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Introduction

® There are many optimization algorithms.
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Introduction

® There are many optimization algorithms.

® For solving an optimization problem, we want to use the algorithm most suitable for it.
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Introduction

® There are many optimization algorithms.

® For solving an optimization problem, we want to use the algorithm most suitable for it.
® \What does this mean?



Gy NP ey TR T

Introduction

There are many optimization algorithms.

For solving an optimization problem, we want to use the algorithm most suitable for it.
What does this mean?

And how do we find this algorithm?
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Introduction

There are many optimization algorithms.

For solving an optimization problem, we want to use the algorithm most suitable for it.
What does this mean?
And how do we find this algorithm?

Hopefully this lesson will help answering these questions.
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Introduction
® There are many optimization algorithms.
® For solving an optimization problem, we want to use the algorithm most suitable for it.
® \What does this mean?
® And how do we find this algorithm?
® Hopefully this lesson will help answering these questions.
[ ]

As a complement to this lesson, | suggest the report “Benchmarking in Optimization: Best
Practice and Open Issues™ on arXiv.




Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
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® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)227:39.61,
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® Clearly, there is (at least) one shortest tour.

2,27,39,61
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® Clearly, there is (at least) one shortest tour.
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getting the optimal solution
for a TSP




Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® Clearly, there is (at least) one shortest tour.
® Theory proofs that the time needed to find this tour may grow exponentially with the
number s of cities we want to visit in the worst case.!'1415:3538

2,27,39,61

getting the optimal solution
for a TSP




Exact vs. Heuristic Algorithms

In optimization, there exist exact and heuristic algorithms.

Let's look at the classical Traveling Salesperson Problem (TSP)227:39.61,
What does exponential growth mean?

Let's say we have a number of cities s.
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® |et's say we have a number of cities s and a runtime as a function f(s) in this log-log plot.

2,27,39,61
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® A linear function means that the runtime f(s) grows slowly with s.
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® A quadratic function (a straight line in log-log plots) is also OK.
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® A quartic function f(s) = s* gets quite large for growing s.

2,27,39,61

40
10 f(s)

1020.

10"
1 trillion
1 billion- e
1 million = e f(s)=s2

1000 155 iz R ey,
10100 e —— o s

T f(s):s‘1

1 2 4 8 16 32 64 128 256 512 1024 2048



Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® A quartic function exceeds the number of milliseconds per day at s ~ 512.
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® But this is nothing compared to the exponential function f(s) = 1.1°...
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® A runtime of 1.1° becomes infeasible for s > 512.

2,27,39,61

1040.
f(s)
10%
10%°1 picoseconds
since the big bang
10°*1
1020.
10"
. . f(s)=s"
1 trillion Lo ms per day
1 billion e gy g
1 million; T e R S By = ()=s*
1000 755 N o s i B PR s e f(s)=s
10 100+ /‘/:‘_————: —————————— S

1 2 4 8 16 32 64 128 256 512 1024 2048



Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® For larger bases, the runtime grows even faster.
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
® For larger bases, the runtime grows even faster.
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)
¢ |f we would enumerate all possible tours of s cities in a TSP, that would be s!.
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)2:27:39.61,

getting the optimal solution
for a TSP may take too long

consumed runtime: very much / too (?) long



Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)2:27:39.61,
® But we can find just some tour very quickly.

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long



Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.

® Let's look at the classical Traveling Salesperson Problem (TSP)2:27:39.61,
® But we can find just some tour very quickly.
® Of course the quality of that tour will be lower.

some (bad) solution for the
TSP can be obtained quickly

worse
higher

getting the optimal solution
for a TSP may take too long

solution quality
e.g., cost, tour length...

very little / fast consumed runtime very much / too (?) long



Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)2:27:39.61,
® Of course the quality of that tour will be lower: the tour will be longer than the best one.

some (bad) solution for the
TSP can be obtained quickly

worse
higher

getting the optimal solution
for a TSP may take too long

solution quality
e.g., cost, tour length...

very little / fast consumed runtime very much / too (?) long
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)2:27:39:61,
® |s there something in between?

some (bad) solution for the
TSP can be obtained quickly

worse
higher

getting the optimal solution
for a TSP may take too long

solution quality
e.g., cost, tour length...

very little / fast consumed runtime very much / too (?) long



Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)2:27:39.61,
® |s there something in between?
® (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible
as fast as possible.

some (bad) solution for the
TSP can be obtained quickly

worse
higher
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Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)2:27:39:61,
® (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible
as fast as possible.
® QOptimization often means to make a trade-off between solution quality and runtime.
some (bad) solution for the

TSP can be obtained quickly Different algorithms offer different

trade-offs between runtime and
solution quality.

worse
higher

getting the optimal solution
for a TSP may take too long

solution quality
e.g., cost, tour length...

very little / fast consumed runtime very much / too (?) long



Exact vs. Heuristic Algorithms

® |n optimization, there exist exact and heuristic algorithms.
® Let's look at the classical Traveling Salesperson Problem (TSP)2:27:39:61,
® Optimization often means to make a trade-off between solution quality and runtime.

some (bad) solution for the
TSP can be obtained quickly Different algorithms offer different
trade-offs between runtime and
solution quality. Good algorithms

resulting from research push the
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very little / fast consumed runtime very much / too (?) long



Views on Performance and Time
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- Views on Performance

® Runtime and solution quality in optimization are intertwined and should never be
considered separately.




Vlews on Performance

® Runtime and solution quality in optimization are intertwined and should never be

considered separately.

® There are two main views on what performance is??:30:62.63,
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considered separately.
® There are two main views on what performance is
1. Solution quality reached after a certain runtime

29,30,62,63.
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some (bad) solution for the
TSP can be obtained quickly

® Runtime and solution quality in optimization are intertwined and should never be

getting the optimal solution
for a TSP may take too long
°

very little / fast consumed runtime
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- Views on Performance ’

® Runtime and solution quality in optimization are intertwined and should never be

considered separately.

® There are two main views on what performance is?%:30:62.63;

1. Solution quality reached after a certain runtime
2. Runtime to reach a certain solution quality

some (bad) solution for the
TSP can be obtained quickly
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worse
higher
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getting the optimal solution
for a TSP may take too long
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very little / fast consumed runtime very much / too (?) long
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solution quality
e.g., cost, tour length...
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- Views on Performance

® Runtime and solution quality in optimization are intertwined and should never be
considered separately.

® There are two main views on what performance is?%:30:62.63; Q
. . . . _{

1. Solut_lon quality reached a.\fter a certain runtime ., oa) soition for the -

2. Runtime to reach a certain solution quality §5 | TSP can be obteined quickly §

B VI IINNHINS SN T S B

getting the optimal solution
for a TSP may take too long
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solution quality
e.g., cost, tour length...

very little / fast consumed runtime very much / too (?) long

i i sy £ Y, s Sl

B SN | A Sl b N P R A




What is Runtime?

E e What actually is runtime?
%




Clock Time as Absolute Runtime

- We can measure the (absolute) consumed runtime of the algorithm in ms.
5




Clock Time as Absolute Runtime

~ We can measure the (absolute) consumed runtime of the algorithm implementation in ms. l
5 |
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Clock Time as Absolute Runtime

5

® Advantages

~ We can measure the (absolute) consumed runtime of the algorithm implementation in ms. !




Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.
> o Advantages: ‘
® Results in many works reported in this format




Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.

> ® Advantages:
E& ® Results in many works reported in this format
l ® A quantity that makes physical sense
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Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.
® Advantages:
® Results in many works reported in this format
® A quantity that makes physical sense

® Includes all “hidden complexities” of an algorithm implementation (memory management,
matrix operations, data structures, ...)
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Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.
® Advantages:

® Results in many works reported in this format

® A quantity that makes physical sense

® Includes all “hidden complexities” of an algorithm implementation (memory management,
matrix operations, data structures, ...)

® Disadvantages
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Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.
® Advantages:
® Results in many works reported in this format
® A quantity that makes physical sense
® Includes all “hidden complexities” of an algorithm implementation (memory management,
matrix operations, data structures, ...)
® Disadvantages:
® Strongly machine dependent and inherently incomparable over different machines
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Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.
® Advantages:

® Results in many works reported in this format

® A quantity that makes physical sense

® Includes all “hidden complexities” of an algorithm implementation (memory management,
matrix operations, data structures, ...)

® Disadvantages:

® Strongly machine dependent and inherently incomparable over different machines
® Measurements are only valuable for a few years
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Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.
® Advantages:

® Results in many works reported in this format

® A quantity that makes physical sense

® Includes all “hidden complexities” of an algorithm implementation (memory management,
matrix operations, data structures, ...)

® Disadvantages:

® Strongly machine dependent and inherently incomparable over different machines
® Measurements are only valuable for a few years

® Can be biased by “outside effects,” e.g., OS, scheduling, other processes, /0, swapping, ...
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Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.
® Advantages:

® Results in many works reported in this format

® A quantity that makes physical sense

® Includes all “hidden complexities” of an algorithm implementation (memory management,
matrix operations, data structures, ...)

® Disadvantages:

® Strongly machine dependent and inherently incomparable over different machines
® Measurements are only valuable for a few years

® Can be biased by “outside effects,” e.g., OS, scheduling, other processes, /0, swapping, ...

® Hardware, software, OS, programming language, etc. all have nothing to do with the
optimization algorithm itself and are relevant only in a specific application. . .
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Clock Time as Absolute Runtime

We can measure the (absolute) consumed runtime of the algorithm implementation in ms.
® Advantages:

® Results in many works reported in this format

® A quantity that makes physical sense

® Includes all “hidden complexities” of an algorithm implementation (memory management,
matrix operations, data structures, ...)

® Disadvantages:
® Strongly machine dependent and inherently incomparable over different machines
® Measurements are only valuable for a few years
® Can be biased by “outside effects,” e.g., OS, scheduling, other processes, /0, swapping, ...
® Hardware, software, OS, programming language, etc. all have nothing to do with the
optimization algorithm itself and are relevant only in a specific application. . .

e __for research they may be less interesting, while for a specific application they do matter.
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Objective Function Evaluations: FEs

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
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Objective Function Evaluations: FEs

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
® Advantages
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Objective Function Evaluations: FEs

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
® Advantages:
® Results in many works reported in this format (or FEs can be deduced)
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Objective Function Evaluations: FEs

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
® Advantages:

® Results in many works reported in this format (or FEs can be deduced)
® Machine-independent, theory-related measure
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Objective Function Evaluations: FEs

. We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
® Advantages:

® Results in many works reported in this format (or FEs can be deduced)
® Machine-independent, theory-related measure
® Cannot be influenced by “outside effects”
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Objective Function Evaluations: FEs

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested =
. candidate solutions.
® Advantages:

® Results in many works reported in this format (or FEs can be deduced)
Machine-independent, theory-related measure
Cannot be influenced by “outside effects”
In many optimization problems, computing the objective value is the most time consuming
task
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Objective Function Evaluations: FEs

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
. candidate solutions.
® Advantages:

® Results in many works reported in this format (or FEs can be deduced)
Machine-independent, theory-related measure
Cannot be influenced by “outside effects”
In many optimization problems, computing the objective value is the most time consuming
task

® Disadvantages
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Objective Function Evaluations: FEs ]

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested

. candidate solutions.

® Advantages:

® Results in many works reported in this format (or FEs can be deduced)

Machine-independent, theory-related measure
Cannot be influenced by “outside effects”
In many optimization problems, computing the objective value is the most time consuming
task
® Disadvantages:

® No clear relationship to real runtime




Objective Function Evaluations: FEs ]

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested @

candidate solutions. g
e Advantages: :

® Results in many works reported in this format (or FEs can be deduced)

Machine-independent, theory-related measure

Cannot be influenced by “outside effects”

In many optimization problems, computing the objective value is the most time consuming

task

® Disadvantages:

® No clear relationship to real runtime
® Does not contain “hidden complexities” of algorithm
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Objective Function Evaluations: FEs

Results in many works reported in this format (or FEs can be deduced)
Machine-independent, theory-related measure

Cannot be influenced by “outside effects”

In many optimization problems, computing the objective value is the most time consuming
task

® Disadvantages:

No clear relationship to real runtime
Does not contain “hidden complexities” of algorithm
1 FE: very different costs in different situations!®*
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We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
® Advantages:
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Objective Function Evaluations: FEs ]

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
® Advantages:
® Results in many works reported in this format (or FEs can be deduced)

Machine-independent, theory-related measure
Cannot be influenced by “outside effects”
In many optimization problems, computing the objective value is the most time consuming
task
® Disadvantages:

® No clear relationship to real runtime

® Does not contain “hidden complexities” of algorithm
! ® 1 FE: very different costs in different situations!®*

: ® When applying a local search that swaps two cities in each move to the TSP, 1 FE can be
done in O(1)%".
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Objective Function Evaluations: FEs ]

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
® Advantages:
® Results in many works reported in this format (or FEs can be deduced)
Machine-independent, theory-related measure
Cannot be influenced by “outside effects”

In many optimization problems, computing the objective value is the most time consuming
task

® Disadvantages:

® No clear relationship to real runtime
® Does not contain “hidden complexities” of algorithm
® 1 FE: very different costs in different situations!®*
® When applying a local search that swaps two cities in each move to the TSP, 1 FE can be
done in O(1)%".
® When applying Ant Colony Optimization (ACO) instead, each FE takes O(s?)%'.
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Objective Function Evaluations: FEs I

We can measure (count) the objective function evaluations (FEs), i.e., the number of tested
candidate solutions.
® Advantages: B
® Results in many works reported in this format (or FEs can be deduced)
Machine-independent, theory-related measure
Cannot be influenced by “outside effects” '
In many optimization problems, computing the objective value is the most time consuming
task
® Disadvantages: ‘
® No clear relationship to real runtime »
® Does not contain “hidden complexities” of algorithm
® 1 FE: very different costs in different situations!®*
® When applying a local search that swaps two cities in each move to the TSP, 1 FE can be
done in O(1)%".
l ® When applying Ant Colony Optimization (ACO) instead, each FE takes O(s?)%'.

17

® Relevant for comparing algorithms, but not so much for the practical application or
comparing implementations.
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Do not count generations

® In an evolutionary algorithm (EA)>°°, in each generation (= iteration), a set of new
solution is created and evaluated.
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Do not count generations

® In an evolutionary algorithm (EA)>°°, in each generation (= iteration), a set of new

solution is created and evaluated.

e Traditionally, the number of generations passed until some goal was reached was used in

the EA community.
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not count generations

In an evolutionary algorithm (EA)®>°

solution is created and evaluated.

, in each generation (= iteration), a set of new

Traditionally, the number of generations passed until some goal was reached was used in
the EA community.

