (汤卫思)

August 7, 2025

Abstract

The goal of this book is to teach practical programming with the Python language to high
school, undergraduate, and graduate students alike. Hopefully, readers without prior knowledge
can follow the text. Therefore, all concepts are introduced using examples and discussed compre-
hensively. All examples are available online in the GitHub repository associated with this book, so
that readers can play with them easily. Actually, the goal of the book is not just to teach pro-
gramming, but to teach programming as a part of the software development process. This means
that from the very beginning, we will attempt to push the reader towards writing clean code with
comments and documentation as well as to use various tools for finding potential issues. While
this book is work in progress, we hope that it will eventually teach all the elements of Python
software creation. We hope that it can enable readers without prior programming experience to
develop beautiful and maintainable software.

https://thomasweise.github.io/programmingWithPython


Databases

We have a freely available course book on Databases at
https://thomasweise.github.io/databases, with actual practical examples using a real
database management system (DBMS)58.
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19.2.3.2 Relationship AttributesRelationships in conceptual models may have attributes, as stated in Definition 18.21. Of course, since

relationships do not exist as distinct objects in the relational data model, we must find another way to

express these attributes. Since only relations exist in the relational model and such relations become

tables in a DB, the attributes of relationships also become table columns.

It will depend on the relationship pattern where we put them. To try this concept out, let us go back

to an even earlier example of the Person entity: to Figure 18.9 from back in Section 18.3 (Relationships).

We created this figure using yEd and reprint it in Figure 19.26.1. As you can see, in this figure, there

is a relationship has ID that connects the Person entities with the entity type ID Type.

In the model, we did not annotate the relationships with cardinalities, because that was before

we got to that topic. However, it is rather clear that this would either be a Person ID Type

or a Person ID Type relationship. We can store arbitrarily many forms of ID for each person

and each form of ID may be used by arbitrarily many people. Since we went the hard way in the

last section and modeled a relationship with the mandatory many pattern, we this time go easy and

choose Person ID Type. In other words, we follow the pattern O P discussed in Sec-

tion 19.2.2.8 (O P).For this pattern, we need an additional table. We follow exactly the same method as back in

Section 19.2.2.8, except that we use different table and column names. We also use PgModeler for the

Person

Date of Birth

Address

Country

Province City
District

Street
Address

Postal Code

Name

Full Name

Salutation

Age

Start Date

End Date

is official

ID Type

Name

Validation
RegEx

has ID

Value

Valid From
Valid To

Surrogate
Key

(19.26.1) A reproduction of Figure 18.9 from back in Section 18.3 (Relationships), which was created using

yEd.

name_of_person

address_of_person

has_id

belongs_to_type

id
 integer « pk »date_of_birth  date « nn »person_id_pk  constraint « pk »

public.person
id  integer

« pk »person  integer « fk nn »full_name  varchar(255) « nn »salutation  varchar(255)is_official  boolean
« nn »start_date  date
« nn »end_date  date

name_id_pk  constraint « pk »name_person_fk  constraint « fk »

public.name

id
 integer « pk »person  integer « fk nn »country  char(2) « nn »province  char(2)

city
 varchar(255) « nn »district  varchar(255)postal_code  varchar(32) « nn »street_address  varchar(255) « nn »address_id_pk  constraint « pk »address_person_fk  constraint « fk »

public.address

id
 integer

« pk »name
 varchar(100) « uq nn »validation_regexp  varchar(255) « nn »id_type_id_pk  constraint « pk »id_type_name_uq  constraint « uq »

public.id_type id  integer
« pk »id_type  integer « fk nn »person  integer « fk nn »value  varchar(100) « nn »valid_from  date

« nn »valid_to  date
has_id_id_pk  constraint « pk »has_id_id_type_fk  constraint « fk »has_id_person_fk  constraint « fk »

public.has_id

(19.26.2) A transformation of Figure 19.26.1 to a logical model using PgModeler.

Figure 19.26: The representation of relationship attributes as table for the relationship.
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(19.2.21) More details, such as the column types, appear
in the diagram, causing the tables to overlap. We drag
them apart with the mouse.

