e o TR,

Ye X%

HEFEI UNIVERSITY

An Introduction to Optimization

Thomas Weise (% 2 &)

tweise@hfuu.edu.cn

Institute of Applied Optimization (IAO)
School of Artificial Intelligence and Big Data
Hefei University

Hefei, Anhui, China

. AR AL BT 7 BT
ALF RS KFIEZR
H0E K

EEE S E Ry i)

Version: 2026-01-29

mailto:tweise@hfuu.edu.cn

T A

Qutline

el o0 Sl CIEE R CORNIDRN

Introduction

Problems that we can Solve with Equations

Problems that we can Solve with an Algorithm

Problems that Algorithms can Solve Fast and Efficiently
Problems that Algorithms cannot Solve Efficiently and Exactly
Randomly Guessing Solutions

Local Search: Using Information

Summary

Advertisement

Introduction

ot AN P TS AL h ST T LR T W AR R T T
- What is Optimization?

$
£

= LAY . LA L LR LA] —— =V V9 R e e

o 4

R

® Are are three ways to approach this topic.

AT e ORI 5 o b S o |

B R T T (T gy T A U et — R T e —

At £

What is Optimization?

® Are are three ways to approach this topic

1. Optimization is an extension of school mathematics into a field where equations are no
longer enough and exact solutions cannot always be reached.

RL L o

ST AR

e

p—— -

TR

N A

What is Optimization?

® Are are three ways to approach this topic

1. Optimization is an extension of school mathematics into a field where equations are no
longer enough and exact solutions cannot always be reached.

2. Optimization is the art of solving hard problems.

R N |

e L

What is Optimization?

&1
ﬁ

RL AL e

e L

N A

® Are are three ways to approach this topic

1. Optimization is an extension of school mathematics into a field where equations are no
longer enough and exact solutions cannot always be reached.

2. Optimization is the art of solving hard problems.

3. Optimization means searching for superlatives.

e d TR U W RTINS A el 1 LSS AR 1 AT <ot
Optlmlzatlon = Search for Superlatives

A

® Optimization means finding superlatives.

The superlative form of an adjective
is used to show that something has a

S p P quallty to the greatest or least degree.
i*“-."“ B T L o Ta e A LAETTUEV AR T L bt ta TR By Y

RRE PP ALY (F

~ Optimization = Search

for Superlatives

* with the least amount
e of fuel...

- Optimization means finding superlatives.

e Find the shortest path from start to goal®33°.

1l v 4R

T AR (RN PR

-
\
?
x

17 B | AETTEEY SR PR bt la ¥4 B3 A g oave

~ Optimization = Search for Superlatives

e Optimization means finding superlatives.
® Find the shortest path from start to goal®3:39.

® Pick up and deliver packages from different places
to customers using the least amount of fuel#%-49-51

e L 5

&

b A e 8- N

o
’
|
A
4
N
<
-

biggest ... 'with the least
...at the earliest possibe time of fuel...
...highest quality ...longest possible duration

most efficient ... most precise ... cheapest ... fastest...

fewest boxes with the highest score
...the longest possible duration most robust ...

...shortest path

2

T A

W

T AN e -9 Ny

Optimization = Search for Superlatives

e Optimization means finding superlatives.
® Find the shortest path from start to goal®3:39.

® Pick up and deliver packages from different places
to customers using the least amount of fuel#%-49-51,

® Pack a set of things into the fewest boxes®®:°7.

..at the earliest possibe time of fuel...
...highest quality possible duration
most efficient ... cheapest ... fastest...
fewest boxes | e highest score

...the longest possible duration most robust ...

biggest ..

* with the least amount

...shortest path

LT 4 et o TR ¥ 4) W Y. vyl g ol WY AYNNRLENE r

g ¥

[T I 1

Fa s s

= %

P 7 AT L.

o s

T A

W

’

T RS R QTN

Optimization = Search for Superlatives

Optimization means finding superlatives.

Find the shortest path from start to goa

Pick up and deliver packages from different places
to customers using the least amount of fuel#%-49-51,

|23,39

blagestil with the least amount

fewest boxes

the highest score
...the longest possible duration most robust ...
...shortest path

..t the earilest possibe time Eifuel...
...highest quality est possible duration
most efficient .. m cheapest ... fastest...

Pack a set of things into the fewest boxes

56,57

T I T
I N e
(NN EITEN LN B RN
| I AN .
(BN N I NEN] R

1 1IN B BN EmS

machine

ST T 1 T LIL 11 e
2| (N O | 2993s
JHENINE § /D N .

0 | work time

0 500 1000 1500 2000 2500 3000
¥ 4) W Y. vyl g ol WY AYNNRLENE

3500

Assign tasks to machines such that we can finish our work the at earliest possible time.

45

' AR

T AN e 49

Optimization = Search for Superlatives

® Optimization means finding superlatives.

Find the shortest path from start to goa

|23,39

Pick up and deliver packages from different places

to customers using the least amount of fue
Pack a set of things into the fewest boxes

Assign tasks to machines such that we can finish our work the at earliest

possible time.

|40,49—51

56,57

most efficient ...

Find a strategy to manage the power of the nodes in this sensor
network so that full coverage is guaranteed for the longest

possible duration.

/

...at the earliest possibe time
...highest quality ...longest possible duration

fewest boxes with the highest score
...the longest possible duration most robust ...

blogesteg with the least amount

of fuel...

most precise ... Cheapest... fastest...

...shortest path

W @

U U

© 9 P

\gaar i\ >

AR

-

N e A9

ot L

Optimization = Search for Superlatives

® Optimization means finding superlatives.

Find the shortest path from start to goa

|23,39

Pick up and deliver packages from different places
to customers using the least amount of fuel#%-49-51,

Pack a set of things into the fewest boxes

56,57

blogesteg with the least amount

...at the earliest possibe time of fuel...

...highest quality ...longest possible duration

most efficient ... most precise ... Ccheapest ... fastest...

fewest boxes with the highest score
...the longest possible duration most robust ...

...shortest path

Assign tasks to machines such that we can finish our work the at earliest

possible time.

Find a strategy to manage the power of the nodes in this sensor
network so that full coverage is guaranteed for the longest

possible duration.

And so on.

'y 4

¥ A

-

7 = %

T 000 N L) P SRV ma e R R TA ..

- Business ® optimized logistics (business-to-customer)

® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

PR ST T AT T] 1

_ W

B

\ :
- Business

P I L/ Vel SR VD LAl — AR

® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics

T AR T e ' 1 1

\
t

B Tw.2 s

L A L)

Business

P I £V el RSt o

Ll _N\al e

® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
@ optimized locations for new branch offices

(based current or predicted future customers)

C P el k. A 1

n N

\
t

B Tw.2 s

L A L)

Business

P I £V el RSt o

Ll _N\al e

® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
@ optimized locations for new branch offices

(based current or predicted future customers)

@ optimization of product design

® optimization of product feature configuration

® optimization of service offers

® improved tailoring of products/services to customers

C P el k. A 1

n N

\ P I L/ VA SRV RS AR RN TN .
- Business ® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits

® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics .

T AR T e ' 1 1

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
® optimized locations for new branch offices

(based current or predicted future customers) §

@ optimization of product design

® optimization of product feature configuration
® optimization of service offers i
® improved tailoring of products/services to customers

@ optimization of pricing and offers
® mining of customer data for targeted offers

-

l
!

|

T UA D e L) R SR VO

Business

optimization
operations research

artificial intelligence (Al)
computational intelligence

machine learning
data mining

® optimized logistics (business-to-customer)
® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
@ optimized locations for new branch offices

(based current or predicted future customers)

® optimization of product design
® optimization of product feature configuration
® optimization of service offers
e improved tailoring of products/services to customers

® optimization of pricing and offers
® mining of customer data for targeted offers

> F s y -

® optimization of factory layouts and intra-factory logistics

R S k. U S U

y 4

\ T VA0 e L) R SR VO Al B Al TG G R

- Business ® optimized logistics (business-to-customer)

® planning and scheduling of maintenance visits
® planning and scheduling of supply visits

@ production planning and scheduling
® optimized assignment of jobs/orders to machines
® optimization of production processes
® optimization of stock-keeping
® optimization of intra-enterprise logistics
® optimization of supply chains
® optimization of factory layouts and intra-factory logistics

optimization

operations research
artificial intelligence (Al)
computational intelligence
machine learning

@ scheduling of employee work
® optimal assignment of employees to tasks or customers
@ optimized locations for new branch offices

data mining (based current or predicted future customers)

® optimization of product design
® optimization of product feature configuration
® optimization of service offers
® improved tailoring of products/services to customers

® optimization of pricing and offers
® mining of customer data for targeted offers

-,y > F s y -

.4

Optimization

® There are incredibly many problems from a very wide area where we can use optimization
and Operations Research (OR).

Optimization

® There are incredibly many problems from a very wide area where we can use optimization
and Operations Research (OR).

® How is this related to what you already learned?

Problems that we can Solve with Equations

A ——

SR Lt 1 14l ot

i

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.

free=

A ——

SR Lt 1 14l ot

i

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

free=

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Ag B AP 24

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?
Ay = Am — 2Ay — 24,
Ay(z) = (13em?) — 2(22?) — 2(3(13em — 2)?)

v

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Am —2Ay — 24,
Ay(z) = (13em?) — 2(§ %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?

v

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched. : x

e \What area has the largest such rectangle?

AI :A-—QAv—2AA

4(0) = (136m) ~2(3°) ~2(303em o)
Ap(x) = 169em? — 22 — (13cm — z)?
Ax(7)

2(z) = 169cm? — 22 — 169cm? + 26cm * z — a2

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Ag B AP 24

Ay(z) = (13em?) — 2(2 %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?

Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
Ay(z) = =222 + 26cm * x

v

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Ag B AP 24

Ay(z) = (13em?) — 2(2 %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?

Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
Ay(z) = =222 + 26cm * x

Ay(z) = —4z + 26cm

v

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Am — 2Ay — 24,
Ay(z) = (13em?) — 2(2 %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?
Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
(z) = —22% 4+ 26cm *
(r) = —4x + 26cm
0 = —42 + 26cm

v

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Am — 2Ay — 24,
Ay(z) = (13em?) — 2(2 %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?
Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
(
(

Ay(z) = =222 + 26cm * x
Ay(z) = —42 + 26cm
0 = —42 + 26cm
41 = 26cm

v

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay = Am — 2Ay — 24,
Ay(z) = (13em?) — 2(§ %) —2(3(13em — 2)?)
Ay(z) = 169cm? = 22 — (13cm — z)?
Ay(x) = 169cm? — 22 — 169cm? + 26cm * x —
(
(

Ay(z) = =222 + 26cm * x
Ay(z) = —42 + 26cm
0 = —42 + 26cm
41 = 26cm

v

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched. : x

e \What area has the largest such rectangle?

Ay(z) = =222 + 26cm * z
2 = 6.5cm

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
e \What area has the largest such rectangle?