Do not use the number of generations in your EA as time measure! Instead count the
FEs.

el



not count generations

In an evolutionary algorithm (EA)®>°

solution is created and evaluated.

, in each generation (= iteration), a set of new

Traditionally, the number of generations passed until some goal was reached was used in
the EA community.

Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.
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not count generations

5,59

In an evolutionary algorithm (EA)>>7, in each generation (= iteration), a set of new

solution is created and evaluated.

Traditionally, the number of generations passed until some goal was reached was used in
the EA community.

Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

i1l e

Often, the mapping between generations and FEs is not clear
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not count generations

5,59

In an evolutionary algorithm (EA)>>7, in each generation (= iteration), a set of new

solution is created and evaluated.
Traditionally, the number of generations passed until some goal was reached was used in
the EA community.
Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:
The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.
Often, the mapping between generations and FEs is not clear, for example

® Do you evaluate offspring solutions that are identical to their parents?

i1l e



-

not count generations

5,59

In an evolutionary algorithm (EA)>>7, in each generation (= iteration), a set of new

solution is created and evaluated.

Traditionally, the number of generations passed until some goal was reached was used in
the EA community.

Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

Often, the mapping between generations and FEs is not clear, for example

® Do you evaluate offspring solutions that are identical to their parents?
® |s a local search involved that refines some or all solutions in the population?
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not count generations

5,59

In an evolutionary algorithm (EA)>>7, in each generation (= iteration), a set of new

solution is created and evaluated.

Traditionally, the number of generations passed until some goal was reached was used in
the EA community.

Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.
Often, the mapping between generations and FEs is not clear, for example

® Do you evaluate offspring solutions that are identical to their parents?
® |s a local search involved that refines some or all solutions in the population?
® Ina (u+ A\)-EA, is the first population of size pu+ A, A, or u?
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not count generations

5,59

In an evolutionary algorithm (EA)>>7, in each generation (= iteration), a set of new

solution is created and evaluated.

Traditionally, the number of generations passed until some goal was reached was used in
the EA community.

Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.
Often, the mapping between generations and FEs is not clear, for example

® Do you evaluate offspring solutions that are identical to their parents?

Is a local search involved that refines some or all solutions in the population?
Ina (pu+ A)-EA, is the first population of size p+ A, A, or u?

What if the population size changes adaptively?
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not count generations

5,59

In an evolutionary algorithm (EA)>>7, in each generation (= iteration), a set of new

solution is created and evaluated.

Traditionally, the number of generations passed until some goal was reached was used in
the EA community.

Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.
Often, the mapping between generations and FEs is not clear, for example

® Do you evaluate offspring solutions that are identical to their parents?

Is a local search involved that refines some or all solutions in the population?
Ina (pu+ A)-EA, is the first population of size p+ A, A, or u?

What if the population size changes adaptively?

| suggest to prefer FEs over generations if you want to count algorithm steps.
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Runtime

® | suggest to always measure both the consumed FEs and the runtime in milliseconds.
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Runtime

® | suggest to always measure both the consumed FEs and the runtime in milliseconds.

® Anyway, with what we have learned, we can rewrite the two views by choosing a time
measure??:%2

A\ VR TR iy o 7 e e e e WA A TR I T S AT



m < . FENTUORGE s R IS O o IR VI, s A x ALT > boLh L RN . . Bt =

. Runtime i

® | suggest to always measure both the consumed FEs and the runtime in milliseconds.

® Anyway, with what we have learned, we can rewrite the two views by choosing a time
measure??%? e.g:

1. Solution quality reached after a certain number of FEs
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. Runtime

® | suggest to always measure both the consumed FEs and the runtime in milliseconds.

® Anyway, with what we have learned, we can rewrite the two views by choosing a time
measure®®%? e g.:

)
:

1. Solution quality reached after a certain number of FEs
2. Milliseconds needed to reach a certain solution quality

b

SRR A R U \ VR VIR e = e —— e R . U7 | W7 N R G T err Nt AL G . o L e



G R e ol S ang MRS oS e SR S SRS R S S e - LA

¢ Solution Quality
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© @ Common measure of solution quality: Objective function value of best solution discovered.
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¢ Solution Quality

® Common measure of solution quality: Objective function value of best solution discovered.
29,62
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® Rewrite the two views
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¢ Solution Quality

© ® Common measure of solution quality: Objective function value of best solution discovered.

e Rewrite the two views2%02:

1. Best objective function value reached after a certain number of milliseconds
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© e Common measure of solution quality: Objective function value of best solution discovered. ?
® Rewrite the two views??:%%:

1. Best objective function value reached after a certain number of milliseconds P

2. Number of FEs needed to reach a certain objective function value )




Views on Performance

® Which one is the “better” view on performance?
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Views on Performance

® Which one is the “better” view on performance?
1. Best objective function value reached after a certain number of FEs

o
S vertical cut:
solution quality achieved
f within given time
o
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Views on Performance

® Which one is the “better” view on performance?

1. Best objective function value reached after a certain number of FEs
2. Number of FEs needed to reach a certain objective function value

o
S vertical cut:
solution quality achieved
f within given time
o
8 -

horizontal cut:
7 time required to achieve given solution quality
) T
1 10 time in ms 100

1200
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Views on Performance

® Which one is the “better” view on performance?

1. Best objective function value reached after a certain number of FEs
2. Number of FEs needed to reach a certain objective function value

® This question is still debated in research. . .
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- Which view is better?

® Number of FEs needed to reach a certain objective function value
® Preferred by, e.g., the BBOB/COCO benchmark suite®®
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Which view is better?

® Number of FEs needed to reach a certain objective function value
® Preferred by, e.g., the BBOB/COCO benchmark suite®®:

® Measuring the time needed to reach a target function value allows meaningful statements
such as “Algorithm A is two/ten/hundred times faster than Algorithm B in solving this
problem.”
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Which view is better?

® Number of FEs needed to reach a certain objective function value
® Preferred by, e.g., the BBOB/COCO benchmark suite®®:

® Measuring the time needed to reach a target function value allows meaningful statements
such as “Algorithm A is two/ten/hundred times faster than Algorithm B in solving this
problem.”

® However, there is no interpretable meaning to the fact that Algorithm A reaches a function
value that is two/ten/hundred times smaller than the one reached by Algorithm B.
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Which view is better?

® Number of FEs needed to reach a certain objective function value
® Preferred by, e.g., the BBOB/COCO benchmark suite®®:

® Measuring the time needed to reach a target function value allows meaningful statements
such as “Algorithm A is two/ten/hundred times faster than Algorithm B in solving this
problem.”

® However, there is no interpretable meaning to the fact that Algorithm A reaches a function
value that is two/ten/hundred times smaller than the one reached by Algorithm B.

® “Benchmarking Theory Perspective”

7.0
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Which view is better?

® Number of FEs needed to reach a certain objective function value
® Preferred by, e.g., the BBOB/COCO benchmark suite®®:

® Measuring the time needed to reach a target function value allows meaningful statements
such as “Algorithm A is two/ten/hundred times faster than Algorithm B in solving this
problem."”

® However, there is no interpretable meaning to the fact that Algorithm A reaches a function
value that is two/ten/hundred times smaller than the one reached by Algorithm B.

® “Benchmarking Theory Perspective”

® Sometimes problematic: What if one run does not reach the goal quality?

this run does not vertical cut:
reach the horizontal  solution quality achieved
cut (goal quality) within given time

1600 -~ 2000

horizontal cut:
time required to achieve given solution quality
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Which view is better?

® Number of FEs needed to reach a certain objective function value
® Preferred by, e.g., the BBOB/COCO benchmark suite®®:

® Measuring the time needed to reach a target function value allows meaningful statements
such as “Algorithm A is two/ten/hundred times faster than Algorithm B in solving this

problem.”

® However, there is no interpretable meaning to the fact that Algorithm A reaches a function
value that is two/ten/hundred times smaller than the one reached by Algorithm B.
® “Benchmarking Theory Perspective”

® Sometimes problematic: What if one run does not reach the goal quality?

® Then, alternative

PAR108:36

N

measures need to be computed, such as the ERT>*" or PAR2 and

this run does not vertical cut:
reach the horizontal  solution quality achieved
cut (goal quality) within given time

1600 -~ 2000

horizontal cut:
time required to achieve given solution quality

1200
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\ Which view is better?
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® Best objective function value reached after a certain number of FEs
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‘ Which view is better?

\

® Best objective function value reached after a certain number of FEs

e Preferred by many benchmark suites such as®®.
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Which view is better?

® Best objective function value reached after a certain number of FEs

e Preferred by many benchmark suites such as®.

® Practice Perspective: Best results achievable with given time budget wins.
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Which view is better?

Best objective function value reached after a certain number of FEs

Preferred by many benchmark suites such as®°.

® Practice Perspective: Best results achievable with given time budget wins.

This perspective maybe less suitable for scientific benchmarking, but surely is useful in
practice.

- wee



Which view is better?

® Best objective function value reached after a certain number of FEs
® Preferred by many benchmark suites such as®®.
® Practice Perspective: Best results achievable with given time budget wins.

® This perspective maybe less suitable for scientific benchmarking, but surely is useful in
practice.

® “How good is the tour for the TSP that we can find in 5 minutes with our algorithm?"



Which view is better?

® Best objective function value reached after a certain number of FEs
® Preferred by many benchmark suites such as®®.
® Practice Perspective: Best results achievable with given time budget wins.

® This perspective maybe less suitable for scientific benchmarking, but surely is useful in
practice.

® “How good is the tour for the TSP that we can find in 5 minutes with our algorithm?"

e Always well-defined, because vertical cuts can always be reached.
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® No official consensus on which view is “better.”
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® No official consensus on which view is “better.”

® This also strongly depends on the situation.
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Views on Performance

® No official consensus on which view is “better.”
® This also strongly depends on the situation.

® |f we can actually always solve the problem to a “natural” goal quality (e.g., to optimality),
then we should prefer the horizontal cut (time-to-target) method.

f



Views on Performance

No official consensus on which view is “better.” i

This also strongly depends on the situation.

If we can actually always solve the problem to a “natural” goal quality (e.g., to optimality),
then we should prefer the horizontal cut (time-to-target) method. :
If we have clear application requirements specifying a fixed budget, then we should prefer
the fixed-budget approach.



Views on Performance

® No official consensus on which view is “better.”

® This also strongly depends on the situation.

® |f we can actually always solve the problem to a “natural” goal quality (e.g., to optimality),

then we should prefer the horizontal cut (time-to-target) method.

® |f we have clear application requirements specifying a fixed budget, then we should prefer

the fixed-budget approach.
® QOtherwise, the best approach may be: Evaluate algorithm according to both methods.

K
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Views on Performance

® No official consensus on which view is “better.” i
® This also strongly depends on the situation.

e |f we can actually always solve the problem to a “natural” goal quality (e.g., to optimality), *
then we should prefer the horizontal cut (time-to-target) method. :

® |f we have clear application requirements specifying a fixed budget, then we should prefer
the fixed-budget approach.

e Otherwise, the best approach may be: Evaluate algorithm according to both methods.61=%3

® Maybe cast a net of several horizontal and vertical cuts, to get a better picture. ..



Determining Target Values

® How to determine the right maximum FEs or target function values?
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Determining Target Values

® How to determine the right maximum FEs or target function values?
1. from the constraints of a practical application
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Determining Target Values

® How to determine the right maximum FEs or target function values?

1. from the constraints of a practical application
2. from studies in literature regarding similar or the same problem
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Determining Target Values

® How to determine the right maximum FEs or target function values?

1. from the constraints of a practical application
2. from studies in literature regarding similar or the same problem
3. from simple or well-known algorithms
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Determining Target Values

® How to determine the right maximum FEs or target function values?
1. from the constraints of a practical application
2. from studies in literature regarding similar or the same problem
3. from simple or well-known algorithms
4. from experience
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Determining Target Values

® How to determine the right maximum FEs or target function values?

1. from the constraints of a practical application

from studies in literature regarding similar or the same problem
from simple or well-known algorithms

from experience

from prior, small-scale experiments
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Determining Target Values

® How to determine the right maximum FEs or target function values?

1. from the constraints of a practical application

from studies in literature regarding similar or the same problem
from simple or well-known algorithms

from experience

from prior, small-scale experiments

based on known results or well-accepted bounds
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Statistical Measures




Problem Instances and Randomized Algorithms

® For each optimization problem (like the TSP) there are several instances (e.g., different
sets of cities that need to be visited).
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® We always must use multiple different problem instances to get reliable results.
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® We always must use multiple different problem instances to get reliable results.

® Performance indicators need to be computed for each instance and also summarized over
several instances.
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® For each optimization problem (like the TSP) there are several instances (e.g., different
sets of cities that need to be visited).

® Some instances will be easy, some will be hard.

® We always must use multiple different problem instances to get reliable results.

® Performance indicators need to be computed for each instance and also summarized over
several instances.

® Special situation: Randomized Algorithms:
® Performance values cannot be given as an “absolute” value!

® 1 run = 1 application of an optimization algorithm to a problem, runs are independent from
all prior runs.
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Problem Instances and Randomized Algorithms

® For each optimization problem (like the TSP) there are several instances (e.g., different
sets of cities that need to be visited).

® Some instances will be easy, some will be hard.
® We always must use multiple different problem instances to get reliable results.
® Performance indicators need to be computed for each instance and also summarized over
several instances.
® Special situation: Randomized Algorithms:
® Performance values cannot be given as an “absolute” value!

® 1 run = 1 application of an optimization algorithm to a problem, runs are independent from
all prior runs.

® Results can be different for each run!
® Executing a randomized algorithm one time does not give reliable information.



Problem Instances and Randomized Algorithms

® For each optimization problem (like the TSP) there are several instances (e.g., different
sets of cities that need to be visited).
® Some instances will be easy, some will be hard.
® We always must use multiple different problem instances to get reliable results.
® Performance indicators need to be computed for each instance and also summarized over
several instances.

® Special situation: Randomized Algorithms:

® Performance values cannot be given as an “absolute” value!

® 1 run = 1 application of an optimization algorithm to a problem, runs are independent from
all prior runs.

® Results can be different for each run!

® Executing a randomized algorithm one time does not give reliable information.

® Statistical evaluation over sets of runs necessary.
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. Important Distinction

® Crucial Difference: distribution and sample

® A sample is what we measure.
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- Important Distinction

® Crucial Difference: distribution and sample

® A sample is what we measure.
e Adistribution is the asymptotic result of the ideal process.
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. Important Distinction

® Crucial Difference: distribution and sample

e A distribution is the asymptotic result of the ideal process.

® A sample is what we measure. !
® Statistical parameters of the distribution can be estimated from a sample. l
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. Important Distinction

.l ees

® Crucial Difference: distribution and sample

A sample is what we measure.

