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® Are are three ways to approach this topic.
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What is Optimization?

® Are are three ways to approach this topic

1. Optimization is an extension of school mathematics into a field where equations are no
longer enough and exact solutions cannot always be reached.
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What is Optimization?

® Are are three ways to approach this topic

1. Optimization is an extension of school mathematics into a field where equations are no
longer enough and exact solutions cannot always be reached.

2. Optimization is the art of solving hard problems.
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What is Optimization?
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® Are are three ways to approach this topic

1. Optimization is an extension of school mathematics into a field where equations are no
longer enough and exact solutions cannot always be reached.

2. Optimization is the art of solving hard problems.

3. Optimization means searching for superlatives.
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Optlmlzatlon = Search for Superlatives

A

® Optimization means finding superlatives.

The superlative form of an adjective
is used to show that something has a

S p P quallty to the greatest or least degree.
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~ Optimization = Search

for Superlatives

* with the least amount
e of fuel...

- Optimization means finding superlatives.

e Find the shortest path from start to goal®33°.
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~ Optimization = Search for Superlatives

e Optimization means finding superlatives.
® Find the shortest path from start to goal®3:39.

® Pick up and deliver packages from different places
to customers using the least amount of fuel#%-49-51
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biggest ... 'with the least
...at the earliest possibe time of fuel...
...highest quality ...longest possible duration

most efficient ... most precise ... cheapest ... fastest...

fewest boxes with the highest score
...the longest possible duration most robust ...

...shortest path
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Optimization = Search for Superlatives

e Optimization means finding superlatives.
® Find the shortest path from start to goal®3:39.

® Pick up and deliver packages from different places
to customers using the least amount of fuel#%-49-51,

® Pack a set of things into the fewest boxes®®:°7.

..at the earliest possibe time of fuel...
...highest quality possible duration
most efficient ... cheapest ... fastest...
fewest boxes | e highest score

...the longest possible duration most robust ...

biggest ..

* with the least amount

...shortest path
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Optimization = Search for Superlatives

Optimization means finding superlatives.

Find the shortest path from start to goa

Pick up and deliver packages from different places
to customers using the least amount of fuel#%-49-51,

|23,39

blagestil with the least amount

fewest boxes

the highest score
...the longest possible duration most robust ...
...shortest path

..t the earilest possibe time Eifuel...
...highest quality est possible duration
most efficient .. m cheapest ... fastest...

Pack a set of things into the fewest boxes

56,57
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Assign tasks to machines such that we can finish our work the at earliest possible time.
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Optimization = Search for Superlatives

® Optimization means finding superlatives.

Find the shortest path from start to goa

|23,39

Pick up and deliver packages from different places

to customers using the least amount of fue
Pack a set of things into the fewest boxes

Assign tasks to machines such that we can finish our work the at earliest

possible time.

|40,49—51

56,57

most efficient ...

Find a strategy to manage the power of the nodes in this sensor
network so that full coverage is guaranteed for the longest

possible duration.

/

...at the earliest possibe time
...highest quality ...longest possible duration

fewest boxes with the highest score
...the longest possible duration most robust ...

blogesteg with the least amount

of fuel...

most precise ... Cheapest... fastest...

...shortest path
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Optimization = Search for Superlatives

® Optimization means finding superlatives.

Find the shortest path from start to goa

|23,39

Pick up and deliver packages from different places
to customers using the least amount of fuel#%-49-51,

Pack a set of things into the fewest boxes

56,57

blogesteg with the least amount

...at the earliest possibe time of fuel...

...highest quality ...longest possible duration

most efficient ...  most precise ... Ccheapest ... fastest...

fewest boxes with the highest score
...the longest possible duration most robust ...

...shortest path

Assign tasks to machines such that we can finish our work the at earliest

possible time.

Find a strategy to manage the power of the nodes in this sensor
network so that full coverage is guaranteed for the longest

possible duration.

And so on.
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- Business ® optimized logistics (business-to-customer)

® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

PR ST T AT T ] 1

_ W

B




\ :
- Business

P I L/ Vel SR VD LAl — AR

® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics
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® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
@ optimized locations for new branch offices

(based current or predicted future customers)
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® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
@ optimized locations for new branch offices

(based current or predicted future customers)

@ optimization of product design

® optimization of product feature configuration

® optimization of service offers

® improved tailoring of products/services to customers
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- Business ® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits

® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics .
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@ scheduling of employee work
® optimal assignment of employees to tasks or customers
® optimized locations for new branch offices

(based current or predicted future customers) §

@ optimization of product design

® optimization of product feature configuration
® optimization of service offers i
® improved tailoring of products/services to customers

@ optimization of pricing and offers
® mining of customer data for targeted offers
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Business

optimization
operations research

artificial intelligence (Al)
computational intelligence

machine learning
data mining

® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
@ optimized locations for new branch offices

(based current or predicted future customers)

® optimization of product design
® optimization of product feature configuration
® optimization of service offers
e improved tailoring of products/services to customers

® optimization of pricing and offers
® mining of customer data for targeted offers

> F s y -

® optimization of factory layouts and intra-factory logistics

R S k. U S U

y 4



\ T VA0 e L) R SR VO Al B Al TG G R

- Business ® optimized logistics (business-to-customer)

® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics

optimization

operations research
artificial intelligence (Al)
computational intelligence
machine learning

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
@ optimized locations for new branch offices

data mining (based current or predicted future customers)

® optimization of product design
® optimization of product feature configuration
® optimization of service offers
® improved tailoring of products/services to customers

® optimization of pricing and offers
® mining of customer data for targeted offers
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Optimization

® There are incredibly many problems from a very wide area where we can use optimization
and Operations Research (OR).



Optimization

® There are incredibly many problems from a very wide area where we can use optimization
and Operations Research (OR).

® How is this related to what you already learned?



Problems that we can Solve with Equations
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.

free=
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

free=
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Ag B AP 24
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?
Ay = Am — 2Ay — 24,
Ay(z) = (13em?) — 2(22?) — 2(3(13em — 2)?)

v

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Am —2Ay — 24,
Ay(z) = (13em?) — 2(§ %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?

v

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched. : x

e \What area has the largest such rectangle?

AI :A-—QAv—2AA

4(0) = (136m) ~2(3°) ~2(303em o)
Ap(x) = 169em? — 22 — (13cm — z)?
Ax(7)

2(z) = 169cm? — 22 — 169cm? + 26cm * z — a2
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Ag B AP 24

Ay(z) = (13em?) — 2(2 %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?

Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
Ay(z) = =222 + 26cm * x

v

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Ag B AP 24

Ay(z) = (13em?) — 2(2 %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?

Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
Ay(z) = =222 + 26cm * x

Ay(z) = —4z + 26cm

v

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Am — 2Ay — 24,
Ay(z) = (13em?) — 2(2 %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?
Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
(z) = —22% 4+ 26cm *
(r) = —4x + 26cm
0 = —42 + 26cm

v

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Am — 2Ay — 24,
Ay(z) = (13em?) — 2(2 %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?
Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
(
(

Ay(z) = =222 + 26cm * x
Ay(z) = —42 + 26cm
0 = —42 + 26cm
41 = 26cm

v

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Am — 2Ay — 24,
Ay(z) = (13em?) — 2(§ %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?
Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
(
(

Ay(z) = =222 + 26cm * x
Ay(z) = —42 + 26cm
0 = —42 + 26cm
41 = 26cm

v

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched. : x

e \What area has the largest such rectangle?

Ay(z) = =222 + 26cm * z
2 = 6.5cm




I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay(z) = =222 + 26cm * z
2 = 6.5cm
Ay = Ag(7) = A3(6.5cm)
Ay = —2(6.5cm)? + 26cm * 6.5cm

A

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
® \What area has the largest such rectangle?
Ay(z) = =222 + 26cm * z
Z = 6.5cm
Ay = Ag(7) = A3(6.5cm)
Ay = —2(6.5cm)? + 26cm * 6.5cm

—

Ay = 84.5cm?

A

X
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A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
® \What area has the largest such rectangle?
Ay(z) = =222 + 26cm * z
Z = 6.5cm
Ay = Ag(7) = A3(6.5cm)
Ay = —2(6.5cm)? + 26cm * 6.5cm

—

Ay = 84.5cm?
Solved.

A

X




Problems that we can solve with Equations

® We can actually solve a lot of problems.



Problems that we can solve with Equations

® We can actually solve a lot of problems.

® We just used an equation.



Problems that we can solve with Equations

® We can actually solve a lot of problems.
® We just used an equation.

® We did computations in multiple steps.



Problems that we can solve with Equations

® We can actually solve a lot of problems.

We just used an equation.

We did computations in multiple steps.

Regardless how the previous problem would be parameterized (say, 16cm instead of 13cm),
we could perform the exactly same steps.



Problems that we can solve with Equations

® We can actually solve a lot of problems.

We just used an equation.

We did computations in multiple steps.

Regardless how the previous problem would be parameterized (say, 16cm instead of 13cm),
we could perform the exactly same steps.

Can we always do that?



Problems that we can Solve with an Algorithm




Problems that we can Solve with Algorithms

® Can we always do that?
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Problems that we can Solve with Algorithms

® Can we always do that?
e Can we always solve problems with a pre-defined number of steps?
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Problems that we can Solve with Algorithms

® Can we always do that?
e Can we always solve problems with a pre-defined number of steps?
® No.

!
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Problems that we can Solve with Algorithms

Can we always do that?

Can we always solve problems with a pre-defined number of steps?

e No.

There are problems that we cannot solve with equations, but with algorithms.
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Problems that we can Solve with Algorithms

Can we always do that?

Can we always solve problems with a pre-defined number of steps?
® No.

There are problems that we cannot solve with equations, but with algorithms.

And some problems require us to use algorithms which perform different numbers of steps
of different inputs.
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The gecd can be computed with the Euclidean
algorithm®1920 by Euclid of Alexandria (EvrAe(67s),
who lived about 300 before Common Era (BCE).



https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The gecd can be computed with the Euclidean
algorithm®1920 by Euclid of Alexandria (EvrAe(67s),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.



https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The gecd can be computed with the Euclidean
algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a =b.



https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
® The gecd can be computed with the Euclidean

algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a =b.

® QOtherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Njy.



https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
® The gecd can be computed with the Euclidean

algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a =b.
® QOtherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Njy.

® Without loss of generality, let's assume that a > b.



https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
® The gecd can be computed with the Euclidean

algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a =b.

® QOtherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Njy.

® Without loss of generality, let's assume that a > b.

® Then it holds that c=a — b= (i — j)g.



https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide
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A Problem that we can Solve with (a High School) Algorithm

What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

The ged can be computed with the Euclidean
algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

If a = b, then obviously ged(a,b) = a = b.

Otherwise, we know that a = ig for some ¢ € N; and
that b = jg for some j € Njy.

Without loss of generality, let's assume that a > b.
Then it holds that c=a — b= (i — j)g.

Thus, g also divides ¢ without remainder, i.e.,
ged(a, b) = ged(c, b).
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The ged of two positive natural numbers a € Ny

and b € Ny is the largest number g € Ny = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a = b.

® Otherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Nj.

e Without loss of generality, let's assume that a > b.

® Then it holds that c=a — b = (i — j)g.

® Thus, g also divides ¢ without remainder, i.e.,
ged(a, b) = ged(e, b).

® |t must also be that a — b < a.
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The ged of two positive natural numbers a € Ny

and b € Ny is the largest number g € Ny = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a = b.

® Otherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Nj.

e Without loss of generality, let's assume that a > b.

® Then it holds that c = a — b = (i — j)g.

® Thus, g also divides ¢ without remainder, i.e.,
ged(a, b) = ged(e, b).

® |t must also be that a — b < a.

® We can replace a with a — b.
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
® If a = b, then obviously ged(a,b) = a =b.

® QOtherwise, we know that a = ig for some i € Ny and
that b = jg for some j € Nj.

® Without loss of generality, let's assume that a > b.
® Then it holds that c=a — b= (i — j)g.

® Thus, g also divides ¢ without remainder, i.e.,
ged(a, b) = ged(c, b).
® |t must also be that a — b < a.

® \We can replace a with a — b.

® \We can repeatedly subtract the smaller from the larger
number until we “converge.”
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b
2579731 164 1647 938084
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b
2579731 164 1647 938084
164 1647 938084 703563
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b
2579731 164 1647 938084
164 1647 938084 703563
938084 703563 234521
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b

2579731 164 1647 93 8084
164 1647 93 8084 703563
93 8084 703563 234521

703563 234521 469042
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b

2579731 164 1647 93 8084
164 1647 93 8084 703563
93 8084 703563 234521
703563 234521 469042

46 9042 234521 234521
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A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
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number until we “converge.”
bigger number: ¢ smaller number: b a—b
2579731 164 1647 938084
164 1647 938084 703563
938084 703563 234521
703563 234521 46 9042
469042 234521 234521

e gcd(257 9731, 164 1647) = 23 4521.



https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

———

e N ___ Ni

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b

2579731 164 1647 93 8084
164 1647 93 8084 703563
93 8084 703563 234521
703563 234521 46 9042
46 9042 234521 234521

e gcd(257 9731, 164 1647) = 23 4521.

Solved.
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Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.
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Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.
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Euclidean Algorithm
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® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”

X
instead of subtractions. 4

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7.%
R )1415.2738.42,
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Euclidean Algorithm

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7.%
R )1415.2738.42,

i‘
I ® The number of steps that the algorithm needs depends on the input.
+ ® What does efficient even mean?

i

|- =772 TN

2 § I

N




:
1

|
|

H

UL AR BT ST GEESNNUARTE AT WU e TREIERRRRRE. 4 v R TR SN B, v Ty W e T

Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7.%
R )1415.2738.42,

® \What does efficient even mean?

o cfficient = fast
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Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7.%
R )1415.2738.42,

® \What does efficient even mean?

e cfficient = fast and does not need much memory
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Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7L%

;’a"’_;}i)14,15,27,38,42.

® What does efficient even mean?
e cfficient = fast and does not need much memory

® (Side note: The binary Euclidean algorithm can be computed in ¢ * (log a + log b) steps
where ¢ > 0 is some constance. It needs two memory cells*°.)
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Problems that Algorithms can Solve Fast and Efficiently




. Find the Shortest Path from Start to Goal

ER: S



. Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
R4 K17,
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. Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
R4 K17,

e | want to go to the goal: .



g

. Find the Shortest Path from Start to Goal

| am at the starting point & & K & i/ =
R4 K17,

e | want to go to the goal: .
How do | get there the fastest?
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Find the Shortest Path from Start to Goal

S

| am at the starting point & & K & i/ =
R4 K17,

e | want to go to the goal: .
How do | get there the fastest?

We know the campus map.



Find the Shortest Path from Start to Goal
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| am at the starting point & /& K & m/—=
R KT,

e | want to go to the goal: .

How do | get there the fastest?
We know the campus map.

We want to compute the shortest
path (before actually walking it).
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Find the Shorfest Path from Start to Goal

| am at the starting point & /& K & m/—=
Rt K17,

e | want to go to the goal: .
How do | get there the fastest?

We know the campus map.

® \We want to compute the shortest
path (before actually walking it).

We know all the intersections where |
could make turns.




Find the Shortest Path from Start to

o
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| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the
How do | get there the fastest?
We know the campus map.

We want to compute the shortest
path (before actually walking it).

We know all the intersections where |
could make turns.
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. Find the Shortest Path from Start to
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® | am at the starting point /& K F /=
R KT,

® | want to go to the

® For example, | could walk for 27s to this
intersection.



Find the Shortest Path from Start to

| am at the starting point & /& K & m/—=

(\ Kb A T, ;

'> ® | want to go to the

(/]
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Q
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For example, | could walk for 27s to this ‘f‘

.10/ )/ intersection. 2
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.\\o.\ 2 ¢ Or for 83s to that one.
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. Find the Shortest Path from Start to

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

For example, | could walk for 27s to this
intersection.

Or for 835 to that one.
Or for 195s to that one.



. Find the Shortest Path from Start to

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

For example, | could walk for 27s to this
intersection.

Or for 835 to that one.
Or for 195s to that one.
Which one should we pick?
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Shortest Path from Start to Goal

® | am at the starting point /& K F /=

(\ Kbk

. /> Start - vl gt
}.<> ; / (c) 195s.
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. Find the Shortest Path from Start to

® | am at the starting point /& K F /=

(\ E b AT,

'> ® | want to go to the

o Start ¢ \We have 3 choices: (a) 27s, (b) 83s,
) /
1./> (C) 195s.
"\\:\ (XY ® For each intersection, we can compute the
P e airline distance (as the crow flies) to
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Find the Shortest Path from Start to

® | am at the starting point /& K F /=

(\ B b AT,

'> ® | want to go to the

o Start ® We have 3 choices: (a) 27s, (b) 83s,

°>./>/ (c) 195s.
’0\\:'\ .27 ® For each intersection, we can compute the *

=T airline distance (as the crow flies) to

goal AR O ekt
: .\. R ® The actual walking distance can never be
ﬁ_ e N shorter than that.



Find the Shortest Path from Start to
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® | am at the starting point /& K F /=
R KT,

/\’> ® | want to go to the :
/° Start ® We have 3 choices: (a) 27s, (b) 83s,

(c) 195s.

® For each intersection, we can compute the
airline distance (as the crow flies) to
the

® The actual walking distance can never be
shorter than that.



. Find the Shortest Path from Start to
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® | am at the starting point /& K F /=
R KT,

® | want to go to the

<>§> Start ® \We have 3 choices: (a) 27s + '2135,

(b) 83s, (c) 195s.

® For each intersection, we can compute the
airline distance (as the crow flies) to
the

® The actual walking distance can never be
shorter than that.
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. Find the
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Shortest Path from Start to

® | am at the starting point /& K F /=

R4t KIT.
® | want to go to the :
Start ® We have 3 choices: (a) 27s + 213s,
(b) 83s, (c) 195s.
22 ® For each intersection, we can compute the
A airline distance (as the crow flies) to
83 195
! the :
® The actual walking distance can never be
. shorter than that.
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. Find the
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Shortest Path from Start to Goal
® | am at the starting point /& K F /=
R KT,

® | want to go to the goal: .

Start ® We have 3 choices: (a) 27s + 213s,

(b) 83s + 2215, (c) 195s.
22 ® For each intersection, we can compute the

airline distance (as the crow flies) to

A
ot = o the 2%,
® The actual walking distance can never be
. shorter than that.
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- Find the Shortest Path from Start to Goal

(IR LA Ao

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the goal: & .

We have 3 choices: (a) 27s + 213s,

(b) 83s + 2215, (c) 195s.

For each intersection, we can compute the
airline distance (as the crow flies) to

the 2.

The actual walking distance can never be
shorter than that.

‘A WPNEG AR v OO YR T TR

Pl e



----- B . RSO T 1

- Find the Shortest Path from Start to Goal

(IR LA Ao

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the goal: & .
We have 3 choices: (a) 27s + 213s,
(b) 83s + 2215, (c) 195s + 362s.

For each intersection, we can compute the
airline distance (as the crow flies) to

the 2.

The actual walking distance can never be
shorter than that.
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h Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=

./\ Kb K17,
’> ® | want to go to the goal: & & .
o Start ® We have 3 choices:
\ ] (a) 2405 = 275 + 213s, (b) 83s + 2215,
(c) 1955 + 362s.
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Find the Shortest Path from Start to Goal

Pl SO e SRS ML

® | am at the starting point /& K F /=
R4t XKI7.

® | want to go to the goal: & & .

