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Introduction to Optimization

® Optimization means finding superlatives.
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® Find the fastest way to get from Hefei to Beijing.
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Introduction to Optimization

® Optimization means finding superlatives.
® Find the fastest way to get from Hefei to Beijing.

® Find the shortest route through n cities.
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Introduction to Optimization

biggest ...
with the least energy...
...best trade-offs between ....

...highest quality ...longest possible duration
most efficient ... most - cheapest ... fastest...
most SIS ...with the highest score

... on the smallest possible area most robust ...

® Optimization means finding superlatives.

® Find the fastest way to get from Hefei to Beijing.

...shortest delay

® Find the shortest route through n cities.

® Set the pricing for these apples such that we can get the largest revenue when selling them.
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Introduction to Optimization

biggest ...
with the least energy...
...best trade-offs between ....

...highest quality ...longest possible duration
most efficient ... most precise ... cheapest ... fastest...
most similar to ...

Optimization means finding superlatives.
...with the highest score

Find the fastest way to get from Hefei to Beijing.

... on the smallest possible area most robust ...

¥ s ...shortest dela
Find the shortest route through n cities. e
Set the pricing for these apples such that we can get the largest revenue when selling them.

Place all these chips on a circuit board so that they occupy the smallest area while we can
still properly connect and cool them.
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Introduction to Optimization VT -
...best trade-offs between ....

...highest quality ...longest possible duration
most efficient ... most precise ... cheapest ... fastest...
most similar to ...

® Optimization means finding superlatives.

...with the highest score

® Find the fastest way to get from Hefei to Beijing.

... on the smallest possible area most robust ...

...shortest delay

® Find the shortest route through n cities.
® Set the pricing for these apples such that we can get the largest revenue when selling them.

® Place all these chips on a circuit board so that they occupy the smallest area while we can
still properly connect and cool them.

® Find the cheapest way to transport these goods from Hefei to Wellington.
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Introduction to Optimization

biggest ...

with the least energy...
...best trade-offs between ....

...highest quality ...longest possible duration

most efficient ... most precise ... cheapest ... fastest...
most similar to ...

® Optimization means finding superlatives.

...with the highest score

® Find the fastest way to get from Hefei to Beijing.

... on the smallest possible area most robust ...

...shortest delay

® Find the shortest route through n cities.

Set the pricing for these apples such that we can get the largest revenue when selling them.

Place all these chips on a circuit board so that they occupy the smallest area while we can
still properly connect and cool them.

® Find the cheapest way to transport these goods from Hefei to Wellington.

® Design an airplane wing with the least aerodynamic drag.
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Introduction to Optimization

biggest ...
with the least energy...
...best trade-offs between ....

...highest quality ...longest possible duration
most efficient ... most precise ... cheapest ... fastest...
most similar to ...

Optimization means finding superlatives.
...with the highest score

... on the smallest possible area most robust ...

Find the fastest way to get from Hefei to Beijing.

...shortest dela
Find the shortest route through n cities. e
Set the pricing for these apples such that we can get the largest revenue when selling them. =

Place all these chips on a circuit board so that they occupy the smallest area while we can
still properly connect and cool them.

Find the cheapest way to transport these goods from Hefei to Wellington.
Design an airplane wing with the least aerodynamic drag.

Find a strategy to manage the power of the nodes in this sensor network so that full
coverage is guaranteed for the longest possible duration.
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biggest ...

Introduction to Optimization VT ——
...best trade-offs between ....

...highest quality ...longest possible duration
most efficient ... most precise ... cheapest ... fastest...

mostSIMIEEE ...with the highest score

® Optimization means finding superlatives.

... on the smallest possible area most robust ...

® Find the fastest way to get from Hefei to Beijing.

...shortest dela
® Find the shortest route through n cities. e
® Set the pricing for these apples such that we can get the largest revenue when selling them. *

® Place all these chips on a circuit board so that they occupy the smallest area while we can
still properly connect and cool them.

® Find the cheapest way to transport these goods from Hefei to Wellington.
® Design an airplane wing with the least aerodynamic drag.

® Find a strategy to manage the power of the nodes in this sensor network so that full
coverage is guaranteed for the longest possible duration.

® And so on.
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Views on Optimization

® There are two ways to look at optimization.
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Views on Optimization

® The economic view.
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Views on Optimization

® The mathematical view.
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Example: Traveling Salesperson Problem

® |n the Traveling Salesperson
Problem (TSP)%12:19.30  the
goal is to find the shortest
round-ttrip tour through a set of
n cities.
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Example: Traveling Salesperson Problem

® |n the Traveling Salesperson
Problem (TSP)%12:19.30  the
goal is to find the shortest
round-ttrip tour through a set of
n cities.

® The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.
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Example: Traveling Salesperson Problem

® |n the Traveling Salesperson

Problem (TSP)%1219:30 the
goal is to find the shortest
round-ttrip tour through a set of
n cities.

The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

The objective

function f : X — R, subject to
minimization, is the length of
the tour.
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Example: Traveling Salesperson Problem

® |n the Traveling Salesperson

Problem (TSP)12:19:30 the
goal is to find the shortest
round-ttrip tour through a set of
n cities.

The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

The objective

function f : X — R, subject to
minimization, is the length of
the tour.