A distribution is the asymptotic result of the ideal process.

Statistical parameters of the distribution can be estimated from a sample.
Example: Dice Throw
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. Important Distinction

® Crucial Difference: distribution and sample

® A sample is what we measure.

A distribution is the asymptotic result of the ideal process.

Statistical parameters of the distribution can be estimated from a sample.
Example: Dice Throw
How likely is it to roll a 1, 2, 3, 4, 5, or 67
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. Important Distinction

1 b 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

# throws number (1) f(2) f(3) f(4) f(5) f(6) l
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b

»

3




T 00D L VR SRS e e AR RN TN R - &
. Important Distinction

# throws number  f(1) f(2) f(3) f(4) f(5) f(6)
1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
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. Important Distinction

# throws number  f(1) f(2) f(3) f(4) f(5) f(6)
1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
P 3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
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- Important Distinction

# throws number  f(1) f(2) f(3) f(4) f(5) f(6)
1 ) 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
P 3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
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Important Distinction

# throws number (1) f(2) f(3) f(4) f(5) f(6)
1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
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Important Distinction

# throws

number

f(1)

f(2)

f(3)

f(4)

)

f(6)

SO WN

5
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0.0000
0.0000
0.3333
0.2500
0.2000
0.1667

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.2000
0.3333

0.0000
0.5000
0.3333
0.5000
0.4000

0.3333

1.0000
0.5000
0.3333
0.2500
0.2000
0.1667

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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# throws

number

f(1)

f(2)

f(3)

f(4)

f5)

f(6)

e
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0.0000
0.0000
0.3333
0.2500
0.2000
0.1667
0.1429
0.2500
0.2222
0.2000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429
0.1250
0.1111
0.2000

0.0000
0.0000
0.0000
0.0000
0.2000
0.3333
0.2857
0.2500
0.2222
0.2000

0.0000
0.5000
0.3333
0.5000
0.4000
0.3333
0.2857
0.2500
0.3333
0.3000

1.0000
0.5000
0.3333
0.2500
0.2000
0.1667
0.1429
0.1250
0.1111
0.1000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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# throws number  f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000

3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000

i 4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
. 5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
: 6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
i s 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
E 8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
| 9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000
i 10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909

12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833
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Important Distinction
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# throws number  f(1) f(2) f(3) f(4) f(5) f(6)
1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
s 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000
10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909
12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833
100 0.1900 0.2100 0.1500 0.1600 0.1200 0.1700
1'000 0.1700 0.1670 0.1620 0.1670 0.1570 0.1770
10'000 0.1682 0.1699 0.1680 0.1661 0.1655 0.1623
100'000 0.1671 0.1649 0.1664 0.1676 0.1668 0.1672
1'000'000 0.1673 0.1663 0.1662 0.1673 0.1666 0.1664
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# throws number  f(1) f(2) f(3) f(4) f(5) f(6)
1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
s 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000
10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909
12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833
100 0.1900 0.2100 0.1500 0.1600 0.1200 0.1700
1'000 0.1700 0.1670 0.1620 0.1670 0.1570 0.1770
10'000 0.1682 0.1699 0.1680 0.1661 0.1655 0.1623
100'000 0.1671 0.1649 0.1664 0.1676 0.1668 0.1672
1'000'000 0.1673 0.1663 0.1662 0.1673 0.1666 0.1664
10'000'000 0.1667 0.1667 0.1666 0.1668 0.1667 0.1665
100'000'000 0.1667 0.1666 0.1666 0.1667 0.1667 0.1667
1'000'000'000 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
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Important Distinction

Crucial Difference: distribution and sample

A sample is what we measure.

A distribution is the asymptotic result of the ideal process.

Statistical parameters of the distribution can be estimated from a sample.
Example: Dice Throw

How likely is it to roll a 1, 2, 3, 4, 5, or 67

All statistically determined parameters are just estimates based on measurements.

- v
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Important Distinction

® Crucial Difference: distribution and sample

® A sample is what we measure.

e A distribution is the asymptotic result of the ideal process.
E ® Statistical parameters of the distribution can be estimated from a sample.
b ® Example: Dice Throw
:‘ ® How likely isittoroll a1, 2, 3, 4, 5, or 67
't‘ o All statistically determined parameters are just estimates based on measurements.

® The parameters of a random process cannot be measured directly, but only be estimated
from multiple measures.
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Measures of the Average

® Assume that we have obtained a sample A = (ag, a1,
experiment.

.., an—1) of n observations from an
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Average

® Assume that we have obtained a sample A = (ag,as,...,a,—1) of n observations from an
experiment, e.g., we have measured the qualities a; of the best discovered solutions of
n = 101 independent runs of an optimization algorithm.
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Measures of the Average

® Assume that we have obtained a sample A = (ag,as,...,a,—1) of n observations from an
experiment, e.g., we have measured the qualities a; of the best discovered solutions of
n = 101 independent runs of an optimization algorithm.

® \We usually want to reduce this set of numbers to a single value which can give us an
impression of what the “average outcome” (or result quality is).
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Measures of the Average

® Assume that we have obtained a sample A = (ag,as,...,a,—1) of n observations from an
experiment, e.g., we have measured the qualities a; of the best discovered solutions of
n = 101 independent runs of an optimization algorithm.

| ® \We usually want to reduce this set of numbers to a single value which can give us an
# impression of what the “average outcome” (or result quality is).

® Three of the most common options for doing so, for estimating the “center” of a
distribution, are the arithmetic mean, the median, and the geometric mean.




Arithmetic Mean

Definition: Arithmetic Mean

The arithmetic mean mean(A) is an estimate of the expected value of a distribution from
which a dataset was sampled.
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Arithmetic Mean

Definition: Arithmetic Mean

The arithmetic mean mean(A) is an estimate of the expected value of a distribution from
which a dataset was sampled. It is computed on data sample A = (ag,a1,...,an-1)
as the sum of all n elements a; in the sample data A divided by the total number n of
values.
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Arithmetic Mean

Definition: Arithmetic Mean

The arithmetic mean mean(A) is an estimate of the expected value of a distribution from
which a dataset was sampled. It is computed on data sample A = (ag,a1,...,an-1)
as the sum of all n elements a; in the sample data A divided by the total number n of
values.

1 n—1
mean(A4) = - Z a; (1)
1=0
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Sample Median

Definition: Median

The median median(A) is the value separating the bigger-valued half from the smaller-
valued half of a data sample.

4
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Sample Median
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Definition: Median

The median median(A) is the value separating the bigger-valued half from the smaller-
valued half of a data sample. Its estimate is the value right in the middle of a sorted data
sample A = (ag,a1,...,an—1) where a;_1 <a;Viel...(n—1).
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Definition: Median

The median median(A) is the value separating the bigger-valued half from the smaller-
valued half of a data sample. Its estimate is the value right in the middle of a sorted data
sample A = (ag,a1,...,an—1) where a;_1 <a;Viel...(n—1).

dian(A) (n if n is odd
median(A) =
3 (23-11+az) otherwise

ifa_1<a;Viel...(n—1) (2)
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Outliers

E ® Sometimes the data contains outliers2643.
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Outliers

® Sometimes the data contains outliers
the other measurements.

26,43

, i.e., observations which are much different from
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Outliers

e Sometimes the data contains outliers?®#3, i.e., observations which are much different from
the other measurements.

® They may represent measurement errors or observations which have been been disturbed
by unusual effects.
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Outliers

26,43

® Sometimes the data contains outliers , i.e., observations which are much different from

the other measurements.

® They may represent measurement errors or observations which have been been disturbed
by unusual effects.

® For example, maybe the operating system was updating itself during a run of one of our
algorithms and, thus, took away some of the computation budget.



Outliers

® For example, maybe the operating system was updating itself during a run of one of our

J algorithms and, thus, took away some of the computation budget.
? ® In my experiments here, there are sometimes outliers in the time that it takes to create
: and evaluate the first candidate solution.
f . ) A .
outliers in terms of the time needed for the first yn4
§ | function evaluation (FE): Normally, the first FE i
o completes in less than 1ms, but in very few of
g the runs it needs more than 2ms, sometimes even
Q7 10ms! This may be because of scheduling or other
OS issues and does not reflect the normal behavior
] f the algorithm implementation
3 0 g p .
o
o
©
time in ms
1 10 100 1000 10000 100000
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Outliers

® For example, maybe the operating system was updating itself during a run of one of our
algorithms and, thus, took away some of the computation budget.

® |In my experiments here, there are sometimes outliers in the time that it takes to create
and evaluate the first candidate solution.

® But outliers are actually important. So | say this right now. | will also say it again later.
But | am afraid that you may tune out during the following example. So remember:
Outliers are important. Anyway. ..
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Example for Data Samples w/o Outlier

® Two sets of data samples A and B with n, = ny = 19 values.

A
B

(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10, 11, 12, 14)
(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11, 12, 10'008)
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Example for Data Samples w/o Outlier

® Two sets of data samples A and B with n, = ny = 19 values.

A = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11, 12, 14)
B = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10'008)

® \We find that

D e R T T T e ey, Tl LR e
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Example for Data Samples w/o Outlier

® Two sets of data samples A and B with n, = ny = 19 values.

A = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12, 14) H

B = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12 10'008) !

e We find that |

o mean(A):le bt =2=7 3

)

]

j
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Example for Data Samples w/o Outlier
® Two sets of data samples A and B with n, = ny = 19 values.
A = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11, 12, 14)

1 B = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10°008) j
f |
; ® We find that i
; * mean(4) = & Zio a;=22=7and -
_ ® mean(B) = % Z;io b; = % =558 i
5

;
: :
; §
:

)
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Example for Data Samples w/o Outlier ‘

® Two sets of data samples A and B with n, = ny = 19 values.

= (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12, 14)

A
B = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12, 10'008) |

e ||y

® We find that
® mean(A 15 Zl 0 a;=22=7and

=
* mean(B) = & Z = 10 127 — 553, while
® median(A) = ag =
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Example for Data Samples w/o Outlier

® Two sets of data samples A and B with n, = ny = 19 values.

A = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12, 14)
B = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12 10'008) f
® \We find that 5
® mean(A) = 1921 0 i:133—7and 8
* mean(B) = & S0 = 10 127 — 553, while
® median(A) = 9 = 6 and 5
® median(B) = ¢
.
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Example for Data Samples w/o Outlier

® Two sets of data samples A and B with n, = ny = 19 values.

A = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11, 12, 14)
B = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10'008)

® We find that
'mean()—lgzloizlﬁ—?and
* mean(B) = & S0 = 10 127 — 553, while
® median(A) = a9 =6 and
® median(B) = bg = 6.

® The median is not affected by the outliers.
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Example for Data Samples w/o Outlier

® Two sets of data samples A and B with n, = ny = 19 values.

A = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12, 14)
B = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10'008)

® We find that
® mean(A) = 1921 0ai =22 =7and

* mean(B) = & S0 = 10 127 — 553, while
® median(A) = a9 =6 and
® median(B) = bg = 6.

® The median is not affected by the outliers.

£}

.. it gives us a completely wrong impression.

© ® mean(B) = 553 is a value completely different from anything that actually occurs in B. ..

©NR oD L L

E
;
E
r-



Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing.
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results.
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?

1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.

| P SR N YRR o M R T T L ] | i — P ——t. . BR



e e I

Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.
2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.
2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

® |nstead, most likely there could be
® bugs in our code!
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?

1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.

2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

® |nstead, most likely there could be
® bugs in our code!

® Bugs in our code are the most important number one reason for outliers!
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.
2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

® |nstead, most likely there could be
® bugs in our code!

® Bugs in our code are the most important number one reason for outliers!
® VYes, also in your code! (Btw: Please use unit test?®*!:¢))
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?

1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.

2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

® |nstead, most likely there could be
® bugs in our code!

® Bugs in our code are the most important number one reason for outliers!
® VYes, also in your code! (Btw: Please use unit test?*>1%° )

® Or: bad (but rare) worst-case behaviors of our algorithm!
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?

1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.

2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

® |nstead, most likely there could be
® bugs in our code!

® Bugs in our code are the most important number one reason for outliers!
® VYes, also in your code! (Btw: Please use unit test?*>1%° )

® Or: bad (but rare) worst-case behaviors of our algorithm!

Imagine that:

PR, L P TR oy AR NN
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.
2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

’ ® |nstead, most likely there could be
® bugs in our code!

S

® Bugs in our code are the most important number one reason for outliers!
® VYes, also in your code! (Btw: Please use unit test?®*!:¢))

- 4

® Or: bad (but rare) worst-case behaviors of our algorithm!

Imagine that: Your algorithm can actually solve the TSP or Maximum Satisfiability
(MaxSAT) problem in polynomial time on 90% of all instances. ..
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.
2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

. Instead, most likely there could be
® bugs in our code!

| ® Bugs in our code are the most important number one reason for outliers!
N ® Yes, also in your code! (Btw: Please use unit test45’51'56.)

® Or: bad (but rare) worst-case behaviors of our algorithm!
J Imagine that: Your algorithm can actually solve the TSP or Maximum Satisfiability

(MaxSAT) problem in polynomial time on 90% of all instances. .. ...but on 10%, it
needs exponential time.
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.
2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
_ effects that could mess up our results!
. Instead, most likely there could be
® bugs in our code!

| ® Bugs in our code are the most important number one reason for outliers!
N ® Yes, also in your code! (Btw: Please use unit test45’51'56.)

® Or: bad (but rare) worst-case behaviors of our algorithm!

il d

Imagine that: Your algorithm can actually solve the TSP or Maximum Satisfiability
(MaxSAT) problem in polynomial time on 90% of all instances. .. ...but on 10%, it
needs exponential time. If you just look at the median runtime, you may think you
discovered something awesome.
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Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?

1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.
2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
_ effects that could mess up our results!
. Instead, most likely there could be
® bugs in our code!
1 ® Bugs in our code are the most important number one reason for outliers!
h ® VYes, also in your code! (Btw: Please use unit test?®*!:¢))
® Or: bad (but rare) worst-case behaviors of our algorithm!
J Imagine that: Your algorithm can actually solve the TSP or Maximum Satisfiability
: (MaxSAT) problem in polynomial time on 90% of all instances. .. ...but on 10%, it
needs exponential time. If you just look at the median runtime, you may think you
discovered something awesome. Actually, this is quite common. ..
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Outliers can be important!

e |f you i
46 Hoos and Stiitzle ) i
1. Tl iing. This
co ‘ T ‘ " aten =
A'XA25 - -
2. Ul 10406 |- = 1 To406 [b0KR0 = = e f, or the
. . .
ok ‘ . oec © tside”
100000 [ - 100000 5
eﬂ 3 ;E? e g
10000 - i R " o000 I 22 - =
® |nstead e Lo e
° 1000 f- 1000 - = \
bu -
100 100
50 100 1?‘7 200 250 50 100 1i0 200 250 .
| Figure 17. Left: Scaling of instance hardness with problem size for WalkSAT, approx. optimal noise,
* O applied to Random-3-SAT test-sets. Right: Functional approximations of median and 0.98 percentile;
the median seems to grow polynomially with » while the 0.98 percentile clearly shows exponential B
| growth. |||ty

( /\/\/\/\/\/\/\/\/\/\/\’\/\/\/\/\/\/\/\/\/\/\ '

I you

¢ (Taken from the paper “Local Search Algorithms for SAT: An Empirical
Evaluation” by Hoos and Stiitzle, coloring added manually®?.)

