
Frequency Fitness Assignment
Thomas Weise (汤卫思)

tweise@hfuu.edu.cn

Institute of Applied Optimization (IAO) 应用优化研究所
School of Artificial Intelligence and Big Data 人工智能与大数据学院

Hefei University 合肥大学
Hefei, Anhui, China 中国安徽省合肥市

Version: 2025-08-11

mailto:tweise@hfuu.edu.cn

Outline

1. Introduction

2. Metaheuristic Optimization

3. Advertisement

Introduction

Introduction to Optimization

• Optimization means finding superlatives.

• Find the fastest way to get from Hefei to Beijing.
• Find the shortest route through n cities.
• Set the pricing for these apples such that we can get the largest revenue when selling them.
• Place all these chips on a circuit board so that they occupy the smallest area while we can

still properly connect and cool them.
• Find the cheapest way to transport these goods from Hefei to Wellington.
• Design an airplane wing with the least aerodynamic drag.
• Find a strategy to manage the power of the nodes in this sensor network so that full

coverage is guaranteed for the longest possible duration.
• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Introduction to Optimization

• Optimization means finding superlatives.
• Find the fastest way to get from Hefei to Beijing.

• Find the shortest route through n cities.
• Set the pricing for these apples such that we can get the largest revenue when selling them.
• Place all these chips on a circuit board so that they occupy the smallest area while we can

still properly connect and cool them.
• Find the cheapest way to transport these goods from Hefei to Wellington.
• Design an airplane wing with the least aerodynamic drag.
• Find a strategy to manage the power of the nodes in this sensor network so that full

coverage is guaranteed for the longest possible duration.
• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Introduction to Optimization

• Optimization means finding superlatives.
• Find the fastest way to get from Hefei to Beijing.
• Find the shortest route through n cities.

• Set the pricing for these apples such that we can get the largest revenue when selling them.
• Place all these chips on a circuit board so that they occupy the smallest area while we can

still properly connect and cool them.
• Find the cheapest way to transport these goods from Hefei to Wellington.
• Design an airplane wing with the least aerodynamic drag.
• Find a strategy to manage the power of the nodes in this sensor network so that full

coverage is guaranteed for the longest possible duration.
• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Introduction to Optimization

• Optimization means finding superlatives.
• Find the fastest way to get from Hefei to Beijing.
• Find the shortest route through n cities.
• Set the pricing for these apples such that we can get the largest revenue when selling them.

• Place all these chips on a circuit board so that they occupy the smallest area while we can
still properly connect and cool them.

• Find the cheapest way to transport these goods from Hefei to Wellington.
• Design an airplane wing with the least aerodynamic drag.
• Find a strategy to manage the power of the nodes in this sensor network so that full

coverage is guaranteed for the longest possible duration.
• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Introduction to Optimization

• Optimization means finding superlatives.
• Find the fastest way to get from Hefei to Beijing.
• Find the shortest route through n cities.
• Set the pricing for these apples such that we can get the largest revenue when selling them.
• Place all these chips on a circuit board so that they occupy the smallest area while we can

still properly connect and cool them.

• Find the cheapest way to transport these goods from Hefei to Wellington.
• Design an airplane wing with the least aerodynamic drag.
• Find a strategy to manage the power of the nodes in this sensor network so that full

coverage is guaranteed for the longest possible duration.
• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Introduction to Optimization

• Optimization means finding superlatives.
• Find the fastest way to get from Hefei to Beijing.
• Find the shortest route through n cities.
• Set the pricing for these apples such that we can get the largest revenue when selling them.
• Place all these chips on a circuit board so that they occupy the smallest area while we can

still properly connect and cool them.
• Find the cheapest way to transport these goods from Hefei to Wellington.

• Design an airplane wing with the least aerodynamic drag.
• Find a strategy to manage the power of the nodes in this sensor network so that full

coverage is guaranteed for the longest possible duration.
• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Introduction to Optimization

• Optimization means finding superlatives.
• Find the fastest way to get from Hefei to Beijing.
• Find the shortest route through n cities.
• Set the pricing for these apples such that we can get the largest revenue when selling them.
• Place all these chips on a circuit board so that they occupy the smallest area while we can

still properly connect and cool them.
• Find the cheapest way to transport these goods from Hefei to Wellington.
• Design an airplane wing with the least aerodynamic drag.

• Find a strategy to manage the power of the nodes in this sensor network so that full
coverage is guaranteed for the longest possible duration.

• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Introduction to Optimization

• Optimization means finding superlatives.
• Find the fastest way to get from Hefei to Beijing.
• Find the shortest route through n cities.
• Set the pricing for these apples such that we can get the largest revenue when selling them.
• Place all these chips on a circuit board so that they occupy the smallest area while we can

still properly connect and cool them.
• Find the cheapest way to transport these goods from Hefei to Wellington.
• Design an airplane wing with the least aerodynamic drag.
• Find a strategy to manage the power of the nodes in this sensor network so that full

coverage is guaranteed for the longest possible duration.

• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Introduction to Optimization

• Optimization means finding superlatives.
• Find the fastest way to get from Hefei to Beijing.
• Find the shortest route through n cities.
• Set the pricing for these apples such that we can get the largest revenue when selling them.
• Place all these chips on a circuit board so that they occupy the smallest area while we can

still properly connect and cool them.
• Find the cheapest way to transport these goods from Hefei to Wellington.
• Design an airplane wing with the least aerodynamic drag.
• Find a strategy to manage the power of the nodes in this sensor network so that full

coverage is guaranteed for the longest possible duration.
• And so on.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

fastest...

...with the highest score

...highest quality

with the least energy...

...shortest delay

... on the smallest possible area

...best trade-offs between

Views on Optimization

• There are two ways to look at optimization.

• The economic view.
• The mathematical view.

Views on Optimization

• The economic view.

• The mathematical view.

O
p
ti
m
iz
a
ti
o
n An optimization problem is a situation which

requires deciding for one choice from a set of

possible alternatives in order to reach a

predefined or required benefit at minimal costs.

Views on Optimization

• The mathematical view.

O
p
ti
m
iz
a
ti
o
n An optimization problem is a situation which

requires deciding for one choice from a set of

possible alternatives in order to reach a

predefined or required benefit at minimal costs.

Solving an optimization problem requires finding

an input element x⋆ within a set 𝕏 of allowed
elements for which a mathematical function

f:𝕏 ↦ ℝ takes on the smallest possible value.

Example: Traveling Salesperson Problem
• In the Traveling Salesperson

Problem (TSP)1,12,19,30, the
goal is to find the shortest
round-ttrip tour through a set of
n cities.

• The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

• The objective
function f : X 7→ R, subject to
minimization, is the length of
the tour.

• The optimal solution x⋆ ∈ X is
the shortest possible tour.

Example: Traveling Salesperson Problem
• In the Traveling Salesperson

Problem (TSP)1,12,19,30, the
goal is to find the shortest
round-ttrip tour through a set of
n cities.

• The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

• The objective
function f : X 7→ R, subject to
minimization, is the length of
the tour.

• The optimal solution x⋆ ∈ X is
the shortest possible tour.

Example: Traveling Salesperson Problem
• In the Traveling Salesperson

Problem (TSP)1,12,19,30, the
goal is to find the shortest
round-ttrip tour through a set of
n cities.

• The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

• The objective
function f : X 7→ R, subject to
minimization, is the length of
the tour.

• The optimal solution x⋆ ∈ X is
the shortest possible tour.

Example: Traveling Salesperson Problem
• In the Traveling Salesperson

Problem (TSP)1,12,19,30, the
goal is to find the shortest
round-ttrip tour through a set of
n cities.

• The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

• The objective
function f : X 7→ R, subject to
minimization, is the length of
the tour.

• The optimal solution x⋆ ∈ X is
the shortest possible tour.

Example: Maximum Satisfiability Problem

• The goal of the Maximum
Satisfiability (MaxSAT)7,13 problem
is to find a setting of n variables that
makes a Boolean formula F become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

• X is the set of all possible bit strings
of length n.

• The objective function f : X 7→ R is
the number of unsatisfied
OR-clauses.