The optimal solution z* € X is
the shortest possible tour.
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Example: Maximum Satisfiability Problem

® The goal of the Maximum
Satisfiability (MaxSAT)"'13 problem
is to find a setting of n variables that
makes a Boolean formula F' become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

Ly Ty Ty Ty
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Example: Maximum Satisfiability Problem

® The goal of the Maximum
Satisfiability (MaxSAT)"'13 problem
is to find a setting of n variables that
makes a Boolean formula F' become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

LTy Ty Ty

n=4 variables
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Example: Maximum Satisfiability Problem

® The goal of the Maximum
Satisfiability (MaxSAT)”13 problem
is to find a setting of n variables that

makes a Boolean formula F' become g o 4 o

True. The variables appear directly

or negated in m OR-clauses, whose r
results flow into one AND-clause.

negatedJ
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Example: Maximum Satisfiability Problem

® The goal of the Maximum
Satisfiability (MaxSAT)"'13 problem
is to find a setting of n variables that
makes a Boolean formula F' become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

Ly Ty Ty Ty

;
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m=3 clauses
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Example: Maximum Satisfiability Problem

® The goal of the Maximum
Satisfiability (MaxSAT)"'13 problem
is to find a setting of n variables that
makes a Boolean formula F' become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

Ly Ty Ty Ty




Example: Maximum Satisfiability Problem

® The goal of the Maximum
Satisfiability (MaxSAT)"'13 problem
is to find a setting of n variables that
makes a Boolean formula F' become g o 4 o
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

® X is the set of all possible bit strings
of length n.




Example: Maximum Satisfiability Problem

® The goal of the Maximum
Satisfiability (MaxSAT)"'13 problem
is to find a setting of n variables that
makes a Boolean formula F' become g o 4 o
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

® X is the set of all possible bit strings
of length n.
® The objective function f : X — R is

the number of unsatisfied
OR-clauses.




Example: Maximum Satisfiability Problem

The goal of the Maximum
Satisfiability (MaxSAT)"'13 problem
is to find a setting of n variables that
makes a Boolean formula F' become
True. The variables appear directly
or negated in m OR-clauses, whose
results flow into one AND-clause.

X is the set of all possible bit strings
of length n.

The objective function f: X — R is
the number of unsatisfied
OR-clauses.

The optimum 2* € X has f(z*) =0,
i.e., all clauses satisfied, i.e.,

F(z*) = True.
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Example Bin Packing Problem

® The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible.

ey .
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xample: Bin Packing Problem

® The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible.

® The X comprises all possible packing orders of the n objects. l




r&u’ulﬂk:“ dn o EERIE. el - L a= S - R Lgf ot B e e O A -1

:
|

Example: Bin Packing Problem

® The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible.

® The X comprises all possible packing orders of the n objects. ]

® The objective function f is the number of bins needed by a given packing order.
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xample: Bin Packing Problem

® The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible.

® The X comprises all possible packing orders of the n objects.
® The objective function f is the number of bins needed by a given packing order.

® The optimum x* is the packing order requiring the fewest bins.




Optimization is Hard

® Finding the globally optimal solution z* from the set of all possible solutions X is often an

NP-hard problem.




Optimization is Hard

® Finding the globally optimal solution z* from the set of all possible solutions X is often an
NP-hard problem.

e Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given N'P-hard problem in a runtime that is not longer than polynomial in
the size of the problem (i.e., existing algorithms may need exponential runtime in the
worst case).




Optimization is Hard

® Finding the globally optimal solution z* from the set of all possible solutions X is often an

NP-hard problem.

e Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given N'P-hard problem in a runtime that is not longer than polynomial in
3 the size of the problem (i.e., existing algorithms may need exponential runtime in the
| worst case).
® |n other words, if we want to guarantee to find the best possible solution z* for all possible
instances of a problem, we often cannot really be much faster than testing all possible
candidate solutions & € X in the worst case.
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Metaheuristic Optimization

® Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.
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® They drop the guarantee to find the
optimal solution.
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Metaheuristic Optimization

® Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.
® They drop the guarantee to find the
optimal solution.
® They try to find good solution within
1 a feasible runtime.

I ® They start with random solutions.




Metaheuristic Optimization

Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

] They drop the guarantee to find the
E optimal solution.

They try to find good solution within
a feasible runtime.

They start with random solutions.
And then roughly follow this cycle.




Metaheuristic Optimization

® Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

® They drop the guarantee to find the
optimal solution.

L e

® They try to find good solution within
" a feasible runtime.

® They start with random solutions.

® And then roughly follow this cycle.
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Trial-and-Error idea of iterative
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] They drop the guarantee to find the
E optimal solution.

They try to find good solution within
a feasible runtime.

They start with random solutions.
And then roughly follow this cycle.
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® Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.
- ® They drop the guarantee to find the
optimal solution.

® They try to find good solution within ’

a feasible runtime.

® They start with random solutions.
And then roughly follow this cycle.
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Metaheuristic Optimization

® Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.
- ® They drop the guarantee to find the
optimal solution.

® They try to find good solution within ’

a feasible runtime.

® They start with random solutions.
And then roughly follow this cycle.




Metaheuristic Optimization

Metaheuristics follow the
Trial-and-Error idea of iterative
improvement.

i They drop the guarantee to find the
g optimal solution.

They try to find good solution within
a feasible runtime.

They start with random solutions.
And then roughly follow this cycle.




B A e e L . AR MR TN R .

- The (14 1) EA and RLS (B
® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.
;
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- The (14 1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)*°.

e
VR S sk R Y VS

procedure (1+ 1) EA(f : X — R)
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The (1+1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)*°.

procedure (1+ 1) EA(f : X — R)
randomly sample x. from X

2
VR S sk R Y VS
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The (1+1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)*°.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(x.);

c-
VR S sk R Y VS )
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The (1+1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)*°.

procedure (1+ 1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do

VR S sk R Y VS
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The (1+1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)*°.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);

while — terminate do
T, < move(x,);

VR S sk R Y VS
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The (1+1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)*°.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);

while — terminate do
Ty < move(xc); Yn < f(xn)a

VR S sk R Y VS
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The ( ) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)*°.