I =k & Ay ST

| P R G VRl ST S R o LT B wil i im— I ————— A B WY



Outliers can be important!

® |f you think about it, where could outliers in our experiments come from?
1. The operating systems scheduling or other strange effects could mess with our timing. This
could cause worse results. But usually this is already it.
2. Unless your objective function is noisy, e.g., if you measure some physical quantity, or the
objective function involves randomized simulations, there are hardly any other “outside”
effects that could mess up our results!

. Instead, most likely there could be
® bugs in our code!

| ® Bugs in our code are the most important number one reason for outliers!
N ® Yes, also in your code! (Btw: Please use unit test45’51'56.)

® Or: bad (but rare) worst-case behaviors of our algorithm!

il d

Imagine that: Your algorithm can actually solve the TSP or Maximum Satisfiability
(MaxSAT) problem in polynomial time on 90% of all instances. .. ...but on 10%, it
needs exponential time. If you just look at the median runtime, you may think you
discovered something awesome. Actually, this is quite common. ..

® Thus, we may actually want that outliers influence our statistics. . .
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Geometric Mean

OK, arithmetic mean, median ...

but what about the geometric mean?
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Geometric Mean

OK, arithmetic mean, median ... but what about the geometric mean?

Definition: Geometric Mean

The geometric mean geom(A) is the nt" root of the product of n positive values.
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Geometric Mean

OK, arithmetic mean, median ... but what about the geometric mean?

Definition: Geometric Mean

The geometric mean geom(A) is the nt" root of the product of n positive values.




Geometric Mean

OK, arithmetic mean, median ... but what about the geometric mean?

N Definition: Geometric Mean

The geometric mean geom(A) is the nt" root of the product of n positive values.

geom(A) =

geom(A) =
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e Often, our data is somehow normalized.
® |et's say we solve the problem instances I to I3 with the different algorithms A; to As.
® \We measure the required runtimes as follows:
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Normalized Data

e Often, our data is somehow normalized.
® |et's say we solve the problem instances I to I3 with the different algorithms A; to As.
® \We measure the required runtimes as follows:

I 10 s 20 s
I 20 s 40 s
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Normalized Data

e Often, our data is somehow normalized.
® |et's say we solve the problem instances I to I3 with the different algorithms A; to As.
® \We measure the required runtimes as follows:

. A A Az |
) b = S R0 00, o AN |
: I 20s 40 s 10s ;
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Normalized Data

e Often, our data is somehow normalized.
® \We measure the required runtimes as follows:
® The arithmetic mean values are the same.

Ay A Az
I 10 s 20 s 40 s
I 20 s 40 s 10 s
I3 40 s 10 s 20 s

mean: 23.33s 2333s 23.33s




Normalized Data

e Often, our data is somehow normalized.
® The arithmetic mean and the median values are the same.

Ay A Az
I 10s 20 s 40 s ‘
I 20 s 40 s 10 s :
I3 40 s 10 s 20 s

mean: 23.33s 23.33s 2333 s ;
median: 20.00s 20.00s 20.00s ‘




Normalized Data

e Often, our data is somehow normalized.
® The arithmetic mean, the median, and the geometric mean values are the same.

Ay A Az

10s 20 s 40 s

20 s 40 s 10 s

I3 40 s 10 s 20 s

™,
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Normalized Data

e Often, our data is somehow normalized.

® The arithmetic mean, the median, and the geometric mean values are the same.

® \We can conclude that the three algorithms offer the same performance in average over
these benchmark instances.
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e Often, our data is somehow normalized.

e But often the measured numbers “look messier’ and are harder to compare at first glance.

® So often we want to normalize them by picking one algorithm as “standard” and dividing
them by its measurements.
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Normalized Data

e Often, our data is somehow normalized.

But often the measured numbers “look messier’ and are harder to compare at first glance.
So often we want to normalize them by picking one algorithm as “standard” and dividing
them by its measurements.

Let's say A; was a well-known heuristic, maybe we even took its results from a paper, and
we want to use it as baseline for comparison and normalize our data by it.

Ay As Aj

I 10 s 20 s 40 s

I 20 s 40 s 10 s

: Tax &0 A0 SRRSO NG 078
c mean: 23.33s 23.33s 2333s
: median: 20.00s 20.00s 20.00 s
! geom: 20.00s 20.00s 20.00s
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Normalized Data

e Often, our data is somehow normalized.

® So often we want to normalize them by picking one algorithm as “standard” and dividing
them by its measurements.

® Let's say A; was a well-known heuristic, maybe we even took its results from a paper, and
we want to use it as baseline for comparison and normalize our data by it.

Aq Ay Aj

I 10 s 20 s 40 s

I 20 s 40 s 10 s

Iy 40 s 10s 20 s :

mean: 23.33s 23.33s 2333s E
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s
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Normalized Data

e Often, our data is somehow normalized.

® Let's say A; was a well-known heuristic, maybe we even took its results from a paper, and
we want to use it as baseline for comparison and normalize our data by it.

® OK, so we get this table with normalized values, which allow us to make sense of the data
at first glance.

Ay A As Ay SRS
I 10s 20 s 40 s I; 1.00 2.00 4.00
I 20s 40 s 10 s I, 1.00 2.00 0.50
I3 40 s 10 s 20s I3 1.00 0.25 0.50

mean: 23.33s 2333s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s




Normalized Data

o Often, our data is somehow normalized.

® OK, so we get this table with normalized values, which allow us to make sense of the data

at first glance.

¢ |f we now compute the arithmetic mean

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

Aq As Az

I; 1.00 2.00 4.00

I, 1.00 200 0.50

I3 1.00 0.25 0.50
mean: 1.00 1.42 1.67
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Normalized Data

o Often, our data is somehow normalized.

® OK, so we get this table with normalized values, which allow us to make sense of the data

at first glance.

e |f we now compute the arithmetic mean, then A7 is best

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s
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Normalized Data

o Often, our data is somehow normalized.

® OK, so we get this table with normalized values, which allow us to make sense of the data

at first glance.

e |f we now compute the arithmetic mean, then A7 is best and A3 looks worst.

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

Aq As Az

Iy 1.00 2.00 4.00

I, 1.00 200 0.50

I3 1.00 0.25 0.50
mean: 1.00 1.42 1.67




Normalized Data

o Often, our data is somehow normalized.

® OK, so we get this table with normalized values, which allow us to make sense of the data

at first glance.

e |f we now compute the arithmetic mean, then A7 is best and A3 looks worst.

® According to the median

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

Aq As Az

I; 1.00 2.00 4.00

I, 100 200 0.50

I3 1.00 0.25 0.50
mean: 1.00 1.42 1.67
median: 1.00 2.00 0.50
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Normalized Data

® Often, our data is somehow normalized.

® |f we now compute the arithmetic mean, then A; is best and A3 looks worst.
® According to the median, A3 is best

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

I
1>
I3

Ay
1.00
1.00
1.00

A
2.00
2.00
0.25

mean:
median:

1.00
1.00

1.42
2.00
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Normalized Data

® Often, our data is somehow normalized.

® |f we now compute the arithmetic mean, then A; is best and A3 looks worst.

® According to the median, A3 is best and Aj; is worst!

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

Aq As Az

Iy 1.00 2.00 4.00

I, 1.00 200 0.50

I3 1.00 0.25 0.50
mean: 1.00 1.42 1.67
median: 1.00 2.00 0.50

T VL




Normalized Data

® Often, our data is somehow normalized.

® |f we now compute the arithmetic mean, then A; is best and A3 looks worst.

® According to the median, A3 is best and Aj; is worst!

® Only the geometric mean still indicates that the algorithms perform the same. ..
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I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

Aq As Az

I; 1.00 2.00 4.00

I 1.00 2.00 0.50

I3 1.00 0.25 0.50
mean: 1.00 1.42 1.67
median: 1.00 2.00 0.50
geom: 1.00 1.00 1.00




Normalized Data

e Often, our data is somehow normalized.

® Hm.

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 2333s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

Aq As Az

I; 1.00 2.00 4.00

I 1.00 2.00 0.50

I3 1.00 0.25 0.50
mean: 1.00 1.42 1.67
median: 1.00 2.00 0.50
geom: 1.00 1.00 1.00
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Normalized Data

e Often, our data is somehow normalized.

e Hm. OK, then let's normalize using the results of A, instead.

I 10 s 20 s 40 s
I 20 s 40 s 10 s

o Ay As ’
: T 5 g0 o ClioNG ¥ 201 ﬁ

mean: 23.33s 23.33s 23.33s
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Normalized Data

e Often, our data is somehow normalized.

e Hm. OK, then let's normalize using the results of A, instead.

® OK, so we get this table with normalized values.

Aq Ay Az
I 10 s 20 s 40 s I
I 20 s 40 s 10 s I
I3 40 s 10 s 20 s I3

Ay
0.50
0.50
4.00

A
1.00
1.00
1.00

mean: 23.33s 23.33s 23.33s
median: 20.00s 20.00s 20.00s

geom: 20.00s 20.00s 20.00s
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Normalized Data

e Often, our data is somehow normalized.

® OK, so we get this table with normalized values.

® |f we now compute the arithmetic mean

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s
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Normalized Data

e Often, our data is somehow normalized.

® OK, so we get this table with normalized values.

® |f we now compute the arithmetic mean, then A, is best

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s
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A
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1.00
1.00

mean:

1.67

1.00

T YR ey 0000 T s




Normalized Data

e Often, our data is somehow normalized.

® OK, so we get this table with normalized values.

® |f we now compute the arithmetic mean, then A, is best and A; looks worst.

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

I
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4.00

A
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Normalized Data

e Often, our data is somehow normalized.
® OK, so we get this table with normalized values.
® |f we now compute the arithmetic mean, then A, is best and A; looks worst.

® According to the median

Ay A Az A1 S
i I 10s 20 s 40 s I; 050 1.00 2.00
)2 20s 40 s 10s L, 050 1.00 025
S I3 40 s 10 s 20 s I3 400 1.00 2.00
¢ mealii, 29895 20,90 d3.33 S mean: 1.67 1.00 1.42
median: 20.00s 20.00s 20.00s median: 0.50 1.00 2.00

geom: 20.00s 20.00s 20.00s




Normalized Data

e Often, our data is somehow normalized.

® |f we now compute the arithmetic mean, then A, is best and A; looks worst.

® According to the median, A; is best
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Normalized Data

e Often, our data is somehow normalized.

® |f we now compute the arithmetic mean, then A, is best and A; looks worst.

® According to the median, A; is best and Az is worst!

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

¢ I3 40 s 10 s 20 s
4 mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s

geom: 20.00s 20.00s 20.00s

I
1>
I3

Ay
0.50
0.50
4.00

A
1.00
1.00
1.00

mean:
median:

1.67
0.50

1.00
1.00

Y T T T

e YR, N




3
X
:
:
&
3
i
]

Normalized Data

Often, our data is somehow normalized.

If we now compute the arithmetic mean, then A, is best and A; looks worst.

According to the median, A; is best and A3 is worst!

Only the geometric mean still indicates that the algorithms perform the same. ..

Aq Ay Az

I 10 s 20 s 40 s

I 20 s 40 s 10 s

I3 40 s 10 s 20 s
mean: 23.33s 23.33s 2333s
median: 20.00s 20.00s 20.00s
geom: 20.00s 20.00s 20.00s

A1 1’12 A3

I; 050 1.00 2.00

I, 050 1.00 0.25

Is 400 1.00 2.00
mean: 1.67 1.00 1.42
median: 050 1.00 2.00
geom: 1.00 1.00 1.00
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The geometric mean is the only meaningful average if we have normalized data!®*

® And we very often have normalized data.

® For example, at least half of the papers on the Job Shop Scheduling Problem (JSSP)
normalize the result qualities they obtain on benchmark instances with the Best Known
Solutions (BKSes).




Normalized Data

Often, our data is somehow normalized.

The geometric mean is the only meaningful average if we have normalized data!®*

And we very often have normalized data.

For example, at least half of the papers on the Job Shop Scheduling Problem (JSSP)
normalize the result qualities they obtain on benchmark instances with the Best Known
Solutions (BKSes) and then compute the arithmetic mean.
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Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none

report geometric means.
® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.
® \We therefore want to know both the arithmetic mean and the median:
® |f the arithmetic mean is much worse than the median, then
® maybe we have a bug in our code that only sometimes has an impact or
® our algorithm has a bad worst-case behavior (which is also good to know).
® |f the median is much worse than the mean, then the mean is too optimistic, i.e., most of the
time we should expect worse results.
e |f there are outliers, the value of the arithmetic mean itself may be very different from any
actually observed value, while the median is (almost always) similar to some actual

measurements.



Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none
report geometric means.

® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.

® \We therefore want to know both the arithmetic mean and the median.



Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none
report geometric means.

® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.

® \We therefore want to know both the arithmetic mean and the median.
e Often, our data is implicitly or explicitly normalized.



Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none
report geometric means.
® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.
® \We therefore want to know both the arithmetic mean and the median.
e Often, our data is implicitly or explicitly normalized, e.g.,
® if we divide result qualities by results of well-known heuristics or BKSes or



Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none
report geometric means.

® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.

® \We therefore want to know both the arithmetic mean and the median.

e Often, our data is implicitly or explicitly normalized, e.g.,

® if we divide result qualities by results of well-known heuristics or BKSes or
® if we normalize the runtime using another algorithm as standard.



Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none
report geometric means.
® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.
® \We therefore want to know both the arithmetic mean and the median.
e Often, our data is implicitly or explicitly normalized, e.g.,
® if we divide result qualities by results of well-known heuristics or BKSes or
® if we normalize the runtime using another algorithm as standard.
® Then, the arithmetic mean and median can be very misleading and the geometric mean
must be computed.



Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none
report geometric means.

® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.

® \We therefore want to know both the arithmetic mean and the median.

e Often, our data is implicitly or explicitly normalized, e.g.,

® if we divide result qualities by results of well-known heuristics or BKSes or
® if we normalize the runtime using another algorithm as standard.