® \We have 3 choices:
(a) 240s = 27s + 213s,

(b) 304s = 83s + 221s, (c) 1955 + 362s.
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Flnd the Shortest Path from Start to Goal

® | am at the starting point

EE I

® | want to go to the goal:
Start ® We have 3 choices:
240 (a) 240s = 27s + 213s,

‘27’ (b) 304s = 83s + 221s,
\
S \/ N __. (c) 5575 = 1955 + 362s.
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Find the Shortest Path from Start to

< start

240
\. \

(27)
/ N, ~.

g@@ /)))

(83)

557
E O (195)

W,
f

il SR LS,

® | am at the starting point /& K F /=
R4t KIT.

® | want to go to the

® We have 3 choices:
(a) 240s = 27s + 213s,
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s.

® The most interesting candidate for the
first step is clearly (a).
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Find the Shortest Path from Start to

< start

240
\. \

(27)
/ N, ~.

g@@ /)))

(83)

557
E {no) (195)

W,
f

il SR LS,

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

The most interesting candidate for the
first step is clearly (a).

We have 2 remaining unexplored choices:

(b) 304s = 83s + 2215,
(c) 557s = 1955 + 362s.
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. Find the Shortest Path from Start to

<%>\ start

D
goal /\ >:.~.\:M
\. )) (83)
\. N4 557
E \o ./°(195)
P

il SR LS,

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

The most interesting candidate for the
first step is clearly (a).

(b) 304s = 83s + 2215,
(c) 557s = 1955 + 362s.

® From (a), we can go to (d) by walking
for 126s.

We have 2 remaining unexplored choices:
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. Find the Shortest Path from Start to

<%>\ start

D
goal /\ >:.~\:M
\. )) (83)
\. N4 557
E \o ./°(195)
P

il SR LS,

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

The most interesting candidate for the
first step is clearly (a).

(b) 304s = 83s + 2215,
(c) 557s = 1955 + 362s.

® From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.

We have 2 remaining unexplored choices:
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Find the Shortest Path from Start to

® | am at the starting point /& K F /=

./\ B4k k1],

'> ® | want to go to the :
> N Start ° The most.interesting candidate for the
% (2;70)/ first step is clear-ly.(a). .
’0\\. \ o ® \We have 2 remaining unexplored choices:
NP (b) 304s = 83s + 2215,

/}. \304 (c) 557s = 1955 + 362s.
N

R - ® From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.

\ /‘ For both we compute the distance as the
< )
oLy crow flies.
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- Find the Shortest Path from Start to Goal

(IR LA Ao

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the goal: & .

The most interesting candidate for the
first step is clearly (a).

From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.

For both we compute the distance as the
crow flies.
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Find the Shortest Path from Start to Goal

| am at the starting point & /& K & m/—=
R4t KIT.

| want to go to the goal: & .

The most interesting candidate for the
first step is clearly (a).

From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.
For both we compute the distance as the

crow flies.

We had 2 remaining unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 1955 + 362s.
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Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
./\ Kb AT,
e ® | want to go to the goal: .
2 start et conida
/0 ® The most interesting candidate for the
o .{) \(22470) first step is clearly (a).
'\\.' 170 Vo\ ® From (a), we can go to (d) by walking
O e, for 1265 or to (e) by walking for 59s.

For both we compute the distance as the

8¢ '/

g©aﬂ

$ R crow flies.
\o\ o t., © Wenow have 3 unexplored choices:
E . J0®  (b) 304s = 835 + 2215,
| A (c) 557s = 1955 + 362s,
o\/ (d) 273s = 1535 + 120s.
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Find the Shortest Path from Start to

5 start

[ )
E \/-as;,
d / \.

R T TR L Ao

SRR B

| am at the starting point

EE P

| want to go to the

The most interesting candidate for the
first step is clearly (a).

From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.

For both we compute the distance as the
crow flies.

We now have 4 unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 1955 + 362s,

(d) 273s = 153s + 120s,

(e) 2565 = 865 + 170s.
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Find the Shortest Path from Start to Goal
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X 256
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® | am at the starting point /& K F /=
R4t XKI7.

® | want to go to the goal: & & .

Start ® \We now have 4 unexplored choices:
(b) 304s = 83s + 2215,

( ) 557s = 1955 + 362s,

(d) 273s = 153s + 120s,

(e) 2565 = 865 + 170s.

(e)

e)itis...
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Find the Shortest Path from Start to Goal

2. R R S e R T AR e S/ S S0

® | am at the starting point /& K F /=

./\ KA KT,
:7§> ® | want to go to the goal: & & .
p /15.3) Start |t is.

j .D_.\ = 240 ° We have 3 remaining unexplored choices:
‘\.'\ m 2 (b) 304s = 83s + 2215,

(86)

\, 2~ —_ (c) 5575 = 1955 + 362s,

d b .
goal /) )783) (d) 273s = 1535 + 1205
E oazz,
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Flnd the Shortest Path from Start to Goal

5 start

[ )
E \/-as;,
d / \.

SRR B

® | am at the starting point

EE I

® | want to go to the goal: & & .

e We have 3 remaining unexplored choices:

(b) 3045 = 83s + 2215,
(c) 5575 = 1955 + 362s,
(d) 273s = 1535 + 120s.

® From this point (e), we only have one
reasonable choice where to go next.
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Flnd the Shortest Path from Start to Goal

start

./\.

®
}— 5
240
0\

! (27)

(IR LA Ao

| am at the starting point & /& K & m/—=
R KT,

® | want to go to the goal: & & .

We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 5575 = 1955 + 362s,

(d) 273s = 1535 + 120s.

From this point (e), we only have one
reasonable choice where to go next.

And we again compute the airline distance
to the goal.
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Flnd the Shortest Path from Start to Goal

< 5 sta rt .
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| am at the starting point & /& K & m/—=
R KT,

| want to go to the goal: & .

From this point (e), we only have one
reasonable choice where to go next.

And we again compute the airline distance
to the goal.

We now have 4 choices:
(b) 304s = 83s + 2215,
(c) 5575 = 1955 + 362s,
(d) 273s = 153s + 120s,
(f) 262s = 1325 + 130s.
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. Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
R4t XKI7.

® | want to go to the goal: & & .

® And we again compute the airline distance

to the goal.

® \We now have 4 choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,

(d) 273s = 1535 + 120s,

(f) 2625 = 1325 + 1305,
oL iht a1

Pl SO e SRS ML A

T A PG R iR 5 OER TR WS TN TN LT

S

T
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Find the Shortest Path from Start to Goal

2. R R S e R T AR e S/ S S0

® | am at the starting point /& K F /=

./\ KabATT,
:7§> ® | want to go to the goal: & .
/15.3) Start ® And we again compute the airline distance

+ '@
! ) /0 (22470) to the goal.
) hY \ ~ o (f)itis...

® \We have 3 remaining unexplored choices:

goal / (b) 304s = 835 + 221,
@) (c) 557s = 195s + 362s,

(d) 273s = 1535 + 120s.
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Flnd the Shortest Path from Start to Goal

5 start .

240
'\ (27)

o
\. (ggg, (2856) .
@@@ /) S
)) (83)
. . 557
X (195) [
E W
/’\./

N

(IR LA Ao

| am at the starting point & /& K & m/—=
R KT,

| want to go to the goal: .

And we again compute the airline distance
to the goal.

(f) P

We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,

(d) 273s = 1535 + 120s.

From (f), we have two possible choices to
continue.

T u %
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o P
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Flnd the Shortest Path from Start to Goal

5 start .

.
240
' (27)

\o \28 262) (86) :
5 ./‘(?g;) °
/’\-’

N

L i ARG o T, i

| am at the starting point & /& K & m/—=
R KT,

| want to go to the goal: & .

And we again compute the airline distance
to the goal.

(f) P
We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s.

From (f), we have two possible choices to
continue.

S5 DR PRY WEEERETT T TR

LY N o

o P

S
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‘ Flnd the Shortest Path from Start to Goal

. >> sta rt .
;‘:‘ 2 \zs )
g@a " &

w %%W
E ./0 9 e

’\

e

Ol il AR ol Y, el

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the goal: & .

And we again compute the airline distance
to the goal.

(f) P
We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s.

From (f), we have two possible choices to
continue.
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Find the Shortest Path from Start to Goal

A PR I e R T AR e S/ S S0

| am at the starting point & /& K & m/—=
R4t KT

O/\ ;
:7§> ® | want to go to the goal: & & .
153
/0) Start And we again compute the airline distance

! (0 (22470) to the goal.
102 (£) Plg

We have 3 remaining unexplored choices:

g - 28 262
Se(3n = ‘86’
goal / (b) 304s = 835 + 221,
@) (c) 557s = 195s + 362s,
: (d) 273s = 1535 + 120s.
. 557

(19) From (f), we have two possible choices to
continue.

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT  C Se \pT r
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Find the Shortest Path from Start to Goal

A PR I e

Pl SO e SRS ML

We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,

(d) 273s = 1535 + 120s.

From (f), we have two possible choices to
continue.

| am at the starting point & /& K & m/—=
R4t KIT.

® | want to go to the goal: & & .
And we again compute the airline distance
to the goal.
(f) P

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT  C Se \pT r

S T

T
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Find the Shortest Path from Start to Goal

A PR I e

[ ]
&9
o, [ ]
[ ]
()
30
(83)
( ]
o.
B
S o
A ~d
0\ /
®

Pl SO e SRS ML

| am at the starting point & /& K & m/—=
R4t XKI7.

® | want to go to the goal: & & .

And we again compute the airline distance
to the goal.

() irig
From (f), we have two possible choices to
continue.

We now have 4 unexplored choices:
(b) 304s = 83s + 2213,

(c) 5575 = 1955 + 362s,

(d) 273s = 153s + 120s,

(g) 262s = 160s + 102s.

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT  C Se \pT r
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Find the Shortest Path from Start to Goal

</>\§> start .

.>_ - 240

N

(27)

[ ]
\. \ 262 (86)
> _oy(132)
. 262 —_— [}
goal /
?92) @)
[ ]
g . 557

(195)

,/"

SRSy = IR R

| am at the starting point & /& K & m/—=
R4t XKI7.

| want to go to the goal: %

:{

And we again compute the airline distance

to the goal.

(f) itis. ..

From (f), we have two possible choices to
continue.