® They accept the new solution if it is better or equally good compared to the current
solution.

procedure (1+ 1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
Ty move(xc); Yn < f(xn)a
if ¥, < y. then

VAT S sk U Y VR
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The ( ) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)*°.

® They accept the new solution if it is better or equally good compared to the current
solution.

procedure (1+ 1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
Ty move(xc); Yn < f(xn)a
if yp <y then z. <+ z,;

VAT S sk U Y VR
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The ( ) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)*°.

® They accept the new solution if it is better or equally good compared to the current
solution.

procedure (1+ 1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
Ty move(xc); Yn < f(xn)a
if yp < ye then z. < 1, Yo < Yn;

VAT S sk U Y VR
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The ( ) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)*°.

® They accept the new solution if it is better or equally good compared to the current
solution.

procedure (1+ 1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
Ty move(xc); Yn < f(xn)a
if yp < ye then z. < 1, Yo < Yn;
return z., vy,

VAT S sk U Y VR



Simulated Annealing

e Simulated Annealing (SA)>16.17.24

is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.
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Simulated Annealing

e Simulated Annealing (SA)>16.17.24

is a local search that accepts also procedure SA(f : X — R, T, ¢)
worsening moves, but with a randomly sample z. from X; y. < f(zc);
probability that decreases over time

AND with the difference in solution . :
while — terminate do

quality. T, < move(Te); Yn & f(an);

if yn S yc then
Te < Tns Ye < Yns
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Simulated Annealing

e Simulated Annealing (SA)>16.17.24

is a local search that accepts also procedure SA(f : X — R, T, ¢)
worsening moves, but with a randomly sample z. from X; y. < f(zc);
probability that decreases over time

AND with the difference in solution . :
while — terminate do

quality. T, < move(Te); Yn & f(an);

if %2 < ¥ then

Te < Tns Ye < Yns




Simulated Annealing

e Simulated Annealing (SA)%16:17.24
is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

procedure SA(f : X — R, Tp, ¢)
randomly sample z. from X; y. + f(z.);

while - terminate do
T ¢ move(Tc); Yn < f(Tn);

Yec-Yn
e

if | < then
6
o 5
4
> 8 <
Yn = Ye YUn = Ye
new solution 2 new solution
is worse is better
4/ﬁ Ye-UYn
1 L UuTT T 1
8 6 -4 -2 0 2 4
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Simulated Annealing

e Simulated Annealing (SA)>16.17.24

is a local search that accepts also procedure SA(f : X — R, T, ¢)
worsening moves, but with a randomly sample z. from X; y. < f(zc);
probability that decreases over time

AND with the difference in solution . :
while — terminate do

quality. T, < move(Te); Yn & f(an);

if R} < eyc_y" then > always true if v, <y,

Te < Tns Ye < Yns
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Simulated Annealing

e Simulated Annealing (SA)>16.17.24

is a local search that accepts also procedure SA(f : X — R, T, ¢)
worsening moves, but with a randomly sample z. from X; y. < f(zc);
probability that decreases over time

AND with the difference in solution . :
while — terminate do

quality. T, < move(Te); Yn & f(an);

if R <e “7°" then o always true if y, < y.

Te < Tns Ye < Yns
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Simulated Annealing

e Simulated Annealing (SA)%16:17.24
is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

® The probability is regulated by
temperature schedule with
parameter 7.

procedure SA(f : X — R, T, )
randomly sample z. from X; y. < f(zc);

while — terminate do
Ty move(ajc); Yn f(zn)v

T« Tg 5
if R <e “7°" then o always true if y, < y.
Te £ T Ye < Yns
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Simulated Annealing

e Simulated Annealing (SA)%16:17.24
is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

® The probability is regulated by
temperature schedule with
parameter 7.

procedure SA(f : X — R, T, )
randomly sample z. from X; y. < f(zc);

7+ 0;
while — terminate do
Ty, < move(z.); Yn — f(Tn);

> 7 is iteration counter

T« Tg 5
if R <e “7°" then o always true if y, < y.
Te £ T Ye < Yns
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Simulated Annealing

e Simulated Annealing (SA)%16:17.24
is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

® The probability is regulated by
temperature schedule with
parameter 7.

procedure SA(f : X — R, T, )
randomly sample z. from X; y. < f(zc);

T+ 0;
while — terminate do
Ty, < move(z.); Yn — f(Tn);
T+ T+ 1;
T «+ Tg 5
if R} < eyc—_Th then > always true if v, <y,
Te < Tns Ye < Yns

> 7 is iteration counter
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Simulated Annealing

e Simulated Annealing (SA)%16:17.24
is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

® The probability is regulated by
temperature schedule with
parameters Ty and e.

procedure SA(f : X — R, T, )
randomly sample z. from X; y. < f(zc);

7+ 0;

while — terminate do
Ty, < move(z.); Yn — f(Tn);
T4 T+ 1;
T To(1—e) Y

if R <e “7°" then o always true if y, < y.
Te £ T Ye < Yns

> 7 is iteration counter

> T decreases over time




Simulated Annealing

e Simulated Annealing (SA)%16:17.24
is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

® The probability is regulated by
temperature schedule with
parameters Ty and e.