• The optimum x⋆ ∈ X has f(x⋆) = 0,
i.e., all clauses satisfied, i.e.,
F (x⋆) = True.

x1x2 x3 x4

&

Example: Maximum Satisfiability Problem

• The goal of the Maximum
Satisfiability (MaxSAT)7,13 problem
is to find a setting of n variables that
makes a Boolean formula F become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

• X is the set of all possible bit strings
of length n.

• The objective function f : X 7→ R is
the number of unsatisfied
OR-clauses.

• The optimum x⋆ ∈ X has f(x⋆) = 0,
i.e., all clauses satisfied, i.e.,
F (x⋆) = True.

x1x2 x3 x4

&

n=4 variables

Example: Maximum Satisfiability Problem

• The goal of the Maximum
Satisfiability (MaxSAT)7,13 problem
is to find a setting of n variables that
makes a Boolean formula F become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

• X is the set of all possible bit strings
of length n.

• The objective function f : X 7→ R is
the number of unsatisfied
OR-clauses.

• The optimum x⋆ ∈ X has f(x⋆) = 0,
i.e., all clauses satisfied, i.e.,
F (x⋆) = True.

x1x2 x3 x4

&

negated

Example: Maximum Satisfiability Problem

• The goal of the Maximum
Satisfiability (MaxSAT)7,13 problem
is to find a setting of n variables that
makes a Boolean formula F become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

• X is the set of all possible bit strings
of length n.

• The objective function f : X 7→ R is
the number of unsatisfied
OR-clauses.

• The optimum x⋆ ∈ X has f(x⋆) = 0,
i.e., all clauses satisfied, i.e.,
F (x⋆) = True.

x1x2 x3 x4

&

m=3 clauses

Example: Maximum Satisfiability Problem

• The goal of the Maximum
Satisfiability (MaxSAT)7,13 problem
is to find a setting of n variables that
makes a Boolean formula F become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

• X is the set of all possible bit strings
of length n.

• The objective function f : X 7→ R is
the number of unsatisfied
OR-clauses.

• The optimum x⋆ ∈ X has f(x⋆) = 0,
i.e., all clauses satisfied, i.e.,
F (x⋆) = True.

x1x2 x3 x4

&

Example: Maximum Satisfiability Problem

• The goal of the Maximum
Satisfiability (MaxSAT)7,13 problem
is to find a setting of n variables that
makes a Boolean formula F become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

• X is the set of all possible bit strings
of length n.

• The objective function f : X 7→ R is
the number of unsatisfied
OR-clauses.

• The optimum x⋆ ∈ X has f(x⋆) = 0,
i.e., all clauses satisfied, i.e.,
F (x⋆) = True.

x1x2 x3 x4

&

Example: Maximum Satisfiability Problem

• The goal of the Maximum
Satisfiability (MaxSAT)7,13 problem
is to find a setting of n variables that
makes a Boolean formula F become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

• X is the set of all possible bit strings
of length n.

• The objective function f : X 7→ R is
the number of unsatisfied
OR-clauses.

• The optimum x⋆ ∈ X has f(x⋆) = 0,
i.e., all clauses satisfied, i.e.,
F (x⋆) = True.

x1x2 x3 x4

&

Example: Maximum Satisfiability Problem

• The goal of the Maximum
Satisfiability (MaxSAT)7,13 problem
is to find a setting of n variables that
makes a Boolean formula F become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

• X is the set of all possible bit strings
of length n.

• The objective function f : X 7→ R is
the number of unsatisfied
OR-clauses.

• The optimum x⋆ ∈ X has f(x⋆) = 0,
i.e., all clauses satisfied, i.e.,
F (x⋆) = True.

x1x2 x3 x4

&

Example: Bin Packing Problem

• The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible.

• The X comprises all possible packing orders of the n objects.
• The objective function f is the number of bins needed by a given packing order.
• The optimum x⋆ is the packing order requiring the fewest bins.

Example: Bin Packing Problem

• The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible.

• The X comprises all possible packing orders of the n objects.

• The objective function f is the number of bins needed by a given packing order.
• The optimum x⋆ is the packing order requiring the fewest bins.

Example: Bin Packing Problem

• The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible.

• The X comprises all possible packing orders of the n objects.
• The objective function f is the number of bins needed by a given packing order.

• The optimum x⋆ is the packing order requiring the fewest bins.

Example: Bin Packing Problem

• The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible.

• The X comprises all possible packing orders of the n objects.
• The objective function f is the number of bins needed by a given packing order.
• The optimum x⋆ is the packing order requiring the fewest bins.

Optimization is Hard

• Finding the globally optimal solution x⋆ from the set of all possible solutions X is often an
NP-hard problem.

• Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given NP-hard problem in a runtime that is not longer than polynomial in
the size of the problem (i.e., existing algorithms may need exponential runtime in the
worst case).

• In other words, if we want to guarantee to find the best possible solution x⋆ for all possible
instances of a problem, we often cannot really be much faster than testing all possible
candidate solutions x ∈ X in the worst case.

Optimization is Hard

• Finding the globally optimal solution x⋆ from the set of all possible solutions X is often an
NP-hard problem.

• Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given NP-hard problem in a runtime that is not longer than polynomial in
the size of the problem (i.e., existing algorithms may need exponential runtime in the
worst case).

• In other words, if we want to guarantee to find the best possible solution x⋆ for all possible
instances of a problem, we often cannot really be much faster than testing all possible
candidate solutions x ∈ X in the worst case.

Optimization is Hard

• Finding the globally optimal solution x⋆ from the set of all possible solutions X is often an
NP-hard problem.

• Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given NP-hard problem in a runtime that is not longer than polynomial in
the size of the problem (i.e., existing algorithms may need exponential runtime in the
worst case).

• In other words, if we want to guarantee to find the best possible solution x⋆ for all possible
instances of a problem, we often cannot really be much faster than testing all possible
candidate solutions x ∈ X in the worst case.

Metaheuristic Optimization

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.

• And then roughly follow this cycle.

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Begin with a set

S0 ⊂ 𝕏 of one or

multiple randomly

sampled solutions

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Begin with a set

S0 ⊂ 𝕏 of one or

multiple randomly

sampled solutions

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Begin with a set

S0 ⊂ 𝕏 of one or

multiple randomly

sampled solutions

Derive set N0⊂ 𝕏 of
new solutions by

applying search

operators to

elements of S0

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Begin with a set

S0 ⊂ 𝕏 of one or

multiple randomly

sampled solutions

Derive set N0⊂ 𝕏 of
new solutions by

applying search

operators to

elements of S0

Select set S1 from

joint set P0= S0∪N0
by preferring

solutions x ∈ P0
with better f(x)

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Set Si⊂𝕏 of one or

multiple interes�ng

solutions

Derive set N0⊂ 𝕏 of
new solutions by

applying search

operators to

elements of S0

Select set S1 from

joint set P0= S0∪N0
by preferring

solutions x ∈ P0
with better f(x)

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Set Si⊂𝕏 of one or

multiple interes�ng

solutions

Derive set Ni ⊂ 𝕏 of
new solutions by

applying search

operators to

elements of Si

Select set S1 from

joint set P0= S0∪N0
by preferring

solutions x ∈ P0
with better f(x)

Metaheuristic Optimization

• Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

• They drop the guarantee to find the
optimal solution.

• They try to find good solution within
a feasible runtime.

• They start with random solutions.
• And then roughly follow this cycle.

Set Si⊂𝕏 of one or

multiple interes�ng

solutions

Derive set Ni ⊂ 𝕏 of
new solutions by

applying search

operators to

elements of Si

Select set Si+1 from

joint set Pi= Si ∪Ni
by preferring

solutions x ∈ Pi
with better f(x)

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.

• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)4,9.

• They accept the new solution if it is better or equally good compared to the current
solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.

• They accept the new solution if it is better or equally good compared to the current
solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.

• They accept the new solution if it is better or equally good compared to the current
solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.

• They accept the new solution if it is better or equally good compared to the current
solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.

• They accept the new solution if it is better or equally good compared to the current
solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.

• They accept the new solution if it is better or equally good compared to the current
solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.

• They accept the new solution if it is better or equally good compared to the current
solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.
• They accept the new solution if it is better or equally good compared to the current

solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.
• They accept the new solution if it is better or equally good compared to the current

solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.
• They accept the new solution if it is better or equally good compared to the current

solution.