® Then, the arithmetic mean and median can be very misleading and the geometric mean
must be computed.

® | think: On raw data, compute all three measures of average, and pay special attention to
the one looking the worst.



Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none
report geometric means.

® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.

® \We therefore want to know both the arithmetic mean and the median.

e Often, our data is implicitly or explicitly normalized, e.g.,

® if we divide result qualities by results of well-known heuristics or BKSes or
® if we normalize the runtime using another algorithm as standard.

® Then, the arithmetic mean and median can be very misleading and the geometric mean
must be computed.

® | think: On raw data, compute all three measures of average, and pay special attention to
the one looking the worst. On normalized data, compute the geometric mean.



Arithmetic Mean vs. Median vs. Geometric Mean

® Most publications report arithmetic mean results, many report median results, almost none
report geometric means.

® The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.
® \We therefore want to know both the arithmetic mean and the median.
e Often, our data is implicitly or explicitly normalized, e.g.,
® if we divide result qualities by results of well-known heuristics or BKSes or
® if we normalize the runtime using another algorithm as standard.
® Then, the arithmetic mean and median can be very misleading and the geometric mean
must be computed.
® | think: On raw data, compute all three measures of average, and pay special attention to
the one looking the worst. On normalized data, compute the geometric mean, but also
consider the arithmetic mean and median if and only if they make your algorithm look
worse.



Measures of the Spread

® The average gives us a good impression about the central value or location of a
distribution.
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Measures of the Spread

® The average gives us a good impression about the central value or location of a
distribution.

® |t does not tell us much about the range of the data.
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Measures of the Spread

® The average gives us a good impression about the central value or location of a
distribution.

® |t does not tell us much about the range of the data.

® We do not know whether the data we have measured is very similar to the median or
whether it may differ very much from the mean.
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Measures of the Spread

® The average gives us a good impression about the central value or location of a
distribution.

® |t does not tell us much about the range of the data.

® We do not know whether the data we have measured is very similar to the median or
whether it may differ very much from the mean.

® An average alone is not very meaningful — if we known nothing about the range of the
data.
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Measures of the Spread

® The average gives us a good impression about the central value or location of a
distribution.

® |t does not tell us much about the range of the data.

® We do not know whether the data we have measured is very similar to the median or
whether it may differ very much from the mean.

® An average alone is not very meaningful — if we known nothing about the range of the
data.

® We can therefore compute a measure of dispersion, i.e., a value that tells us whether the
observations are stretched and spread far or squeezed tight around the center.



Sample Variance

Definition: Variance

The variance of a distribution is the expectation of the squared deviation of the underlying
i random variable from its expected value.




Sample Variance

Definition: Variance

The variance of a distribution is the expectation of the squared deviation of the underlying
random variable from its expected value.

=
i
4

Definition: Sample Variance

The variance var(A) of a data sample A = (ag,as,...,a,—1) with n observations can
be estimated as:

1 n—1 ) 1 n—1 1 n—1 2
var(A) = ] (a; — mean(A))® = ] (Z af) - <Z ai>
j i=0

1=0

Wﬂlﬂ'u‘e Bty
|
i

e e e e e
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Standard Deviation

The standard deviation sd(A) of a data sample A = (ag, a1, ...,an—1) with n observa-
tions is the square root of the estimated variance var(A).

sd(A) =/ var(A)

e JFE . & S = " e

2
Definition: Sample Standard Deviation I
b
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Standard Deviation

® Small standard deviations indicate that the observations tend to be similar to the mean.
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Standard Deviation

® Small standard deviations indicate that the observations tend to be similar to the mean.

® | arge standard deviations indicate that they tend to be far from the mean.
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Standard Deviation

® Small standard deviations indicate that the observations tend to be similar to the mean.
® | arge standard deviations indicate that they tend to be far from the mean.

® Small standard deviations in optimization results and runtime indicate that the algorithm
is reliable.
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Standard Deviation

Small standard deviations indicate that the observations tend to be similar to the mean.

Large standard deviations indicate that they tend to be far from the mean.

Small standard deviations in optimization results and runtime indicate that the algorithm
is reliable.

Large standard deviations indicate unreliable algorithms.
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Standard Deviation

Small standard deviations indicate that the observations tend to be similar to the mean.

Large standard deviations indicate that they tend to be far from the mean.

Small standard deviations in optimization results and runtime indicate that the algorithm
is reliable.

Large standard deviations indicate unreliable algorithms, but may also offer a potential
that could be exploited.
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Standard Deviation

® Small standard deviations indicate that the observations tend to be similar to the mean.
® | arge standard deviations indicate that they tend to be far from the mean.

® Small standard deviations in optimization results and runtime indicate that the algorithm
is reliable.

® |arge standard deviations indicate unreliable algorithms, but may also offer a potential
that could be exploited: Given enough time, we can restart algorithms several times and
expect to get different (and thus sometimes better) solutions.

BT TR
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Quantiles

Definition: Sample Quantile

where a;—1 < a; Vi € 1...(n — 1) into ¢ equally-sized parts.

The g-quantiles are the cut points that divide a sorted data sample A = (ag, a1, . .

o) an—l)
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Quantiles

Definition: Sample Quantile

The g-quantiles are the cut points that divide a sorted data sample A = (ag,a1,...,an-1) ‘
where a;—1 < a; Vi € 1...(n — 1) into g equally-sized parts. quantile’;(A) be the
kth g-quantile, with k € 1...(q — 1), i.e., there are ¢ — 1 of the g-quantiles.

h = (n—l)g

.k _ ap if h is integer
QHantlleq(A) - { ajn) + (h o LhJ) - (aLhJ—i—l _ aLhJ) U
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Quantiles

Definition: Sample Quantile

The g-quantiles are the cut points that divide a sorted data sample A = (ag,a1,...,an-1)
where a;—1 < a; Vi € 1...(n — 1) into g equally-sized parts. quantile’;(A) be the
kth g-quantile, with k € 1...(q — 1), i.e., there are ¢ — 1 of the g-quantiles.

h = (n— 1)§
ap, if h is integer

ek —
quantile; (A4) = { app) + (h— [h)) * (ajp 41— ajn))  otherwise

: ® Quantiles are a generalized form of the median.
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Quantiles

Definition: Sample Quantile

The g-quantiles are the cut points that divide a sorted data sample A = (ag,a1,...,an-1)
where a;—1 < a; Vi € 1...(n — 1) into g equally-sized parts. quantile’;(A) be the
kth g-quantile, with k € 1...(q — 1), i.e., there are ¢ — 1 of the g-quantiles.

h = (n— 1)§
{ ap, if h is integer

ok _
quantileg(4) = ajpy + (h— [h)) * (ajnj+1 — ajn))  otherwise

® Quantiles are a generalized form of the median.
e The quantile?(A) is the median of A
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Quantiles

Definition: Sample Quantile

The g-quantiles are the cut points that divide a sorted data sample A = (ag,a1,...,an-1)
where a;—1 < a; Vi € 1...(n — 1) into g equally-sized parts. quantile’;(A) be the
kth g-quantile, with k € 1...(q — 1), i.e., there are ¢ — 1 of the g-quantiles.

h = (n—l)g

.k _ ap if h is integer
(luantlleq(A) - { ajn) + (h . LhJ) - (aLhJ—i—l _ aLhJ) U

® Quantiles are a generalized form of the median.
e The quantile?(A) is the median of A
. e 4-quantiles are called quartiles.




Quantiles

Definition: Sample Quantile

The g-quantiles are the cut points that divide a sorted data sample A = (ag,a1,...,an-1)
where a;—1 < a; Vi € 1...(n — 1) into g equally-sized parts. quantile’;(A) be the
kth g-quantile, with k € 1...(q — 1), i.e., there are ¢ — 1 of the g-quantiles.

h = (n—l)g

.k _ ap if h is integer
Qluantlleq(A) - { ajn) + (h . LhJ) - (aLhJ—i—l _ aLhJ) U

Quantiles are a generalized form of the median.
The quantile?(A) is the median of A
4-quantiles are called quartiles.

We often consider percentiles or write things like “98% quantile” or “0.98 percentile” or
“08% percentile” meaning quantile3s,.
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g Standard Deviation: Example

® Two data samples A and B with n, = n, = 19 values.




= Standard Deviation: Example

SUY. T e

® Two data samples A and B with n, = n;, = 19 values.

A
mean(A)
B

mean(B)

(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,14)

7
(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10'008)
533



= Standard Deviation: Example

SUY. T e

® Two data samples A and B with n, = n;, = 19 values.
A = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11, 12, 14)
mean(A) = 7
B = (1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10'008)
mean(B) = 533

1 1
GRS — > " (a; — mean(4))® = 1%8 =11
=
e 94763'306
Var(B) = ﬁ (bz o meaH(B))z = T ~ 5/264/628



= Standard Deviation: Example

SUY. T e

® Two data samples A and B with n, = n;, = 19 values.

A
mean(A)
B

mean(B)

var(A)

var(B)

sd(A)

sd(B)

(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,14)

7
(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10'008)
533

1 bh i 198
) ;(ai— mean(4))* = —= =11

e 94763'306
ﬁ (bz 5 meaH(B))z = T ~ 5/264/628

VvarA=+11~3.3

4/ /
vV var B = \/% ~ 2294



= Standard Deviation: Example

SUY.

® Two data samples A and B with n, = ny = 19 values.

A
B

var(A)

var(B)

sd(A)

sd(B)

(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,14)
(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10'008)

19
1 > 198
ﬁ £ ((IZ W mean(A)) = TS =l
1 94'763'306
b BE— = e S Bload
1912 ( mean(B)) 16 628

Vvar A =11~ 33

4/7 /
vV var B = % ~ 2294

® Being based on the arithmetic mean, the variance and standard deviation are heavily
influenced by outliers — with all pros and cons coming with that. ..



T R 1T 1 1y —

Quantiles: Example

® Two data samples A and B with n, = n, = 19 values.
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Quantiles: Example

® Two data samples A and B with n, = n, = 19 values.

A = (1,3,4,4,4,56,6,6,6,7,7,9,9 09,10, 11, 12, 14)
B = (1,3, 44,45,6,6,6,6,7,7,99 9,10, 11, 12, 10'008)



Quantiles: Example

® Two data samples A and B with n, = n, = 19 values.

NSO

LA 44

A = (1,3,4,4,4,56,6,6,6,7,7,9,9 09,10, 11, 12, 14)

B = (1,3,4,4,456,6,6,6,7,7,9,9,9, 10, 11, 12, 10'008)
quantile} (A) quantile}(B) = 4.5
quantile3(A) quantile3(B) = 9
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Quantiles: Example

® Two data samples A and B with n, = n, = 19 values.

A = (1,3,44,4,56,6,6,6,7,7,9,9 09,10, 11, 12, 14)

B = (1,3,4,4,456,6,6,6,7,7,9,9,9, 10, 11, 12, 10'008)
quantile;(A) = quantile}(B) = 4.5
quantilel(A) = quantile}(B) =9

® Being generalizations of the median, the quantiles are little influenced by outliers — with all
pros and cons coming with that. ..
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- Further Example

- ® The implicit assumption that mean & sd is a meaningful range is not always truel!

frequency: how often was the value measured

S e o R e

arithmetic mean mean(A)
median med(A)

mean(A) - sd(A)
mean(A) + sd(A)

? 10% quantile = quantile1’
10

90% quantile = quantile

o e R AN T

measured result objective value

B0 T e e o
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- Further Example -g

- ® The implicit assumption that mean & sd is a meaningful range is not always truel!

arithmetic mean mean(A)
/ median med(A)
/ mean(A) - sd(A)

mean(A) + sd(A)

10% quantile = quantile1?
10

e - e

90% quantile = quantileg

\

measured result objective value

k

frequency: how often was the value measured
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- Further Example 1

- ® The implicit assumption that mean & sd is a meaningful range is not always truel!

arithmetic mean mean(A)
» y / median med(A)
mean - sd is outside g
the measured data range! mea‘n(A) 2 Sd(A)

mean(A) + sd(A

the standard deviation ( ) i ( )
is not useful here to 10% quantile = quantile;
represent span of data.

.
e - e

10

90% quantile = qudntll(‘,})“

7 ==

frequency: how often was the value measured

=y

poss, SR

measured result objective value
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- Further Example -!

- %

- ® The implicit assumption that mean & sd is a meaningful range is not always truel! %
® Such a shape is possible in optimization! !

arithmetic mean mean(A)
2 o median med(A)
mean - sd is outside r
the measured data.range! mean(A) - sd(A)
& mean(A) + sd(A)
the standard deviation /
is not useful here to /~10% quantile = quantile]’

represent span GFdata. X ; ;
[ 90% quantile = quantileg”

.

O

frequency: how often was the value measured

e ———
—

measured result objective value
vl TN e

;iz
|
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- Further Example

- ® The implicit assumption that mean & sd is a meaningful range is not always truel!
® Such a shape is possible in optimization:
® The global optimum marks a lower bound for the possible objective values.

mean - sd is outside

the measured data range!
the standard deviation

is not useful here to
represent span of data.

frequency: how often was the value measured

arithmetic mean mean(A)
median med(A)
mean(A) - sd(A)
. mean(A) + sd(A)
10% quantile = quantile{’
90% quantile = quantile;’
N
M

e ————
—

o e Sl - AR

measured result objective value

TN e
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- Further Example

- ® The implicit assumption that mean & sd is a meaningful range is not always truel!

® Such a shape is possible in optimization:

® The global optimum marks a lower bound for the possible objective values.
® A good algorithm often returns results which are close-to-optimal.

3
g
i
o
g
2
8
2
g
g
%
4
=
g
£

mean - sd is outside
the measured data range!

the standard deviation
is not useful here to
represent span of data.

arithmetic mean mean(A)
o median med(A)
// mean(A) - sd(A)
. mean(A) + sd(A)
/'~ 10% quantile = (m;mlilvf”

90% quantile quantile g’

e ————
—

measured result objective value
= AR e PR E -

Eaasie LU RNER - e e
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Further Example
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® The implicit assumption that mean 4 sd is a meaningful range is not always truel

® Such a shape is possible in optimization:

® The global optimum marks a lower bound for the possible objective values.
® A good algorithm often returns results which are close-to-optimal.
® There may be a long tail of few but significantly worse runs.

frequency: how often was the value measured

mean - sd is outside
the measured data range!

the standard deviation
is not useful here to
represent span of data.

arithmetic mean mean(A)
median med(A)
P mean(A) - sd(A)
, mean(A) + sd(A)
v

_10% quantile = qvmmilvf“

quantile quantile

P ———
—

SR AR

measured result objective value
ASEIN Bl PP =




Further Example

® The implicit assumption that mean 4 sd is a meaningful range is not always truel
® Such a shape is possible in optimization:

The global optimum marks a lower bound for the possible objective values.