Ay(z) = =222 + 26cm * z
2 = 6.5cm
Ay = Ag(7) = A3(6.5cm)
Ay = —2(6.5cm)? + 26cm * 6.5cm

A

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
® \What area has the largest such rectangle?
Ay(z) = =222 + 26cm * z
Z = 6.5cm
Ay = Ag(7) = A3(6.5cm)
Ay = —2(6.5cm)? + 26cm * 6.5cm

—

Ay = 84.5cm?

A

X

I R

A Problem that we can Solve with (High School Maths) Equations

® A rectangle should be placed inside a square with side
length 13cm as sketched.
® \What area has the largest such rectangle?
Ay(z) = =222 + 26cm * z
Z = 6.5cm
Ay = Ag(7) = A3(6.5cm)
Ay = —2(6.5cm)? + 26cm * 6.5cm

—

Ay = 84.5cm?
Solved.

A

X

Problems that we can solve with Equations

® We can actually solve a lot of problems.

Problems that we can solve with Equations

® We can actually solve a lot of problems.

® We just used an equation.

Problems that we can solve with Equations

® We can actually solve a lot of problems.
® We just used an equation.

® We did computations in multiple steps.

Problems that we can solve with Equations

® We can actually solve a lot of problems.

We just used an equation.

We did computations in multiple steps.

Regardless how the previous problem would be parameterized (say, 16cm instead of 13cm),
we could perform the exactly same steps.

Problems that we can solve with Equations

® We can actually solve a lot of problems.

We just used an equation.

We did computations in multiple steps.

Regardless how the previous problem would be parameterized (say, 16cm instead of 13cm),
we could perform the exactly same steps.

Can we always do that?

Problems that we can Solve with an Algorithm

Problems that we can Solve with Algorithms

® Can we always do that?

s RS NN . TN

Problems that we can Solve with Algorithms

® Can we always do that?
e Can we always solve problems with a pre-defined number of steps?

!
=

s RS NN . TN

Problems that we can Solve with Algorithms

® Can we always do that?
e Can we always solve problems with a pre-defined number of steps?
® No.

!
=

e Sy, i

Dty

Problems that we can Solve with Algorithms

Can we always do that?

Can we always solve problems with a pre-defined number of steps?

e No.

There are problems that we cannot solve with equations, but with algorithms.

1 |1

N T AT R - RS o R ST T P S e Wi e i

Problems that we can Solve with Algorithms

Can we always do that?

Can we always solve problems with a pre-defined number of steps?
® No.

There are problems that we cannot solve with equations, but with algorithms.

And some problems require us to use algorithms which perform different numbers of steps
of different inputs.

-
el L

T AT R - TR T RN SR T L P Mo e Wi e

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

1T S e T——

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The gecd can be computed with the Euclidean
algorithm®1920 by Euclid of Alexandria (EvrAe(67s),
who lived about 300 before Common Era (BCE).

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

1T S e T——

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The gecd can be computed with the Euclidean
algorithm®1920 by Euclid of Alexandria (EvrAe(67s),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

———

e N ___ Ni

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The gecd can be computed with the Euclidean
algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a =b.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

———

e N ___ Ni

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
® The gecd can be computed with the Euclidean

algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a =b.

® QOtherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Njy.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

-y

I

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
® The gecd can be computed with the Euclidean

algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a =b.
® QOtherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Njy.

® Without loss of generality, let's assume that a > b.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

-y

I

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
® The gecd can be computed with the Euclidean

algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

® The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a =b.

® QOtherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Njy.

® Without loss of generality, let's assume that a > b.

® Then it holds that c=a — b= (i — j)g.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

-y

I

A Problem that we can Solve with (a High School) Algorithm

What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

The ged can be computed with the Euclidean
algorithm®19:20 by Euclid of Alexandria (EdxAe(675),
who lived about 300 before Common Era (BCE).

The ged of two positive natural numbers a € Ny
and b € Nj is the largest number g € N; = ged(a, b)
which divides both a and b without remainder.

If a = b, then obviously ged(a,b) = a = b.

Otherwise, we know that a = ig for some ¢ € N; and
that b = jg for some j € Njy.

Without loss of generality, let's assume that a > b.
Then it holds that c=a — b= (i — j)g.

Thus, g also divides ¢ without remainder, i.e.,
ged(a, b) = ged(c, b).

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

———

e N ___ Ni

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The ged of two positive natural numbers a € Ny

and b € Ny is the largest number g € Ny = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a = b.

® Otherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Nj.

e Without loss of generality, let's assume that a > b.

® Then it holds that c=a — b = (i — j)g.

® Thus, g also divides ¢ without remainder, i.e.,
ged(a, b) = ged(e, b).

® |t must also be that a — b < a.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

-y

I

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® The ged of two positive natural numbers a € Ny

and b € Ny is the largest number g € Ny = ged(a, b)
which divides both a and b without remainder.

® If a = b, then obviously ged(a,b) = a = b.

® Otherwise, we know that a = ig for some 7 € N; and
that b = jg for some j € Nj.

e Without loss of generality, let's assume that a > b.

® Then it holds that c = a — b = (i — j)g.

® Thus, g also divides ¢ without remainder, i.e.,
ged(a, b) = ged(e, b).

® |t must also be that a — b < a.

® We can replace a with a — b.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

———

e N ___ Ni

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477
® If a = b, then obviously ged(a,b) = a =b.

® QOtherwise, we know that a = ig for some i € Ny and
that b = jg for some j € Nj.

® Without loss of generality, let's assume that a > b.
® Then it holds that c=a — b= (i — j)g.

® Thus, g also divides ¢ without remainder, i.e.,
ged(a, b) = ged(c, b).
® |t must also be that a — b < a.

® \We can replace a with a — b.

® \We can repeatedly subtract the smaller from the larger
number until we “converge.”

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

1T S e T——

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

1T S e T——

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b
2579731 164 1647 938084

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

1T S e T——

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b
2579731 164 1647 938084
164 1647 938084 703563

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

1T S e T——

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b
2579731 164 1647 938084
164 1647 938084 703563
938084 703563 234521

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

1T S e T——

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b

2579731 164 1647 93 8084
164 1647 93 8084 703563
93 8084 703563 234521

703563 234521 469042

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

1T S e T——

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b

2579731 164 1647 93 8084
164 1647 93 8084 703563
93 8084 703563 234521
703563 234521 469042

46 9042 234521 234521

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger

———

e N ___ Ni

number until we “converge.”
bigger number: ¢ smaller number: b a—b
2579731 164 1647 938084
164 1647 938084 703563
938084 703563 234521
703563 234521 46 9042
469042 234521 234521

e gcd(257 9731, 164 1647) = 23 4521.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

———

e N ___ Ni

A Problem that we can Solve with (a High School) Algorithm

® What is the greatest common divisor (gcd) of a = 2579731 and b = 164 16477

® We can repeatedly subtract the smaller from the larger
number until we “converge.”

bigger number: ¢ smaller number: b a—b

2579731 164 1647 93 8084
164 1647 93 8084 703563
93 8084 703563 234521
703563 234521 46 9042
46 9042 234521 234521

e gcd(257 9731, 164 1647) = 23 4521.

Solved.

https://www.antike-griechische.de/Euklid.pdf
https://fr.vikidia.org/wiki/Cat%C3%A9gorie:Image_Euclide

Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

A R R R R R T R R R O R RO R RRRDRRDERE

Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

B e e e e

Euclidean Algorithm

4 F g v

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”

X
instead of subtractions. 4

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7.%
R)1415.2738.42,

|
[T e _al

Y AR EREEERes GEENUSE WRNTT T a8 e e N R O TR L T ea— 4

Euclidean Algorithm

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7.%
R)1415.2738.42,

i‘
I ® The number of steps that the algorithm needs depends on the input.
+ ® What does efficient even mean?

i

|- =772 TN

2 § I

N

:
1

|
|

H

UL AR BT ST GEESNNUARTE AT WU e TREIERRRRRE. 4 v R TR SN B, v Ty W e T

Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7.%
R)1415.2738.42,

® \What does efficient even mean?

o cfficient = fast

e - —— e omar » I 0000909090900 T e e -

- O S

:
1

|
|

H

UL AR BT ST GEESNNUARTE AT WU e TREIERRRRRE. 4 v R TR SN B, v Ty W e T

Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7.%
R)1415.2738.42,

® \What does efficient even mean?

e cfficient = fast and does not need much memory

e - —— e omar » I 0000909090900 T e e -

- O S

-

Euclidean Algorithm

® The number of steps that the algorithm needs depends on the input.

® The Euclidean Algorithm can be implemented more efficiently using “division remainders”
instead of subtractions.

® |t can be made even more efficient using a binary variant ... that already existed in China

in the first century Common Era (CE)°, published in the famous Jiu Zhang Suanshu (7L%

;’a"’_;}i)14,15,27,38,42.

® What does efficient even mean?
e cfficient = fast and does not need much memory

® (Side note: The binary Euclidean algorithm can be computed in ¢ * (log a + log b) steps
where ¢ > 0 is some constance. It needs two memory cells*°.)

A » 'y i N AL B T A e ~ow By =

_ R

Problems that Algorithms can Solve Fast and Efficiently

. Find the Shortest Path from Start to Goal

ER: S

. Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
R4 K17,

g

. Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
R4 K17,

e | want to go to the goal: .

g

. Find the Shortest Path from Start to Goal

| am at the starting point & & K & i/ =
R4 K17,

e | want to go to the goal: .
How do | get there the fastest?

54

Find the Shortest Path from Start to Goal

S

| am at the starting point & & K & i/ =
R4 K17,

e | want to go to the goal: .
How do | get there the fastest?

We know the campus map.

Find the Shortest Path from Start to Goal

54

S

I R e

| am at the starting point & /& K & m/—=
R KT,

e | want to go to the goal: .

How do | get there the fastest?
We know the campus map.

We want to compute the shortest
path (before actually walking it).

{mﬁmw I e

Find the Shorfest Path from Start to Goal

| am at the starting point & /& K & m/—=
Rt K17,

e | want to go to the goal: .
How do | get there the fastest?

We know the campus map.

® \We want to compute the shortest
path (before actually walking it).

We know all the intersections where |
could make turns.

Find the Shortest Path from Start to

o
?;\.:/.)\/’\ o/ .\/
goal _ K >
TN
| - ¥
| \/\ /

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the
How do | get there the fastest?
We know the campus map.

We want to compute the shortest
path (before actually walking it).

We know all the intersections where |
could make turns.

4 PTGy

. Find the Shortest Path from Start to

<&
] ?;\.:/.)\/’\ 0/ °£/
H) Oy~ \.
goal \/ %))j)w
| R
A

® | am at the starting point /& K F /=
R KT,

® | want to go to the

® For example, | could walk for 27s to this
intersection.