The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.
• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work

according the same pattern (and differ only in their unary search operator move)4,9.
• They accept the new solution if it is better or equally good compared to the current

solution.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

1

0

-8 -6 -4 -2 2 4

1

2

3

4

5

6

new solution

is better

0

0

new solution

is worse

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameter T0.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameters T0 and ϵ.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameters T0 and ϵ.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameters T0 and ϵ.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Simulated Annealing

• Simulated Annealing (SA)5,16,17,24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

• The probability is regulated by
temperature schedule with
parameters T0 and ϵ.

• It also remembers best-so-far
solution xB and its objective
value yB, because it could get lost.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary operator.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary operator.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary operator.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary operator.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary operator.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary operator.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary operator.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary operator.

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary and binary
operator (with crossover rate cr).

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary and binary
operator (with crossover rate cr).

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary and binary
operator (with crossover rate cr).

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary and binary
operator (with crossover rate cr).

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary and binary
operator (with crossover rate cr).

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary and binary
operator (with crossover rate cr).

Standard Genetic Algorithm with Roulette Wheel Selection

• The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization2,8,10,22,23,28.

• It uses a population of size ps as
well as a unary and binary
operator (with crossover rate cr).

Advertisement

Programming with Python

We have a freely available course book on Programming with Python at
https://thomasweise.github.io/programmingWithPython, with focus on practical
software development using the Python ecosystem of tools29.

CHAPTER 15. THE DISTRIBUTED VERSION CONTROL SYSTEM GIT
303

(15.1.16) Many Python projects come with a file
requirements.txt or requirements-dev.txt . As
discussed in Section 14.2, these list the libraries that
the projects depend on. Our example repository also
has a file requirements.txt , stating that it needs li-
brary psycopg. This dependency is marked with yellow
color, because it is not installed in the virtual environment.

(15.1.17) Clicking on the warnings symbol reveals this
issue.

(15.1.18) Indeed: If we look at the .venv directory in the
directory view, we cannot find the psycopg package. (15.1.19) So we click on the requirements warning. . .

(15.1.20) . . . and then on Show Quick-Fixes (or press Alt +

Enter).
(15.1.21) In the menu that opens up, we se-
lect Install all missing packages .

Figure 15.1: Cloning a Git (or GitHub) repository in PyCharm and configuring a virtual environment for

it.

Here, obviously, user is thomasWeise , which is my personal GitHub account, and repository is

databasesCode . The URL that will be copied to the clipboard by clicking the button in Figure 15.1.2

is https://github.com/thomasWeise/databasesCode.git. If you wanted to clone the repository

with the example codes for this book instead, you would use https://github.com/thomasWeise/

programmingWithPythonCode.git.It is important to understand, however, that creating projects by cloning Git repositories is by no

means restricted to GitHub. As stated before, Git is a client-server application. You could work in an

enterprise that runs its own Git server. You could work with other Git-based repository hosts like gitee.

Regardless of what Git service you use, you could use the very same way to type in the corresponding

repository URL and then clone the repository in the same way. Only the structure of the URLs may be

CHAPTER 4. VARIABLES

84Listing 4.3: A Python program showing several steps of the approximation of π using the method of

LIU Hui (刘徽). (stored in file pi_liu_hui.py; output in Listing 4.4)
1 from math import pi, sqrt2
3 print(f"We use Liu Hui's Method to Approximate \u03c0\u2248{pi}.")

4 e = 6 # the number of edges: We start with a hexagon , i.e., e=6.

5 s = 1.0 # the side length: Initially 1, meaning the radius is also 1.

6 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

7
8 e *= 2 # We double the number of edges ...
9 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

10 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

11
12 e *= 2 # We double the number of edges.
13 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

14 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

15
16 e *= 2 # We double the number of edges.
17 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

18 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

19
20 e *= 2 # We double the number of edges.
21 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

22 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

23
24 e *= 2 # We double the number of edges.
25 s = sqrt(2 - sqrt(4 - (s ** 2)))
26 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")↓ python3 pi_liu_hui.py ↓Listing 4.4: The stdout of the program pi_liu_hui.py given in Listing 4.3.

1 We use Liu Hui 's Method to Approximate π≈3.141592653589793.

2 6 edges , side length =1.0 give us π≈3.0.
3 12 edges , side length =0.5176380902050416 give us π≈3.1058285412302498.

4 24 edges , side length =0.2610523844401031 give us π≈3.132628613281237.

5 48 edges , side length =0.13080625846028635 give us π≈3.139350203046872.

6 96 edges , side length =0.0654381656435527 give us π≈3.14103195089053.

7 192 edges , side length =0.03272346325297234 give us π≈3.1414524722853443.
Listing 4.4 shows the standard output stream (stdout) produced by this program. Indeed, each

new approximation comes closer to π. For 192 edges, we get the approximation 3.1414524722853443 .

Given that the constant pi from the math module is 3.141592653589793 , we find that the first four

digits are correct and that the number is only off by only 0.0045%! For your convenience, we also

showed the results when executing the program in PyCharm or the Ubuntu terminal in Figure 4.4. They

are obviously identical. Therefore, in the future, we will only very sporadically add such screenshots.

Instead, we will usually only print code and output pairs like Listings 4.3 and 4.4.

CHAPTER 4. VARIABLES

83

e=12

e=6

e=24
...

r

x

y

r

s
12

s
6

Figure 4.3: Approximating the ratio of the circumference and the diameter of a circle, i.e., π, by

inscribing regular 3 ∗ 2n-gons.

hexagon is U = e∗s6 = 6∗r. The diameter of the circle is D = 2r. Assuming that the circumference of

the hexagon is an approximation of the circumference of the circle, we could approximate π as π ≈ U
D .

For e = 6 edges, this gives us π6 = 6r
2r = 3.Now this is a very coarse approximation of π. We can get closer to the actual ratio if we would

use more edges, i.e., higher values of e. The ingenious idea of LIU Hui (刘徽) is to use e-gons

with e = 3 ∗ 2n. For n = 1, we get the hexagon with e = 6. For n = 2, we double the edges and have

a dodecagon with e = 12 edges. But how do we get the edge length s12 of this dodecagon?
We can get it from the edge length s6 and radius r of the hexagon. If we use the same six corners

for the hexagon and dodecagon and connect the newly added six corners with the center of the circle,

then these connections will separate each edge of the hexagon exactly in half and do so at a 90◦ angle,

as shown again in Figure 4.3. Here, the new side length s12 is the hypotenuse of a right-angled triangle

with base s6
2 and height y. To get the height y, we can use that r = x + y and the fact that there is a

second right-angled triangle here, namely the one with base x, height s6
2 , and hypotenuse r. This gives

us x2 +
(

s6
2

)2
= r2. Let’s make things easier by choosing r = 1. We get x2 = 1 − (

s6
2

)2
= 1 − s6

2

4

and, hence, y = 1 −
√

1 − s62

4 . With this we can move on to s12
2 = y2 +

(
s6
2

)2
, which we can resolve

to s12
2 =

(
1 −

√
1 − s62

4

)2

+ s6
2

4 . Using (a − b)2 = a2 − 2ab + b2 and applying it to the first term,
we get s12

2 = 1 − 2
√

1 − s62

4 +
(
1 − s6

2

4

)
+ s6

2

4 . This then gives us s12
2 = 2 − 2

√
1 − s62

4 − s6
2

4 + s6
2

4 ,
which we can further refine to s12

2 = 2 − 2
√

1 − s62

4 . We can pull th 2 from outside the root into the
root by multiplying everything inside by 22 = 4 and get s12

2 = 2 − √
4 − s62. Thus, we have the really

elegant s12 =
√

2 − √
4 − s62.

As new approximation of π12, we now have 12∗s12
2r = 6∗s12 = 6

√
2 − √

4 − s62 = 6
√

2 − √
4 − 1 =

6
√

2 − √
3 ≈ 3.105828539. This is already quite nice. We can actually repeat this step to get to s24.