A good algorithm often returns results which are close-to-optimal.

There may be a long tail of few but significantly worse runs.

A statement such as “For this TSP instance, our algorithm can find tours with a length of
100 + 120 km.” makes little sense. . .



Statistical Comparisons
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Introduction

® We can now, e.g., perform 20 runs each with two different optimization algorithms on one
problem instance and compute the medians of a performance indicator.
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Introduction

® \We can now, e.g., perform 20 runs each with two different optimization
problem instance and compute the medians of a performance indicator.

o Likely, they will be different.
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Introduction

® We can now, e.g., perform 20 runs each with two different optimization algorithms on one
problem instance and compute the medians of a performance indicator.

o Likely, they will be different.

® For one of the two algorithms, the results will be better.
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Introduction

® We can now, e.g., perform 20 runs each with two different optimization algorithms on one

problem instance and compute the medians of a performance indicator.
Likely, they will be different.

For one of the two algorithms, the results will be better.
What does this mean?

TR Joo SRR TR BRSO WF L ™

SR



A

Introduction

® We can now, e.g., perform 20 runs each with two different optimization algorithms on one
problem instance and compute the medians of a performance indicator.

Likely, they will be different.

For one of the two algorithms, the results will be better.
What does this mean?

It means that one of the two algorithms is better.
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Introduction

® We can now, e.g., perform 20 runs each with two different optimization algorithms on one
problem instance and compute the medians of a performance indicator.

Likely, they will be different.

For one of the two algorithms, the results will be better.
What does this mean?

It means that one of the two algorithms is better with a certain probability.
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Introduction

® We can now, e.g., perform 20 runs each with two different optimization algorithms on one
problem instance and compute the medians of a performance indicator.

o Likely, they will be different.

® For one of the two algorithms, the results will be better.

® \What does this mean?

® |t means that one of the two algorithms is better with a certain probability.

e |f we say “A is better than B,” we have a certain probability p to be wrong.
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Introduction

® We can now, e.g., perform 20 runs each with two different optimization algorithms on one
problem instance and compute the medians of a performance indicator.

o Likely, they will be different.

® For one of the two algorithms, the results will be better.

® What does this mean?

® |t means that one of the two algorithms is better with a certain probability.
e |f we say “A is better than B,” we have a certain probability p to be wrong.

® The statement “A is better than B" makes only sense after we have decided about an
upper bound « for the acceptable error probability p! (and if p < «, obviously)

. Lo SRR BRI B - --:ll
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Statistical Tests

WA\

® Compare two data samples A = (a1,a2,...) and B = (b1,b2,...) and
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Statistical Tests

® Compare two data samples A = (a1,a2,...) and B = (b1,b2,...) and ﬁ
® get a result (e.g., “The median of A is bigger than the median of B") together with an 5-
¢ error probability p that the conclusion is wrong. ¥
:

YRR U R TP TRt e T e e i T T e T 0 e e W



RN

LN L T PRTIY

Statistical Tests

® Compare two data samples A = (a1,a2,...) and B = (b1,b2,...) and

® get a result (e.g., “The median of A is bigger than the median of B") together with an
error probability p that the conclusion is wrong.

® |f pis less than a previously chosen significance level (upper bound) «, we can accept the
conclusion.
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Statistical Tests

® Compare two data samples A = (a1,a2,...) and B = (b1,b2,...) and

® get a result (e.g., “The median of A is bigger than the median of B") together with an
error probability p that the conclusion is wrong.

® |f pis less than a previously chosen significance level (upper bound) «, we can accept the
conclusion.

e QOtherwise, the observation is not significant.
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Statistical Tests

® Compare two data samples A = (a1,a2,...) and B = (b1,b2,...) and

get a result (e.g., “The median of A is bigger than the median of B") together with an
error probability p that the conclusion is wrong.

If p is less than a previously chosen significance level (upper bound) «, we can accept the
conclusion.

Otherwise, the observation is not significant and must be ignored.
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Statistical Tests

® Compare two data samples A = (a1,a2,...) and B = (b1,b2,...) and

® get a result (e.g., “The median of A is bigger than the median of B") together with an
error probability p that the conclusion is wrong.

® |f pis less than a previously chosen significance level (upper bound) «, we can accept the
conclusion.

e Otherwise, the observation is not significant and must be ignored.

But how can we arrive at such statements? How can we even estimate a probability to be
wrong?
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Statistical Tests

® Compare two data samples A = (a1,a2,...) and B = (b1,b2,...) and

® get a result (e.g., “The median of A is bigger than the median of B") together with an
error probability p that the conclusion is wrong.

If p is less than a previously chosen significance level (upper bound) «, we can accept the
conclusion.

e Otherwise, the observation is not significant and must be ignored.

But how can we arrive at such statements? How can we even estimate a probability to be
wrong?

® Disclaimer: | am not a mathematician. What follows are simplified explanations of
concepts.
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Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.
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Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.
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Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.

® We play 160 times.
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Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.

® We play 160 times.

® | win 128 times. You win 32 times.



Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.

® We play 160 times.

~ e | win 128 times. You win 32 times.
0000000000000 000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

| 0000000000000000
0000000000000000
0000000000000000
0000000000000000
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Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.

® We play 160 times.
® | win 128 times. You win 32 times.

® Did | cheat? Is my coin “fixed?” (i.e., is your chance to win # 0.5)



Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.

We play 160 times.

| win 128 times. You win 32 times.

Did | cheat? Is my coin “fixed?" (i.e., is your chance to win # 0.5)

Assumption: | cheat. (alternative hypothesis H;)



Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.

® We play 160 times.
® | win 128 times. You win 32 times.
® Did | cheat? Is my coin “fixed?” (i.e., is your chance to win # 0.5)

Assumption: | cheat. (alternative hypothesis H;)

It is impossible to compute my winning probability if | cheated. . .



Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.

® We play 160 times.
® | win 128 times. You win 32 times.
® Did | cheat? Is my coin “fixed?” (i.e., is your chance to win # 0.5)
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It is impossible to compute my winning probability if | cheated. . .

Counter-Assumption: | did not cheat. (null hypothesis Hp)
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Example for Underlying Idea

e Coin flip game: We flip a coin. If it is heads, | give you 1 RMB, if it is tails, you give me
1 RMB.

® We play 160 times.

® | win 128 times. You win 32 times.

® Did | cheat? Is my coin “fixed?” (i.e., is your chance to win # 0.5)
® Assumption: | cheat. (alternative hypothesis H;)

® |t is impossible to compute my winning probability if | cheated. . .
® Counter-Assumption: | did not cheat. (null hypothesis Hp)

® How likely is it that | win at least 128 times if | did not cheat?

(What we will do right now is called binomial test.)
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Example for Underlying Idea

® How likely is it that | win at least 128 times if | did not cheat?
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® Then, the probabilities for heads and tails are ¢ = P(head) = P(tail) = 0.5.
Flipping a coin n times is a Bernoulli Process

The probability P(k|n) to flip k € 0..n times heads (or tails) is thus:
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Example for Underlying Idea

® How likely is it that | win at least 128 times if | did not cheat?

® Then, the probabilities for heads and tails are ¢ = P(head) = P(tail) = 0.5.
Flipping a coin n times is a Bernoulli Process

The probability P(k|n) to flip k € 0..n times heads (or tails) is thus:

P(kln) = (Z)O'E’k x(1-0.5)""F = <Z>O'5k DB = (Z) 2in

For winning at least z = 128 times, we need to compute:

Pz = 3o pim =3 s = > () ]

1=128 1=128



Example for Underlying Idea

® How likely is it that | win at least 128 times if | did not cheat?

® Then, the probabilities for heads and tails are ¢ = P(head) = P(tail) = 0.5.
Flipping a coin n times is a Bernoulli Process

The probability P(k|n) to flip k € 0..n times heads (or tails) is thus:

P(kln) = (Z)O'E’k x(1-0.5)""F = <Z>O'5k DB = (Z) 2in

For winning at least z = 128 times, we need to compute:

160 /160
Elalo ki o | 10.) ZP i — 2160 Z ( >

=128



Example for Underlying Idea

® How likely is it that | win at least 128 times if | did not cheat?

® Then, the probabilities for heads and tails are ¢ = P(head) = P(tail) = 0.5.
Flipping a coin n times is a Bernoulli Process

The probability P(k|n) to flip k € 0..n times heads (or tails) is thus:

P(kln) = (Z)O'E’k x(1-0.5)""F = <Z>O'5k DB = (Z) 2in

For winning at least z = 128 times, we need to compute:

160 /160
el el e — E vl = 2160 E ( >
1=128

1/538/590/628'148134/280/316/221'828'039/113
365/37574097332/725’729'5507921/2087179’0707754/9137983/135' 744
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® How likely is it that | win at least 128 times if | did not cheat?

® Then, the probabilities for heads and tails are ¢ = P(head) = P(tail) = 0.5.
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The probability P(k|n) to flip k € 0..n times heads (or tails) is thus:
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Example for Underlying Idea

® How likely is it that | win at least 128 times if | did not cheat?

® Then, the probabilities for heads and tails are ¢ = P(head) = P(tail) = 0.5.
Flipping a coin n times is a Bernoulli Process

The probability P(k|n) to flip k € 0..n times heads (or tails) is thus:

P(kln) = (Z)O'E’k x(1-0.5)""F = <Z>O'5k DB = (Z) 2in

For winning at least z = 128 times, we need to compute:

s AT — ZP iln) = 2160 > ~ 3.654 % 1047
=128

0.00000000000000421098571

= <160>  1.539%10%

Q



Example for Underlying Idea

® How likely is it that | win at least 128 times if | did not cheat?

® Then, the probabilities for heads and tails are ¢ = P(head) = P(tail) = 0.5.
Flipping a coin n times is a Bernoulli Process

The probability P(k|n) to flip k € 0..n times heads (or tails) is thus:

P(kln) = (Z)O'E’k x(1-0.5)""F = <Z>O'5k DB = (Z) 2in

For winning at least z = 128 times, we need to compute:

s AT — ZP iln) = 2160 > ~ 3.654 % 1047

= <160>  1.539%10%
1=128

4.211 = e

Q
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Example for Underlying ldea

® Question: How likely is it that | win at least 128 times if | did not cheat? :

: : : ; / : s
- o |[f the coin was an ideal coin, the chance that | win at least 128 out of 160 times is

about 4-10~15.
:
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i Example for Underlying ldea

® Question: How likely is it that | win at least 128 times if | did not cheat?

® |f the coin was an ideal coin, the chance that | win at least 128 out of 160 times is
about 4 - 10~1°.

e If you claim that | cheat, your chance to be wrong is about 4 - 10715
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Example for Underlying ldea

Question: How likely is it that | win at least 128 times if | did not cheat?

If the coin was an ideal coin, the chance that | win at least 128 out of 160 times is
about 4 - 10~1°.

If you claim that | cheat, your chance to be wrong is about 4 - 1

07/

Thus, if we cannot accept a chance p to be wrong higher than a significance level a = 1%,
we can still say:

The observation is significant, | did likely cheat.
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® \We want to compare two algorithms A and B on a given problem instance.
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A More Specific Example for Tests

® \We want to compare two algorithms A and B on a given problem instance.

® We have conducted a small experiment and measured objective values of their final results
in a few runs in form of the two data sets A and B, respectively:

A = (2,5,6,7,9,10)
B = (1,3,4,8)

® From this, we can estimate the arithmetic means:

mean(A4) = 36—9 =6.5
1
mean(B) = 16 4
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iy e, B

mean(A) = 36—926.5
mean(B) = ?=4

g

® |t looks like algorithm B may produce the smaller objective values.

B
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{ A More Specific Example
X

£ \

: |
¥

é mean(A) = 36—9 0.5 :

5 ;

- mean(B) = — =4

“ 4

® |t looks like algorithm B may produce the smaller objective values.

® But is this assumption justified based on the data we have?

Bre=F T f & T .32 Fr F —FE
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{ A More Specific Example
:
! }
; i
< 39 !
§ mean(A4) = = 6.5 :
d 16
e mean(B) = — =4
“ 4

® |t looks like algorithm B may produce the smaller objective values.
i ® But is this assumption justified based on the data we have?
= @ Is the difference between mean(A) and mean(B) significant at a threshold of a = 2%?7
i
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A More Specific Example

o

® |f B is truly better than A, which is our hypothesis Hj, then we cannot calculate anything.
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A More Specific Example

® |f B is truly better than A, which is our hypothesis H7, then we cannot calculate anything.

® |et us therefore assume as null hypothesis Hy the observed difference did just happen by
chance and, well, A = B.
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® |f B is truly better than A, which is our hypothesis H7, then we cannot calculate anything.

® |et us therefore assume as null hypothesis Hy the observed difference did just happen by
chance and, well, A = B.

® Then, this would mean that the data samples A and B stem from the same algorithm (as

A = B).
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A More Specific Example

® |f B is truly better than A, which is our hypothesis H7, then we cannot calculate anything.

® et us therefore assume as null hypothesis Hy the observed difference did just happen by
chance and, well, A = B.

® Then, this would mean that the data samples A and B stem from the same algorithm (as
A = B).

® The division into the two sets would only be artificial, an artifact of our experimental
design.