We now have 5 unexplored choices:

(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,
(d) 2735 = 1535 4 120,
(g) 262s = 160s + 102s,
(h) 316s = 175s + 141s.
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Find the Shortest Path from Start to Goal

N Pl SO e SRS ML

:{

| am at the starting point & /& K & m/—=
R4t KT

O/\ i
o ® | want to go to the goal: & & .
27
<>515§D Start ® And we again compute the airline distance

°>_ _ 240 to the goal.
(27) From (f), we have two possible choices to

: i \ 262
> >6‘2“3£i8-6) continue.
160)
goal / ols 1% We now have 5 unexplored choices:
”“ ® ) 304s = 83s + 2215,
. ) 557s = 195s + 362,
. 557

(b

(c

(195) (d) 273s = 153s + 120s,
I. (g) 262s = 160s + 102s,
) (h

./ ‘

‘S PG AT v OO YR T TR ST LTI

) 316s = 175s + 141s.
g)itis...
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Find the Shortest Path from Start to Goal

L bl

| am at the starting point - J&k # d/=

'/\ Kbk,
:73> ® | want to go to the goal: & .
/15:) Start (g) itis. ..

'-g

% '®!

> ® \We now have 4 unexplored choices:
?3 .>—.{) \(22470)/ P

;

S DO IR WS TN T T

S SN > (b) 3045 = 83s + 2215,
./zzﬂiﬂ-‘-’-\ () 5575 = 1955 + 362s, ~
gOaI " a\® o (d) 2735 = 1535 + 120,
a 2?%% @) (h) 316s = 1755 + 141s.
v O i
N :
E = B
\_f :
z £ .’

4

t‘l
|
r
1
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. Find the Shortest Path from Start to Goal

i :;
- ® | am at the starting point /& K F /=
o X db K17,
® | want to go to the goal: & & .
| m}D Start ® (g)itis...
. 240 ® We now have 4 unexplored choices:
‘”’ (b) 304s = 83s + 2215,

E e
.
T A PG R iR 5 OER TR WS TN TN LT

\ 26
_ 3 >:2“3£.‘8f’- (c) 557s = 1955 + 362s,
gOa / N (d) 273s = 1535 + 120,
- %;S) &) (h) 3165 = 1755 + 141s.
® And we get two new choices.
. 557

(195)
o
N/

e

./

R TR
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. Find the Shortest Path from Start to Goal i
: ® | am at the starting point /& K F /= E
./\ K 4t k17, ;
9 ® | want to go to the goal: & & . ;'
27.

<>515§> Start ® (g)itis... g
; N o e We now have 4 unexplored choices: :
. Do) a0 e now have 4 unexplored choices: g
NN > (b) 304s = 83s + 2215,
: 5 :
~_ N\ a2 Z (c) 5575 = 1955 + 362s,

gOal / N » - (d) 273s = 1535 + 120s,

30

< 2%%% @) (h) 3165 = 1755 + 141s.
% . - :‘
\.\ 5. ® And we get two new choices. -
E @, / (195) -
s f
0 /\/’ ;
\. i

\

\
3
T
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. Find the Shortest Path from Start to Goal

i ® | am at the starting point /& K F /=
./\ Kb k1T,
o ® | want to go to the goal: & & .
27
<>515§> Start |t is. ..
’ '@
: }_./’ 240 . We now have 4 unexplored choices:
. \. (27)

(b) 304s = 83s + 2215,

_ N X B (c) 557s = 1955 + 362s,

gOa / Q! (d) 273s = 1535 + 120,

%;S) ) (h) 3165 = 175s + 141s.

® And we get two new choices.
. 557

(195)

) /\/

N

R TR

\

\
3
4
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* Find the Shortest Path from Start to Goal E
i ® | am at the starting point &/& K & /= E
o R KT, ’
® | want to go to the goal: & & . ;r
<><1?3> Start Yaitiisouk s
: 250,/) 22470 o We now have 4 unexplored choices: g
& " ‘ ’ (b) 304s = 83s + 2215,
N3 ° G & (c) 5575 = 1955 + 3625, f
goa / Q) (d) 273s = 1535 + 120s,
%;% ) (h) 3165 = 1755 + 141s.
. ® And we get two new choices. .
. 557

(195)

/\’

N

T =N MR SN N

= - TR Oy

\

\
$
X
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e

* Find the Shortest Path from Start to Goal E
i ® | am at the starting point &/& K & /= E
o R KT, ’
® | want to go to the goal: . ;r
<><1?3> Start Yaitiisouk s
'

: 50,/) (22470) o We now have 4 unexplored choices: g
: (b) 304s = 83s -+ 2215,
: 5 :
203 ° G & (c) 5575 = 1955 + 3625, f

goa / Q) (d) 273s = 1535 + 120s,

%;% ) (h) 3165 = 1755 + 141s.
. ® And we get two new choices. .
E i bt :
E
: / \’ :

\

\
$
X
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* Find the Shortest Path from Start to Goal E
i ® | am at the starting point &/& K & /= E
o R4t KIT. g
§> ® | want to go to the goal: & & . ;r
p= Start ® And we get two new choices. s

’ .
: .\ o 240 ® We now have 5 unexplored choices: g
& . ‘2” ) 304s = 83s + 2215,

%l SORE  —

= { 262 (86) (
so O ¥ (c) 557s = 1955 + 362s,
goa /)’ (d) 273s = 1535 + 120s,
7%) ) (h) 3165 = 1755 + 1415,
(i) 2655 = 215s + 50s.
. 557

(195)
o
N/

e

./

T =N MR SN N

= - TR Oy

\

\
$
X



TR o SN I el A R T AR e Y S SSOT R

* Find the Shortest Path from Start to Goal E
i ® | am at the starting point &/& K & /= E
o X 46 K17, ’
§> ® | want to go to the goal: & & . ;r
“ p= Start e And we get two new choices. s
()
: }_.\ e 240 ° We now have 6 unexplored choices: g
: @ ‘2” ) 304s = 83s + 2215,
’ ol (132) ‘86’ i

: ( 5575 = 1955 + 362s,
gOa i3 Q! (d) 273s = 1535 + 120s,
gt ) (h) 3165 = 1755 + 1415,
2 (i) 265s = 215s + 50s,
o(ﬁ‘g;) (j) 277s = 190s + 87s.

%l SORE  —

T R N i
.

= - TR Oy

\

\
$
X
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. Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
o X 46 K17,

® | want to go to the goal: & & .

v Start ® And we get two new choices.
¥ 3 g B
i ),\. a (2247%/ ® We now have 6 unexplored choices:

(215) ® (b) 304s = 83s + 221s,

SR .

ol (1 32) (86)

557s = 195s + 362s,

_ (c)
gOa i3 Q! o (d) 273s = 1535 + 1205,
e 2%;% ®) (h) 3165 = 1755 + 1415,
; i
(

) 2655 = 2155 + 50s,
E o(ﬁ‘g;) j) 277s = 190s + 87s.
: e (i)itis E
©.
; ./ \/.' :
\. i

\

\
3
4
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Find the Shortest Path from Start to Goal

R e

o X 46 K17,
® | want to go to the goal: & & .
a 1?3> Start ® \We now have 5 unexplored choices:
; ’3_. 240 (b) 3045 = 83s + 2215,
; \0 é?g) ‘27’ ) 557s = 195s + 362s,

P (132) (86)

) 273s = 153s + 120s,

(c)

\_ (d)
goa f1o0) 160) (h) 3165 = 175s + 141s,
2%;2) @) (j) 277s = 190s + 87s.

557
. (195)

T R N i
./
\.

e

® | am at the starting point &/& K & /=

AR WUETES T & RPGANEEEEET 5 OO0 YR e N T T
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* Find the Shortest Path from Start to Goal

. ’> sta rt

(215) (27)

P (1 32) (86)

v 160)
(190)

2?93) @)

557
. (195)

T R N i
./
\.\.

® | am at the starting point &/& K & /=
R KT,

® | want to go to the goal: & & .

® \We now have 5 unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s,
(h) 316s = 175s + 141s,
(j) 277s = 190s + 87s.

® Fro ) we again got two new choices.
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* Find the Shortest Path from Start to Goal

0
139 start

% .
i 240
< s
o 215) (27)
!
. (1 32) (86)

v 160)
(190)

2?93) @)

557
. (195)

T R N i
./
\.\.

® | am at the starting point &/& K & /=
R KT,

® | want to go to the goal: & & .

® \We now have 5 unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s,
(h) 316s = 175s + 141s,
(j) 277s = 190s + 87s.

® Fro ) we again got two new choices.
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* Find the Shortest Path from Start to Goal

o
139 start
% o
| / 37 240
& . 27‘0 (215) (27)
g . (132) (86)

v 160)
(190)

2?93) @)

557
. (195)

T R N i
./
\.\.

® | am at the starting point &/& K & /=
R KT,

® | want to go to the goal: & & .

® \We now have 5 unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s,
(h) 316s = 175s + 141s,
(j) 277s = 190s + 87s.

® Fro ) we again got two new choices.
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Find the Shortest Path from Start to Goal

Ltk e

® | am at the starting point &/& K & /=
R KT,

'/\
:7}> ® | want to go to the goal: & & .
¥ = Start ® \We now have 5 unexplored choices:

; ’y,./ (b) 304s = 83s + 2215,
<1 e, 240

S DO IR WS TN T T

's z*o @19 ‘27’ (c) 557s = 1955 + 362s,
X
. (132) (86)/ ( 2738 — 585 =208 2
g oal AT (h) 3165 = 1755 + 1415,
ng) o (j) 277s = 190s + 87s.
® From (i), we again got two new choices. ‘:

' e v

T R N i
.
S
oun
R

.4.\.

t‘l
|
r
1
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:
E

.

ED start

] o
4 . 240
! 221‘0 Yo (27)
i P (132) ‘86’

160)
(190)

2?92) @)

557
. (195)

R T LR
./
\.\.

RN G T

Find the Shortest Path from Start to Goal

® | am at the starting point &/& K & /=
R KT,

® | want to go to the goal: & & .