And we could continue this process by again doubling the number the edges. Repeating the above

calculations and observing Figure 4.3, we get the equation:

s2e =
√

2 −
√

4 − s2
e

(4.1)π2e =
e

2
s2e

(4.2)Now that we have learned some programming, we do no longer need to type the numbers and com-

putation steps into a calculator. Instead, we can simply write them into a program, as illustrated

in Listing 4.3. We begin by setting the number of edges e = 6 and the side length to s = 1 , still

choosing r = 1. In each iteration of the approximation, we simply set e *= 2 , which is equivalent to

e = e * 2 , to double the number of edges. We compute s = sqrt(2 - sqrt(4 - (s ** 2))) hav-

ing imported the sqrt function from the math module. We print the approximated value of π as

e * s / 2 . Notice how elegantly we use the unicode characters π and ≈ via the escapes \u03c0 and

\u2248 , respectively, from back in Section 3.6.6 (and how nicely it indeed prints the greek character π

in the stdout in Listing 4.4). Either way, since Equations 4.1 and 4.2 are always the same, we can

simply copy-paste the lines of code for updating s , e , and printing the approximated value of π several

times.

CHAPTER 3. SIMPLE DATATYPES AND OPERATIONS
31

tweise@weise-laptop:~$ python3Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 4 + 3
7
>>> 7 * 5
35
>>> 4 + 3 * 5
19
>>> (4 + 3) * 5
35
>>> 4 - -12
16
>>> ((4 + 3) * (4 - -12) - 5) * 3321
>>> 32 // 4
8
>>> 33 // 4
8
>>> 34 // 4
8
>>> 35 // 4
8
>>> 36 // 4
9
>>> 32 / 4
8.0
>>> 33 / 4
8.25
>>> 34 / 4
8.5
>>> 35 / 4
8.75
>>> 36 / 4
9.0
>>> 33 % 4
1
>>> 34 % 4
2
>>> 35 % 4
3
>>> 36 % 4
0
>>> exit()
tweise@weise-laptop:~$

tweise@weise-laptop: ~

Figure 3.1: Examples of Python integer math in the console, part 1 (see Listing 3.1 for part 2).
In many programming languages, there are different integer datatypes with different ranges. In

Java, a byte is an integer datatype with range −27..27 − 1, a short has range −215..217 − 1, an int
has range −231..231−1, and long has range −263..263−1, for example. The draft for the C17 standard
for the C programming language lists five signed and five unsigned integer types, plus several ways to
extend them [255]. The different integer types of both languages have different ranges and sizes, and
the programmer must carefully choose which she needs to use in which situation.Python 3 only has one integer type, called int . This type has basically an unbounded range. The
Python 3 interpreter will allocate as much memory as is needed to store the number you want.2
3.2.1 Integer Arithmetics
Now, what can we do with integer numbers? We can add, subtract, multiply, divide, modulo divide,
and raise them to powers, for example.

In Figure 3.1, you can find some examples of this. (The same example is given in Listing 3.1, just
as listing instead of screenshot. We will use such listings from now on, as they convey the exactly2Ok, the range is not actually unbounded, it is bounded by the amount of memory available on your computer. . .

. . . but for all intents and purposes within this book, we can assume that int ≡ Z.

CHAPTER 2. GETTING STARTED
11

(2.2.1) Opening the terminal un-
der Microsoft Windows: press
q + R , type in cmd , and hit

.

(2.2.2) Trying to get the Python versionvia python3 --version , but it is notinstalled.

(2.2.3) Installing it by typing python3
and hitting .

(2.2.4) The install screen, where we click Get . (2.2.5) The install screen, downloading Python.

(2.2.6) The installation is finished. (2.2.7) And the python3 --version command nowworks in the terminal.
Figure 2.2: Cropped screenshots of the installation steps for Python on Microsoft Windows.

2.2 Installing PyCharm
Just having a programming language and the corresponding interpreter on your system is not enough.Well, it is enough for just running Python programs. But it is not enough if you want to developsoftware efficiently. Are you going to write programs in a simple text editor like a caveperson? No, ofcourse not, you need an IDE, a program which allows you to do multiple of the necessary tasks involvedin the software development process under one convenient user interface. For this book, I recommendusing PyCharm [347, 373, 377], whose Community Edition is/was freely available. The installation guidefor PyCharm can be found at https://www.jetbrains.com/help/pycharm/installation-guide.html.

Notice that, as shown in Figure 2.4, the PyCharm Community Edition will be/has been replacedwith a unified edition. This means that the instructions in the following are probably outdated, butthey should still give you a reasonably good impression on what needs to be done. We will probablyeventually replace them . . . but not now.

CHAPTER 1. INTRODUCTION 3

2014 2016 2018 2020 2022 2024
0.00

0.05

0.10

0.15

0.20

Fraction of GitHub Pushes

Year

Fr
ac

tio
n

of
 G

itH
ub

 P
us

he
s

Source: GitHut 2.0, https://github.com/madnight/githut/

Python
Java
JavaScript
C++
PHP
Ruby

TypeScript
HTML
C
Go
CSS
C#

Figure 1.2: The twelve most popular programming languages chosen based on the GitHub pushes overthe years. Source: [29].

While I am introducing variables in Chapter 4, for example, I will also explain how to use a static codeanalysis tool designed to find type errors in variable use. Also, the text will often have references tobest practices that clarify common approaches and different code hygiene concepts. Our goal will beto learn how to do things right from the start and not put things off to later.

1.2 Why Python?

The center of this course is the Python programming language. Our goal is to get familiar withprogramming, with the programming language Python, and with the tools and ecosystem surroundingit. This makes sense for several reasons.
First, Python is one of the most successful and widely used programming languages [50]. We plotthe number of pushes to GitHub over time for the most popular programming and web developmentlanguages in Figure 1.2. We find that Python became the leading languages at some point in 2018. Inthe TIOBE index, which counts the number of hits when searching for a programming language usingmajor search engines, Python ranked one in January 2025 and was named the programming languageof the year for 2024 [159].

Python is everywhere nowadays, and it is the undisputed default language of choicein many fields.
— Paul Jansen [159], 2025

If you will do programming in any future employment or research position, chances are that Pythonknowledge will be useful. According to the 2024 annual Stack Overflow survey [311], Python was thesecond most popular programming language, after JavaScript and HTML/CSS. In GitHub’s OctoverseReport from October 2024 [115], Python is named the most popular programming language, rankingright before JavaScript.
Second, Python is intensely used [50] in the fields of Artificial Intelligence (AI) [277], MachineLearning (ML) [290], and Data Science (DS) [125, 210] as well as optimization, which are among themost important areas of future technology. Indeed, the aforementioned Octoverse report [115] statesthat the use in soft computing is one of the drivers of Python’s popularity.
Third, there exists a very large set of powerful libraries supporting both research and application de-velopment in these fields, including NumPy [81, 131, 161, 227], Pandas [21, 195, 238], Scikit-learn [242,264], SciPy [161, 357], TensorFlow [1, 185], PyTorch [239, 264], Matplotlib [149, 151, 161, 235],SimPy [386], and moptipy [365]2, just to name a few. There are also many Python packages supportingother areas of computer science, that offer, e.g., connectivity to databases (DBs) [354], or support for
2Yes, I list moptipy here, next to very well-known and widely-used frameworks, because I am its developer.

Programming with Python

Thomas Weise (汤卫思)

August 7, 2025

Abstract

The goal of this book is to teach practical programming with the Python language to high
school, undergraduate, and graduate students alike. Hopefully, readers without prior knowledge
can follow the text. Therefore, all concepts are introduced using examples and discussed compre-
hensively. All examples are available online in the GitHub repository associated with this book, so
that readers can play with them easily. Actually, the goal of the book is not just to teach pro-
gramming, but to teach programming as a part of the software development process. This means
that from the very beginning, we will attempt to push the reader towards writing clean code with
comments and documentation as well as to use various tools for finding potential issues. While
this book is work in progress, we hope that it will eventually teach all the elements of Python
software creation. We hope that it can enable readers without prior programming experience to
develop beautiful and maintainable software.

https://thomasweise.github.io/programmingWithPython

Databases

We have a freely available course book on Databases at
https://thomasweise.github.io/databases, with actual practical examples using a real
database management system (DBMS)27.