® |t also remembers best-so-far
solution zp and its objective
value ypg, because it could get lost.

procedure SA(f : X — R, T, )
randomly sample z. from X; y. < f(zc);
TB  Te; YB < Ye; > preserve best!
7+ 0; > 7 is iteration counter
while — terminate do
Ty, < move(z.); Yn — f(Tn);
T4 T+ 1;
T« To(l—e) > T' decreases over time
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e Simulated Annealing (SA)%16:17.24
is a local search that accepts also
worsening moves, but with a
probability that decreases over time
AND with the difference in solution
quality.

® The probability is regulated by
temperature schedule with
parameters Ty and e.

® |t also remembers best-so-far
solution zp and its objective
value ypg, because it could get lost.

procedure SA(f : X — R, T, )
randomly sample z. from X; y. < f(zc);
TB  Te; YB < Ye; > preserve best!
7+ 0; > 7 is iteration counter
while — terminate do
Ty, < move(z.); Yn — f(Tn);
T4 T+ 1;
T« To(l—e) > T' decreases over time

if R <e “7°" then © always true if v, < y.
Te < Tns Ye < Yns
if y. <yp then zp < 2¢; yp < Yo




Simulated Annealing

e Simulated Annealing (SA)>16.17.24

is a local search that accepts also procedure SA(f : X — R, T, ¢)

worsening moves, but with a randomly sample z. from X; y. < f(zc);
probability that decreases over time TB ¢ Te; YB < Yo b preserve best!
AND with the difference in solution 7+ 0; - 7S Heration connter

while — terminate do
Ty, < move(z.); Yn — f(Tn);

® The probability is regulated by TeTH]
) T« To(l—e) > T' decreases over time
temperature schedule with

parameters Ty and e.

quality.

if R <e “7°" then © always true if v, < y.
Te S Tns Ye < Yns
® |t also remembers best-so-far if y. < yg then zp < T.; YB + Ye;

solution zp and its objective return zg, yp

value ypg, because it could get lost.
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® The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
Selection (Roulette Wheel) is for
maximization?:8:10:22.23,28

® |t uses a population of size ps as
well as a unary operator.

procedure SGA(f : X — RT, ps, cr)

for jel...psdo
randomly sample Sp[j].z from X

> for maximization!

> random initial population
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well as a unary operator.

procedure SGA(f : X — RT, ps, cr)

for jel...psdo

> for maximization!
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® |t uses a population of size ps as
well as a unary operator.

procedure SGA(f : X — RT, ps, cr) > for maximization!

for jel...psdo > random initial population
randomly sample So[j].z from X; Sp[jl.y < f(Solj]-z);

for i €0...0c0 do > iterate “generations”
for jel...psdo > new pop. via mutation
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maximization?:8:10.22.23,.28

® |t uses a population of size ps as

well as a unary and binary
operator (with crossover rate cr).

procedure SGA(f : X — R, ps, cr) > for maximization!

for jel...psdo > random initial population
randomly sample So[j].z from X; Sp[jl.y < f(Solj]-z);
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® |t uses a population of size ps as

well as a unary and binary
operator (with crossover rate cr).

procedure SGA(f : X — R, ps, cr) > for maximization!

for jel...psdo > random initial population
randomly sample So[j].z from X; Sp[jl.y < f(Solj]-z);
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for i €0...00 do
for je1...psdo
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maximization?:8:10,:22.23.28

. ® |t uses a population of size ps as

well as a unary and binary
operator (with crossover rate cr).

procedure SGA(f : X — R, ps, cr) > for maximization!
B + 0; yp < —o0; > best-so-far solution
for jel...psdo > random initial population
randomly sample So[j].z from X; Sp[jl.y < f(Solj]-z);
if So[jl.y > ys then zg < Sp[j].z; ys + Soljl.y;
for i €0...00 do > iterate “generations”
for jel...psdo > new pop. via mutation and crossover
if R} < cr then N;[j].z < binary(S;[|o|].z, Si[|9]].2);
else N;[j].z < move(S;[|%r|].x);

Niljl-y + f(Ni[5].2);

Sit+1 < Roulette Wheel: select ps records from P; = S; UN;
such that, for each of the ps slots, the probability
of P;[j] to be chosen is proportional to P;[j].y.
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. ® |t uses a population of size ps as

well as a unary and binary
operator (with crossover rate cr).

procedure SGA(f : X — R, ps, cr) > for maximization!
B + 0; yp < —o0; > best-so-far solution
for jel...psdo > random initial population
randomly sample So[j].z from X; Sp[jl.y < f(Solj]-z);
if So[jl.y > ys then zg < Sp[j].z; ys + Soljl.y;
for i €0...00 do > iterate “generations”
for jel...psdo > new pop. via mutation and crossover
if R} < cr then N;[j].z < binary(S;[|o|].z, Si[|9]].2);
else N;[j].z < move(S;[|%r|].x);
Nifjly < f(Niljl-@);
if N;[j].y > yg then zp + N;[jl.z; ys < Nil[j].y;
Sit+1 < Roulette Wheel: select ps records from P; = S; UN;
such that, for each of the ps slots, the probability
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® The Standard Genetic Algorithm
(SGA) with Fitness Proportionate
; Selection (Roulette Wheel) is for

maximization?:8:10,:22.23.28

. ® |t uses a population of size ps as

well as a unary and binary
operator (with crossover rate cr).

procedure SGA(f : X — R, ps, cr)
zp + 0; yp + —00;
for jel...psdo

fori€0...00do

> for maximization!