(19.2.22) The new layout looks much clearer.

rel_mobile_student

student_id  character(11)
« pk »national_id  character(18)
« nn »address  varchar(255)
« nn »date_of_birth  date
« nn »full_name  varchar(255)
« nn »salutation  varchar(255)

student_student_id_pk  constraint « pk »student_national_id_check  constraint « ck »student_date_of_birth_check  constraint « ck »

public.student

id  integer
« pk »phone  character(11) « nn »student  character(11) « fk nn »mobile_id_pk  constraint « pk »mobile_phone_check  constraint « ck »mobile_student_id_fk  constraint « fk »

public.mobile

(19.2.23) We export the model again to a SVG graphic, following the steps in Figures 19.1.41 to 19.1.44.

This graphic now contains more details as well.Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple

mobile phone numbers (continued).

Listing 19.9: This auto-generated SQL script creates the DB student_database . (stored in

file 01_student_database_database_2001.sql; output in Listing 19.10)
1 -- object: student_database | type: DATABASE --
2 -- DROP DATABASE IF EXISTS student_database;
3 CREATE DATABASE student_database;
4 -- ddl -end --

Listing 19.10: The stdout of the program 01_student_database_database_2001.sql given in List-

ing 19.9.
1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf 01

↪→ _student_database_database_2001.sql
2 CREATE DATABASE3 # psql 16.9 succeeded with exit code 0.

We now export this model to SQL, exactly as we did before. This time, we get four scripts. The

first one, Listing 19.9, again creates the student_database DB. The second one, Listing 19.11, creates

the student table.
The third script, here given as Listing 19.13, creates the mobile table. We notice that the primary

key is created as id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY . This is almost exactly

the same way in which we created the primary key for the product table back in Listing 9.1. The only

difference is that PgModeler likes to express the integer type as integer and there we used INT . Both

types are synonymous.
The foreign key constraint is not included in Listing 19.13. Instead, it went into its own script,

here reproduced as Listing 19.15. Instead of directly including it when the table is created, the table

is later changed (ALTER TABLE). The constraint is added via ADD CONSTRAINT . Apart from this and

some additional behavior specifications that we will ignore here, it looks not much different from the
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Student

Module

enrolls into

(18.6.1) The binary relationship of student and modules, which does not represent the relationship of professors to

modules and students.

Student

Module

enrolls into

Professor

teaches

(18.6.2) Two binary relationships, i.e., the relationship of student to modules and the relationship of professors to

modules. This does not represent that a student enrolls into a course taught by a professor.

Student

Module

takes place
Professor

enrolls into teaches

(18.6.3) The ternary relationship of students, modules, and professors. This represents how students join a course taught

by a specific professor. However, it would not permit the same student enroll into the same course for two years. It also

does not give us the information when the course takes place.

Student

Module

takes place
Professor

in Semester

enrolls into teaches

(18.6.4) The ternary relationship of students, modules, and professors with the relationship attribute semester.
Figure 18.6: Modeling the relationship between students, professors, and modules.

If we imagine the ternary Student enrolls into Module taught by Professor relationship, then the student

could have the role enrolls and the professor could have the role teaches.Definition 18.21: Relationship Attribute
A relationship type can have attributes describing properties of the relationship.

For example, we could write something like Mr. Bebbo enrolls into module Databases in summer

semester 2025. The attribute Semester of this relation only makes sense in this context. It neither

belongs to the student Mr. Bebbo nor does it belong to the module Databases. Different from entities,

relationship types do not have key attributes. The single relationships are identified by the primary keys

of the participating entities [165].
Let us start modelling relationships. We begin by representing the fact that a student can enroll into

a module. Relationships in ERDs are drawn as diamonds that are connected to the involved entities.

Figure 18.6.1 shows an ERD where the student entity is linked to a module entity by the relationship

enrolls into. This is a binary relationship, because two entities take part in it.
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Listing 9.1: Creating the table product to store the products we produce and sell. (stored in
file create_table_product.sql; output in Listing 9.2)1 /* We create the new table 'product ' in our factory database. */

2
3 -- List all tables of the user 'boss ' in database 'factory '
4 -- There are no tables yet.5 SELECT tablename FROM pg_catalog.pg_tables6 WHERE tableowner='boss';7
8 -- The table 'product ' stores all the produces that we can produce.
9 -- Each row of this table identifies one such product.