CHAPTER 19. LOGICAL MODEL DESIGN

295
19.2.3.2 Relationship AttributesRelationships in conceptual models may have attributes, as stated in Definition 18.21. Of course, since

relationships do not exist as distinct objects in the relational data model, we must find another way to

express these attributes. Since only relations exist in the relational model and such relations become

tables in a DB, the attributes of relationships also become table columns.

It will depend on the relationship pattern where we put them. To try this concept out, let us go back

to an even earlier example of the Person entity: to Figure 18.9 from back in Section 18.3 (Relationships).

We created this figure using yEd and reprint it in Figure 19.26.1. As you can see, in this figure, there

is a relationship has ID that connects the Person entities with the entity type ID Type.

In the model, we did not annotate the relationships with cardinalities, because that was before

we got to that topic. However, it is rather clear that this would either be a Person ID Type

or a Person ID Type relationship. We can store arbitrarily many forms of ID for each person

and each form of ID may be used by arbitrarily many people. Since we went the hard way in the

last section and modeled a relationship with the mandatory many pattern, we this time go easy and

choose Person ID Type. In other words, we follow the pattern O P discussed in Sec-

tion 19.2.2.8 (O P).For this pattern, we need an additional table. We follow exactly the same method as back in

Section 19.2.2.8, except that we use different table and column names. We also use PgModeler for the

Person

Date of Birth

Address

Country

Province City
District

Street
Address

Postal Code

Name

Full Name

Salutation

Age

Start Date

End Date

is official

ID Type

Name

Validation
RegEx

has ID

Value

Valid From
Valid To

Surrogate
Key

(19.26.1) A reproduction of Figure 18.9 from back in Section 18.3 (Relationships), which was created using

yEd.

name_of_person

address_of_person

has_id

belongs_to_type

id
 integer « pk »date_of_birth date « nn »person_id_pk constraint « pk »

public.person
id integer

« pk »person integer « fk nn »full_name varchar(255) « nn »salutation varchar(255)is_official boolean
« nn »start_date date
« nn »end_date date

name_id_pk constraint « pk »name_person_fk constraint « fk »

public.name

id
 integer « pk »person integer « fk nn »country char(2) « nn »province char(2)

city
 varchar(255) « nn »district varchar(255)postal_code varchar(32) « nn »street_address varchar(255) « nn »address_id_pk constraint « pk »address_person_fk constraint « fk »

public.address

id
 integer

« pk »name
 varchar(100) « uq nn »validation_regexp varchar(255) « nn »id_type_id_pk constraint « pk »id_type_name_uq constraint « uq »

public.id_type id integer
« pk »id_type integer « fk nn »person integer « fk nn »value varchar(100) « nn »valid_from date

« nn »valid_to date
has_id_id_pk constraint « pk »has_id_id_type_fk constraint « fk »has_id_person_fk constraint « fk »

public.has_id

(19.26.2) A transformation of Figure 19.26.1 to a logical model using PgModeler.

Figure 19.26: The representation of relationship attributes as table for the relationship.

CHAPTER 19. LOGICAL MODEL DESIGN

237

(19.2.21) More details, such as the column types, appear
in the diagram, causing the tables to overlap. We drag
them apart with the mouse.

(19.2.22) The new layout looks much clearer.

rel_mobile_student

student_id character(11)
« pk »national_id character(18)
« nn »address varchar(255)
« nn »date_of_birth date
« nn »full_name varchar(255)
« nn »salutation varchar(255)

student_student_id_pk constraint « pk »student_national_id_check constraint « ck »student_date_of_birth_check constraint « ck »

public.student

id integer
« pk »phone character(11) « nn »student character(11) « fk nn »mobile_id_pk constraint « pk »mobile_phone_check constraint « ck »mobile_student_id_fk constraint « fk »

public.mobile

(19.2.23) We export the model again to a SVG graphic, following the steps in Figures 19.1.41 to 19.1.44.

This graphic now contains more details as well.Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple

mobile phone numbers (continued).

Listing 19.9: This auto-generated SQL script creates the DB student_database . (stored in

file 01_student_database_database_2001.sql; output in Listing 19.10)
1 -- object: student_database | type: DATABASE --
2 -- DROP DATABASE IF EXISTS student_database;
3 CREATE DATABASE student_database;
4 -- ddl -end --

Listing 19.10: The stdout of the program 01_student_database_database_2001.sql given in List-

ing 19.9.
1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf 01

↪→ _student_database_database_2001.sql
2 CREATE DATABASE3 # psql 16.9 succeeded with exit code 0.

We now export this model to SQL, exactly as we did before. This time, we get four scripts. The

first one, Listing 19.9, again creates the student_database DB. The second one, Listing 19.11, creates

the student table.
The third script, here given as Listing 19.13, creates the mobile table. We notice that the primary

key is created as id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY . This is almost exactly

the same way in which we created the primary key for the product table back in Listing 9.1. The only

difference is that PgModeler likes to express the integer type as integer and there we used INT . Both

types are synonymous.
The foreign key constraint is not included in Listing 19.13. Instead, it went into its own script,

here reproduced as Listing 19.15. Instead of directly including it when the table is created, the table

is later changed (ALTER TABLE). The constraint is added via ADD CONSTRAINT . Apart from this and

some additional behavior specifications that we will ignore here, it looks not much different from the

CHAPTER 18. CONCEPTUAL MODEL DESIGN
191

Student

Module

enrolls into

(18.6.1) The binary relationship of student and modules, which does not represent the relationship of professors to

modules and students.

Student

Module

enrolls into

Professor

teaches

(18.6.2) Two binary relationships, i.e., the relationship of student to modules and the relationship of professors to

modules. This does not represent that a student enrolls into a course taught by a professor.

Student

Module

takes place
Professor

enrolls into teaches

(18.6.3) The ternary relationship of students, modules, and professors. This represents how students join a course taught

by a specific professor. However, it would not permit the same student enroll into the same course for two years. It also

does not give us the information when the course takes place.

Student

Module

takes place
Professor

in Semester

enrolls into teaches

(18.6.4) The ternary relationship of students, modules, and professors with the relationship attribute semester.
Figure 18.6: Modeling the relationship between students, professors, and modules.

If we imagine the ternary Student enrolls into Module taught by Professor relationship, then the student

could have the role enrolls and the professor could have the role teaches.Definition 18.21: Relationship Attribute
A relationship type can have attributes describing properties of the relationship.

For example, we could write something like Mr. Bebbo enrolls into module Databases in summer

semester 2025. The attribute Semester of this relation only makes sense in this context. It neither

belongs to the student Mr. Bebbo nor does it belong to the module Databases. Different from entities,

relationship types do not have key attributes. The single relationships are identified by the primary keys

of the participating entities [165].
Let us start modelling relationships. We begin by representing the fact that a student can enroll into

a module. Relationships in ERDs are drawn as diamonds that are connected to the involved entities.

Figure 18.6.1 shows an ERD where the student entity is linked to a module entity by the relationship

enrolls into. This is a binary relationship, because two entities take part in it.

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA
99

Listing 9.1: Creating the table product to store the products we produce and sell. (stored in
file create_table_product.sql; output in Listing 9.2)1 /* We create the new table 'product ' in our factory database. */

2
3 -- List all tables of the user 'boss ' in database 'factory '
4 -- There are no tables yet.5 SELECT tablename FROM pg_catalog.pg_tables6 WHERE tableowner='boss';7
8 -- The table 'product ' stores all the produces that we can produce.
9 -- Each row of this table identifies one such product.

10 CREATE TABLE product (11 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 name VARCHAR (100) NOT NULL UNIQUE , -- must exist , must be unique
13 price DECIMAL (10, 2) NOT NULL , -- price (RMB): 10 digits , 2 after .
14 weight INT NOT NULL , -- the weight of the product , in grams
15 width INT NOT NULL , -- the width of the product , in mm
16 height INT NOT NULL , -- the height of the product , in mm
17 depth INT NOT NULL -- the depth of the product , in mm
18);
19
20 -- List all tables of the user 'boss ' in database 'factory '
21 -- Now we see the table 'product '.22 SELECT tablename FROM pg_catalog.pg_tables23 WHERE tableowner='boss';

Listing 9.2: The stdout of the program create_table_product.sql given in Listing 9.1.
1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1

↪→ -ebf create_table_product.sql2 tablename
3 -----------
4 (0 rows)
5
6 CREATE TABLE
7 tablename
8 -----------
9 product

10 (1 row)
11
12 # psql 16.9 succeeded with exit code 0.