> best-so-far solution

> random initial population
randomly sample So[j].z from X; Sp[jl.y < f(Solj]-z);
if Soljl.y > yp then ap < So[jl.z; ys « Soljl.y;

> iterate “generations”

for jel...psdo > new pop. via mutation and crossover
if R} < cr then N;[j].z < binary(S;[|o|].z, Si[|9]].2);

else N;[j].z < move(S;[|sr
Niljly « f(Nilj]-x);

v ]@);

if N;[j].y > yg then zp + N;[jl.z; ys < Nil[j].y;
Sit+1 < Roulette Wheel: select ps records from P; = S; UN;
such that, for each of the ps slots, the probability

of P;[j] to be chosen is proportional to P;[j].y.

return zp, yp
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Programming with Python

We have a freely available course book on Programming with Python at
https://thomasweise.github.io/programmingWithPython, with focus on practical
software development using the Python ecosystem of tools®.
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https://thomasweise.github.io/programmingWithPython
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Databases

We have a freely available course book on Databases at
https://thomasweise.github.io/databases, with actual practical examples using a real
database management system (DBMS)?’.



https://thomasweise.github.io/databases

Metaheuristic Optimization in Python: moptipy

We offer moptipy3! a mature open source Python package for metaheuristic optimization,
which implements several algorithms, can run self-documenting experiments in parallel and in a
distributed fashion, and offers statistical evaluation tools.

[=]

E
L:
2
\




ST !
Thank youl
Vielen Dank!

ma




References |

[1]

[2]

3]

[4]

[5]

6]

[7]

David Lee Applegate, Robert E. Bixby, Vasek Chvatal, and William John Cook. The Traveling Salesman Problem: A Computational
Study. 2nd ed. Vol. 17. Princeton Series in Applied Mathematics. Princeton, NJ, USA: Princeton University Press, 2007.
ISBN: 978-0-691-12993-8 (cit. on pp. 16-19, 98).

Thomas Bick, David B. Fogel, and Zbigniew “Zbyszek”” Michalewicz, eds. Handbook of Evolutionary Computation. Bristol, England,
UK: IOP Publishing Ltd and Oxford, Oxfordshire, England, UK: Oxford University Press, 1997. ISBN: 978-0-7503-0392-7 (cit. on
pp. 71-85, 96, 97).

Jacek Btazewicz, Wolfgang Domschke, and Erwin Pesch. “The Job Shop Scheduling Problem: Conventional and New Solution
Techniques”. European Journal of Operational Research 93(1):1-33, Aug. 1996. Amsterdam, The Netherlands: Elsevier B.V.
ISSN: 0377-2217. doi:10.1016/0377-2217(95)00362-2 (cit. on p. 96).

Eduardo Carvalho Pinto and Carola Doerr. Towards a More Practice-Aware Runtime Analysis of Evolutionary Algorithms.
arXiv.org: Computing Research Repository (CoRR) abs/1812.00493. Ithaca, NY, USA: Cornell Universiy Library, Dec. 3, 2018.
doi:10.48550/arXiv.1812.00493. URL: https://arxiv.org/abs/1812.00493 (visited on 2025-08-08). arXiv:1812.00493v1 [cs.NE]
3 Dec 2018 (cit. on pp. 47-57, 96).

Vladimir Cerny. “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm’. Journal of
Optimization Theory and Applications 45(1):41-51, Jan. 1985. New York, NY, USA: Springer Science+Business Media, LLC.
ISSN: 0022-3239. doi:10.1007/BF00940812 (cit. on pp. 58-70, 97).

Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. “A Review of Machine Scheduling: Complexity, Algorithms and Approximability”. In

Handbook of Combinatorial Optimization. Ed. by Panos Miltiades Pardalos, Ding-Zhu Du, and Ronald Lewis Graham. 1st ed. Boston,
MA, USA: Springer, 1998, pp. 1493-1641. ISBN: 978-1-4613-7987-4. doi:10.1007/978-1-4613-0303-9_25. See also pages 21-169 in
volume 3/3 by Norwell, MA, USA: Kluwer Academic Publishers. (Cit. on pp. 96, 98).

Stephen Arthur Cook. “The Complexity of Theorem-Proving Procedures”. In: Third Annual ACM Symposium on Theory of
Computing (STOC’1971). May 3-5, 1971, Shaker Heights, OH, USA. Ed. by Michael A. Harrison, Ranan B. Banerji, and

Jeffrey D. Ullman. New York, NY, USA: Association for Computing Machinery (ACM), 1971, pp. 151-158. ISBN: 978-1-4503-7464-4.
doi:10.1145/800157.805047 (cit. on pp. 20-27, 97, 98).


https://isbnsearch.org/isbn/978-0-691-12993-8
https://isbnsearch.org/isbn/978-0-7503-0392-7
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0377-2217
https://doi.org/10.1016/0377-2217(95)00362-2
https://doi.org/10.48550/arXiv.1812.00493
https://arxiv.org/abs/1812.00493
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0022-3239
https://doi.org/10.1007/BF00940812
https://isbnsearch.org/isbn/978-1-4613-7987-4
https://doi.org/10.1007/978-1-4613-0303-9_25
https://isbnsearch.org/isbn/978-1-4503-7464-4
https://doi.org/10.1145/800157.805047

References Il

8l

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Kenneth Alan De Jong. Evolutionary Computation: A Unified Approach. Vol. 4. Complex Adaptive Systems. Cambridge, MA, USA: MIT
Press, 2006. ISBN: 978-0-262-04194-2. URL: https://www.researchgate.net/publication/220740669 (visited on 2025-08-08) (cit. on
pp. 71-85, 97).