10 CREATE TABLE product (11 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 name VARCHAR (100) NOT NULL UNIQUE , -- must exist , must be unique
13 price DECIMAL (10, 2) NOT NULL , -- price (RMB): 10 digits , 2 after .
14 weight INT NOT NULL , -- the weight of the product , in grams
15 width INT NOT NULL , -- the width of the product , in mm
16 height INT NOT NULL , -- the height of the product , in mm
17 depth INT NOT NULL -- the depth of the product , in mm
18 );
19
20 -- List all tables of the user 'boss ' in database 'factory '
21 -- Now we see the table 'product '.22 SELECT tablename FROM pg_catalog.pg_tables23 WHERE tableowner='boss';

Listing 9.2: The stdout of the program create_table_product.sql given in Listing 9.1.
1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1

↪→ -ebf create_table_product.sql2 tablename
3 -----------
4 (0 rows)
5
6 CREATE TABLE
7 tablename
8 -----------
9 product

10 (1 row)
11
12 # psql 16.9 succeeded with exit code 0.

9.1.2 Inserting some Data
Now the table product exists, but it is empty. Let us fill it with data. Our factory has two prod-
ucts: “Shoe” and “Purse.” The shoes come in sizes 36 to 43. Their prices start at 150.99元 for size 36
and increase by 2元 per size. They all fit into the same box. The smallest shoes weight 1300g and the
weight increases by 25g per size. Purses come in sizes small, medium, and large, at prices of 100元,
120元, and 150元, respectively. They weight 500g, 750g, and 1500g, respectively. The smallest purse
fits into a shoebox, but the bigger ones require bigger boxes. In other words, we want to enter exactly
the data presented in Figure 9.1 at the beginning of this section.We store this data into the table product by an INSERT INTO statement. Here, we first need to
provide the table name (product) and the attributes that we want to store in parentheses, i.e., “ (...)”.
We will store values for the fields name , price , weight , width , height , and depth . We do not need to
store values for id , because they will be automatically generated for us. After saying what we want to
store, we specify the VALUES to store. Each row is written in parentheses, values and rows are separated
by commas. The command follows the syntax given below.
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(2.2.7) When asked whether we want to allow the down-loaded program to make changes on our device, weclick Yes .
(2.2.8) Then, the installer begins its work.

(2.2.9) In the welcome screen, we simply click Next . (2.2.10) We can select the directory in which PostgreSQLshould be installed. Let’s leave it at the default settingand click Next .

(2.2.11) We now get to the selection of what to install.Let’s leave it at the default setting and click Next .
(2.2.12) We also leave the directory where the DBs willbe stored at the default setting and click Next .Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).
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Figure 1.9: Image from 1956: An IBM 305 RAMAC (right) with two of the (at that time) very newIBM 350 hard disks (middle and left). Source: [159].

Figure 1.10: Images from the “Ferranti Computing Systems Atlas 1 Brochure: 1962” [259]. © UKRIScience and Technology Facilities Council, available from https://www.chilton-computing.org.uk.

Figure 1.11: Some screenshots of the terminal of Multics MR12.7 taken from [61], licensed underCC BY-SA 4.0.

only one or two years later [284]. The hierarchical file system for the Multiplexed Information andComputing Service (Multics) OS [61, 95], published in 1965, already had surprisingly many advancedfeatures that we know from today’s file systems: fine-grained access control for data privacy, backupability, links, and IO queue management. Inheriting from CTSS, it itself became the ancestor of Unixwhich, in turn, inspired Linux. The ls command shown in Figure 1.11 also was a feature of Multics(adapted from CTSS) and has survived all those years [150]. File systems are very good for organizingdocuments and heterogeneous data. They are not very suitable to main the sort of relational data andto achieve the features that would like DBs to have.
The need for systems that supported modern DB features became aparent. At the same time, itwas not really clear how that could be done. Different groups began developing concepts, ideas, andprototypes.
The first version of the Integrated Data Store (IDS) was developed by Bachman in 1961/62 atGeneral Electric [13, 14]. IDS offered the first direct access DB, holding data in virtual memory. It mayhave been the first real DBMS and Bachman won the 1973 A.M. Turing Award for this work [174]. IDS
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Abstract

This book is an introduction into databases for undergraduate and graduate students.
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Metaheuristic Optimization in Python: moptipy

We offer moptipy64 a mature open source Python package for metaheuristic optimization,
which implements several algorithms, can run self-documenting experiments in parallel and in a
distributed fashion, and offers statistical evaluation tools.