Find the Shortest Path from Start to

| am at the starting point & /& K & m/—=

(\ Kb A T, ;

'> ® | want to go to the

(/]
—F
Q
—

For example, | could walk for 27s to this ‘f‘

.10/)/ intersection. 2
-~ S g
.\\o.\ 2 ¢ Or for 83s to that one.

odl XKL |

AR ;
E \'\ W)
o

. Find the Shortest Path from Start to

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

For example, | could walk for 27s to this
intersection.

Or for 835 to that one.
Or for 195s to that one.

. Find the Shortest Path from Start to

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

For example, | could walk for 27s to this
intersection.

Or for 835 to that one.
Or for 195s to that one.
Which one should we pick?

N DO PRE

2

e o Gl AR e SRS

Shortest Path from Start to Goal

® | am at the starting point /& K F /=

(\ Kbk

. /> Start - vl gt
}.<> ; / (c) 195s.
‘\/'>.\.~.<“ 8
N) ;
2
\,/’\-"/

‘A WPNEG AR v OO YR T TR

Pl e

. Find the Shortest Path from Start to

® | am at the starting point /& K F /=

(\ E b AT,

'> ® | want to go to the

o Start ¢ \We have 3 choices: (a) 27s, (b) 83s,
) /
1./> (C) 195s.
"\\:\ (XY ® For each intersection, we can compute the
P e airline distance (as the crow flies) to

» H Ne™ ! the
ol
| <y

-

N DO MRS S

AN I

P 5

Find the Shortest Path from Start to

® | am at the starting point /& K F /=

(\ B b AT,

'> ® | want to go to the

o Start ® We have 3 choices: (a) 27s, (b) 83s,

°>./>/ (c) 195s.
’0\\:'\ .27 ® For each intersection, we can compute the *

=T airline distance (as the crow flies) to

goal AR O ekt
: .\. R ® The actual walking distance can never be
ﬁ_ e N shorter than that.

Find the Shortest Path from Start to

.
./. 213
‘0\\. \ /of

| PUEL Y

g@@ \/ %)

| > AW
<7

® | am at the starting point /& K F /=
R KT,

/\’> ® | want to go to the :
/° Start ® We have 3 choices: (a) 27s, (b) 83s,

(c) 195s.

® For each intersection, we can compute the
airline distance (as the crow flies) to
the

® The actual walking distance can never be
shorter than that.

. Find the Shortest Path from Start to

.
./. 213
‘0\\. \ /0{7

H S \. / LS
g oal _ \/ %)
| ey
<7

ik ARG LB Y mf Ay

® | am at the starting point /& K F /=
R KT,

® | want to go to the

<>§> Start ® \We have 3 choices: (a) 27s + '2135,

(b) 83s, (c) 195s.

® For each intersection, we can compute the
airline distance (as the crow flies) to
the

® The actual walking distance can never be
shorter than that.

-

§ RO ER YR

. Find the

= 3 Y R L R RN

Shortest Path from Start to

® | am at the starting point /& K F /=

R4t KIT.
® | want to go to the :
Start ® We have 3 choices: (a) 27s + 213s,
(b) 83s, (c) 195s.
22 ® For each intersection, we can compute the
A airline distance (as the crow flies) to
83 195
! the :
® The actual walking distance can never be
. shorter than that.
\.
/
e

R R RN Mmook

YT o 5 R

. Find the

= v Gl AN oSBT Y et RN

Shortest Path from Start to Goal
® | am at the starting point /& K F /=
R KT,

® | want to go to the goal: .

Start ® We have 3 choices: (a) 27s + 213s,

(b) 83s + 2215, (c) 195s.
22 ® For each intersection, we can compute the

airline distance (as the crow flies) to

A
ot = o the 2%,
® The actual walking distance can never be
. shorter than that.
Bl

& P PG AT v OO YR T W

AR

----- B . RSO T 1

- Find the Shortest Path from Start to Goal

(IR LA Ao

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the goal: & .

We have 3 choices: (a) 27s + 213s,

(b) 83s + 2215, (c) 195s.

For each intersection, we can compute the
airline distance (as the crow flies) to

the 2.

The actual walking distance can never be
shorter than that.

‘A WPNEG AR v OO YR T TR

Pl e

----- B . RSO T 1

- Find the Shortest Path from Start to Goal

(IR LA Ao

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the goal: & .
We have 3 choices: (a) 27s + 213s,
(b) 83s + 2215, (c) 195s + 362s.

For each intersection, we can compute the
airline distance (as the crow flies) to

the 2.

The actual walking distance can never be
shorter than that.

‘A WPNEG AR v OO YR T TR

Pl e

.

TR I —

TR A SN TN R Rl T) e S %) S SO, S

h Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=

./\ Kb K17,
’> ® | want to go to the goal: & & .
o Start ® We have 3 choices:
\] (a) 2405 = 275 + 213s, (b) 83s + 2215,
(c) 1955 + 362s.

T

R TR

——— -~ = S can e gamm—

e e

Find the Shortest Path from Start to Goal

Pl SO e SRS ML

® | am at the starting point /& K F /=
R4t XKI7.

® | want to go to the goal: & & .

® \We have 3 choices:
(a) 240s = 27s + 213s,

(b) 304s = 83s + 221s, (c) 1955 + 362s.

T A PG R iR 5 OER TR WS TN TN LT

S

T

----- . . RSO TR 1

Flnd the Shortest Path from Start to Goal

® | am at the starting point

EE I

® | want to go to the goal:
Start ® We have 3 choices:
240 (a) 240s = 27s + 213s,

‘27’ (b) 304s = 83s + 221s,
\
S \/ N __. (c) 5575 = 1955 + 362s.

QQa < >:) 2

: . 557

] (195)

E 3
/’\./

N

(IR LA

SRR FE =

22

iy

Ay k"

T u %

N DR YRE T

LY N o

o P

Pl e

Find the Shortest Path from Start to

< start

240
\. \

(27)
/ N, ~.

g@@ /)))

(83)

557
E O (195)

W,
f

il SR LS,

® | am at the starting point /& K F /=
R4t KIT.

® | want to go to the

® We have 3 choices:
(a) 240s = 27s + 213s,
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s.

® The most interesting candidate for the
first step is clearly (a).

-

§ RO ER YR

PN I N

P 5 e)

Find the Shortest Path from Start to

< start

240
\. \

(27)
/ N, ~.

g@@ /)))

(83)

557
E {no) (195)

W,
f

il SR LS,

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

The most interesting candidate for the
first step is clearly (a).

We have 2 remaining unexplored choices:

(b) 304s = 83s + 2215,
(c) 557s = 1955 + 362s.

-

§ RO ER YR

PN I N

P 5 e)

. Find the Shortest Path from Start to

<%>\ start

D
goal /\ >:.~.\:M
\.)) (83)
\. N4 557
E \o ./°(195)
P

il SR LS,

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

The most interesting candidate for the
first step is clearly (a).

(b) 304s = 83s + 2215,
(c) 557s = 1955 + 362s.

® From (a), we can go to (d) by walking
for 126s.

We have 2 remaining unexplored choices:

-

§ RO ER YR

PN I N

P 5 e)

. Find the Shortest Path from Start to

<%>\ start

D
goal /\ >:.~\:M
\.)) (83)
\. N4 557
E \o ./°(195)
P

il SR LS,

| am at the starting point & /& K & m/—=
R KT,

| want to go to the

The most interesting candidate for the
first step is clearly (a).

(b) 304s = 83s + 2215,
(c) 557s = 1955 + 362s.

® From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.

We have 2 remaining unexplored choices:

-

§ RO ER YR

PN I N

P 5 e)

= 3 Y R L R N

Find the Shortest Path from Start to

® | am at the starting point /& K F /=

./\ B4k k1],

'> ® | want to go to the :
> N Start ° The most.interesting candidate for the
% (2;70)/ first step is clear-ly.(a). .
’0\\. \ o ® \We have 2 remaining unexplored choices:
NP (b) 304s = 83s + 2215,

/}. \304 (c) 557s = 1955 + 362s.
N

R - ® From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.

\ /‘ For both we compute the distance as the
<)
oLy crow flies.
/ e

- . T Ty o, R

5 DR YRE

i .

P S o

----- B . RSO T 1

- Find the Shortest Path from Start to Goal

(IR LA Ao

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the goal: & .

The most interesting candidate for the
first step is clearly (a).

From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.

For both we compute the distance as the
crow flies.

TN T T

T u %

N DR YRE T

LS N,

o P

Pl e

. !

Find the Shortest Path from Start to Goal

| am at the starting point & /& K & m/—=
R4t KIT.

| want to go to the goal: & .

The most interesting candidate for the
first step is clearly (a).

From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.
For both we compute the distance as the

crow flies.

We had 2 remaining unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 1955 + 362s.

4

— e e

N Do IR

1 S

P b %

AR

A R e e S

Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
./\ Kb AT,
e ® | want to go to the goal: .
2 start et conida
/0 ® The most interesting candidate for the
o .{) \(22470) first step is clearly (a).
'\\.' 170 Vo\ ® From (a), we can go to (d) by walking
O e, for 1265 or to (e) by walking for 59s.

For both we compute the distance as the

8¢ '/

g©aﬂ

$ R crow flies.
\o\ o t., © Wenow have 3 unexplored choices:
E . J0® (b) 304s = 835 + 2215,
| A (c) 557s = 1955 + 362s,
o\/ (d) 273s = 1535 + 120s.

o B e

5 DR YRE

1 S

P S o

=

Find the Shortest Path from Start to

5 start

[)
E \/-as;,
d / \.

R T TR L Ao

SRR B

| am at the starting point

EE P

| want to go to the

The most interesting candidate for the
first step is clearly (a).

From (a), we can go to (d) by walking
for 1265 or to (e) by walking for 59s.

For both we compute the distance as the
crow flies.

We now have 4 unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 1955 + 362s,

(d) 273s = 153s + 120s,

(e) 2565 = 865 + 170s.

R R RN Mmook

1 S

P S o

e

2. R R S e

SRSy = IR R

Find the Shortest Path from Start to Goal

<><

; '} o
% ’”,,o‘. .\.
X 256
' \0 \ (86)

® | am at the starting point /& K F /=
R4t XKI7.

® | want to go to the goal: & & .

Start ® \We now have 4 unexplored choices:
(b) 304s = 83s + 2215,

() 557s = 1955 + 362s,

(d) 273s = 153s + 120s,

(e) 2565 = 865 + 170s.

(e)

e)itis...

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT C Se \pT r

S T

T

e

Find the Shortest Path from Start to Goal

2. R R S e R T AR e S/ S S0

® | am at the starting point /& K F /=

./\ KA KT,
:7§> ® | want to go to the goal: & & .
p /15.3) Start |t is.

j .D_.\ = 240 ° We have 3 remaining unexplored choices:
‘\.'\ m 2 (b) 304s = 83s + 2215,

(86)

\, 2~ —_ (c) 5575 = 1955 + 362s,

d b .
goal /))783) (d) 273s = 1535 + 1205
E oazz,

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT C Se \pT r

N
&

4

S 23 . AN RN

(IR LA

Flnd the Shortest Path from Start to Goal

5 start

[)
E \/-as;,
d / \.