9.1.2 Inserting some Data
Now the table product exists, but it is empty. Let us fill it with data. Our factory has two prod-
ucts: “Shoe” and “Purse.” The shoes come in sizes 36 to 43. Their prices start at 150.99元 for size 36
and increase by 2元 per size. They all fit into the same box. The smallest shoes weight 1300g and the
weight increases by 25g per size. Purses come in sizes small, medium, and large, at prices of 100元,
120元, and 150元, respectively. They weight 500g, 750g, and 1500g, respectively. The smallest purse
fits into a shoebox, but the bigger ones require bigger boxes. In other words, we want to enter exactly
the data presented in Figure 9.1 at the beginning of this section.We store this data into the table product by an INSERT INTO statement. Here, we first need to
provide the table name (product) and the attributes that we want to store in parentheses, i.e., “ (...)”.
We will store values for the fields name , price , weight , width , height , and depth . We do not need to
store values for id , because they will be automatically generated for us. After saying what we want to
store, we specify the VALUES to store. Each row is written in parentheses, values and rows are separated
by commas. The command follows the syntax given below.

CHAPTER 2. INSTALLING POSTGRESQL
32

(2.2.7) When asked whether we want to allow the down-loaded program to make changes on our device, weclick Yes .
(2.2.8) Then, the installer begins its work.

(2.2.9) In the welcome screen, we simply click Next . (2.2.10) We can select the directory in which PostgreSQLshould be installed. Let’s leave it at the default settingand click Next .

(2.2.11) We now get to the selection of what to install.Let’s leave it at the default setting and click Next .
(2.2.12) We also leave the directory where the DBs willbe stored at the default setting and click Next .Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).

CHAPTER 1. INTRODUCTION 10

Figure 1.9: Image from 1956: An IBM 305 RAMAC (right) with two of the (at that time) very newIBM 350 hard disks (middle and left). Source: [159].

Figure 1.10: Images from the “Ferranti Computing Systems Atlas 1 Brochure: 1962” [259]. © UKRIScience and Technology Facilities Council, available from https://www.chilton-computing.org.uk.

Figure 1.11: Some screenshots of the terminal of Multics MR12.7 taken from [61], licensed underCC BY-SA 4.0.

only one or two years later [284]. The hierarchical file system for the Multiplexed Information andComputing Service (Multics) OS [61, 95], published in 1965, already had surprisingly many advancedfeatures that we know from today’s file systems: fine-grained access control for data privacy, backupability, links, and IO queue management. Inheriting from CTSS, it itself became the ancestor of Unixwhich, in turn, inspired Linux. The ls command shown in Figure 1.11 also was a feature of Multics(adapted from CTSS) and has survived all those years [150]. File systems are very good for organizingdocuments and heterogeneous data. They are not very suitable to main the sort of relational data andto achieve the features that would like DBs to have.
The need for systems that supported modern DB features became aparent. At the same time, itwas not really clear how that could be done. Different groups began developing concepts, ideas, andprototypes.
The first version of the Integrated Data Store (IDS) was developed by Bachman in 1961/62 atGeneral Electric [13, 14]. IDS offered the first direct access DB, holding data in virtual memory. It mayhave been the first real DBMS and Bachman won the 1973 A.M. Turing Award for this work [174]. IDS

Databases
Thomas Weise (汤卫思)

July 25, 2025

Abstract

This book is an introduction into databases for undergraduate and graduate students.

https://thomasweise.github.io/databases

Metaheuristic Optimization in Python: moptipy

We offer moptipy31 a mature open source Python package for metaheuristic optimization,
which implements several algorithms, can run self-documenting experiments in parallel and in a
distributed fashion, and offers statistical evaluation tools.

谢谢您门！

Thank you!
Vielen Dank!

References I
[1] David Lee Applegate, Robert E. Bixby, Vašek Chvátal, and William John Cook. The Traveling Salesman Problem: A Computational

Study. 2nd ed. Vol. 17. Princeton Series in Applied Mathematics. Princeton, NJ, USA: Princeton University Press, 2007.
ISBN: 978-0-691-12993-8 (cit. on pp. 16–19, 98).

[2] Thomas Bäck, David B. Fogel, and Zbigniew “Zbyszek” Michalewicz, eds. Handbook of Evolutionary Computation. Bristol, England,
UK: IOP Publishing Ltd and Oxford, Oxfordshire, England, UK: Oxford University Press, 1997. ISBN: 978-0-7503-0392-7 (cit. on
pp. 71–85, 96, 97).

[3] Jacek Błażewicz, Wolfgang Domschke, and Erwin Pesch. “The Job Shop Scheduling Problem: Conventional and New Solution
Techniques”. European Journal of Operational Research 93(1):1–33, Aug. 1996. Amsterdam, The Netherlands: Elsevier B.V.
ISSN: 0377-2217. doi:10.1016/0377-2217(95)00362-2 (cit. on p. 96).

[4] Eduardo Carvalho Pinto and Carola Doerr. Towards a More Practice-Aware Runtime Analysis of Evolutionary Algorithms.
arXiv.org: Computing Research Repository (CoRR) abs/1812.00493. Ithaca, NY, USA: Cornell Universiy Library, Dec. 3, 2018.
doi:10.48550/arXiv.1812.00493. URL: https://arxiv.org/abs/1812.00493 (visited on 2025-08-08). arXiv:1812.00493v1 [cs.NE]
3 Dec 2018 (cit. on pp. 47–57, 96).

[5] Vladimír Černý. “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm”. Journal of
Optimization Theory and Applications 45(1):41–51, Jan. 1985. New York, NY, USA: Springer Science+Business Media, LLC.
ISSN: 0022-3239. doi:10.1007/BF00940812 (cit. on pp. 58–70, 97).

[6] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. “A Review of Machine Scheduling: Complexity, Algorithms and Approximability”. In:
Handbook of Combinatorial Optimization. Ed. by Panos Miltiades Pardalos, Ding-Zhu Du, and Ronald Lewis Graham. 1st ed. Boston,
MA, USA: Springer, 1998, pp. 1493–1641. ISBN: 978-1-4613-7987-4. doi:10.1007/978-1-4613-0303-9_25. See also pages 21–169 in
volume 3/3 by Norwell, MA, USA: Kluwer Academic Publishers. (Cit. on pp. 96, 98).

[7] Stephen Arthur Cook. “The Complexity of Theorem-Proving Procedures”. In: Third Annual ACM Symposium on Theory of
Computing (STOC’1971). May 3–5, 1971, Shaker Heights, OH, USA. Ed. by Michael A. Harrison, Ranan B. Banerji, and
Jeffrey D. Ullman. New York, NY, USA: Association for Computing Machinery (ACM), 1971, pp. 151–158. ISBN: 978-1-4503-7464-4.
doi:10.1145/800157.805047 (cit. on pp. 20–27, 97, 98).

https://isbnsearch.org/isbn/978-0-691-12993-8
https://isbnsearch.org/isbn/978-0-7503-0392-7
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0377-2217
https://doi.org/10.1016/0377-2217(95)00362-2
https://doi.org/10.48550/arXiv.1812.00493
https://arxiv.org/abs/1812.00493
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0022-3239
https://doi.org/10.1007/BF00940812
https://isbnsearch.org/isbn/978-1-4613-7987-4
https://doi.org/10.1007/978-1-4613-0303-9_25
https://isbnsearch.org/isbn/978-1-4503-7464-4
https://doi.org/10.1145/800157.805047

References II

[8] Kenneth Alan De Jong. Evolutionary Computation: A Unified Approach. Vol. 4. Complex Adaptive Systems. Cambridge, MA, USA: MIT
Press, 2006. ISBN: 978-0-262-04194-2. URL: https://www.researchgate.net/publication/220740669 (visited on 2025-08-08) (cit. on
pp. 71–85, 97).

[9] Stefan Droste, Thomas Jansen, and Ingo Wegener. “On the Analysis of the (1 + 1) Evolutionary Algorithm”. Theoretical Computer
Science 276(1-2):51–81, Apr. 2002. Amsterdam, The Netherlands: Elsevier B.V. ISSN: 0304-3975. doi:10.1016/S0304-3975(01)00182-7
(cit. on pp. 47–57, 96).