Stefan Droste, Thomas Jansen, and Ingo Wegener. “On the Analysis of the (1 + 1) Evolutionary Algorithm”. Theoretical Computer
Science 276(1-2):51-81, Apr. 2002. Amsterdam, The Netherlands: Elsevier B.V. ISSN: 0304-3975. doi:10.1016/S0304-3975(01)00182-7
(cit. on pp. 47-57, 96).

David Edward Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1989. ISBN: 978-0-201-15767-3 (cit. on pp. 71-85, 97).

Michael T. Goodrich. A Gentle Introduction to NP-Completeness. Irvine, CA, USA: University of California, Irvine, Apr. 2022. URL:
https://ics.uci.edu/ goodrich/teach/cs165/notes/NPComplete.pdf (visited on 2025-08-01) (cit. on p. 98).

Gregory Z. Gutin and Abraham P. Punnen, eds. The Traveling Salesman Problem and its Variations. Vol. 12. Combinatorial
Optimization (COOP). New York, NY, USA: Springer New York, May 2002. ISSN: 1388-3011. doi:10.1007/b101971 (cit. on pp. 16-19,
08).

Holger H. Hoos and Thomas Stiitzle. Stochastic Local Search: Foundations & Applications. Elsevier B.V., 2004.

ISBN: 978-1-55860-872-6 (cit. on pp. 20-27, 97).

John Hunt. A Beginners Guide to Python 3 Programming. 2nd ed. Undergraduate Topics in Computer Science (UTICS). Cham,
Switzerland: Springer, 2023. ISBN: 978-3-031-35121-1. doi:10.1007/978-3-031-35122-8 (cit. on p. 97).

Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. “Monte Carlo Techniques in Code Optimization”. In: 15th Annual Workshop
on Microprogramming (MICRO 15). Oct. 5-7, 1982. Ed. by Joseph Allen Fisher, William J. Tracz, and Bill Hopkins. Palo Alto, CA, USA:
Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE) and New York, NY, USA: Association for Computing
Machinery (ACM), Oct. 1982, pp. 143-148. doi:10.5555/800036.800944. See® (cit. on p. 92).

Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. “Monte Carlo Techniques in Code Optimization”. ACM SIGMICRO Newsletter
13(4):143-148, Dec. 1982. New York, NY, USA: Association for Computing Machinery (ACM). ISSN: 1050-916X.

doi:10.1145/1014194.800944. See® (cit. on pp. 58-70, 92, 97).


https://isbnsearch.org/isbn/978-0-262-04194-2
https://www.researchgate.net/publication/220740669
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0304-3975
https://doi.org/10.1016/S0304-3975(01)00182-7
https://isbnsearch.org/isbn/978-0-201-15767-3
https://ics.uci.edu/~goodrich/teach/cs165/notes/NPComplete.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1388-3011
https://doi.org/10.1007/b101971
https://isbnsearch.org/isbn/978-1-55860-872-6
https://isbnsearch.org/isbn/978-3-031-35121-1
https://doi.org/10.1007/978-3-031-35122-8
https://doi.org/10.5555/800036.800944
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1050-916X
https://doi.org/10.1145/1014194.800944

References Il

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

Scott Kirkpatrick, C. Daniel Gelatt, Jr., and Mario P. Vecchi. “Optimization by Simulated Annealing”. Science Magazine
220(4598):671-680, May 13, 1983. Washington, D.C., USA: American Association for the Advancement of Science (AAAS).

ISSN: 0036-8075. doi:10.1126/science.220.4598.671. URL: https://www.researchgate.net/publication/6026283 (visited on 2025-08-08)
(cit. on pp. 58-70, 97).

Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. “Sequencing and
Scheduling: Algorithms and Complexity”. In: Production Planning and Inventory. Ed. by Stephen C. Graves,

Alexander Hendrik George Rinnooy Kan, and Paul H. Zipkin. Vol. IV of Handbooks of Operations Research and Management Science.
Amsterdam, The Netherlands: Elsevier B.V., 1993. Chap. 9, pp. 445-522. ISSN: 0927-0507. ISBN: 978-0-444-87472-6.
doi:10.1016/80927-0507 (05)80189-6. URL: http://alexandria.tue.nl/repository/books/339776.pdf (visited on 2023-12-06) (cit. on
pp. 96, 98).

Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. Estimation, Simulation, and Control — Wiley-Interscience Series in Discrete
Mathematics and Optimization. Chichester, West Sussex, England, UK: Wiley Interscience, Sept. 1985. ISSN: 0277-2698.

ISBN: 978-0-471-90413-7 (cit. on pp. 16-19, 98).

Kent D. Lee and Steve Hubbard. Data Structures and Algorithms with Python. Undergraduate Topics in Computer Science (UTICS).
Cham, Switzerland: Springer, 2015. ISBN: 978-3-319-13071-2. doi:10.1007/978-3-319-13072-9 (cit. on p. 97).

Mark Lutz. Learning Python. 6th ed. Sebastopol, CA, USA: O'Reilly Media, Inc., Mar. 2025. ISBN: 978-1-0981-7130-8 (cit. on p. 97).

Zbigniew “Zbyszek” Michalewicz. Genetic Algorithms 4 Data Structures = Evolution Programs. Berlin/Heidelberg, Germany:
Springer-Verlag GmbH Germany, 1996. ISBN: 978-3-540-58090-4. doi:10.1007/978-3-662-03315-9 (cit. on pp. 71-85, 97).