SRR B

® | am at the starting point

EE I

® | want to go to the goal: & & .

e We have 3 remaining unexplored choices:

(b) 3045 = 83s + 2215,
(c) 5575 = 1955 + 362s,
(d) 273s = 1535 + 120s.

® From this point (e), we only have one
reasonable choice where to go next.

Ay k"

T u %

N DR YRE T

LS N,

o P

Pl e

. . RSO TR 1

Flnd the Shortest Path from Start to Goal

start

./\.

®
}— 5
240
0\

! (27)

(IR LA Ao

| am at the starting point & /& K & m/—=
R KT,

® | want to go to the goal: & & .

We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 5575 = 1955 + 362s,

(d) 273s = 1535 + 120s.

From this point (e), we only have one
reasonable choice where to go next.

And we again compute the airline distance
to the goal.

T u %

N DR YRE T

LS N,

W

Pl e

St 3 P e TR

SN 35 ekl

Flnd the Shortest Path from Start to Goal

< 5 sta rt .
S \. '
@@@1 & :
L_ »/\
E ./0 (5

’\

e

Ll A R LF e

o

| am at the starting point & /& K & m/—=
R KT,

| want to go to the goal: & .

From this point (e), we only have one
reasonable choice where to go next.

And we again compute the airline distance
to the goal.

We now have 4 choices:
(b) 304s = 83s + 2215,
(c) 5575 = 1955 + 362s,
(d) 273s = 153s + 120s,
(f) 262s = 1325 + 130s.

S5 DR PRY WEEERETT T TR

LY N o

o P

S

w«-\i.mwm

. Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
R4t XKI7.

® | want to go to the goal: & & .

® And we again compute the airline distance

to the goal.

® \We now have 4 choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,

(d) 273s = 1535 + 120s,

(f) 2625 = 1325 + 1305,
oL iht a1

Pl SO e SRS ML A

T A PG R iR 5 OER TR WS TN TN LT

S

T

e

Find the Shortest Path from Start to Goal

2. R R S e R T AR e S/ S S0

® | am at the starting point /& K F /=

./\ KabATT,
:7§> ® | want to go to the goal: & .
/15.3) Start ® And we again compute the airline distance

+ '@
!) /0 (22470) to the goal.
) hY \ ~ o (f)itis...

® \We have 3 remaining unexplored choices:

goal / (b) 304s = 835 + 221,
@) (c) 557s = 195s + 362s,

(d) 273s = 1535 + 120s.

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT C Se \pT r

S T

T

SR 25 o R . NESLEERE TR 1

Flnd the Shortest Path from Start to Goal

5 start .

240
'\ (27)

o
\. (ggg, (2856) .
@@@ /) S
)) (83)
. . 557
X (195) [
E W
/’\./

N

(IR LA Ao

| am at the starting point & /& K & m/—=
R KT,

| want to go to the goal: .

And we again compute the airline distance
to the goal.

(f) P

We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,

(d) 273s = 1535 + 120s.

From (f), we have two possible choices to
continue.

T u %

N DR YRE T

LY N o

o P

Pl e

SR 2% .) R

Flnd the Shortest Path from Start to Goal

5 start .

.
240
' (27)

\o \28 262) (86) :
5 ./‘(?g;) °
/’\-’

N

L i ARG o T, i

| am at the starting point & /& K & m/—=
R KT,

| want to go to the goal: & .

And we again compute the airline distance
to the goal.

(f) P
We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s.

From (f), we have two possible choices to
continue.

S5 DR PRY WEEERETT T TR

LY N o

o P

S

i

‘ Flnd the Shortest Path from Start to Goal

. >> sta rt .
;‘:‘ 2 \zs)
g@a " &

w %%W
E ./0 9 e

’\

e

Ol il AR ol Y, el

| am at the starting point & /& K & m/—=
R4 KI7.

| want to go to the goal: & .

And we again compute the airline distance
to the goal.

(f) P
We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s.

From (f), we have two possible choices to
continue.

‘i PPNEGH VR v OO YR T TR Y

IR W

TP

Find the Shortest Path from Start to Goal

A PR I e R T AR e S/ S S0

| am at the starting point & /& K & m/—=
R4t KT

O/\ ;
:7§> ® | want to go to the goal: & & .
153
/0) Start And we again compute the airline distance

! (0 (22470) to the goal.
102 (£) Plg

We have 3 remaining unexplored choices:

g - 28 262
Se(3n = ‘86’
goal / (b) 304s = 835 + 221,
@) (c) 557s = 195s + 362s,
: (d) 273s = 1535 + 120s.
. 557

(19) From (f), we have two possible choices to
continue.

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT C Se \pT r

S T

/\’

N

T

TP

Find the Shortest Path from Start to Goal

A PR I e

Pl SO e SRS ML

We have 3 remaining unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,

(d) 273s = 1535 + 120s.

From (f), we have two possible choices to
continue.

| am at the starting point & /& K & m/—=
R4t KIT.

® | want to go to the goal: & & .
And we again compute the airline distance
to the goal.
(f) P

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT C Se \pT r

S T

T

TP

Find the Shortest Path from Start to Goal

A PR I e

[]
&9
o, []
[]
()
30
(83)
(]
o.
B
S o
A ~d
0\ /
®

Pl SO e SRS ML

| am at the starting point & /& K & m/—=
R4t XKI7.

® | want to go to the goal: & & .

And we again compute the airline distance
to the goal.

() irig
From (f), we have two possible choices to
continue.

We now have 4 unexplored choices:
(b) 304s = 83s + 2213,

(c) 5575 = 1955 + 362s,

(d) 273s = 153s + 120s,

(g) 262s = 160s + 102s.

S VNG s DUESEEEETREC . & RECMER MIRN ETTTT C Se \pT r

S T

T

L= e 2

Find the Shortest Path from Start to Goal

</>\§> start .

.>_ - 240

N

(27)

[]
\. \ 262 (86)
> _oy(132)
. 262 —_— [}
goal /
?92) @)
[]
g . 557

(195)

,/"

SRSy = IR R

| am at the starting point & /& K & m/—=
R4t XKI7.

| want to go to the goal: %

:{

And we again compute the airline distance

to the goal.

(f) itis. ..

From (f), we have two possible choices to
continue.

We now have 5 unexplored choices:

(b) 304s = 83s + 2215,

(c) 557s = 195s + 362s,
(d) 2735 = 1535 4 120,
(g) 262s = 160s + 102s,
(h) 316s = 175s + 141s.

‘S PG AT v OO YR T TR ST LTI

L= e 2

Find the Shortest Path from Start to Goal

N Pl SO e SRS ML

:{

| am at the starting point & /& K & m/—=
R4t KT

O/\ i
o ® | want to go to the goal: & & .
27
<>515§D Start ® And we again compute the airline distance

°>_ _ 240 to the goal.
(27) From (f), we have two possible choices to

: i \ 262
> >6‘2“3£i8-6) continue.
160)
goal / ols 1% We now have 5 unexplored choices:
”“ ®) 304s = 83s + 2215,
.) 557s = 195s + 362,
. 557

(b

(c

(195) (d) 273s = 153s + 120s,
I. (g) 262s = 160s + 102s,
) (h

./ ‘

‘S PG AT v OO YR T TR ST LTI

) 316s = 175s + 141s.
g)itis...

E TR N, . SR I e T A R T AR e Y S SSOT R

Find the Shortest Path from Start to Goal

L bl

| am at the starting point - J&k # d/=

'/\ Kbk,
:73> ® | want to go to the goal: & .
/15:) Start (g) itis. ..

'-g

% '®!

> ® \We now have 4 unexplored choices:
?3 .>—.{) \(22470)/ P

;

S DO IR WS TN T T

S SN > (b) 3045 = 83s + 2215,
./zzﬂiﬂ-‘-’-\ () 5575 = 1955 + 362s, ~
gOaI " a\® o (d) 2735 = 1535 + 120,
a 2?%% @) (h) 316s = 1755 + 141s.
v O i
N :
E = B
_f :
z £ .’

4

t‘l
|
r
1

L TR A SN I e A R T AR e Y S SSOT R

. Find the Shortest Path from Start to Goal

i :;
- ® | am at the starting point /& K F /=
o X db K17,
® | want to go to the goal: & & .
| m}D Start ® (g)itis...
. 240 ® We now have 4 unexplored choices:
‘”’ (b) 304s = 83s + 2215,

E e
.
T A PG R iR 5 OER TR WS TN TN LT

\ 26
_ 3 >:2“3£.‘8f’- (c) 557s = 1955 + 362s,
gOa / N (d) 273s = 1535 + 120,
- %;S) &) (h) 3165 = 1755 + 141s.
® And we get two new choices.
. 557

(195)
o
N/

e

./

R TR

7!&‘%}1 T PR S e LR e A DR Y SN0 I?A"
. Find the Shortest Path from Start to Goal i
: ® | am at the starting point /& K F /= E
./\ K 4t k17, ;
9 ® | want to go to the goal: & & . ;'
27.

<>515§> Start ® (g)itis... g
; N o e We now have 4 unexplored choices: :
. Do) a0 e now have 4 unexplored choices: g
NN > (b) 304s = 83s + 2215,
: 5 :
~_ N\ a2 Z (c) 5575 = 1955 + 362s,

gOal / N » - (d) 273s = 1535 + 120s,

30

< 2%%% @) (h) 3165 = 1755 + 141s.
% . - :‘
\.\ 5. ® And we get two new choices. -
E @, / (195) -
s f
0 /\/’ ;
\. i

\

\
3
T

.

T T A ey —

TR A SN TN R Rl T) e S %) S SO, S

. Find the Shortest Path from Start to Goal

i ® | am at the starting point /& K F /=
./\ Kb k1T,
o ® | want to go to the goal: & & .
27
<>515§> Start |t is. ..
’ '@
: }_./’ 240 . We now have 4 unexplored choices:
. \. (27)

(b) 304s = 83s + 2215,

_ N X B (c) 557s = 1955 + 362s,

gOa / Q! (d) 273s = 1535 + 120,

%;S)) (h) 3165 = 175s + 141s.