® \We now have 5 unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s,
(h) 316s = 175s + 141s,
(j) 277s = 190s + 87s.

® Fro ) we again got two new choices.
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* Find the Shortest Path from Start to Goal

R4t KIT.
® | want to go to the goal: & & .

Start ® From (i), we again got two new choices. s

5
® | am at the starting point &/& K & /= E
f
2

<) os 240 ® We now have 6 unexplored choices: g
e D gl ey (b) 304s = 83s + 2215, ;

462\.-.‘_’-\ (c) 5575 = 1955 + 362s,

g 3 o (d) 273s = 1535 + 120s,

: ) (h) 3165 = 1755 + 1415,
; N 3 (j) 277s = 190s + 87, .

E D \/.gg;, (k) 3165 = 2525 + 64s.

o :
; \./o\./ E

E— S = =t = - g
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* Find the Shortest Path from Start to Goal

EE P
® | want to go to the goal: & & .
Start ® From (i), we again got two new choices. s

240 ® We now have 7 unexplored choices: g
) 304s = 83s + 2215, ‘

/ \\. - (b
\, Ao By (c) 557s = 1955 + 3625,
903.| AT (d) 2735 = 1535 + 1205,
- '\ Pﬂg) ) (h) 316s = 175s + 1415,
- N (j) 277s = 190s + 87s, .
' N '\/. 557 ) 3165 = 2525 + 64s,
\ )

5
| am at the starting point - J&k # d/= E
f
2

(
(1) 268s = 236s + 32s.

¥ =N N N
&3
o
<
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h Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
R4t XKI7.

® | want to go to the goal: % .
* From (i), we again got two new choices.

® We now have 7 unexplored choices:
(b) 304s = 83s + 2215,

(c) 5575 = 1955 + 362s,

(d) 273s = 1535 + 120s,

(h) 3165 = 1755 + 1415,

(j) 277s = 190s + 87s,

(k) 3165 = 2525 -+ 64s,

(1) 268s = 236s + 32s.
e (Nitis...

R TR

\

\
3
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* Find the Shortest Path from Start to Goal |

® | am at the starting point &/& K & /=
R4t KIT.
® | want to go to the goal: & & .

(/]
—F
Q
—

We now have 6 unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 1955 + 362s,

(d) 273s = 1535 + 120s,
(
(

T, - B N =

h) 316s = 175s + 141s,
j) 277s = 190s + 87s,

k) 316s = 2525 + 64s.

%l SORE  —

E 351 R HTIEEIS

! ® There is only one choice to continue: go iif
. T /’ to the goall .
, \. :

\
\
$
X
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~ Find the Shortest Path from Start to Goal ﬁ
- ® | am at the starting point /& K F /= E
R4t K7, g

® | want to go to the goal: & & . ;

® We now have 6 unexplored choices: g
: (b) 3045 = 83s + 2215, ;
(c) 557s = 1955 + 362s, ;
(d) 273s = 1535 + 120s,
g Oal (h) 3165 = 1755 + 1415, E
(j) 277s = 190s + 87s, :

(k) 3165 = 2525 + 64s. :
E o (I)itis... .
® There is only one choice to continue: go ?i

; to the goall §

We found a first complete path from start
to goal. p

e - o L -y o
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Find the Shortest Path from Start to Goal ;!
® | am at the starting point /& K F /= E
R4t K7, :

® | want to go to the goal: & & . ,r

® \We now have 6 unexplored choices: g

(b) 304s = 83s + 221s, ;

(c) 557s = 1955 + 362s, J

(d) 273s = 1535 + 120s,

(h) 3165 = 1755 + 1415, E

(j) 277s = 190s + 87s, 2

(k) 3165 = 2525 + 64s. £

® There is only one choice to continue: go .

to the goall

: i

® We found a first complete path from start *

to goal.
® |t has the total length 268s.

T
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A Find the Shortest Path from Start to Goal

- ® | am at the starting point /& K F /= E

R4t K7, g

® | want to go to the goal: & & . ;

Start ® We now have 56 unexplored choices: g

: 3 (b) 304s = 83s + 2215, ;

N (c) 557s = 1955 + 362s, :

i35 ©) (d) 273s = 153s + 120s,

62 g9

g Oa| > - (h) 3165 = 1755 + 141s, E

= (j) 277s = 190s + 87s, ;

(k) 3165 = 2525 + 64s. :

E \. .\/o g5z ® (d) definitely will need more than 268s. .
, A

Py
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Find the Shortest Path from Start to Goal

Ltk e

T = NN N N L

(83)

557
. (195)

.4.\.

® | am at the starting point &/& K & /=

R A AR e S, eS0T

R4t KIT.
| want to go to the goal: & .

Start ® \We now have 4 unexplored choices:

(b) 3045 = 83s + 2215,

(c) 557s = 195s + 362s,

(d) 273s = 153s + 120s,

(h) 316s = 175s + 141s,

(j) 277s = 190s + 87s,

(k) 3165 = 2525 + 64s.

(j) definitely will need more than 268s.
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Find the Shortest Path from Start to Goal

R e

® | am at the starting point &/& K & /=

o/\ R b skl
°s ® | want to go to the goal: & & .
S 153)
; (;13)/0 Start ® \We now have 3 unexplored choices:
; ;@g.g),o 240 (b) 3045 = 83s + 2215,
" ‘. *o é?é’ ‘27’ ) 557s = 1955 + 362s,

(

0(132) ‘86’ (d) 273s = 153s + 120s,
gOa /ﬁ,, 0 (h) 316s = 1755 + 141s,
& %;g) (8033 (j) 277s = 190s + 87s,
(k) 3165 = 2525 + 64s.

. 557 ° (

o b) definitely will need more than 268s.

,/"
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. Find the Shortest Path from Start to Goal

c'\k v
s /\7’
/ @ :
()
[ ]

R4t KIT.
® | want to go to the goal: & & .
Start ® \We now have 2 unexplored choices:
(b) 304s = 83s + 221s,
c) 557s = 195s + 362s,
d) 273s = 153s - 120s,
h) 316s = 175s + 141s,

j) 277s = 190s + 87s,
k) 3165 = 2525 + 64s.

h) definitely will need more than 268s.

® | am at the starting point &2 K & m—
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. Find the Shortest Path from Start to Goal

start

R WL ot o

goal

R

T A R
2
i}
u

® | am at the starting point &2 K & m—
R KT,

® | want to go to the goal: & & .

® We now have 1 unexplored choices:
(b) 304s = 83s + 221s,

c) 5575 = 1955 + 362,

d) 273s = 153s - 120s,

h) 316s = 175s + 141s,

j) 277s = 190s + 87s,

k) 3165 = 2525 + 64s.

® (k) definitely will need more than 268s.
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(
(
(
(

T I T 0 AT E G %



J

LT W

A o R P L Y

¢ TR N . RN I el

. Find the Shortest Path from Start to Goal

Start ® \We now have 0 unexplored choices:

R

® | am at the starting point &2 K & m—
R KT,

® | want to go to the goal: & & .

(b) 304s = 83s + 2215, i
(c) 557s = 195s + 362s, g
(d) 2735 = 1535 + 120s,
(h) 3165 = 1755 + 141,
(j) 277s = 190s + 87s,

(k) 3165 = 2525 + 64s. §!
(

® (c) definitely will need more than 268s.
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. Find the Shortest Path from Start to Goal

"

| am at the starting point & & K & i/ =
R KT,

| want to go to the goal: & .

We now have 0 unexplored choices:
b) 304s = 83s + 221s,

c) 557s = 195s + 362s,

d) 273s = 153s - 120s,

h) 316s = 175s + 141s,

j) 277s = 190s + 87s,

k) 3165 = 2525 + 64s. é‘

e \We found the shortest possible path and
it takes 268s.
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5 Find the Shortest Path from Start to Goal
F (]

[ ]
1 start .
4

goal

R

TSN A N

BRSNS e e

| am at the starting point & & K & i/ =
R KT,

| want to go to the goal: & .
We now have 0 unexplored choices:

316s = 1755 + 1415,
j) 277s = 190s + 87s,
(k) 3165 = 2525 + 64s.

We found the shortest possible path and
it takes 268s.

Solved.
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The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,
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The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,

® The A* Algorithm iteratively constructs a solution.
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The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,
® The A* Algorithm iteratively constructs a solution.

® |t decides next step to test based on a combination of heuristic and cost.
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The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,

The A* Algorithm iteratively constructs a solution.

It decides next step to test based on a combination of heuristic and cost.

In the worst case, it needs to “look” at all intersections (nodes) and streets (edges) once.
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® We just applied the A* Algorithm?3:39,

The A* Algorithm iteratively constructs a solution.

It decides next step to test based on a combination of heuristic and cost.

In the worst case, it needs to “look” at all intersections (nodes) and streets (edges) once.

Usually, it is quite efficient to find shortest paths on maps.



The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,
® The A* Algorithm iteratively constructs a solution.

® |t decides next step to test based on a combination of heuristic and cost.

® In the worst case, it needs to “look” at all intersections (nodes) and streets (edges) once.

e Usually, it is quite efficient to find shortest paths on maps.

® (If we look for shortest paths that do not visit any node twice, where the edge distances
are not negative, where the number of choices per node is limited, and where the graph
and path are not too big — then this algorithm is very efficient.)



Problems that Algorithms cannot Solve Efficiently and Exactly
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Hard Problems (1)

® There exists a group of problems that are hard.
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Hard Problems (1)

® There exists a group of problems that are hard.

® Actually, most of the problems | mention at the beginning of this talk belong to this group
of hard problems.
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Hard Problems (1)

® There exists a group of problems that are hard.

® Actually, most of the problems | mention at the beginning of this talk belong to this group
of hard problems.

® A hard problem cannot be solved both exactly and efficiently.
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Hard Problems (1)

There exists a group of problems that are hard.

Actually, most of the problems | mention at the beginning of this talk belong to this group
of hard problems.

A hard problem cannot be solved both exactly and efficiently.