Melanie Mitchell. An Introduction to Genetic Algorithms. Complex Adaptive Systems. Cambridge, MA, USA: MIT Press, Feb. 1998.
ISBN: 978-0-262-13316-6. URL: http://boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf (visited on 2025-08-08) (cit. on pp. 71-85, 97).

Martin Pincus. “Letter to the Editor — A Monte Carlo Method for the Approximate Solution of Certain Types of Constrained Optimization
Problems”. Operations Research 18(6):1225-1228, Nov.—Dec. 1970. Catonsville, MD, USA: The Institute for Operations Research and the
Management Sciences (INFORMS). ISSN: 0030-364X. doi:10.1287/opre.18.6.1225 (cit. on pp. 58-70, 97).


https://portal.issn.org/api/search?search[]=MUST=allissnbis=0036-8075
https://doi.org/10.1126/science.220.4598.671
https://www.researchgate.net/publication/6026283
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0927-0507
https://isbnsearch.org/isbn/978-0-444-87472-6
https://doi.org/10.1016/S0927-0507(05)80189-6
http://alexandria.tue.nl/repository/books/339776.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0277-2698
https://isbnsearch.org/isbn/978-0-471-90413-7
https://isbnsearch.org/isbn/978-3-319-13071-2
https://doi.org/10.1007/978-3-319-13072-9
https://isbnsearch.org/isbn/978-1-0981-7130-8
https://isbnsearch.org/isbn/978-3-540-58090-4
https://doi.org/10.1007/978-3-662-03315-9
https://isbnsearch.org/isbn/978-0-262-13316-6
http://boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0030-364X
https://doi.org/10.1287/opre.18.6.1225

References IV

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Sanatan Rai and George Vairaktarakis. “NP-Complete Problems and Proof Methodology”. In: Encyclopedia of Optimization. Ed. by
Christodoulos A. Floudas and Panos Miltiades Pardalos. 2nd ed. Boston, MA, USA: Springer, Sept. 2008, pp. 2675—2682.
ISBN: 978-0-387-74758-3. doi:10.1007/978-0-387-74759-0_462 (cit. on p. 98).

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge, England, UK:
Cambridge University Press & Assessment, July 2014. ISBN: 978-1-107-05713-5. URL:
http://www.cs.huji.ac.il/"shais/UnderstandingMachineLearning (visited on 2024-06-27) (cit. on p. 97).

Thomas Weise (% £ /%). Databases. Hefei, Anhui, China (¥ B %44 & /27 ): Hefei University (/8K %), School of Artificial Intelligence
and Big Data (A% #t 5 K%4E #1%), Institute of Applied Optimization (& ALL# AT, 1AO), 2025. URL:
https://thomasweise.github.io/databases (visited on 2025-01-05) (cit. on pp. 88, 96).

Thomas Weise (% 2 2). Global Optimization Algorithms — Theory and Application. self-published, 2009. URL:
https://www.researchgate.net/publication/200622167 (visited on 2025-07-25) (cit. on pp. 71-85, 96, 97).

Thomas Weise (% 2 %). Programming with Python. Hefei, Anhui, China (¥ B4 #4427 ): Hefei University (48X %), School of
Artificial Intelligence and Big Data (A L% fit 5 K##& % Ft), Institute of Applied Optimization (& L 1L#F ZF7, IAO), 2024—2025. URL:
https://thomasweise.github.io/programmingWithPython (visited on 2025-01-05) (cit. on pp. 87, 97).

Thomas Weise (% 2 %), Raymond Chiong, Jérg Lissig, Ke Tang (/& *T), Shigeyoshi Tsutsui, Wenxiang Chen (/% L#¥),

Zbigniew “Zbyszek” Michalewicz, and Xin Yao (#t#7). “Benchmarking Optimization Algorithms: An Open Source Framework for the
Traveling Salesman Problem”. IEEE Computational Intelligence Magazine (CIM) 9(3):40-52, Aug. 2014. Piscataway, NJ, USA: Institute
of Electrical and Electronics Engineers (IEEE). ISSN: 1556-603X. doi:10.1109/MCI.2014.2326101 (cit. on pp. 16—19, 98).

Thomas Weise (% 2 &) and Zhize Wu (% &i%). “Replicable Self-Documenting Experiments with Arbitrary Search Spaces and
Algorithms”. In: Conference on Genetic and Evolutionary Computation (GECCO’2023), Companion Volume. July 15-19, 2023, Lisbon,

Portugal. Ed. by Sara Silva and Luis Paquete. New York, NY, USA: Association for Computing Machinery (ACM), 2023, pp. 1891-1899.

ISBN: 979-8-4007-0120-7. doi:10.1145/3583133.3596306 (cit. on pp. 89, 97).


https://isbnsearch.org/isbn/978-0-387-74758-3
https://doi.org/10.1007/978-0-387-74759-0_462
https://isbnsearch.org/isbn/978-1-107-05713-5
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
https://thomasweise.github.io/databases
https://www.researchgate.net/publication/200622167
https://thomasweise.github.io/programmingWithPython
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1556-603X
https://doi.org/10.1109/MCI.2014.2326101
https://isbnsearch.org/isbn/979-8-4007-0120-7
https://doi.org/10.1145/3583133.3596306

v R BENNES. W L B TR T RS AR BEETTERNTERRRRRRRR e s s

+ References V

[32] L. Darrell Whitley. “The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best". In:
3rd International Conference on Genetic Algorithms (ICGA’1989). June 1989, Fairfax, VA, USA: George Mason University. Ed. by
J. David Schaffer. Burlington, MA, USA/San Mateo, CA, USA: Morgan Kaufmann Publishers, pp. 116-123. ISBN: 978-1-55860-066-9.
URL: https://www.researchgate.net/publication/2527551 (visited on 2025-08-08) (cit. on p. 97).

e SS——

[33] Kinza Yasar and Craig S. Mullins. Definition: Database Management System (DBMS). Newton, MA, USA: TechTarget, Inc., June 2024.
URL: https://www.techtarget.com/searchdatamanagement/definition/database-management-system (visited on 2025-01-11) (cit. on p. 96).