® And we get two new choices.
. 557

(195)

) /\/

N

R TR

\

\
3
4

TR o SN I el A R T AR e Y S SSOT R

* Find the Shortest Path from Start to Goal E
i ® | am at the starting point &/& K & /= E
o R KT, ’
® | want to go to the goal: & & . ;r
<><1?3> Start Yaitiisouk s
: 250,/) 22470 o We now have 4 unexplored choices: g
& " ‘ ’ (b) 304s = 83s + 2215,
N3 ° G & (c) 5575 = 1955 + 3625, f
goa / Q) (d) 273s = 1535 + 120s,
%;%) (h) 3165 = 1755 + 141s.
. ® And we get two new choices. .
. 557

(195)

/\’

N

T =N MR SN N

= - TR Oy

\

\
$
X

TR o SN I el A R T AR e Y S SSOT R

e

* Find the Shortest Path from Start to Goal E
i ® | am at the starting point &/& K & /= E
o R KT, ’
® | want to go to the goal: . ;r
<><1?3> Start Yaitiisouk s
'

: 50,/) (22470) o We now have 4 unexplored choices: g
: (b) 304s = 83s -+ 2215,
: 5 :
203 ° G & (c) 5575 = 1955 + 3625, f

goa / Q) (d) 273s = 1535 + 120s,

%;%) (h) 3165 = 1755 + 141s.
. ® And we get two new choices. .
E i bt :
E
: / \’ :

\

\
$
X

TR o SN I el A R T AR e Y S SSOT R

* Find the Shortest Path from Start to Goal E
i ® | am at the starting point &/& K & /= E
o R4t KIT. g
§> ® | want to go to the goal: & & . ;r
p= Start ® And we get two new choices. s

’ .
: .\ o 240 ® We now have 5 unexplored choices: g
& . ‘2”) 304s = 83s + 2215,

%l SORE —

= { 262 (86) (
so O ¥ (c) 557s = 1955 + 362s,
goa /)’ (d) 273s = 1535 + 120s,
7%)) (h) 3165 = 1755 + 1415,
(i) 2655 = 215s + 50s.
. 557

(195)
o
N/

e

./

T =N MR SN N

= - TR Oy

\

\
$
X

TR o SN I el A R T AR e Y S SSOT R

* Find the Shortest Path from Start to Goal E
i ® | am at the starting point &/& K & /= E
o X 46 K17, ’
§> ® | want to go to the goal: & & . ;r
“ p= Start e And we get two new choices. s
()
: }_.\ e 240 ° We now have 6 unexplored choices: g
: @ ‘2”) 304s = 83s + 2215,
’ ol (132) ‘86’ i

: (5575 = 1955 + 362s,
gOa i3 Q! (d) 273s = 1535 + 120s,
gt) (h) 3165 = 1755 + 1415,
2 (i) 265s = 215s + 50s,
o(ﬁ‘g;) (j) 277s = 190s + 87s.

%l SORE —

T R N i
.

= - TR Oy

\

\
$
X

.

T T A ey —

TR A SN TN R Rl T) e S %) S SO, S

. Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
o X 46 K17,

® | want to go to the goal: & & .

v Start ® And we get two new choices.
¥ 3 g B
i),\. a (2247%/ ® We now have 6 unexplored choices:

(215) ® (b) 304s = 83s + 221s,

SR .

ol (1 32) (86)

557s = 195s + 362s,

_ (c)
gOa i3 Q! o (d) 273s = 1535 + 1205,
e 2%;% ®) (h) 3165 = 1755 + 1415,
; i
(

) 2655 = 2155 + 50s,
E o(ﬁ‘g;) j) 277s = 190s + 87s.
: e (i)itis E
©.
; ./ \/.' :
\. i

\

\
3
4

E TR N, . SR I e T A R T AR e Y S SSOT R

Find the Shortest Path from Start to Goal

R e

o X 46 K17,
® | want to go to the goal: & & .
a 1?3> Start ® \We now have 5 unexplored choices:
; ’3_. 240 (b) 3045 = 83s + 2215,
; \0 é?g) ‘27’) 557s = 195s + 362s,

P (132) (86)

) 273s = 153s + 120s,

(c)

_ (d)
goa f1o0) 160) (h) 3165 = 175s + 141s,
2%;2) @) (j) 277s = 190s + 87s.

557
. (195)

T R N i
./
\.

e

® | am at the starting point &/& K & /=

AR WUETES T & RPGANEEEEET 5 OO0 YR e N T T

1

TR o SN I el

RN S L e 1'32"

* Find the Shortest Path from Start to Goal

. ’> sta rt

(215) (27)

P (1 32) (86)

v 160)
(190)

2?93) @)

557
. (195)

T R N i
./
\.\.

® | am at the starting point &/& K & /=
R KT,

® | want to go to the goal: & & .

® \We now have 5 unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s,
(h) 316s = 175s + 141s,
(j) 277s = 190s + 87s.

® Fro) we again got two new choices.

S DR YR NG R TN T

%l SORE —

= - TR Oy

1

TR o SN I el

RN S L e 1'32"

* Find the Shortest Path from Start to Goal

0
139 start

% .
i 240
< s
o 215) (27)
!
. (1 32) (86)

v 160)
(190)

2?93) @)

557
. (195)

T R N i
./
\.\.

® | am at the starting point &/& K & /=
R KT,

® | want to go to the goal: & & .

® \We now have 5 unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s,
(h) 316s = 175s + 141s,
(j) 277s = 190s + 87s.

® Fro) we again got two new choices.

S DR YR NG R TN T

%l SORE —

= - TR Oy

1

TR o SN I el

RN S L e 1'32"

* Find the Shortest Path from Start to Goal

o
139 start
% o
| / 37 240
& . 27‘0 (215) (27)
g . (132) (86)

v 160)
(190)

2?93) @)

557
. (195)

T R N i
./
\.\.

® | am at the starting point &/& K & /=
R KT,

® | want to go to the goal: & & .

® \We now have 5 unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s,
(h) 316s = 175s + 141s,
(j) 277s = 190s + 87s.

® Fro) we again got two new choices.

S DR YR NG R TN T

%l SORE —

= - TR Oy

1

E TR N, . SR I e T A R T AR e Y S SSOT R

Find the Shortest Path from Start to Goal

Ltk e

® | am at the starting point &/& K & /=
R KT,

'/\
:7}> ® | want to go to the goal: & & .
¥ = Start ® \We now have 5 unexplored choices:

; ’y,./ (b) 304s = 83s + 2215,
<1 e, 240

S DO IR WS TN T T

's z*o @19 ‘27’ (c) 557s = 1955 + 362s,
X
. (132) (86)/ (2738 — 585 =208 2
g oal AT (h) 3165 = 1755 + 1415,
ng) o (j) 277s = 190s + 87s.
® From (i), we again got two new choices. ‘:

' e v

T R N i
.
S
oun
R

.4.\.

t‘l
|
r
1

E TR N, . SR I e T

:
E

.

ED start

] o
4 . 240
! 221‘0 Yo (27)
i P (132) ‘86’

160)
(190)

2?92) @)

557
. (195)

R T LR
./
\.\.

RN G T

Find the Shortest Path from Start to Goal

® | am at the starting point &/& K & /=
R KT,

® | want to go to the goal: & & .

® \We now have 5 unexplored choices:
(b) 304s = 83s + 2215,
(c) 557s = 195s + 362s,
(d) 273s = 1535 + 120s,
(h) 316s = 175s + 141s,
(j) 277s = 190s + 87s.

® Fro) we again got two new choices.

g PP AT RO PRY R N T L ST

1 i e

1

TR o SN I el A R T AR e Y S SSOT R

* Find the Shortest Path from Start to Goal

R4t KIT.
® | want to go to the goal: & & .

Start ® From (i), we again got two new choices. s

5
® | am at the starting point &/& K & /= E
f
2

<) os 240 ® We now have 6 unexplored choices: g
e D gl ey (b) 304s = 83s + 2215, ;

462\.-.‘_’-\ (c) 5575 = 1955 + 362s,

g 3 o (d) 273s = 1535 + 120s,

:) (h) 3165 = 1755 + 1415,
; N 3 (j) 277s = 190s + 87, .

E D \/.gg;, (k) 3165 = 2525 + 64s.

o :
; \./o\./ E

E— S = =t = - g

TR o SN I el A R T AR e Y S SSOT R

* Find the Shortest Path from Start to Goal

EE P
® | want to go to the goal: & & .
Start ® From (i), we again got two new choices. s

240 ® We now have 7 unexplored choices: g
) 304s = 83s + 2215, ‘

/ \\. - (b
\, Ao By (c) 557s = 1955 + 3625,
903.| AT (d) 2735 = 1535 + 1205,
- '\ Pﬂg)) (h) 316s = 175s + 1415,
- N (j) 277s = 190s + 87s, .
' N '\/. 557) 3165 = 2525 + 64s,
\)

5
| am at the starting point - J&k # d/= E
f
2

(
(1) 268s = 236s + 32s.

¥ =N N N
&3
o
<

R TR

- S = =t = - g

.

T T A ey —

TR A SN TN R Rl T) e S %) S SO, S

h Find the Shortest Path from Start to Goal

® | am at the starting point /& K F /=
R4t XKI7.

® | want to go to the goal: % .
* From (i), we again got two new choices.

® We now have 7 unexplored choices:
(b) 304s = 83s + 2215,

(c) 5575 = 1955 + 362s,

(d) 273s = 1535 + 120s,

(h) 3165 = 1755 + 1415,

(j) 277s = 190s + 87s,

(k) 3165 = 2525 -+ 64s,

(1) 268s = 236s + 32s.
e (Nitis...

R TR

\

\
3
4

TR o SN I el A R T AR e Y S SSOT R

* Find the Shortest Path from Start to Goal |

® | am at the starting point &/& K & /=
R4t KIT.
® | want to go to the goal: & & .

(/]
—F
Q
—

We now have 6 unexplored choices:
(b) 304s = 83s + 2215,

(c) 557s = 1955 + 362s,

(d) 273s = 1535 + 120s,
(
(

T, - B N =

h) 316s = 175s + 141s,
j) 277s = 190s + 87s,

k) 316s = 2525 + 64s.

%l SORE —

E 351 R HTIEEIS

! ® There is only one choice to continue: go iif
. T /’ to the goall .
, \. :

\
\
$
X

L TR A SN I e A R T AR e Y S SSOT R

~ Find the Shortest Path from Start to Goal ﬁ
- ® | am at the starting point /& K F /= E
R4t K7, g

® | want to go to the goal: & & . ;

® We now have 6 unexplored choices: g
: (b) 3045 = 83s + 2215, ;
(c) 557s = 1955 + 362s, ;
(d) 273s = 1535 + 120s,
g Oal (h) 3165 = 1755 + 1415, E
(j) 277s = 190s + 87s, :

(k) 3165 = 2525 + 64s. :
E o (I)itis... .
® There is only one choice to continue: go ?i

; to the goall §

We found a first complete path from start
to goal. p

e - o L -y o

P o) PR ST L R T AR e S/ S S0 A

Find the Shortest Path from Start to Goal ;!
® | am at the starting point /& K F /= E
R4t K7, :

® | want to go to the goal: & & . ,r

® \We now have 6 unexplored choices: g

(b) 304s = 83s + 221s, ;

(c) 557s = 1955 + 362s, J

(d) 273s = 1535 + 120s,

(h) 3165 = 1755 + 1415, E

(j) 277s = 190s + 87s, 2

(k) 3165 = 2525 + 64s. £

® There is only one choice to continue: go .

to the goall

: i

® We found a first complete path from start *

to goal.
® |t has the total length 268s.