Let's look at two quick examples.
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¢ Bin Packing

et

® My car can carry Tkg of weight.
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' Bin Packing

4
o

T

® My car can carry Tkg of weight. i

® | have n objects, each with weight wi for 7 in 1 to n.
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;; Bin Packing

x\ttﬂ_'A

® My car can carry Tkg of weight.
® | have n objects, each with weight wi for 7 in 1 to n.
® How can | pack my car so that | can carry them from A to B with the fewest possible
hauls?°6->7
| 2
E
1 ;
.
e
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Traveling Salesperson Problem

® Find the shortest path that visits n locations and returns back to its origin.

Beijing.

Xi'an
Hefe\.Na.”E‘mg
(]
Chongging ¢ Vuhane Shanghai

e
J

.Changs

L]
Kupming, =
/\%ng Kong
g
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Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
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Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
- ® What does that mean?
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Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
® What does that mean?

If an algorithm guarantees to always find the best-possible solution
for an NP-hard problem, then its runtime will grow exponential
with the input size s in the worst case.
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Hard Problems (2)
Hal;bin

Beijing.

Xi'an

Hefei Nam'”g

Chongging ¢ WUhane Shanghal

Changsha
Ku@rlng/\m// 0
nQ Kong

If an algorithm guarantees to always find the best-possible solution
for an N'P-hard problem, then its runtime will grow exponential

i with the input size s in the worst case.
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Hard Problems (2)
Hal;bin

Beijing.

Xi'an

Hefei Nam'”g

Chongging ¢ WUhane Shanghal

Changsha
Ku@rlng/\m// 0
nQ Kong

If an algorithm guarantees to always find the best-possible so-
lution for an A/P-hard problem, then its runtime will grow expo-

i nential with the input size s in the worst case.

U~ W= T Loty

Y 1



Hard Problems (2)

packing with fewest hauls

Harbin
(]

Beijing.

Xi'an \
Hefei Naniing
(]
Chongging ¢ WUNaNe  Shanghai
.Changsha

Kunmi.n // 0
\FQ/\%‘Q K;ng

shortest round-trip tour

If an algorithm guarantees to always find the best-possible so-
lution for an A/P-hard problem, then its runtime will grow expo-
ential with the input size s in the worst case.
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Hard Problems (2)
Hal;bin

Beijing.

Xi'an

Hefei Nam'”g

Chongging ¢ WUhane Shanghal

Changsha
Ku@rlng/\m// 0
nQ Kong

If an algorithm guarantees to always find the best-possible solution
for an N'P-hard problem, then its runtime will grow exponential

i with the input size s in the worst case.

U~ W= T Loty

Y 1



Hard Problems (2)

Beijing.

Xi'an \
Hefei Naniing

J
Chongging ¢ WUNaNe  Shanghai
.Changsha

Kunmi.n // 0
\r—g/\kﬂg‘g K;ng

number of items to pack number of cities to visit

If an algorithm guarantees to always find the best-possible solution
for an N'P-hard problem, then its runtime will grow exponential

I with the input size s in the worst case.
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Hard Problems (2)
Hal;bin

Beijing.

Xi'an

Hefei Nam'”g

Chongging ¢ WUhane Shanghal

Changsha
Ku@rlng/\m// 0
nQ Kong

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential

i with the input size s in the worst case.

U~ W= T Loty
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Hard Problems (2)

S
I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.




Hard Problems (2)

10
f(s)
1035_

1030.
1025.
10%°1

10"
1 trillion
1 billion
1 million

1000 757
10 1003 s

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.
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Hard Problems (2)
101
f(s)
10%°
1030.
1025.

10%°1

10*1
1 trillion
1 billion
1 million

1000 7 R S L E e e s s T |
SRR RS LN L e

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.
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Hard Problems (2)

10
f(s)
1035_

1030.
1025.
10%°1

10%1
1 trillion
1 billion
1 million

1000 7577 s T
o o0 e S ey

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

o < e e

= =



Hard Problems (2)

101
f(s)
1035_

1030.
1025.
10%°1

10%1
1 trillion
1 billion
1 million

ARt f(s):s"

—
—
—
g
—
—
—
—
—
—
B
e

—
o
—

1000 7= - RSt O Sl o s R
o= = T =

e T T e

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential

! with the input size s in the worst case.
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Hard Problems (2)

40_
10 f(s)

10%°1

1030.

1025.

1071

1015_
1 trillion
1 billion
1 million

ARt f(s):s4

ms per day

—

e T
—
—
—
—
—
—
B
e

— e e
AELET ———
2L e ——

1000 7= - RSt O Sl o s R
000 ———— e T

—_—— e ————

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.
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Hard Problems (2)

40_
10 f(s)

10%°1

1030.

1025.

1071

1015_
1 trillion
1 billion
1 million

ARt f(s):s4

ms per day

L
o
—
—
—
—
—
B
e

— ——
e ——
A8 T e

1000 1557 i T
ST s, ML L)

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.
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Hard Problems (2)

10
f(s)
1035_

30 | picoseconds

g since the big bang

1025.

1071

10%1
1 trillion
1 billion
1 million

L i(s)=s’

ms per day

L
o
—
!
—
—
B
e

—— g e ———
— e
— WL LY
— —
—_ —_—

1000 7+
ST s, ML L)

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
E with the input size s in the worst case.
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Hard Problems (2) f(9)=2°
10 1(s) If
101

1030.

picoseconds

25 |
10 /

10%°1 /

10%1 /
1 trillion /

since the big bang

ARt f(s):s4

1 billion v
1 million

e

1000 3577
10100-

— = — ms per day

I 2 4 8 16 32 64 128 256

512 1024 2048

= =

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.




Hard Problems (2) fe)=e® _f(s)=2°

10 i
f(s) !
10%*1 ! II
10°°1 / / picoseconds
T/ since the big bang
e L
4
10%°1 At
70 L
10" ./ // .
e / A Eete f(S)=S
1 trillion / e i e Gl
- 7 7 NIRRT —— P Yy
1 billion iy RSy
1 million /‘//g i L RS (R 5=
L L L P T R G T T (1) Sienm e o =
R R g g

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.
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Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
® What does that mean?

If an algorithm guarantees to always find the best-possible solution
for an NP-hard problem, then its runtime will grow exponential
with the input size s in the worst case.
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Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
® What does that mean?

If we want to get the optimal solution,
it will take too long.

If an algorithm guarantees to always find the best-possible solution
for an NP-hard problem, then its runtime will grow exponential
E with the input size s in the worst case.
2 - —
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Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
® What does that mean?

If we want to get the optimal solution,
it will sometimes/goften/always take too long.

If an algorithm guarantees to always find the best-possible solution
for an NP-hard problem, then its runtime will grow exponential
with the input size s in the worst case.
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. Traveling Salesperson Problem g
- @ |n an Traveling Salesperson Problem (TSP), we want to find the shortest path through :
E n locations and back to the start!:22:29:31:47.53, \
;
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Traveling Salesperson Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

Harbin
()

Beijing.

Xi'an. A
Hefei.Nargng

®
Chongging e Wuhan o Shanghai
e Changsha

()
KUQTFID.Q/\?\ = 0
ong Kong
a
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Traveling Salesperson Problem
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n locations and back to the start!22:29.31,47,53

Harbin
(J

Beijing.

Xi‘an /
)

- Nanjing
Hefj,l".‘;'
Wuhar}. Shanghai

Chongqing ¢
K Changsha
[}
Kunmin,g/\ﬂ\ ) 0
ong Kong
g
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® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
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" Traveling Salesperson Problem g
- * In an Traveling Salesperson Problem (TSP), we want to find the shortest path through :
3 n locations and back to the start!:22:29:31,47,53, :,
. B
§ ;
3
5 ‘
‘. »
4 1
; £
1 getting the optimal solution sj
E for a TSP

1
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. Traveling Salesperson Problem y
- @ |n an Traveling Salesperson Problem (TSP), we want to find the shortest path through :
3 n locations and back to the start!22:29:31,47,53 ;
i E
ke 7
9 '
: |
:
% b
|
i i
2 g
1 getting the optimal solution »
E for a TSP may take too long !
]

4
: }
; consumed runtime: very much / too (?) long ‘

e
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. Traveling Salesperson Problem
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® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long
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Traveling Salesperson Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

worse
higher

solution quality
e.g., cost, tour length...

some (bad) solution for the
TSP can be obtained quickly

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long
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. Traveling Salesperson Problem
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® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

some (bad) solution for the
TSP can be obtained quickly

ST ey A

worse
higher
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getting the optimal solution
for a TSP may take too long

| e

solution quality
e.g., cost, tour length...
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better
lower
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very little / fast consumed runtime very much / too (?) long
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. Traveling Salesperson Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

worse
higher

solution quality
e.g., cost, tour length...

better
lower

|

some (bad) solution for the
TSP can be obtained quickly

getting the optimal solution
for a TSP may take too long
o

very little / fast consumed runtime very much / too (?) long
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Traveling Salesperson Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through

n locations and back to the start!22:29.31,47,53

worse
higher

solution quality
e.g., cost, tour length...

some (bad) solution for the
TSP can be obtained quickly Different algorithms offer different
trade-offs between runtime and

solution quality.

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long
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® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

worse
higher

solution quality
e.g., cost, tour length...

some (bad) solution for the
TSP can be obtained quickly Different algorithms offer different
trade-offs between runtime and
solution quality. Good algorithms
resulting from research push the
frontier of what can be achieved

towards the bottom-left corner.

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long
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Randomly Guessing Solutions
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Almost Solving Hard Problems

® For many problems, it is very easy to “guess’ a solution.
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Almost Solving Hard Problems

® For many problems, it is very easy to “guess’ a solution.

® This solution will (very likely) not be optimal.



Almost Solving Hard Problems

® For many problems, it is very easy to “guess’ a solution.
® This solution will (very likely) not be optimal.
o |t will very likely be very bad.



Almost Solving Hard Problems

® For many problems, it is very easy to “guess’ a solution.

This solution will (very likely) not be optimal.