谢谢您门！
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Vielen Dank!
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Glossary I

EA An evolutionary algorithm is a metaheuristic optimization method that maintains a population of candidate solutions, which
undergo selection (where better solutions are chosen with higher probability) and reproduction (where mutation and
recombination create a new candidate solution from one or two existing ones, repectively)5,59.

ACO Ant Colony Optimization is a nature-inspired optimization method for combinatorial problems where solutions are generated
by “ants” that move from node to node in a graph choosing edges based on (1) the simulated pheromone on the edges
and (2) a per-edge heuristic value17–19. If an ant produced a good solution, “pheromone” is distributed over the edges it
visited, making it more likely to be re-visited by other ants.

BKS The Best Known Solution for an instance of an optimization problem is the best solution (measured based on the objective
values) that has ever been reported in literature. BKSes are not necessarily globally optimal, as in many instances of
NP-hard problems, the true optima are unknown.

CSV Comma-Separated Values is a very common and simple text format for exchanging tabular or matrix data52. Each row in the
text file represents one row in the table or matrix. The elements in the row are separated by a fixed delimiter, usually a
comma (“,”), sometimes a semicolon (“;”). Python offers some out-of-the-box CSV support in the csv module16.

DB A database is an organized collection of structured information or data, typically stored electronically in a computer system.
Databases are discussed in our book Databases58.

DBMS A database management system is the software layer located between the user or application and the database (DB). The
DBMS allows the user/application to create, read, write, update, delete, and otherwise manipulate the data in the DB66.

FE Objective function evaluations are an implementation-independent measure of runtime for optimization algorithms61. 1 FE
equals to one evaluated candidate solution during the optimization process.



Glossary II

Git is a distributed Version Control Systems (VCS) which allows multiple users to work on the same code while preserving the
history of the code changes54,57. Learn more at https://git-scm.com.

GitHub is a website where software projects can be hosted and managed via the Git VCS46,57. Learn more at https://github.com.

JSSP The Job Shop Scheduling Problem9,38 is one of the most prominent and well-studied scheduling tasks. In a JSSP instance,
there are k machines and m jobs. Each job must be processed once by each machine in a job-specific sequence and has a
job-specific processing time on each machine. The goal is to find an assignment of jobs to machines that results in an overall
shortest makespan, i.e., the schedule which can complete all the jobs in the shortest time. The JSSP is NP-complete14,38.

MaxSAT The goal of satisfiaiblity problems is to find an assignment for n Boolean variables that make a given Boolean
formula F : {0, 1}n 7→ {0, 1} become true. In the Maximum Satisfiability (MaxSAT) problem33, F is given in conjunctive
normal form, i.e., the variables appear as literals either directly or negated in m “or” clauses, which are all combined into
one “and.” The objective function f(x), subject to minimization, computes the number of clauses which are false under the
variable setting x. If f(x) = 0, then all clauses of F are true, which solves the problem. The MaxSat problem is
NP-complete15.

moptipy is the Metaheuristic Optimization in Python library64. Learn more at https://thomasweise.github.io/moptipy.

Python The Python programming language34,40,42,60, i.e., what you will learn about in our book60. Learn more at
https://python.org.

TSP In an instance of the Traveling Salesperson Problem, also known as Traveling Salesman Problem, a set of n cities or locations
as well as the distances between them are defined2,27,39,61. The goal is to find the shortest round-trip tour that starts at one
city, visits all the other cities one time each, and returns to the origin. The TSP is one of the most well-known NP-hard
combinatorial optimization problems.

https://git-scm.com
https://github.com
https://thomasweise.github.io/moptipy
https://python.org


Glossary III

TSPLib is a library of benchmark instances for the Traveling Salesperson Problem (TSP) available at
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB9549,50.

unit test Software development is centered around creating the program code of an application, library, or otherwise useful system. A
unit test is an additional code fragment that is not part of that productive code. It exists to execute (a part of) the
productive code in a certain scenario (e.g., with specific parameters), to observe the behavior of that code, and to compare
whether this behavior meets the specification45,51,56. If not, the unit test fails. The use of unit tests is at least threefold:
First, they help us to detect errors in the code. Second, program code is usually not developed only once and, from then on,
used without change indefinitely. Instead, programs are often updated, improved, extended, and maintained over a long time.
Unit tests can help us to detect whether such changes in the program code, maybe after years, violate the specification or,
maybe, cause another, depending, module of the program to violate its specification. Third, they are part of the
documentation or even specification of a program.