T

L TR A SN I e A R T AR e Y S SSOT R

A Find the Shortest Path from Start to Goal

- ® | am at the starting point /& K F /= E

R4t K7, g

® | want to go to the goal: & & . ;

Start ® We now have 56 unexplored choices: g

: 3 (b) 304s = 83s + 2215, ;

N (c) 557s = 1955 + 362s, :

i35 ©) (d) 273s = 153s + 120s,

62 g9

g Oa| > - (h) 3165 = 1755 + 141s, E

= (j) 277s = 190s + 87s, ;

(k) 3165 = 2525 + 64s. :

E \. .\/o g5z ® (d) definitely will need more than 268s. .
, A

Py
et
E s 3 Y 4 s

——— - S P - g

E TR N, . SR I e T

Find the Shortest Path from Start to Goal

Ltk e

T = NN N N L

(83)

557
. (195)

.4.\.

® | am at the starting point &/& K & /=

R A AR e S, eS0T

R4t KIT.
| want to go to the goal: & .

Start ® \We now have 4 unexplored choices:

(b) 3045 = 83s + 2215,

(c) 557s = 195s + 362s,

(d) 273s = 153s + 120s,

(h) 316s = 175s + 141s,

(j) 277s = 190s + 87s,

(k) 3165 = 2525 + 64s.

(j) definitely will need more than 268s.

g PP AT RO PRY R N T L ST

1 i e

1

E TR N, . SR I e T A R T AR e Y S SSOT R

Find the Shortest Path from Start to Goal

R e

® | am at the starting point &/& K & /=

o/\ R b skl
°s ® | want to go to the goal: & & .
S 153)
; (;13)/0 Start ® \We now have 3 unexplored choices:
; ;@g.g),o 240 (b) 3045 = 83s + 2215,
" ‘. *o é?é’ ‘27’) 557s = 1955 + 362s,

(

0(132) ‘86’ (d) 273s = 153s + 120s,
gOa /ﬁ,, 0 (h) 316s = 1755 + 141s,
& %;g) (8033 (j) 277s = 190s + 87s,
(k) 3165 = 2525 + 64s.

. 557 ° (

o b) definitely will need more than 268s.

,/"

T N R R N

AR WUETES T & RPGANEEEEET 5 OO0 YR e N T T

\
\
|

E TR N, . SR I e T

o i, el Y, ST

. Find the Shortest Path from Start to Goal

c'\k v
s /\7’
/ @ :
()
[]

R4t KIT.
® | want to go to the goal: & & .
Start ® \We now have 2 unexplored choices:
(b) 304s = 83s + 221s,
c) 557s = 195s + 362s,
d) 273s = 153s - 120s,
h) 316s = 175s + 141s,

j) 277s = 190s + 87s,
k) 3165 = 2525 + 64s.

h) definitely will need more than 268s.

® | am at the starting point &2 K & m—

TR EEETED T A RPG NEEEREET 5 OO YR T N TN T

\

\

R 2. R R SN e A T

"

BRSNS e e

. Find the Shortest Path from Start to Goal

start

R WL ot o

goal

R

T A R
2
i}
u

® | am at the starting point &2 K & m—
R KT,

® | want to go to the goal: & & .

® We now have 1 unexplored choices:
(b) 304s = 83s + 221s,

c) 5575 = 1955 + 362,

d) 273s = 153s - 120s,

h) 316s = 175s + 141s,

j) 277s = 190s + 87s,

k) 3165 = 2525 + 64s.

® (k) definitely will need more than 268s.

(
(
(
(
(
(

T I T 0 AT E G %

J

LT W

A o R P L Y

¢ TR N . RN I el

. Find the Shortest Path from Start to Goal

Start ® \We now have 0 unexplored choices:

R

® | am at the starting point &2 K & m—
R KT,

® | want to go to the goal: & & .

(b) 304s = 83s + 2215, i
(c) 557s = 195s + 362s, g
(d) 2735 = 1535 + 120s,
(h) 3165 = 1755 + 141,
(j) 277s = 190s + 87s,

(k) 3165 = 2525 + 64s. §!
(

® (c) definitely will need more than 268s.

J

¢ TR N . RN I el S e i S

. Find the Shortest Path from Start to Goal

"

| am at the starting point & & K & i/ =
R KT,

| want to go to the goal: & .

We now have 0 unexplored choices:
b) 304s = 83s + 221s,

c) 557s = 195s + 362s,

d) 273s = 153s - 120s,

h) 316s = 175s + 141s,

j) 277s = 190s + 87s,

k) 3165 = 2525 + 64s. é‘

e \We found the shortest possible path and
it takes 268s.

O e Wl L e o

(
(
(
(
(
(

\

F SR N N TN

5 Find the Shortest Path from Start to Goal
F (]

[]
1 start .
4

goal

R

TSN A N

BRSNS e e

| am at the starting point & & K & i/ =
R KT,

| want to go to the goal: & .
We now have 0 unexplored choices:

316s = 1755 + 1415,
j) 277s = 190s + 87s,
(k) 3165 = 2525 + 64s.

We found the shortest possible path and
it takes 268s.

Solved.

T I T 0 AT E G %

The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,

S —

The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,

® The A* Algorithm iteratively constructs a solution.

| R T A

A a5l 5

The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,
® The A* Algorithm iteratively constructs a solution.

® |t decides next step to test based on a combination of heuristic and cost.

e

N T

The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,

The A* Algorithm iteratively constructs a solution.

It decides next step to test based on a combination of heuristic and cost.

In the worst case, it needs to “look” at all intersections (nodes) and streets (edges) once.

The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,

The A* Algorithm iteratively constructs a solution.

It decides next step to test based on a combination of heuristic and cost.

In the worst case, it needs to “look” at all intersections (nodes) and streets (edges) once.

Usually, it is quite efficient to find shortest paths on maps.

The A* Algorithmfor Finding Shortest Paths

® We just applied the A* Algorithm?3:39,
® The A* Algorithm iteratively constructs a solution.

® |t decides next step to test based on a combination of heuristic and cost.

® In the worst case, it needs to “look” at all intersections (nodes) and streets (edges) once.

e Usually, it is quite efficient to find shortest paths on maps.

® (If we look for shortest paths that do not visit any node twice, where the edge distances
are not negative, where the number of choices per node is limited, and where the graph
and path are not too big — then this algorithm is very efficient.)

Problems that Algorithms cannot Solve Efficiently and Exactly

TN 11HEn [y S

Hard Problems (1)

® There exists a group of problems that are hard.

& Ay R O TR

Hard Problems (1)

® There exists a group of problems that are hard.

® Actually, most of the problems | mention at the beginning of this talk belong to this group
of hard problems.

T NE AT YA

yay . SN o W

Hard Problems (1)

® There exists a group of problems that are hard.

® Actually, most of the problems | mention at the beginning of this talk belong to this group
of hard problems.

® A hard problem cannot be solved both exactly and efficiently.

T T

& WL W) T

S —————

et &

Hard Problems (1)

There exists a group of problems that are hard.

Actually, most of the problems | mention at the beginning of this talk belong to this group
of hard problems.

A hard problem cannot be solved both exactly and efficiently.

Let's look at two quick examples.

F . . Tn . TR RN

IR

Wik

- -

y N T A

¢ Bin Packing

et

® My car can carry Tkg of weight.

i . e R TR § -2 AN

— y N S e - L L Con it NN VSR Wl O e S AT v\ ! BIREET R e

' Bin Packing

4
o

T

® My car can carry Tkg of weight. i

® | have n objects, each with weight wi for 7 in 1 to n.

7 < e R —————— | v

AL gy
L Y

o - = I v e e r L* 1o T SR Y S

e M

— y N S e - L L Con NN VSR Wl O e S AT v\ ! BPREET R 2, s

;; Bin Packing

x\ttﬂ_'A

® My car can carry Tkg of weight.
® | have n objects, each with weight wi for 7 in 1 to n.
® How can | pack my car so that | can carry them from A to B with the fewest possible
hauls?°6->7
| 2
E
1 ;
.
e
T S, T o SR > o _ - = I W oo e N A L SN R T YR

Traveling Salesperson Problem

® Find the shortest path that visits n locations and returns back to its origin.

Beijing.

Xi'an
Hefe\.Na.”E‘mg
(]
Chongging ¢ Vuhane Shanghai

e
J

.Changs

L]
Kupming, =
/\%ng Kong
g

29

S

[T

A TR PN R et g A TR Y LR R TS ETRRI X SRR SN W o M

Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.

e

d

I 3

!
h

£ B

ik

:
i
s

Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
- ® What does that mean?

n) |

T Y .0 e e R L e o e e

e T

TP e s e BT e

Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
® What does that mean?

If an algorithm guarantees to always find the best-possible solution
for an NP-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

DA RFRL - €L B L. e s DO ROt

Hard Problems (2)
Hal;bin

Beijing.

Xi'an

Hefei Nam'”g

Chongging ¢ WUhane Shanghal

Changsha
Ku@rlng/\m// 0
nQ Kong

If an algorithm guarantees to always find the best-possible solution
for an N'P-hard problem, then its runtime will grow exponential

i with the input size s in the worst case.

U~ W= T Loty

Y 1

Hard Problems (2)
Hal;bin

Beijing.

Xi'an

Hefei Nam'”g

Chongging ¢ WUhane Shanghal

Changsha
Ku@rlng/\m// 0
nQ Kong

If an algorithm guarantees to always find the best-possible so-
lution for an A/P-hard problem, then its runtime will grow expo-

i nential with the input size s in the worst case.

U~ W= T Loty

Y 1

Hard Problems (2)

packing with fewest hauls

Harbin
(]

Beijing.

Xi'an \
Hefei Naniing
(]
Chongging ¢ WUNaNe Shanghai
.Changsha

Kunmi.n // 0
\FQ/\%‘Q K;ng

shortest round-trip tour

If an algorithm guarantees to always find the best-possible so-
lution for an A/P-hard problem, then its runtime will grow expo-
ential with the input size s in the worst case.

T

e NS P e =

s T el BEEEEEEER —

Hard Problems (2)
Hal;bin

Beijing.

Xi'an

Hefei Nam'”g

Chongging ¢ WUhane Shanghal

Changsha
Ku@rlng/\m// 0
nQ Kong

If an algorithm guarantees to always find the best-possible solution
for an N'P-hard problem, then its runtime will grow exponential

i with the input size s in the worst case.

U~ W= T Loty

Y 1

Hard Problems (2)

Beijing.

Xi'an \
Hefei Naniing

J
Chongging ¢ WUNaNe Shanghai
.Changsha

Kunmi.n // 0
\r—g/\kﬂg‘g K;ng

number of items to pack number of cities to visit

If an algorithm guarantees to always find the best-possible solution
for an N'P-hard problem, then its runtime will grow exponential

I with the input size s in the worst case.

s =+ —

ST LT N

Hard Problems (2)
Hal;bin

Beijing.

Xi'an

Hefei Nam'”g

Chongging ¢ WUhane Shanghal

Changsha
Ku@rlng/\m// 0
nQ Kong

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential

i with the input size s in the worst case.