It will very likely be very bad.
But it will be better than nothing.



Random Sampling for the TSP

® Back to the Traveling Salesperson Problem (TSP).



Random Sampling for the TSP

® Back to the Traveling Salesperson Problem (TSP).
® How do we “guess’ a solution?



Random Sampling for the TSP

® Back to the Traveling Salesperson Problem (TSP).
® How do we “guess’ a solution?
® \We could write down the cities in a random order.



Random Sampling for the TSP

® \We could write down the cities in a random order.

Beijing.

Xi‘an /

Nanjing
Hele on®.Sy

®
Chongqing/e 0 Shanghai
b hangsha
L)
14067 km Kuqnping . Y

Hong Kong
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Random Sampling for the TSP

® \We could write down the cities in a random order.

i

njm
Hefel o

Wuhang Sh'.

2 Changsh

Xi'an
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Random Sampling for the TSP

® \We could write down the cities in a random order.
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Random Sampling for the TSP

® \We could write down the cities in a random order.
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Random Sampling for the TSP

® \We could write down the cities in a random order.
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Random Sampling for the TSP

® \We could write down the cities in a random order.

® |f we do this, we will get a bad result.

18533 km DoEn T

Hong Kong

g

RN RO VRRTON AN Y T L :

IS P



Random Sampling for the TSP

® \We could write down the cities in a random order.
® |f we do this, we will get a bad result.

® But we will get it quickly.
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Random Sampling for the TSP

We could write down the cities in a random order.

If we do this, we will get a bad result.

But we will get it quickly.

And we can do this often.
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Random Sampling for the TSP

® \We could write down the cities in a random order.

If we do this, we will get a bad result.

But we will get it quickly.

And we can do this often.

For this small problem, my computer can do this millions of times in a few seconds.
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Random Sampling for the TSP

® We could write down the cities in a random order.
® |f we do this, we will get a bad result.

® But we will get it quickly.

® And we can do this often.

® For this small problem, my computer can do this millions of times in a few seconds.

® \We can let the algorithm run for as much time as we can wait . ..

the best random tour we found.

and then simply take



Random Sampling for the TSP

® \We could write down the cities in a random order.

® This is the improvement of the best-so-far solution of this so-called Random Sampling
algorithm over the number of solutions it has generated and tested (the so-called objective

function evaluations (FEs)).
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Random Sampling for the TSP

® \We could write down the cities in a random order.

® This is the improvement of the best-so-far solution of this so-called Random Sampling
algorithm over the consumed runtime in milliseconds.
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Random Sampling for the TSP

® \We could write down the cities in a random order.

® And for this small problem, this random sampling eventually finds the optimal tour.
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Metaheuristic Optimization

Principle 1: We can randomly construct solutions.

i
i
ﬂ
:
b

Al IR R e W AT e R o P 1 e - ~ e S R S R a N W T NV L TS TR S T N 4



Ehde 1T N i L L

Metaheuristic Optimization é
?

Principle 1: We can randomly construct solutions. E
Problem 1: Guessing an optimal (or even just good) ﬁ
solution randomly is very unlikely. ‘

:
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Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
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Why don’t we use the A* Algorithm for the TSP?

g
. ® Before, we talked about the A* Algorithm for path finding.
5 ® |sn't the TSP about finding a path?
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Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?
® Why do we not use it for the TSP?
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Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?
® Why do we not use it for the TSP?

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution?®.
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® Why do we not use it for the TSP?

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..



‘]
2

o B

Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?
® Why do we not use it for the TSP?

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?
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Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?

® Why do we not use it for the TSP?

e |t will crash for any larger TSP.

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?
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Why don’t we use the A* Algorithm for the TSP?

® Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?

® Why do we not use it for the TSP?

® |t will crash for any larger TSP.

® But it can be done and used for our small TSP.

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?
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Why don’t we use the A* Algorithm for the TSP?

® Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?

® Why do we not use it for the TSP?

® |t will crash for any larger TSP.

® But it can be done and used for our small TSP.

® So let's do it.

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?
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Why don’t we use the A* Algorithm for the TSP?

® Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?

® Why do we not use it for the TSP?

® |t will crash for any larger TSP.

® But it can be done and used for our small TSP.

® So let's do it. (I spare you all details.)

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?
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Why don’t we use the A* Algorithm for the T

® Because not only will it use too
much memory for larger
instances. . .
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Why don’t we use the A* Algorithm for the TSP?
® Because not only will it use too ok f —— Random Sampling
much memory for larger T A
instances. . .
11000
® .. .itis also slower than randomly
guessing on smaller instances. | .. |
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Random Sampling still is a bad algorithm

® Random sampling is a bad algorithm for the TSP (and basically all other problems, too).
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Random Sampling still is a bad algorithm

® Random sampling is a bad algorithm for the TSP (and basically all other problems, too).

® |t relies on randomly guessing good tours.
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Random Sampling still is a bad algorithm

® Random sampling is a bad algorithm for the TSP (and basically all other problems, too).
® |t relies on randomly guessing good tours.

® |f we have n cities, then there are 1% 2% 3% --- % (n — 1) xn = n! tours.
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Random Sampling still is a bad algorithm
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Random Sampling still is a bad algorithm

Random sampling is a bad algorithm for the TSP (and basically all other problems, too).

It relies on randomly guessing good tours.

If we have n cities, then there are 1 %2 % 3% --- % (n — 1) x n = n! tours.

Factorial growth (n!) is even worse than exponential growth. . .

!
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Random Sampling still is a bad algorithm

® Random sampling is a bad algorithm for the TSP (and basically all other problems, too).
® |t relies on randomly guessing good tours.

® |f we have n cities, then there are 1% 2% 3% --- % (n — 1) xn = n! tours.

[ ]

Factorial growth (n!) is even worse than exponential growth. . .

So if we try to randomly sample the best possible tour, our chance is extremely small. ..
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Local Search: Using Information
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Random Sampling is a bad algorithm

® |n each step, random sampling creates a completely random tour.
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Random Sampling is a bad algorithm

". ® |n each step, random sampling creates a completely random tour.

l ® |t does not gather any information.
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Random Sampling is a bad algorithm

® In each step, random sampling creates a completely random tour.
® |t does not gather any information.

® |t keeps the best tour, but does not use any information inside this tour.



Random Sampling is a bad algorithm

In each step, random sampling creates a completely random tour.

It does not gather any information.

It keeps the best tour, but does not use any information inside this tour.

® Just guessing answers randomly is not a good method.



Random Sampling is a bad algorithm

In each step, random sampling creates a completely random tour.

It does not gather any information.

It keeps the best tour, but does not use any information inside this tour.

® Just guessing answers randomly is not a good method.

Clearly, seeing millions of tours, we should be able learn something and somehow use that
to find better tours???



Randomized Local Search

e But what could we do?
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® But what could we do?
® “In the neighborhood of a solution, there will probably be better or worse solutions.”
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e But what could we do?

® “In the neighborhood of a solution, there will probably be better or worse solutions.”

® neighborhood = solutions that are similar.




Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”
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neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.
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Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”

neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.

If we do this, maybe we could get a better tour or a worse tour.
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Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”

neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.

If we do this, maybe we could get a better tour or a worse tour.
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We could keep a better tour, but throw away a worse one.
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Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”
neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.
If we do this, maybe we could get a better tour or a worse tour.

We could keep a better tour, but throw away a worse one.

Then we do the same with a better tour that we find, and with yet a better tour, and so
on.
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Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”
neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.
If we do this, maybe we could get a better tour or a worse tour.

We could keep a better tour, but throw away a worse one.

Then we do the same with a better tour that we find, and with yet a better tour, and so
on.

This method is called randomized local search (RLS).
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Randomized Local Search for the TSP
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Randomized Local Search for the TSP
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Randomized Local Search for the TSP
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Randomized Local Search for the TSP
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Randomized Local Search for the TSP
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Randomized Local Search for the TSP
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10620 km Chongging

AiE, b=, l/RiE, BN, L,
K, &E, B, EX, BZ, KX

LT T W R N Be T

Xi'an

Beijing.

Hefel 309
Wuha , hanghal

P, i — 1V IR Ui i TS Sl ke T T

+ TR ‘.i.



AL S A

Randomized Local Search for the TSP
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Randomized Local Search for the TSP
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Randomized Local Search for the TSP

® RLS is much faster than random sampling.
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Randomized Local Search for the TSP

® RLS is much faster than random sampling.

® However, if our algorithm is at a tour x, then it can only find other tours by swapping two
cities.

® There are some tours that it cannot reach in one step.

e |f all tours that we can reach in one step are worse than x, we will never leave z.



Randomized Local Search for the TSP

® RLS is much faster than random sampling.

® However, if our algorithm is at a tour x, then it can only find other tours by swapping two
cities.

® There are some tours that it cannot reach in one step.

e |f all tours that we can reach in one step are worse than x, we will never leave z.

[}

If  is not the optimum, then we are stuck and won't ever find the optimal/best tour.
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Metaheuristic Optimization

Principle 2: Applying a small random change to an
existing solution sometimes can give us a better

solution.
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g Metaheuristic Optimization

g

> Principle 2: Applying a small random change to an
existing solution sometimes can give us a better
solution. This way, we can step-by-step get better
solutions.
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© Metaheuristic Optimization
> Principle 2: Applying a small random change to an ;:..
existing solution sometimes can give us a better 5
; solution. This way, we can step-by-step get better ;
; solutions.
Problem 2: Sometimes, a small change is not
% enough. §
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1

L’-_‘Tf'-{—.'l‘_ e o ) D W T r T - N R EE s - 5.7




. Metaheuristic Optimization
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Principle 2: Applying a small random change to an
existing solution sometimes can give us a better
solution. This way, we can step-by-step get better
solutions.

Problem 2: Sometimes, a small change is not
enough. We can get stuck at a so-called /ocal op-
timum.
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Randomized Local Search for the TSP

e |f all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave x.
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Randomized Local Search for the TSP

e |f all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave x.
® There are many things that we can do, for example:

1. We could restart the algorithm at a new starting point after some time.
2. Or we could sometimes allow it swap more cities in the current tour.
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Randomized Local Search with a Larger Neighborhood

e If all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave x.