VCS A Version Control System is a software which allows you to manage and preserve the historical development of your program
code57. A distributed VCS allows multiple users to work on the same code and upload their changes to the server, which then
preserves the change history. The most popular distributed VCS is Git.

i! The factorial a! of a natural number a ∈ N1 is the product of all positive natural numbers less than or equal to a, i.e.,
a! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ · · · ∗ (a − 1) ∗ a13,21,41.

i..j with i, j ∈ Z and i ≤ j is the set that contains all integer numbers in the inclusive range from i to j. For example, 5..9 is
equivalent to {5, 6, 7, 8, 9}

geom(A) The geometric mean geom(A) is the nth root of the product of n positive values in a dataset A = (a0, a1, . . . , an−1) with

ai > 0 for all i ∈ 0..n, i.e., geom(A) = n
√∏n−1

i=0 ai = exp
(

1
n

∑n−1
i=0 log ai

)
.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95


Glossary IV

mean(A) The arithmetic mean mean(A) is an estimate of the expected value of a distribution from which a data sample was, well,
sampled. Its is computed on data sample A = (a0, a1, . . . , an−1) as the sum of all n elements ai in the sample data A

divided by the total number n of values, i.e., mean(A) = 1
n

∑n−1
i=0 ai.

median(A) The median median(A) is the value separating the bigger-valued half from the smaller-valued half of a data sample or
distribution. Its estimate is the value right in the middle of a sorted data sample A = (a0, a1, . . . , an−1) where
ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1) with an odd number of elements and the mean of the two values in the middle if n is even. In

other words, median(A) = an−1
2

if n is odd and 1
2

(
an

2 −1 + an
2

)
otherwise, i.e., if n is even.

N1 the set of the natural numbers excluding 0, i.e., 1, 2, 3, 4, and so on. It holds that N1 ⊂ Z.

NP NP is the class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be
verified in polynomial time by a deterministic machine (such as a normal computer)25.

NP-complete A decision problem is NP-complete if it is in NP and all problems in NP are reducible to it in polynomial time25,48. A
problem is NP-complete if it is NP-hard and if it is in NP.

NP-hard Algorithms that guarantee to find the correct solutions of NP-hard problems14,15,38 need a runtime that is exponential in
the problem scale in the worst case. A problem is NP-hard if all problems in NP are reducible to it in polynomial time25.

O(g(x)) If f(x) = O(g(x)), then there exist positive numbers x0 ∈ R+ and c ∈ R+ such that f(x) ≤ c ∗ g(x)∀x ≥ x0
4,37. In

other words, O(g(x)) describes an upper bound for function growth.



Glossary V

quantilekq (A) The q-quantiles are the cut points that divide a sorted data sample A = (a0, a1, . . . , an−1) where

ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1) into q equally-sized parts. quantilekq (A) be the kth q-quantile, with k ∈ 1 . . . (q − 1), i.e.,

there are q − 1 of the q-quantiles. In the context of this book, define h = (n − 1) k
q

. quantilekq (A) then can be computed

as ah if h is integer, i.e., h ∈ Z, and as a⌊h⌋ + (h − ⌊h⌋) ∗
(
a⌊h⌋+1 − a⌊h⌋

)
otherwise. It holds

that quantile21(A) = median(A)

R the set of the real numbers.

R+ the set of the positive real numbers, i.e., R+ = {x ∈ R : x > 0}.

sd(A) The statistical estimate sd(A) of the standard deviation of a data sample A = (a0, a1, . . . , an−1) with n observations is
the square root of the estimated variance var(A), i.e., sdA =

√
var(A).

var(A) The variance of a distribution is the expectation of the squared deviation of the underlying random variable from its mean.
The variance var(A) of a data sample A = (a0, a1, . . . , an−1) with n observations can be estimated
as var(A) = 1

n−1
∑n−1

i=0 (ai − mean(A))2.

Z the set of the integers numbers including positive and negative numbers and 0, i.e., . . . , -3, -2, -1, 0, 1, 2, 3, . . . , and so on.
It holds that Z ⊂ R.
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