U~ W= T Loty

Y 1

Hard Problems (2)

S
I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

Hard Problems (2)

10
f(s)
1035_

1030.
1025.
10%°1

10"
1 trillion
1 billion
1 million

1000 757
10 1003 s

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

ARG

AT T T . =

E

Hard Problems (2)
101
f(s)
10%°
1030.
1025.

10%°1

10*1
1 trillion
1 billion
1 million

1000 7 R S L E e e s s T |
SRR RS LN L e

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

o TRl o) | e e T 2 e s

S =

Hard Problems (2)

10
f(s)
1035_

1030.
1025.
10%°1

10%1
1 trillion
1 billion
1 million

1000 7577 s T
o o0 e S ey

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

o < e e

= =

Hard Problems (2)

101
f(s)
1035_

1030.
1025.
10%°1

10%1
1 trillion
1 billion
1 million

ARt f(s):s"

—
—
—
g
—
—
—
—
—
—
B
e

—
o
—

1000 7= - RSt O Sl o s R
o= = T =

e T T e

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential

! with the input size s in the worst case.

£

Hard Problems (2)

40_
10 f(s)

10%°1

1030.

1025.

1071

1015_
1 trillion
1 billion
1 million

ARt f(s):s4

ms per day

—

e T
—
—
—
—
—
—
B
e

— e e
AELET ———
2L e ——

1000 7= - RSt O Sl o s R
000 ———— e T

—_—— e ————

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

= =

Hard Problems (2)

40_
10 f(s)

10%°1

1030.

1025.

1071

1015_
1 trillion
1 billion
1 million

ARt f(s):s4

ms per day

L
o
—
—
—
—
—
B
e

— ——
e ——
A8 T e

1000 1557 i T
ST s, ML L)

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

= =

Hard Problems (2)

10
f(s)
1035_

30 | picoseconds

g since the big bang

1025.

1071

10%1
1 trillion
1 billion
1 million

L i(s)=s’

ms per day

L
o
—
!
—
—
B
e

—— g e ———
— e
— WL LY
— —
—_ —_—

1000 7+
ST s, ML L)

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
E with the input size s in the worst case.

o TRl o) | e e T 2 e s

6 E

Hard Problems (2) f(9)=2°
10 1(s) If
101

1030.

picoseconds

25 |
10 /

10%°1 /

10%1 /
1 trillion /

since the big bang

ARt f(s):s4

1 billion v
1 million

e

1000 3577
10100-

— = — ms per day

I 2 4 8 16 32 64 128 256

512 1024 2048

= =

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

Hard Problems (2) fe)=e® _f(s)=2°

10 i
f(s) !
10%*1 ! II
10°°1 / / picoseconds
T/ since the big bang
e L
4
10%°1 At
70 L
10" ./ // .
e / A Eete f(S)=S
1 trillion / e i e Gl
- 7 7 NIRRT —— P Yy
1 billion iy RSy
1 million /‘//g i L RS (R 5=
L L L P T R G T T (1) Sienm e o =
R R g g

I 2 4 8 16 32 64 128 256 512 1024 2048

If an algorithm guarantees to always find the best-possible solution
for an N"P-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

= =

Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
® What does that mean?

If an algorithm guarantees to always find the best-possible solution
for an NP-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

DA RFRL - €L B L. e s DO ROt

Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
® What does that mean?

If we want to get the optimal solution,
it will take too long.

If an algorithm guarantees to always find the best-possible solution
for an NP-hard problem, then its runtime will grow exponential
E with the input size s in the worst case.
2 - —

T S T] e - .. - e e i P =T

Hard Problems (2)

® These are just two examples from a huge family of problems called N"P-hard.
® What does that mean?

If we want to get the optimal solution,
it will sometimes/goften/always take too long.

If an algorithm guarantees to always find the best-possible solution
for an NP-hard problem, then its runtime will grow exponential
with the input size s in the worst case.

T e i 7) | R R OS5 7T

—r— - SR T RN WY e ADS T N LT AT T AERIPANEYE T N R AR B A oy TN S S R Gl A g

3 ;

. Traveling Salesperson Problem g
- @ |n an Traveling Salesperson Problem (TSP), we want to find the shortest path through :
E n locations and back to the start!:22:29:31:47.53, \
;
3
: ‘
t: »
/ 1
A £
]

(1
i
. »,
A :

TN o P ars. SN - B wd SPEET 57 0 09090 Saec i ErT T RESY T B TV - Gman et 2 ol %

—n R T T AN VMY (s ACS TalE A Y TH AT AT S N R i) st S AR AL S

i

1 TN O WV ATRI FL W AR A

5T Vg Ry, -

MY

e

Traveling Salesperson Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

Harbin
()

Beijing.

Xi'an. A
Hefei.Nargng

®
Chongging e Wuhan o Shanghai
e Changsha

()
KUQTFID.Q/\?\ = 0
ong Kong
a

o g . v e el EPEEAT 57 090 09090 Sac i ET T RESY LB TV 0 - Smas b 2 = ™.

bl N\

PAsE" 48V

Al T et

—e——— R T T AN T (s ADS CalRS Y TA AT T R € U o S AN AN oY T

Traveling Salesperson Problem

Vil T

1 TN O WV ATRI R W AR A

W VgV iy, -

oAy

n locations and back to the start!22:29.31,47,53

Harbin
(J

Beijing.

Xi‘an /
)

- Nanjing
Hefj,l".‘;'
Wuhar}. Shanghai

Chongqing ¢
K Changsha
[}
Kunmin,g/\ﬂ\) 0
ong Kong
g

e T prald AVEEAT 57 0 0900 AN IR ET T RESTS L PV, —- Smis b 2

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through

Gy *

PRA=E" 48l

Al T et

— L "N WON (e ACS TR N T AT T AT S N Y AR T AT ey =\ e S A R R A R

N .

" Traveling Salesperson Problem g
- * In an Traveling Salesperson Problem (TSP), we want to find the shortest path through :
3 n locations and back to the start!:22:29:31,47,53, :,
. B
§ ;
3
5 ‘
‘. »
4 1
; £
1 getting the optimal solution sj
E for a TSP

1

(1

4

: %
A :

e AT o, T - B wd SPEET 57 0 09090 Saec i ErT T RESY T B TV - Gman et 2 ol %

" RS OF RS ATSTam. N ST AT T AT S N Y AR T AT ey =\ e S A R R A R

. Traveling Salesperson Problem y
- @ |n an Traveling Salesperson Problem (TSP), we want to find the shortest path through :
3 n locations and back to the start!22:29:31,47,53 ;
i E
ke 7
9 '
: |
:
% b
|
i i
2 g
1 getting the optimal solution »
E for a TSP may take too long !
]

4
: }
; consumed runtime: very much / too (?) long ‘

e

TR o P ars. SN A - B s SPEET 57 0 090 SaAN i ET T RESY L CER T VY, - Sman et 2 odie e L

L B

At TRVLATRI RS W AR AR

e ol

e

o B W AT e Vg T, -

L)

e

. Traveling Salesperson Problem

R T T AL YUY s ATS CaRLY o TA AT T AERPNEL2 S0 8 R R ol 0 il iy eV 5 SN Y R

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long
- el APVEET 5T 0 09090 AN IR ET T RESTS LB F OV, - Smas b 2 e

ST ey A

PAsE” 48l Y

| e

" L T e

e—

Vinss TS

At TWTLTRG RS W A AL

P

L1

e VUi Ry,

oAy

T " AN VMY s ATS S miRS Y TH AT 2 G Ut s LS N st S AR AL S Ly

Traveling Salesperson Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

worse
higher

solution quality
e.g., cost, tour length...

some (bad) solution for the
TSP can be obtained quickly

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long

prald AVEEAT 57 0 0900 AN IR ET T RESTS L PV, —- Smis b 2 > g

PASE"” 4l

S n®

B -

RSB T T AR T s ATS CaLS o TA AT T AEPNEL2 S 8 R - R ol U il iy L 5 SN Y T i e g

. Traveling Salesperson Problem

-
ATy

B

Wi

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

some (bad) solution for the
TSP can be obtained quickly

ST ey A

worse
higher

Ve OLELATNATRD FL W A O B

TR el T A b

getting the optimal solution
for a TSP may take too long

| e

solution quality
e.g., cost, tour length...

o T WA e NN T, -

?

better
lower

" L T e

/.

very little / fast consumed runtime very much / too (?) long
. B wd - SPVEET 3T 0 0 AN AR ET T RSSO TV - Smas b 2 Sodhlien 4

|

L B

Wi

1 TN O WV ATRI FL W AR A

o B W AT e Vg T, -

o R T AN O i ANCS TaiR o TA AT T AERPNEL2 S0 8 R R ol 0 il iy eV 5 SN Y R

. Traveling Salesperson Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

worse
higher

solution quality
e.g., cost, tour length...

better
lower

|

some (bad) solution for the
TSP can be obtained quickly

getting the optimal solution
for a TSP may take too long
o

very little / fast consumed runtime very much / too (?) long
- o ald SPERT 57 090090900 Sac i ET T RESY TR TV 0 - Gmas et 2

i

TR el T A b

| e

" L T e

e—

Vil T

FUN VLTI Kol W A SRR

1

T " AN MY s ATS EmiRA Y TA AT T R € U o S AN i e

Traveling Salesperson Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through

n locations and back to the start!22:29.31,47,53

worse
higher

solution quality
e.g., cost, tour length...

some (bad) solution for the
TSP can be obtained quickly Different algorithms offer different
trade-offs between runtime and

solution quality.

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long
prald AVEEAT 57 0 0900 AN IR ET T RESTS L PV, —- Smis b 2

PRA=E" 48l

Al T et

~—t R T " AN WY (i

Traveling Salesperson

Vi T

At RVLEN R W A S Ay

g

SR L SN

¥ e ool WA 5

Problem

® In an Traveling Salesperson Problem (TSP), we want to find the shortest path through
n locations and back to the start!:22:29:3L.47.53

worse
higher

solution quality
e.g., cost, tour length...

some (bad) solution for the
TSP can be obtained quickly Different algorithms offer different
trade-offs between runtime and
solution quality. Good algorithms
resulting from research push the
frontier of what can be achieved

towards the bottom-left corner.

getting the optimal solution
for a TSP may take too long

very little / fast consumed runtime very much / too (?) long
el 0 AR T Y TUAN Hma sl T BaiSYen . " B O F W ol T il et . 4

g

A

AN 1 B

PRsE"

allE T vt

Randomly Guessing Solutions

.

Almost Solving Hard Problems

® For many problems, it is very easy to “guess’ a solution.

NSRS CERE

Almost Solving Hard Problems

® For many problems, it is very easy to “guess’ a solution.

® This solution will (very likely) not be optimal.

Almost Solving Hard Problems

® For many problems, it is very easy to “guess’ a solution.
® This solution will (very likely) not be optimal.
o |t will very likely be very bad.

Almost Solving Hard Problems

® For many problems, it is very easy to “guess’ a solution.

This solution will (very likely) not be optimal.