F TR TSN
... SRR TR YR aaw

-

o i . T WO B AT T ~ N A s "_d


https://isbnsearch.org/isbn/978-1-55860-066-9
https://www.researchgate.net/publication/2527551
https://www.techtarget.com/searchdatamanagement/definition/database-management-system

Glossary |

EA

(n+ \) EA

(1+1)EA

DB

DBMS

JSSP

An evolutionary algorithm is a metaheuristic optimization method that maintains a population of candidate solutions, which
undergo selection (where better solutions are chosen with higher probability) and reproduction (where mutation and
recombination create a new candidate solution from one or two existing ones, repectively)z'zsA

The (1 + A) EA is an evolutionary algorithm (EA) where, in each generation, X\ offspring solutions are generated from the
current population of p parent solutions. The offspring and parent populations are merged, yielding 1 + X solutions, from
which then the best u solutions are ratained to form the parent population of the next generation. If the search space is the
bit strings of length n, then this algorithm usually applies a mutation operator flipping each bit independently with
probability 1/n.

The (1 + 1) EA is a local search algorithm that retains the best solution x. discovered so far during the search®®. In each
step, it applies a unary search operator to this best-so-far solution z. and derives a new solution z,,. If the new solution z,,
is better or equally good when compared with z., i.e., not worse, then it replaces it, i.e., is stored as the new z.. If the
search space are bit strings of length n, then the (1 + 1) EA uses a unary search operator that flips each bit independently
with probability m /n, where usually m = 1. This operator is the main difference to randomized local search (RLS). The

(1 + 1) EA is a special case of the (1 + ) evolutionary algorithm ((1 + A) EA) where p = X\ = 1.

A database is an organized collection of structured information or data, typically stored electronically in a computer system.
Databases are discussed in our book Databases®” .

A database management system is the software layer located between the user or application and the database (DB). The
DBMS allows the user/application to create, read, write, update, delete, and otherwise manipulate the data in the DB33.

The Job Shop Scheduling Problem®*® is one of the most prominent and well-studied scheduling tasks. In a JSSP instance,
there are k machines and m jobs. Each job must be processed once by each machine in a job-specific sequence and has a
job-specific processing time on each machine. The goal is to find an assignment of jobs to machines that results in an overall
shortest makespan, i.e., the schedule which can complete all the jobs in the shortest time. The JSSP is A/P-complete®'18.
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MaxSAT

ML

moptipy

Python

RLS

SA

SGA

The goal of satisfiaiblity problems is to find an assignment for n Boolean variables that make a given Boolean

formula F : {0,1}" — {0, 1} become true. In the Maximum Satisfiability (MaxSAT) problem®3, F is given in conjunctive
normal form, i.e., the variables appear as literals either directly or negated in m “or" clauses, which are all combined into
one “and.” The objective function f(x), subject to minimization, computes the number of clauses which are false under the
variable setting . If f(xz) = 0, then all clauses of F' are true, which solves the problem. The MaxSat problem is
NP-complete”.

Machine Learning, see, e4g.,2°

is the Metaheuristic Optimization in Python library®*. Learn more at https://thomasweise.github.io/moptipy.

14,20,21,29

The Python programming language , i.e., what you will learn about in our book?°. Learn more at

https://python.org.

Randomized local search retains the best solution z. discovered so far during the search and, in each step, it applies a unary

search operator to this best-so-far solution z. and derives a new solution z,,. If the new solution z,, is better or equally good
when compared with z., i.e., not worse, then it replaces it, i.e., is stored as the new z.. If the search space are bit strings of
length n, then RLS uses a unary search operator that flips exactly one bit. This operator is the main difference to (1 4 1) EA.

Simulated Annealing is a local search that sometimes accepts a worse solution®1%17:24  The probability to do so decreases
over time and with the difference in objective values, i.e.,is the lower the worse the new solution is.

The Standard Genetic Algorithmz's'm'zz'B'28 was the first population EA. It maintains a population of solutions and applies

mutation and crossover to generate offspring solutions. It uses fitness proportionate selection to choose which solutions should
“survive”’ into the next generation, which today is considered a very bad design choice, see, e.g”3


https://thomasweise.github.io/moptipy
https://python.org
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TSP In an instance of the Traveling Salesperson Problem, also known as Traveling Salesman Problem, a set of n cities or locations
as well as the distances between them are defined?'*2'1%:3%  The goal is to find the shortest round-trip tour that starts at one
city, visits all the other cities one time each, and returns to the origin. The TSP is one of the most well-known N P-hard
combinatorial optimization problems.

NP NP is the class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be
verified in polynomial time by a deterministic machine (such as a normal computer)®.
N P-complete A decision problem is A'P-complete if it is in NP and all problems in NP are reducible to it in polynomial time?*'25, A
problem is N'P-complete if it is N'P-hard and if it is in N'P.
N P-hard Algorithms that guarantee to find the correct solutions of N/P-hard problems
problem scale in the worst case. A problem is A/P-hard if all problems in NP are reducible to it in polynomial time?.

6718 need a runtime that is exponential in the

R the set of the real numbers.
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