® There are many things that we can do, for example:

1. We could restart the algorithm at a new starting point after some time.
2. Or we could sometimes allow it swap more cities in the current tour.
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Randomized Local Search with a Larger Neighborhood

e If all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave .
® There are many things that we can do, for example:
1. We could restart the algorithm at a new starting point after some time.
2. Or we could sometimes allow it swap more cities in the current tour.
® The larger neighborhood of solutions that can be reached in one step makes the search
slower, but allows it to escape from local optima.
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Metaheuristic Optimization

Principle 3: Larger changes can help us escape from
local optima.



Metaheuristic Optimization

Principle 3: Larger changes can help us escape from
local optima.

Problem 3: Larger changes are less likely to yield
improvements (because the new solution is more
different), so they slow down the search.



Metaheuristic Optimization

There are many more principles and problems sur-
rounding (metaheuristic) optimization.



Metaheuristic Optimization

There are many more principles and problems sur-
rounding (metaheuristic) optimization.

But we will leave it at what we have seen so far.
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Summary on Algorithms

® \We have learned some basic algorithmic principles.

e Current research tries to improve both the speed of algorithms as well as the solution
quality.
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Summary on Algorithms

® \We have learned some basic algorithmic principles.

e Current research tries to improve both the speed of algorithms as well as the solution
quality.

® This requires carefully balancing the step-size of algorithms and to develop methods
against getting stuck at local optima.
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® Today, we can actually solve TSPs with tens of thousands of cities to optimality

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in
methods like branch and bound®13:34.
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e Today, we can actually solve TSPs with tens of thousands of cities to optimality®%.

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in |
methods like branch and bound!13:34,

® We can get close-to-optimal solutions for TSPs with millions of cities.
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® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in
methods like branch and bound!3:3%.

® We can get close-to-optimal solutions for TSPs with millions of cities.

® For this, we use algorithms a bit similar to randomized local search (RLS), but with more
targeted search steps, e.g., in the Lin-Kernighan-Helsgaun algorithm?*.
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Summary on the TSP

® Today, we can actually solve TSPs with tens of thousands of cities to optimality™. [but
not all of them!]

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in
methods like branch and bound!3:3%.

® We can get close-to-optimal solutions for TSPs with millions of cities.

® For this, we use algorithms a bit similar to randomized local search (RLS), but with more
targeted search steps, e.g., in the Lin-Kernighan-Helsgaun algorithm?*.
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Summary on the TSP

® Today, we can actually solve TSPs with tens of thousands of cities to optimality™. [but
not all of them!]

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in
methods like branch and bound!3:3%.

® We can get close-to-optimal solutions for TSPs with millions of cities. [close-to-optimal,
but not optimal (at least not always)!]

® For this, we use algorithms a bit similar to randomized local search (RLS), but with more
targeted search steps, e.g., in the Lin-Kernighan-Helsgaun algorithm?*.

% 3
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® Today, we discussed what optimization is.
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® Today, you also saw some of the basic principles and methods that are inside of the
algorithms used in optimization and operations research.
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® You can imagine that the same principles that we tested on the TSP will work on many
different kinds of problems.
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® Today, we discussed what optimization is.

® Today, you also saw some of the basic principles and methods that are inside of the
algorithms used in optimization and operations research.

® You can imagine that the same principles that we tested on the TSP will work on many
different kinds of problems.

® For example: As long as we can randomly construct and randomly modify a solution, we

can attack the problem with randomized local search (RLS).



Summary

® Today, we discussed what optimization is.

® Today, you also saw some of the basic principles and methods that are inside of the
algorithms used in optimization and operations research.

® You can imagine that the same principles that we tested on the TSP will work on many
different kinds of problems.

® For example: As long as we can randomly construct and randomly modify a solution, we
can attack the problem with randomized local search (RLS).

® Understanding the basic principles of optimization is not very hard.
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Programming with Python

\

We have a freely available course book on Programming with Python at
https://thomasweise.github.io/programmingWithPython, with focus on practical
software development using the Python ecosystem of tools*.



https://thomasweise.github.io/programmingWithPython

L

Databases

We have a freely available course book on Databases at
https://thomasweise.github.io/databases, with actual practical examples using a real

database management system (DBMS)*4.



https://thomasweise.github.io/databases

L

Metaheuristic Optimization in Python: moptipy

We offer moptipy®> a mature open source Python package for metaheuristic optimization,
which implements several algorithms, can run self-documenting experiments in parallel and in a

distributed fashion, and offers statistical evaluation tools.
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Glossary |

(1+1) EA

EA

(1 + ) EA

A* Algorithm

BCE

The (1 4+ 1) EA is a local search algorithm that retains the best solution z. discovered so far during the search®7 . In each

step, it applies a unary search operator to this best-so-far solution z. and derives a new solution z,,. If the new solution z,,
is better or equally good when compared with z, i.e., not worse, then it replaces it, i.e., is stored as the new z.. If the
search space are bit strings of length n, then the (1 4 1) EA uses a unary search operator that flips each bit independently
with probability m /n, where usually m = 1. This operator is the main difference to randomized local search (RLS). The
(14 1) EA is a special case of the (1 4+ \) evolutionary algorithm ((u + A) EA) where p = XA = 1.

An evolutionary algorithm is a metaheuristic optimization method that maintains a population of candidate solutions, which
undergo selection (where better solutions are chosen with higher probability) and reproduction (where mutation and
recombination create a new candidate solution from one or two existing ones, repectively)2'45.

The (1 4+ A) EA is an evolutionary algorithm (EA) where, in each generation, \ offspring solutions are generated from the
current population of p parent solutions. The offspring and parent populations are merged, yielding 1 + A solutions, from
which then the best p solutions are ratained to form the parent population of the next generation. If the search space is the
bit strings of length n, then this algorithm usually applies a mutation operator flipping each bit independently with
probability 1/n.

The A* Algorithm is an a greedy best-first-first search for finding the shortest path between two locations®33°, The
algorithm iteratively constructs the shortest path. It maintains a list of current candidate paths. For choosing the next
candidate path whose end node should be expanded, it computes a value f(p) of these paths p. f(p) is the sum of the
cost g(p) so far incurred by the path as well as a heuristic h(p) predicting the cost from the current end of the path to the
goal. h(p) must never overestimate that cost.

The time notation before Common Era is a non-religious but chronological equivalent alternative to the traditional Before
Christ (BC) notation, which refers to the years before the birth of Jesus Christ”. The years BCE are counted down, i.e., the

larger the year, the farther in the past. The year 1 BCE comes directly before the year 1 GEZL:585




Glossary I

CE

DB

DBMS

FE

moptipy

OR

Python

The time notation Common Era is a non-religious but chronological equivalent alternative to the traditional Anno
Domini (AD) notation, which refers to the years after the birth of Jesus Christ”. The years CE are counted upwards, i.e., the

smaller they are, the farther they are in the past. The year 1 CE comes directly after the year 1 BCE41'58,

A database is an organized collection of structured information or data, typically stored electronically in a computer system.
Databases are discussed in our book Databases**.

A database management system is the software layer located between the user or application and the database (DB). The
DBMS allows the user/application to create, read, write, update, delete, and otherwise manipulate the data in the DB5%.

Objective function evaluations are an implementation-independent measure of runtime for optimization algorithms?47:48:52

1 FE equals to one evaluated candidate solution during the optimization process.

is the Metaheuristic Optimization in Python Iibrarysz. It has been used in several different research works,
including®®:31733,43,54,56,57 | earn more at https://thomasweise.github.io/moptipy and

https://thomasweise.github.io/moptipyapps.

Operations Research (or Operational Research) is the application of sciences such as mathematics and computer science to
the management and organization of systems, organizations, enterprises, factories, or projects. It encompasses the
development and application of problem-solving methods and techniques (such as mathematical optimization, simulation,
queueing theory and other stochastic models) with the goal to improve decision-making and efficiency®.

26,30,36,46

The Python programming language , i.e., what you will learn about in our book*®. Learn more at

https://python.org.

- Fir S . /] TS

'


https://thomasweise.github.io/moptipy
https://thomasweise.github.io/moptipyapps
https://python.org

Glossary I

RLS

TSP
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Ny
NP

N P-hard

A i S SREEN Nath B o R I B RS ik v T

Randomized local search retains the best solution z. discovered so far during the search and, in each step, it applies a unary
search operator to this best-so-far solution z. and derives a new solution z,,. If the new solution z,, is better or equally good
when compared with z., i.e., not worse, then it replaces it, i.e., is stored as the new z.. If the search space are bit strings of
length n, then RLS uses a unary search operator that flips exactly one bit. This operator is the main difference

to (1 + 1) evolutionary algorithm ((1 + 1) EA).

In an instance of the Traveling Salesperson Problem, also known as Traveling Salesman Problem, a set of n cities or locations
as well as the distances between them are defined?:22:29:31,47,53  Tpe goal is to find the shortest round-trip tour that starts
at one city, visits all the other cities one time each, and returns to the origin. The TSP is one of the most well-known
NP-hard combinatorial optimization problems?2.

The factorial a! of a natural number a € Ny is the product of all positive natural numbers less than or equal to a, i.e.,
a!:1*2*3*4*-~-*(a—1)*a8'18'35.

the set of the natural numbers excluding 0, i.e., 1, 2, 3, 4, and so on. It holds that Ny C Z.

is the class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be
verified in polynomial time by a deterministic machine (such as a normal computer)ZI.
911,28 heed a runtime that is exponential in the

problem scale in the worst case. A problem is N'P-hard if all problems in N'P are reducible to it in polynomial time2*.

Algorithms that guarantee to find the correct solutions of A/P-hard problems

the set of the real numbers.

the set of the integers numbers including positive and negative numbers and 0, i.e., ..., -3,-2,-1,0, 1, 2, 3, ..., and so on.
It holds that Z C R.

g
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