[10] David Edward Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1989. ISBN: 978-0-201-15767-3 (cit. on pp. 71–85, 97).

[11] Michael T. Goodrich. A Gentle Introduction to NP-Completeness. Irvine, CA, USA: University of California, Irvine, Apr. 2022. URL:
https://ics.uci.edu/~goodrich/teach/cs165/notes/NPComplete.pdf (visited on 2025-08-01) (cit. on p. 98).

[12] Gregory Z. Gutin and Abraham P. Punnen, eds. The Traveling Salesman Problem and its Variations. Vol. 12. Combinatorial
Optimization (COOP). New York, NY, USA: Springer New York, May 2002. ISSN: 1388-3011. doi:10.1007/b101971 (cit. on pp. 16–19,
98).

[13] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications. Elsevier B.V., 2004.
ISBN: 978-1-55860-872-6 (cit. on pp. 20–27, 97).

[14] John Hunt. A Beginners Guide to Python 3 Programming. 2nd ed. Undergraduate Topics in Computer Science (UTICS). Cham,
Switzerland: Springer, 2023. ISBN: 978-3-031-35121-1. doi:10.1007/978-3-031-35122-8 (cit. on p. 97).

[15] Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. “Monte Carlo Techniques in Code Optimization”. In: 15th Annual Workshop
on Microprogramming (MICRO 15). Oct. 5–7, 1982. Ed. by Joseph Allen Fisher, William J. Tracz, and Bill Hopkins. Palo Alto, CA, USA:
Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE) and New York, NY, USA: Association for Computing
Machinery (ACM), Oct. 1982, pp. 143–148. doi:10.5555/800036.800944. See16 (cit. on p. 92).

[16] Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. “Monte Carlo Techniques in Code Optimization”. ACM SIGMICRO Newsletter
13(4):143–148, Dec. 1982. New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 1050-916X.
doi:10.1145/1014194.800944. See15 (cit. on pp. 58–70, 92, 97).

https://isbnsearch.org/isbn/978-0-262-04194-2
https://www.researchgate.net/publication/220740669
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0304-3975
https://doi.org/10.1016/S0304-3975(01)00182-7
https://isbnsearch.org/isbn/978-0-201-15767-3
https://ics.uci.edu/~goodrich/teach/cs165/notes/NPComplete.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1388-3011
https://doi.org/10.1007/b101971
https://isbnsearch.org/isbn/978-1-55860-872-6
https://isbnsearch.org/isbn/978-3-031-35121-1
https://doi.org/10.1007/978-3-031-35122-8
https://doi.org/10.5555/800036.800944
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1050-916X
https://doi.org/10.1145/1014194.800944

References III

[17] Scott Kirkpatrick, C. Daniel Gelatt, Jr., and Mario P. Vecchi. “Optimization by Simulated Annealing”. Science Magazine
220(4598):671–680, May 13, 1983. Washington, D.C., USA: American Association for the Advancement of Science (AAAS).
ISSN: 0036-8075. doi:10.1126/science.220.4598.671. URL: https://www.researchgate.net/publication/6026283 (visited on 2025-08-08)
(cit. on pp. 58–70, 97).

[18] Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. “Sequencing and
Scheduling: Algorithms and Complexity”. In: Production Planning and Inventory. Ed. by Stephen C. Graves,
Alexander Hendrik George Rinnooy Kan, and Paul H. Zipkin. Vol. IV of Handbooks of Operations Research and Management Science.
Amsterdam, The Netherlands: Elsevier B.V., 1993. Chap. 9, pp. 445–522. ISSN: 0927-0507. ISBN: 978-0-444-87472-6.
doi:10.1016/S0927-0507(05)80189-6. URL: http://alexandria.tue.nl/repository/books/339776.pdf (visited on 2023-12-06) (cit. on
pp. 96, 98).

[19] Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. Estimation, Simulation, and Control – Wiley-Interscience Series in Discrete
Mathematics and Optimization. Chichester, West Sussex, England, UK: Wiley Interscience, Sept. 1985. ISSN: 0277-2698.
ISBN: 978-0-471-90413-7 (cit. on pp. 16–19, 98).

[20] Kent D. Lee and Steve Hubbard. Data Structures and Algorithms with Python. Undergraduate Topics in Computer Science (UTICS).
Cham, Switzerland: Springer, 2015. ISBN: 978-3-319-13071-2. doi:10.1007/978-3-319-13072-9 (cit. on p. 97).

[21] Mark Lutz. Learning Python. 6th ed. Sebastopol, CA, USA: O’Reilly Media, Inc., Mar. 2025. ISBN: 978-1-0981-7130-8 (cit. on p. 97).

[22] Zbigniew “Zbyszek” Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Berlin/Heidelberg, Germany:
Springer-Verlag GmbH Germany, 1996. ISBN: 978-3-540-58090-4. doi:10.1007/978-3-662-03315-9 (cit. on pp. 71–85, 97).

[23] Melanie Mitchell. An Introduction to Genetic Algorithms. Complex Adaptive Systems. Cambridge, MA, USA: MIT Press, Feb. 1998.
ISBN: 978-0-262-13316-6. URL: http://boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf (visited on 2025-08-08) (cit. on pp. 71–85, 97).

[24] Martin Pincus. “Letter to the Editor – A Monte Carlo Method for the Approximate Solution of Certain Types of Constrained Optimization
Problems”. Operations Research 18(6):1225–1228, Nov.–Dec. 1970. Catonsville, MD, USA: The Institute for Operations Research and the
Management Sciences (INFORMS). ISSN: 0030-364X. doi:10.1287/opre.18.6.1225 (cit. on pp. 58–70, 97).

https://portal.issn.org/api/search?search[]=MUST=allissnbis=0036-8075
https://doi.org/10.1126/science.220.4598.671
https://www.researchgate.net/publication/6026283
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0927-0507
https://isbnsearch.org/isbn/978-0-444-87472-6
https://doi.org/10.1016/S0927-0507(05)80189-6
http://alexandria.tue.nl/repository/books/339776.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0277-2698
https://isbnsearch.org/isbn/978-0-471-90413-7
https://isbnsearch.org/isbn/978-3-319-13071-2
https://doi.org/10.1007/978-3-319-13072-9
https://isbnsearch.org/isbn/978-1-0981-7130-8
https://isbnsearch.org/isbn/978-3-540-58090-4
https://doi.org/10.1007/978-3-662-03315-9
https://isbnsearch.org/isbn/978-0-262-13316-6
http://boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0030-364X
https://doi.org/10.1287/opre.18.6.1225

References IV

[25] Sanatan Rai and George Vairaktarakis. “NP-Complete Problems and Proof Methodology”. In: Encyclopedia of Optimization. Ed. by
Christodoulos A. Floudas and Panos Miltiades Pardalos. 2nd ed. Boston, MA, USA: Springer, Sept. 2008, pp. 2675–2682.
ISBN: 978-0-387-74758-3. doi:10.1007/978-0-387-74759-0_462 (cit. on p. 98).

[26] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge, England, UK:
Cambridge University Press & Assessment, July 2014. ISBN: 978-1-107-05713-5. URL:
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning (visited on 2024-06-27) (cit. on p. 97).

[27] Thomas Weise (汤卫思). Databases. Hefei, Anhui, China (中国安徽省合肥市): Hefei University (合肥大学), School of Artificial Intelligence
and Big Data (人工智能与大数据学院), Institute of Applied Optimization (应用优化研究所, IAO), 2025. URL:
https://thomasweise.github.io/databases (visited on 2025-01-05) (cit. on pp. 88, 96).

[28] Thomas Weise (汤卫思). Global Optimization Algorithms – Theory and Application. self-published, 2009. URL:
https://www.researchgate.net/publication/200622167 (visited on 2025-07-25) (cit. on pp. 71–85, 96, 97).

[29] Thomas Weise (汤卫思). Programming with Python. Hefei, Anhui, China (中国安徽省合肥市): Hefei University (合肥大学), School of
Artificial Intelligence and Big Data (人工智能与大数据学院), Institute of Applied Optimization (应用优化研究所, IAO), 2024–2025. URL:
https://thomasweise.github.io/programmingWithPython (visited on 2025-01-05) (cit. on pp. 87, 97).