® |nstead of having two data samples, we only have one, namely the union set O with 10
elements:

Os=AIB="(1,2, 3,4, 5,6 7% 94
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A More Specific Example g
O=AUB=(1,2,3,4,5,6,7,8,9,10) :

2

3

® Any division C' into two sets with 4 and 6 elements has the same probability
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A More Specific Example g
O=AUB=(1,2,3,4,5,6,7,8,9,10) :

&

;

® Any division C' into two sets with 4 and 6 elements has the same probability
* |O| =10
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: A More Specific Example /
. O=AUB=(1,2,3,4,5,6,7,8,9, 10) 3
] :
- /
l; ® Any division C' into two sets with 4 and 6 elements has the same probability

- e [0[=10 ;
‘ ® There are (118) = 210 different ways to draw 4 (or 6) elements from O ?
; :
/ :
;

: :
= §
: ¥
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A More SpeC|f|c Example

O=AUB=(1,2,3,4,5,6,7,8,9, 10)

Any division C' into two sets with 4 and 6 elements has the same probability
|O| = 10

There are (119) = 210 different ways to draw 4 (or 6) elements from O

If Hg holds, all have the same probability
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A More SpeC|f|c Example

O=AUB=(1,2,3,4,5,6,7,8,9,10)

Any division C' into two sets with 4 and 6 elements has the same probability
|O| = 10

There are (lf) = 210 different ways to draw 4 (or 6) elements from O

If Hg holds, all have the same probability

® Let's use a Python®® program to test the combinations
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A More Specific Example g

"""Enumerate all combinations of numbers 1 to 10."""

if ((i + j + k + 1) / 4) <= 4: # check for exztreme case
mean_lower_or_equal_to_4 += 1 # count extreme case
total_combinations += 1 # count all combinations

mean_lower_or_equal_to_4 = 0 # how often did we find a mean <= 4
total_combinations =0 # total number of tested combinations
g for i in range(1l, 11): # i goes from 1 to 10
t for j in range(1, i): # j goes from 1 to i - 1
E for k in range(l, j): # k goes from 1 to j - 1
%A for 1 in range(l, k): # 1 goes from 1 to k - 1
i

H——

" N

print (f" combinations with mean <= 4: {mean_lower_or_equal_to_4}")
print (f"total number of combinations: {total_combinations}")
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if ((i + j + k + 1) / 4) <= 4: # check for exztreme case
mean_lower_or_equal_to_4 += 1 # count extreme case
total_combinations += 1 # count all combinations

print (f" combinations with mean <= 4: {mean_lower_or_equal_to_4}")
print (f"total number of combinations: {total_combinations}")

! " A More Specific Example g

i :

E """Enumerate all combinations of numbers 1 to 10.""" i

mean_lower_or_equal_to_4 = # how often did we find a mean <= N

3 1 qual 4 =0 h ten did ind h

total_combinations =0 # total number of tested combinations &

. I

; for i in range(1l, 11): # i goes from 1 to 10 d

t for j in range(1, i): # j goes from 1 to i - 1 g

E for k in range(l, j): # k goes from 1 to j - 1 >

3 for 1 in range(l, k): # 1 goes from 1 to k - 1 i
-

: 1

£

‘r,_'

]

combinations with mean <= 4: 27
total number of combinations: 210
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A More Specific Example

TA AT
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O=AUB=(1,2,3,4,5,6,7,8,9,10)

Any division C' into two sets with 4 and 6 elements has the same probability

0] = 10

There are (10) = 210 different ways to draw 4 (or 6) elements from O

4

If Hg holds, all have the same probability

There are 27 such combinations with a mean of less or equal 4.
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: A More Specific Example

O=AUB=(1,2,3,4,5,6,7,8,9,10)

3

® Any division C' into two sets with 4 and 6 elements has the same probability
3 L |O| =10

® There are (lf) = 210 different ways to draw 4 (or 6) elements from O

e |f Hy holds, all have the same probability

There are 27 such combinations with a mean of less or equal 4.

The probability p to observe a situation at least as extreme as A and B under Hy is thus:

o ‘L2 =" - AR R . Swan N YA A B AN I - -l
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j A More Specific Example
1 O=AUB=(1,2,3,4,5,6,7,8,9,10)
)
® Any division C' into two sets with 4 and 6 elements has the same probability
: [ ] |O| E 10
® There are (lf) = 210 different ways to draw 4 (or 6) elements from O
e |f Hy holds, all have the same probability

There are 27 such combinations with a mean of less or equal 4.

The probability p to observe a situation at least as extreme as A and B under Hy is thus:

_ ffcases C': mean(C) < mean(B) 27 9 0.1286
- #all cases AT R

" AR R . Swan el < W "R F ¥ o 7 SGmill Nech | 4
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A More Sbecific Example

® Extreme cases into the other direction are the same, because if mean(B) < 4 then
mean(A) > 6.5 for any division AU B = O and vice versa.

O = AUB=(1,2,3,4,5,6,7,8,9,10)

N
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A More S‘pecific Example

® Extreme cases into the other direction are the same, because if mean(B) < 4 then
mean(A) > 6.5 for any division AU B = O and vice versa:

O = AUB-=(1,2,3,4,5,6,7,8,9,10)
10
! _10(10+1)
I I S L _a
YoeO o=1

E




-

A More Specnflc Example

mean(A) > 6.5 for any division AU B = O and vice versa:

O = AUB=(1,23,4,56,7,8,9,10)
10

Zo = ZOZWZSS

YoeO o= 3

3

! ® Extreme cases into the other direction are the same, because if mean(B) < 4 then
o

4\

1
y mean(B):<12b>§4 = (Zb>§4*4§16 )

VbeB vbeB

]
. v“_‘J
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A More Specnflc Example

® Extreme cases into the other direction are the same, because if mean(B) < 4 then
mean(A) > 6.5 for any division AU B = O and vice versa:
3

O = AUB=(1,23,4,56,7,8,9,10)

1 10

. Zo ZOZMZSS

2
YoeO o=1
1
= = £ 4 < <5
mean(B) <4 VbZGB b) <4 = <WZ€B b) <4x4<16
@)= LU I3 —> Za:(Z())_(Zb)
Ya€A YoeO vbeB

ey TR
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A More Specific Example

® Extreme cases into the other direction are the same, because if mean(B) < 4 then
mean(A) > 6.5 for any division AU B = O and vice versa:

A e

O = AUB=(1,2,3,4,5,6,7,8,9,10)
10
Vi B0 (10=1)
' So o= >o=2HU_g
| YoeO o=1
1
mean(B):<4Zb>§4 = <Zb>§4*4§16 )
; vbeB vVbeB
} O'= AUB 48 Z“Z(ZO)—<26>
Va€A YoeO vbeB l
D1 hEalb = (Za>255—16239
VbeB VYacA i
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A More Specific Example

e

® Extreme cases into the other direction are the same, because if mean(B) < 4 then

mean(A) > 6.5 for any division AU B =

o

YoeO

mean(B) = (i Z b) A4

vbeB
O=AUB
A £l
vbeB

mean(A)

O and vice versa:

10

o3 §:Ozloao+1):55

o—it 2
= <Zb)<4*4<16
VbeB
= Zaz(Zo)—(Zb)
VacA YoeO vbeB
— (Za)255—16239
Ya€eA

{20

LLA;##&M: B W & T R 0 YW . v |
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A More Specnflc Example

mean(A) > 6.5 for any division AU B = O and vice versa:

mean(B)z(iZb>§4 = (Z b>§4*4§16

VbeB

! ® Extreme cases into the other direction are the same, because if mean(B) < 4 then
g

. vbeB

4

g, Za:<zo)_<z b)

‘ YacA YoeO vbeB
g Narh < 16 (Za)255—16239
vbe B Ya€A
1
mean(A) = 5 <Z a)
Va€eA

mean(B) <4 =  mean(A) >

O SRR L ~ - o= .. NS W & W a0 Y. VL |
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" A More Specific Example

! ® Extreme cases into the other direction are the same, because if mean(B) < 4 then
, mean(A) > 6.5 for any division AU B = O and vice versa:
:i
i
mean(B):<4Zb>§4 = (Zb>§4*4§16
vbeB vbeB

\ VacA YoeO vbeB \
] Yorb < 16 (Za)255—16>39 i
E VbeB Va€A
. 1
mean(A) = 5 Z a
VacA

. 39 i

I_ mean(B) <4 =  mean(A) > 7 >6.5

® So — of course — we could have also done the test the other way around with the same
result!
?T.ﬂ e LT 4 ey R TR LI - R & W
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" A More Specific Example
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® The probability p to observe a constallation at least as extreme as A or B under Hy is
thus:

_ feases Oz mean(C) < mean(B) _ 27 _ 9 00
A #all cases oM TO
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- A More Specific Example

® The probability p to observe a constallation at least as extreme as A or B under Hy is
thus:

& #cases C' : mean(C') < mean(B) g E 3 3 ~ 0.1286
= #all cases St 708

l ® |f we claim that A and B are from distributions with means as different as observed. ..
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i‘ A More Specific Example

® The probability p to observe a constallation at least as extreme as A or B under Hy is
thus:

_ Ffcases (': mean(C) < mean(B) g E 3 g ~ 0.1286
= #all cases Stae 708

® |f we claim that A and B are from distributions with means as different as observed. ..

® .. .we are wrong with probability p ~ 0.13
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A More Specific Example

® The probability p to observe a constallation at least as extreme as A or B under Hy is
thus:

_ #cases C': mean(C) < mean(B) e 0.1286
= #all cases Stae 708

® |f we claim that A and B are from distributions with means as different as observed. ..
® __.we are wrong with probability p ~ 0.13

® At a significance level of a = 2%, the means of A and B are not significantly different!
(2% < 0.13)
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" A More Specific Example

® The probability p to observe a constallation at least as extreme as A or B under Hy is
thus:

_ #cases C': mean(C) < mean(B) e 0.1286
7 #all cases Stae 708

If we claim that A and B are from distributions with means as different as observed. . .

® . .we are wrong with probability p ~ 0.13

At a significance level of o = 2%, the means of A and B are not significantly different!
(2% < 0.13)

Actually: This here is an example for an Randomization Tes
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- A More Specific Example
.

® The probability p to observe a constallation at least as extreme as A or B under Hy is

thus:
e #cases C' : mean(C) < mean(DB) Nt - ~ 01286
i #all cases 200z 70
® |f we claim that A and B are from distributions with means as different as observed. ..

. e ___we are wrong with probability p ~ 0.13

At a significance level of a« = 2%, the means of A and B are not significantly different!
(2% < 0.13)

Actually: This here is an example for an Randomization Tes

t11'22.

The method here is only feasible for small sample sets, real tests are more sophisticated
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Statistical Tests: Types

e Statistical tests are more elegant mathematical approaches than the example shown
before. In order to work, they have preconditions, they make certain assumptions.

® There are two types of tests:
1. Parametric Tests

® Assume that the data samples follow a certain distribution

® Examples’?: t-test (assumes normal distribution)

® The distribution of the data we measure is unknown. . .

® . .and usually not normal nor symmetric (see the further quantiles/stddev plot example).
® The condition for using such tests often cannot be met (known distribution)

® Parametric tests should usually not be used here!
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Statistical Tests: Types

e Statistical tests are more elegant mathematical approaches than the example shown
before. In order to work, they have preconditions, they make certain assumptions.
® There are two types of tests:

1. Parametric Tests
2. Non-Parametric Tests

Make few assumption about the distribution from which the data was sampled.
Examples®®: the Wilcoxon rank sum test with continuity correction (also called
Mann-Whitney U test”*"**3)  Fisher's Exact Test?*, the Sign Test®®°3, the
Randomization Test*'??, and Wilcoxon's Signed Rank Test®®.

These tests are more robust (less assumptions)

This usually is the kind of test we want to use.

They work similar to the previous test example, but with larger sample sizes
Often, the most suitable test is the Mann-Whitney U test.
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® But is this difference usually significant?
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0.001% in performance will pass a test as significant.

e, N



h e

A fair warning

There are many algorithms and even more configuration parameters.

All kinds of algorithm modules and parameters have some kind of impact on the
performance.

If | have two different algorithms A and B, logic dictates that their performance is also
different.

But is this difference usually significant?
From the viewpoint of statistics: Probably yes.

If | just conduct enough runs, maybe thousands, or millions, than even a difference of
0.001% in performance will pass a test as significant.

To be practically significant, the measured difference of results should be large enough and :
statistically significant already with few runs, say, 11 or 21, not just with > 100 runs.
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® For comparing N > 2 algorithms, we can compare any two algorithms with each other
® N Algorithms = k = N (NN — 1)/2 statistical tests (e.g., Mann-Whitney U)

® [ tests and each with error proability &« = total probability £ to make at least one error
E=1—((1-a))
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Compare N > 2 Algorithms

® For comparing N > 2 algorithms, we can compare any two algorithms with each other

® N Algorithms = k£ = N(IN — 1)/2 statistical tests

® [ tests and each with error proability &« = total probability £ to make at least one error
E=1-((1-a)")

e Correction needed: Bonferroni correction?’: Use o/ = a//k as significance level instead of
«, then the overall probability E' to make an error will remain F < a.
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Testing is Not Enough
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i The question of termination

&

® Literature usually reports tuples “(instance, result, runtime)
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e Literature usually reports tuples “(instance, result, runtime)” -

® Papers often use different termination criteria }
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® Problem: Papers often use different termination criteria }
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The question of termination

e Literature usually reports tuples “(instance, result, runtime)”
® Problem: Papers often use different termination criteria

® Anytime Algorithms'®
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The question of termination

e Literature usually reports tuples “(instance, result, runtime)”
® Problem: Papers often use different termination criteria

® Anytime Algorithms'?: Always have approximate solution, refine it iteratively
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The question of termination

Literature usually reports tuples “(instance, result, runtime)"”

Problem: Papers often use different termination criteria

Anytime Algorithms!®: Always have approximate solution, refine it iteratively

® One measure point per run or instance does not tell the whole story!
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The question of termination

e Literature usually reports tuples “(instance, result, runtime)”

® Problem: Papers often use different termination criteria

® Anytime Algorithms'?: Always have approximate solution, refine it iteratively
® One measure point per run or instance does not tell the whole story!

® Using statistical tests cannot solve this issue (still: at one point in time).

® \We should have the “whole performance curves!” ... ideally mean or median curves over
several runs!
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New Algorithms and Problems
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® There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm.
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New Algorithms and Problems

® There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. | think this is not a good idea.

® |f we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems.
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New Algorithms and Problems

L

® There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. | think this is not a good idea.

® |f we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems. For such problems, results from other well-known
and well-established algorithms exist — so we can compare our algorithm to them and
investigate its performance objectively.
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New Algorithms and Problems

® There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. | think this is not a good idea.
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® |f we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems. For such problems, results from other well-known
and well-established algorithms exist — so we can compare our algorithm to them and
investigate its performance objectively.

® |f we introduce a new optimization problem, we should apply well-known and
well-established algorithms to it.
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New Algorithms and Problems

® There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. | think this is not a good idea.

® |f we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems. For such problems, results from other well-known
and well-established algorithms exist — so we can compare our algorithm to them and
investigate its performance objectively.

¢ |f we introduce a new optimization problem, we should apply well-known and
well-established algorithms to it. This way we get proper baseline results and can
understand whether the problem is hard for the state-of-the-art and/or how far this
state-of-the-art allows us to go.
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New Algorithms and Problems

There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. | think this is not a good idea.

If we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems. For such problems, results from other well-known
and well-established algorithms exist — so we can compare our algorithm to them and
investigate its performance objectively.

If we introduce a new optimization problem, we should apply well-known and
well-established algorithms to it. This way we get proper baseline results and can
understand whether the problem is hard for the state-of-the-art and/or how far this
state-of-the-art allows us to go.

If we have two “moving parts” at the same time, it is hard to understand whether an
algorithm is good and whether a problem is hard.

T e

L. 1B



New Algorithms and Problems

There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. | think this is not a good idea.

If we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems. For such problems, results from other well-known
and well-established algorithms exist — so we can compare our algorithm to them and
investigate its performance objectively.

If we introduce a new optimization problem, we should apply well-known and
well-established algorithms to it. This way we get proper baseline results and can
understand whether the problem is hard for the state-of-the-art and/or how far this
state-of-the-art allows us to go.

If we have two “moving parts” at the same time, it is hard to understand whether an
algorithm is good and whether a problem is hard.

If you have an own new algorithm on a new problem and use other algorithms for
comparision, you might be tempted to just use the most basic configurations of these
algorithms.
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There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. | think this is not a good idea.

If we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems. For such problems, results from other well-known
and well-established algorithms exist — so we can compare our algorithm to them and
investigate its performance objectively.

If we introduce a new optimization problem, we should apply well-known and
well-established algorithms to it. This way we get proper baseline results and can
understand whether the problem is hard for the state-of-the-art and/or how far this
state-of-the-art allows us to go.

If we have two “moving parts” at the same time, it is hard to understand whether an
algorithm is good and whether a problem is hard.

If you have an own new algorithm on a new problem and use other algorithms for
comparision, you might be tempted to just use the most basic configurations of these
algorithms. Then your algorithm might look good, while it actually is not.
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New Algorithms and Problems
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There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. | think this is not a good idea.

If we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems. For such problems, results from other well-known
and well-established algorithms exist — so we can compare our algorithm to them and
investigate its performance objectively.

If we introduce a new optimization problem, we should apply well-known and
well-established algorithms to it. This way we get proper baseline results and can
understand whether the problem is hard for the state-of-the-art and/or how far this
state-of-the-art allows us to go.

If we have two “moving parts” at the same time, it is hard to understand whether an
algorithm is good and whether a problem is hard.

If you have an own new algorithm on a new problem and use other algorithms for
comparision, you might be tempted to just use the most basic configurations of these
algorithms. Then your algorithm might look good, while it actually is not.
Know the standard benchmark instances for your field!
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Reproducibility

® Your experiments should be well-documented and reproducible.
® |n the ideal case, someone else can run your code and get the same results.

® For this purpose, you should make your code available, e.g., put it on GitHub or
zenodo.org.

e |f your experiments are time-consuming, also make sure to properly store all your results in
human- and machine-readable form, ideally in a comma-separated values (CSV) format.

® You should make an archive such that a) | can directly run the same experiments that you
did and b) also have all the data and tools to create the same statistics and figures.

® But what if someone finds an error in work?
e That is OK.

_ ® Better they find it in your code that you voluntarily provided than after going through
. significant re-implementation effort. . .
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® Cherry-Picking:
® On a benchmark instance, many runs are conducted with different random seeds. But only
the 10 with the best results are reported.
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Cheating

What are typical bad / cheating behavior in research on optimization?
® Cherry-Picking:
® On a benchmark instance, many runs are conducted with different random seeds. But only

the 10 with the best results are reported. This can be prevented by generating the sequence
of random seeds with a deterministic algorithm and reporting both®*.
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Cheating

What are typical bad / cheating behavior in research on optimization?

® Cherry-Picking:
® On a benchmark instance, many runs are conducted with different random seeds. But only
the 10 with the best results are reported. This can be prevented by generating the sequence
of random seeds with a deterministic algorithm and reporting both®*.
® Only the benchmark instances where the algorithm performs well are chosen. Be wary of
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Cheating

What are typical bad / cheating behavior in research on optimization?

® Cherry-Picking:

® On a benchmark instance, many runs are conducted with different random seeds. But only
the 10 with the best results are reported. This can be prevented by generating the sequence
of random seeds with a deterministic algorithm and reporting both®*.

® Only the benchmark instances where the algorithm performs well are chosen. Be wary of
statements such as “We now present the results of our algorithm on 10 of the TSPLib
instances.” (TSPLib has more than 100...) l

® Weak algorithms are chosen for comparison. Comparison must always be done with the
state-of-the-art on the specific problem at hand. Be wary of statements such as “We compare
our algorithm with the standard Genetic Algorithm.” (because the SGA is usually not the
state-of-the-art)

. e Y]



Cheating T\
What are typical bad / cheating behavior in research on optimization?

® Cherry-Picking

® Sometimes, results may be straight up fabricated.




Cheating

What are typical bad / cheating behavior in research on optimization?

® Cherry-Picking
® Sometimes, results may be straight up fabricated. Algorithm must be clearly specified and
ideally the source code is available to prevent this.
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® Sometimes, results may be straight up fabricated.

Misleading statistics are reported

Uneven configuration effort: Much effort is spent on configuring the own algorithm, the
algorithms used for comparison are used with bad settings.
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Cherry-Picking

® Sometimes, results may be straight up fabricated.

Misleading statistics are reported

Uneven configuration effort.

Incomparable results are reported (see our discussion on why testing is not enough).
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Cheating

What are typical bad / cheating behavior in research on optimization?

Cherry-Picking

® Sometimes, results may be straight up fabricated.

Misleading statistics are reported

Uneven configuration effort.

Incomparable results are reported.

Misleading significance in test results (high «, many runs, no corrections).

Reproducibility prevents cheating and misunderstandings!
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Summary

The optimization algorithms we consider in this lecture are randomized.
e Comparing them must be done in a statistical way using data from multiple runs

® Two views on performance:

1. best result after fixed number of FEs/runtime
2. number of FEs/runtime needed to get certain result

For every single algorithm/configuration, compute:
1. arithmetic and geometric mean and median of key performance indicators
2. quartiles or top/bottom 1% quantile to get a feeling for the usual range of values
3. don't trust just arithmetic mean or standard deviation alone
4. geometric mean if the data is normalized

e Use non-parametric statistical tests with corrections for multiple comparisons.

Do not only collect one data sample per run, try to plot progress curves.

Use well-known benchmarks, provide your source codel!
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Programming with Python

We have a freely available course book on Programming with Python at
https://thomasweise.github.io/programmingWithPython, with focus on practical
software development using the Python ecosystem of tools®?.

ISR,


https://thomasweise.github.io/programmingWithPython

r’%ilﬁ«‘»ﬁ;}. Lo Bl

. Databases

We have a freely available course book on Databases at
https://thomasweise.github.io/databases, with actual practical examples using a real
database management system (DBMS)%8.



https://thomasweise.github.io/databases

Metaheuristic Optimization in Python: moptipy

We offer moptipy®* a mature open source Python package for metaheuristic optimization,
which implements several algorithms, can run self-documenting experiments in parallel and in a

distributed fashion, and offers statistical evaluation tools.
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Glossary |

EA

ACO

BKS
csv

DB

DBMS

FE

An evolutionary algorithm is a metaheuristic optimization method that maintains a population of candidate solutions, which
undergo selection (where better solutions are chosen with higher probability) and reproduction (where mutation and
recombination create a new candidate solution from one or two existing ones, repectively)s'sgA

Ant Colony Optimization is a nature-inspired optimization method for combinatorial problems where solutions are generated
by “ants” that move from node to node in a graph choosing edges based on (1) the simulated pheromone on the edges

and (2) a per-edge heuristic value” . If an ant produced a good solution, “pheromone” is distributed over the edges it
visited, making it more likely to be re-visited by other ants.

The Best Known Solution for an instance of an optimization problem is the best solution (measured based on the objective
values) that has ever been reported in literature. BKSes are not necessarily globally optimal, as in many instances of
N'P-hard problems, the true optima are unknown.

Comma-Separated Values is a very common and simple text format for exchanging tabular or matrix data®2. Each row in the
text file represents one row in the table or matrix. The elements in the row are separated by a fixed delimiter, usually a

comma (*,"), sometimes a semicolon (*;"). Python offers some out-of-the-box CSV support in the csv module®®.

A database is an organized collection of structured information or data, typically stored electronically in a computer system.
Databases are discussed in our book Databases®.

A database management system is the software layer located between the user or application and the database (DB). The
DBMS allows the user/application to create, read, write, update, delete, and otherwise manipulate the data in the DBOS.

Objective function evaluations are an implementation-independent measure of runtime for optimization algorithmsﬁl. 1 FE
equals to one evaluated candidate solution during the optimization process.
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Glossary Il

Git
GitHub

JSSP

MaxSAT

moptipy

Python

TSP

is a distributed Version Control Systems (VCS) which allows multiple users to work on the same code while preserving the
history of the code changes®#'57. Learn more at https://git-scm.com.

is a website where software projects can be hosted and managed via the Git VCS*957  Learn more at https://github.com.

The Job Shop Scheduling Problem®32 is one of the most prominent and well-studied scheduling tasks. In a JSSP instance,
there are k machines and m jobs. Each job must be processed once by each machine in a job-specific sequence and has a
job-specific processing time on each machine. The goal is to find an assighment of jobs to machines that results in an overall
shortest makespan, i.e., the schedule which can complete all the jobs in the shortest time. The JSSP is N P-complete#38,

The goal of satisfiaiblity problems is to find an assignment for n Boolean variables that make a given Boolean

formula F : {0,1}" + {0, 1} become true. In the Maximum Satisfiability (MaxSAT) problem33, F is given in conjunctive
normal form, i.e., the variables appear as literals either directly or negated in m “or" clauses, which are all combined into
one “and.” The objective function f(z), subject to minimization, computes the number of clauses which are false under the
variable setting . If f(x) = 0, then all clauses of F are true, which solves the problem. The MaxSat problem is
NP—ccmpIetels.

is the Metaheuristic Optimization in Python Iibrary54. Learn more at https://thomasweise.github.io/moptipy.

34,40,42,60

The Python programming language , i.e., what you will learn about in our book®®. Learn more at

https://python.org.

In an instance of the Traveling Salesperson Problem, also known as Traveling Salesman Problem, a set of n cities or locations
as well as the distances between them are defined®27:32:61  The goal is to find the shortest round-trip tour that starts at one
city, visits all the other cities one time each, and returns to the origin. The TSP is one of the most well-known N P-hard
combinatorial optimization problems.
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Bt

Glossary Il
TSPLib

unit test

VCs

geom(A)

is a library of benchmark instances for the Traveling Salesperson Problem (TSP) available at
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95%950,

Software development is centered around creating the program code of an application, library, or otherwise useful system. A
unit test is an additional code fragment that is not part of that productive code. It exists to execute (a part of) the
productive code in a certain scenario (e.g., with specific parameters), to observe the behavior of that code, and to compare
whether this behavior meets the specification45’51’56. If not, the unit test fails. The use of unit tests is at least threefold:
First, they help us to detect errors in the code. Second, program code is usually not developed only once and, from then on,
used without change indefinitely. Instead, programs are often updated, improved, extended, and maintained over a long time.
Unit tests can help us to detect whether such changes in the program code, maybe after years, violate the specification or,
maybe, cause another, depending, module of the program to violate its specification. Third, they are part of the
documentation or even specification of a program.

A Version Control System is a software which allows you to manage and preserve the historical development of your program
code®?. A distributed VCS allows multiple users to work on the same code and upload their changes to the server, which then
preserves the change history. The most popular distributed VCS is Git.

The factorial a! of a natural number a € Ny is the product of all positive natural numbers less than or equal to a, i.e.,
a! :1*2*3*4*»--*(a—l)*alB'ZI"u.

with 7,7 € Z and i < j is the set that contains all integer numbers in the inclusive range from 7 to j. For example, 5..9 is
equivalent to {5,6,7,8,9}

h

The geometric mean geom(A) is the n*" root of the product of n positive values in a dataset A = (ag, a1, ..., a,_1) with

a; > 0forall i €0..n, i.e., geom(A) = "HH;ZJ a; = exp (% Z;L;Ol log ai).
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Glossary IV

mean(A)

median(A)

NP

N P-complete

N P-hard

O(g(=))

The arithmetic mean mean(A) is an estimate of the expected value of a distribution from which a data sample was, well,
sampled. Its is computed on data sample A = (ag,a1,...,a,_1) as the sum of all n elements a; in the sample data A

. . _ 1 xn—1 .
divided by the total number n of values, i.e., mean(A) = = 37" " a;.
The median median(A) is the value separating the bigger-valued half from the smaller-valued half of a data sample or

distribution. Its estimate is the value right in the middle of a sorted data sample A = (ag,a1,...,a,—1) where
a;—1 < a; Vi €1...(n — 1) with an odd number of elements and the mean of the two values in the middle if n is even. In

other words, median(A) = a,_3 if n is odd and % (0%71 4 0«%) otherwise, i.e., if n is even.
2

the set of the natural numbers excluding 0, i.e., 1, 2, 3, 4, and so on. It holds that Ny C Z.

NP is the class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be
verified in polynomial time by a deterministic machine (such as a normal computer)zs.

A decision problem is N'P-complete if it is in NP and all problems in N'P are reducible to it in polynomial time2548 . A
problem is N'P-complete if it is N P-hard and if it is in N'P.

Algorithms that guarantee to find the correct solutions of NP-hard problems”’"”38

need a runtime that is exponential in
the problem scale in the worst case. A problem is N"P-hard if all problems in A/P are reducible to it in polynomial time2®.

If f(z) = O(g(x)), then there exist positive numbers zo € RT and ¢ € RT such that f(z) < ¢ * g(z)Va > 20*37. In
other words, O(g(xz)) describes an upper bound for function growth.
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Glossary V

quantile’; (A)

RT

sd(A)

var(A)

The g-quantiles are the cut points that divide a sorted data sample A = (ag,a1,...,a,—_1) where

a;—1 <a; Vi €1l...(n —1) into g equally-sized parts. quantilcg (A) be the Ekth g-quantile, with k € 1... (¢ — 1), i.e,,
there are ¢ — 1 of the g-quantiles. In the context of this book, define h = (n — 1)%. quantileS(A) then can be computed
as ay, if his integer, i.e., h € Z, and as a || + (h — |h]) * (aLhJJrl — aLhJ) otherwise. It holds

that quantilef(A) = median(A)

the set of the real numbers.

the set of the positive real numbers, i.e., RT = {z €R:z > 0}.

The statistical estimate sd(A) of the standard deviation of a data sample A = (ag, a1,...,a,_1) with n observations is
the square root of the estimated variance var(A), i.e., sd A = / var(A).

The variance of a distribution is the expectation of the squared deviation of the underlying random variable from its mean.

The variance var(A) of a data sample A = (ap,a1,...,a,_1) with n observations can be estimated
as var(A) = nil ?:_01 (a; — mean(A))2.

the set of the integers numbers including positive and negative numbers and 0, i.e., ..., -3,-2,-1,0,1, 2, 3, ...
It holds that Z C R.

, and so on.
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