[30] Thomas Weise (汤卫思), Raymond Chiong, Jörg Lässig, Ke Tang (唐珂), Shigeyoshi Tsutsui, Wenxiang Chen (陈文祥),
Zbigniew “Zbyszek” Michalewicz, and Xin Yao (姚新). “Benchmarking Optimization Algorithms: An Open Source Framework for the
Traveling Salesman Problem”. IEEE Computational Intelligence Magazine (CIM) 9(3):40–52, Aug. 2014. Piscataway, NJ, USA: Institute
of Electrical and Electronics Engineers (IEEE). ISSN: 1556-603X. doi:10.1109/MCI.2014.2326101 (cit. on pp. 16–19, 98).

[31] Thomas Weise (汤卫思) and Zhize Wu (吴志泽). “Replicable Self-Documenting Experiments with Arbitrary Search Spaces and
Algorithms”. In: Conference on Genetic and Evolutionary Computation (GECCO’2023), Companion Volume. July 15–19, 2023, Lisbon,
Portugal. Ed. by Sara Silva and Luís Paquete. New York, NY, USA: Association for Computing Machinery (ACM), 2023, pp. 1891–1899.
ISBN: 979-8-4007-0120-7. doi:10.1145/3583133.3596306 (cit. on pp. 89, 97).

https://isbnsearch.org/isbn/978-0-387-74758-3
https://doi.org/10.1007/978-0-387-74759-0_462
https://isbnsearch.org/isbn/978-1-107-05713-5
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
https://thomasweise.github.io/databases
https://www.researchgate.net/publication/200622167
https://thomasweise.github.io/programmingWithPython
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1556-603X
https://doi.org/10.1109/MCI.2014.2326101
https://isbnsearch.org/isbn/979-8-4007-0120-7
https://doi.org/10.1145/3583133.3596306

References V

[32] L. Darrell Whitley. “The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best”. In:
3rd International Conference on Genetic Algorithms (ICGA’1989). June 1989, Fairfax, VA, USA: George Mason University. Ed. by
J. David Schaffer. Burlington, MA, USA/San Mateo, CA, USA: Morgan Kaufmann Publishers, pp. 116–123. ISBN: 978-1-55860-066-9.
URL: https://www.researchgate.net/publication/2527551 (visited on 2025-08-08) (cit. on p. 97).

[33] Kinza Yasar and Craig S. Mullins. Definition: Database Management System (DBMS). Newton, MA, USA: TechTarget, Inc., June 2024.
URL: https://www.techtarget.com/searchdatamanagement/definition/database-management-system (visited on 2025-01-11) (cit. on p. 96).

https://isbnsearch.org/isbn/978-1-55860-066-9
https://www.researchgate.net/publication/2527551
https://www.techtarget.com/searchdatamanagement/definition/database-management-system

Glossary I

EA An evolutionary algorithm is a metaheuristic optimization method that maintains a population of candidate solutions, which
undergo selection (where better solutions are chosen with higher probability) and reproduction (where mutation and
recombination create a new candidate solution from one or two existing ones, repectively)2,28.

(µ + λ) EA The (µ + λ) EA is an evolutionary algorithm (EA) where, in each generation, λ offspring solutions are generated from the
current population of µ parent solutions. The offspring and parent populations are merged, yielding µ + λ solutions, from
which then the best µ solutions are ratained to form the parent population of the next generation. If the search space is the
bit strings of length n, then this algorithm usually applies a mutation operator flipping each bit independently with
probability 1/n.

(1 + 1) EA The (1 + 1) EA is a local search algorithm that retains the best solution xc discovered so far during the search4,9. In each
step, it applies a unary search operator to this best-so-far solution xc and derives a new solution xn. If the new solution xn
is better or equally good when compared with xc, i.e., not worse, then it replaces it, i.e., is stored as the new xc. If the
search space are bit strings of length n, then the (1 + 1) EA uses a unary search operator that flips each bit independently
with probability m/n, where usually m = 1. This operator is the main difference to randomized local search (RLS). The
(1 + 1) EA is a special case of the (µ + λ) evolutionary algorithm ((µ + λ) EA) where µ = λ = 1.

DB A database is an organized collection of structured information or data, typically stored electronically in a computer system.
Databases are discussed in our book Databases27.

DBMS A database management system is the software layer located between the user or application and the database (DB). The
DBMS allows the user/application to create, read, write, update, delete, and otherwise manipulate the data in the DB33.

JSSP The Job Shop Scheduling Problem3,18 is one of the most prominent and well-studied scheduling tasks. In a JSSP instance,
there are k machines and m jobs. Each job must be processed once by each machine in a job-specific sequence and has a
job-specific processing time on each machine. The goal is to find an assignment of jobs to machines that results in an overall
shortest makespan, i.e., the schedule which can complete all the jobs in the shortest time. The JSSP is NP-complete6,18.

Glossary II

MaxSAT The goal of satisfiaiblity problems is to find an assignment for n Boolean variables that make a given Boolean
formula F : {0, 1}n 7→ {0, 1} become true. In the Maximum Satisfiability (MaxSAT) problem13, F is given in conjunctive
normal form, i.e., the variables appear as literals either directly or negated in m “or” clauses, which are all combined into
one “and.” The objective function f(x), subject to minimization, computes the number of clauses which are false under the
variable setting x. If f(x) = 0, then all clauses of F are true, which solves the problem. The MaxSat problem is
NP-complete7.

ML Machine Learning, see, e.g.,26

moptipy is the Metaheuristic Optimization in Python library31. Learn more at https://thomasweise.github.io/moptipy.

Python The Python programming language14,20,21,29, i.e., what you will learn about in our book29. Learn more at
https://python.org.

RLS Randomized local search retains the best solution xc discovered so far during the search and, in each step, it applies a unary
search operator to this best-so-far solution xc and derives a new solution xn. If the new solution xn is better or equally good
when compared with xc, i.e., not worse, then it replaces it, i.e., is stored as the new xc. If the search space are bit strings of
length n, then RLS uses a unary search operator that flips exactly one bit. This operator is the main difference to (1 + 1) EA.

SA Simulated Annealing is a local search that sometimes accepts a worse solution5,16,17,24. The probability to do so decreases
over time and with the difference in objective values, i.e.,is the lower the worse the new solution is.

SGA The Standard Genetic Algorithm2,8,10,22,23,28 was the first population EA. It maintains a population of solutions and applies
mutation and crossover to generate offspring solutions. It uses fitness proportionate selection to choose which solutions should
“survive” into the next generation, which today is considered a very bad design choice, see, e.g.,32.

https://thomasweise.github.io/moptipy
https://python.org

Glossary III

TSP In an instance of the Traveling Salesperson Problem, also known as Traveling Salesman Problem, a set of n cities or locations
as well as the distances between them are defined1,12,19,30. The goal is to find the shortest round-trip tour that starts at one
city, visits all the other cities one time each, and returns to the origin. The TSP is one of the most well-known NP-hard
combinatorial optimization problems.

NP NP is the class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be
verified in polynomial time by a deterministic machine (such as a normal computer)11.

NP-complete A decision problem is NP-complete if it is in NP and all problems in NP are reducible to it in polynomial time11,25. A
problem is NP-complete if it is NP-hard and if it is in NP.

NP-hard Algorithms that guarantee to find the correct solutions of NP-hard problems6,7,18 need a runtime that is exponential in the
problem scale in the worst case. A problem is NP-hard if all problems in NP are reducible to it in polynomial time11.

R the set of the real numbers.

	Outline
	Introduction
	Introduction to Optimization
	Views on Optimization
	Example: Traveling Salesperson Problem
	Example: Maximum Satisfiability Problem
	Example: Bin Packing Problem
	Optimization is Hard

	Metaheuristic Optimization
	Metaheuristic Optimization
	The (1+1) EA and RLS
	Simulated Annealing
	Standard Genetic Algorithm with Roulette Wheel Selection

	Advertisement
	Programming with Python
	Databases
	Metaheuristic Optimization in Python: moptipy

	Presentation End
	References
	Glossary
	Symbols