It will very likely be very bad.
But it will be better than nothing.

Random Sampling for the TSP

® Back to the Traveling Salesperson Problem (TSP).

Random Sampling for the TSP

® Back to the Traveling Salesperson Problem (TSP).
® How do we “guess’ a solution?

Random Sampling for the TSP

® Back to the Traveling Salesperson Problem (TSP).
® How do we “guess’ a solution?
® \We could write down the cities in a random order.

Random Sampling for the TSP

® \We could write down the cities in a random order.

Beijing.

Xi‘an /

Nanjing
Hele on®.Sy

®
Chongqing/e 0 Shanghai
b hangsha
L)
14067 km Kuqnping . Y

Hong Kong

RI ROV VRRON AN T

Random Sampling for the TSP

® \We could write down the cities in a random order.

i

njm
Hefel o

Wuhang Sh'.

2 Changsh

Xi'an
()

Chongqing/e

«Q

anghai

a
()
17533 km Kunming / o

L, e
Hong Kong

L]

2k

L g 8

NI Y 7 IR

A

Random Sampling for the TSP

® \We could write down the cities in a random order.

Xi'an
()

Chongging ¢

13881 km K“Q'j}mg’\“

Wuhang Sha

Beijing {)/

\

.2

Hefel in

3y, .'L

o

2 Changsh

anghai

-/ao

L]

2k

SO AN T L

e L&

Random Sampling for the TSP

® \We could write down the cities in a random order.

Beijing.

Xi'an

- Nanjing
Hefel. 5 ;,.
Chongqing/g’ ' "\aMe Shanghai
© ngsha
: dJ
11850 km KMo e

Hong Kong

g

RN RO VRRTON AN Y T L

Random Sampling for the TSP

® \We could write down the cities in a random order.

18533 km RIHRIENTT

Hong Kong

g

/RN AN VSNONT SN T L

AR g ._.53

=~ —— e

Random Sampling for the TSP

® \We could write down the cities in a random order.

® |f we do this, we will get a bad result.

18533 km DoEn T

Hong Kong

g

RN RO VRRTON AN Y T L :

IS P

Random Sampling for the TSP

® \We could write down the cities in a random order.
® |f we do this, we will get a bad result.

® But we will get it quickly.

18533 km _[Lg’\“\
Hong Kong

g

RI ROV VRRON AN T

Random Sampling for the TSP

We could write down the cities in a random order.

If we do this, we will get a bad result.

But we will get it quickly.

And we can do this often.

18533 km DoEn T
Hong Kong

g

RN RO VRRTON AN Y T L

Random Sampling for the TSP

® \We could write down the cities in a random order.

If we do this, we will get a bad result.

But we will get it quickly.

And we can do this often.

For this small problem, my computer can do this millions of times in a few seconds.

Fr—s

Random Sampling for the TSP

® We could write down the cities in a random order.
® |f we do this, we will get a bad result.

® But we will get it quickly.

® And we can do this often.

® For this small problem, my computer can do this millions of times in a few seconds.

® \We can let the algorithm run for as much time as we can wait . ..

the best random tour we found.

and then simply take

Random Sampling for the TSP

® \We could write down the cities in a random order.

® This is the improvement of the best-so-far solution of this so-called Random Sampling
algorithm over the number of solutions it has generated and tested (the so-called objective

function evaluations (FEs)).
16000

Hf —— Random Sampling

@

15000 A

Lz

14000 A

13000 A

12000 ~

11000 A

10000 - time in FEs

LRSUSUIULALL [ULV | U UL U U U VUL U U U UULLY U= UL e UL | UL
10° 10! 102 103 104 10° 106 107 108

. .

Lz

Random Sampling for the TSP

® \We could write down the cities in a random order.

® This is the improvement of the best-so-far solution of this so-called Random Sampling
algorithm over the consumed runtime in milliseconds.

11500 - U —— Random Sampling
11000 o
10500 A
10000 A
tvn?inlns

URLAULLLY | USSUSLALILLLY) | UL UTU UL | LS U U U LR | URSURALLALY
10° 10! 102 103 104 10° 108

Random Sampling for the TSP

® \We could write down the cities in a random order.

® And for this small problem, this random sampling eventually finds the optimal tour.

Wm MEIET SR PSSP S T g o

%

R SN DA T

Metaheuristic Optimization

Principle 1: We can randomly construct solutions.

i
i
ﬂ
:
b

Al IR R e W AT e R o P 1 e - ~ e S R S R a N W T NV L TS TR S T N 4

Ehde 1T N i L L

Metaheuristic Optimization é
?

Principle 1: We can randomly construct solutions. E
Problem 1: Guessing an optimal (or even just good) ﬁ
solution randomly is very unlikely. ‘

:

‘o 2ot o2 L o

Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.

ol . ey e

B 2 T

U n TR AR T R

Why don’t we use the A* Algorithm for the TSP?

g
. ® Before, we talked about the A* Algorithm for path finding.
5 ® |sn't the TSP about finding a path?

b R =5

e 2

4
E
t
;
N

N 1

Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?
® Why do we not use it for the TSP?

PG o T actee

A
2

=

Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?
® Why do we not use it for the TSP?

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution?®.

‘]
2

o B

Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?
® Why do we not use it for the TSP?

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

‘]
2

o B

Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?
® Why do we not use it for the TSP?

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?

AR

AR

B

Why don’t we use the A* Algorithm for the TSP?

e Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?

® Why do we not use it for the TSP?

e |t will crash for any larger TSP.

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?

) RS

o B

Why don’t we use the A* Algorithm for the TSP?

® Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?

® Why do we not use it for the TSP?

® |t will crash for any larger TSP.

® But it can be done and used for our small TSP.

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?

) RS

o B

Why don’t we use the A* Algorithm for the TSP?

® Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?

® Why do we not use it for the TSP?

® |t will crash for any larger TSP.

® But it can be done and used for our small TSP.

® So let's do it.

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?

) RS

o B

Why don’t we use the A* Algorithm for the TSP?

® Before, we talked about the A* Algorithm for path finding.
® |sn't the TSP about finding a path?

® Why do we not use it for the TSP?

® |t will crash for any larger TSP.

® But it can be done and used for our small TSP.

® So let's do it. (I spare you all details.)

1. The A* Algorithm needs memory exponential in the number of nodes in the final
solution®®. Which is the number of cities in the TSP. ..

2. Also, it is a bit awkward: What are the heuristic and the goal state?

- + —N L i J ' B \ ” - 2 érf‘dir"b»";;
Why don’t we use the A* Algorithm for the TSP?]
:
:
f A 7
11500 - Random Sampling
— Ax
11000 -
10500 -
10000 - ‘
time in ms
T TP T T
148 104 16K 106

100 10! 102

~ 2l = o< - o |

Why don’t we use the A* Algorithm for the T

® Because not only will it use too
much memory for larger
instances. . .

ry SRRl L
SP?
f L :
1500 - Random Sampling
— |AXx
11000 4
10500 A
10000 1
time in ms
T TV B LA 1) P R AU L B n NERERS
10° 10! 102 103 104 10° 106

A

L s

- + X L i " ' B
Why don’t we use the A* Algorithm for the TSP?
® Because not only will it use too ok f —— Random Sampling
much memory for larger T A
instances. . .
11000
® .. .itis also slower than randomly
guessing on smaller instances. | .. |
’ 10000 -
' time in ms
T TV CsEmlin L)) L B AU L B n N ERS
10° 10! 102 103 10* 10°

10°

= R

A0 R BRIV P T3

S B TR N LU

Random Sampling still is a bad algorithm

® Random sampling is a bad algorithm for the TSP (and basically all other problems, too).

-
)

’—ﬂ“m‘f.# iy S N e T G

< B RIS P T

. TR S O LT

Random Sampling still is a bad algorithm

® Random sampling is a bad algorithm for the TSP (and basically all other problems, too).

® |t relies on randomly guessing good tours.

!
3

’—ﬂﬁm LE RN £ 2 W . A meags NS

S B LT S LT -

Random Sampling still is a bad algorithm

® Random sampling is a bad algorithm for the TSP (and basically all other problems, too).
® |t relies on randomly guessing good tours.

® |f we have n cities, then there are 1% 2% 3% --- % (n — 1) xn = n! tours.

!

i—‘i‘”“m LE RN £ 2 W . A meags NS

LB _"WAlg4 o

Random Sampling still is a bad algorithm

f(s)=s! f(s)=e® ’f(s):zs

10%
f(s) If o
10°°1 | |1
[g1/
1031 / & o=J picoseconds
/’ 1] since the big bang
107 / ! /
et | §
102 /) :
e s
i e ifii il
1 trillion 7500 // _——f(g)=s"
~ 7 7 — — ms per day
1 billion+ Bk, e
/7 A
1 million- /;‘//i/// ——————— ol ()=
& ol oA | et T wE B B e e
1099 100+ e e T e il
T 2 4 8 16 32 64 128 256 512 1024 2048
SR—

< Rt BRI P

AN B T R LR

Random Sampling still is a bad algorithm

Random sampling is a bad algorithm for the TSP (and basically all other problems, too).

It relies on randomly guessing good tours.

If we have n cities, then there are 1 %2 % 3% --- % (n — 1) x n = n! tours.

Factorial growth (n!) is even worse than exponential growth. . .

!

i—‘i‘ . ' & AR ETE L 02090 - A el

¢ R BRI, P,

B W R LU -

Random Sampling still is a bad algorithm

® Random sampling is a bad algorithm for the TSP (and basically all other problems, too).
® |t relies on randomly guessing good tours.

® |f we have n cities, then there are 1% 2% 3% --- % (n — 1) xn = n! tours.

[]

Factorial growth (n!) is even worse than exponential growth. . .

So if we try to randomly sample the best possible tour, our chance is extremely small. ..

‘—4.‘ s ¢ & AR ETE £ 2 - - A el AN

Local Search: Using Information

TR ORIV N ST S e W L e 4 R s

Random Sampling is a bad algorithm

® |n each step, random sampling creates a completely random tour.

l

rF v 3

Fh T RISl L N TR S L e W LT e =
Random Sampling is a bad algorithm

". ® |n each step, random sampling creates a completely random tour.

l ® |t does not gather any information.

; e TN T R TaaeE. \\. v

— n . TEERAS

oSl

[R

W B LY oY TEe e

Random Sampling is a bad algorithm

® In each step, random sampling creates a completely random tour.
® |t does not gather any information.

® |t keeps the best tour, but does not use any information inside this tour.

Random Sampling is a bad algorithm

In each step, random sampling creates a completely random tour.

It does not gather any information.

It keeps the best tour, but does not use any information inside this tour.

® Just guessing answers randomly is not a good method.

Random Sampling is a bad algorithm

In each step, random sampling creates a completely random tour.

It does not gather any information.

It keeps the best tour, but does not use any information inside this tour.

® Just guessing answers randomly is not a good method.

Clearly, seeing millions of tours, we should be able learn something and somehow use that
to find better tours???

Randomized Local Search

e But what could we do?

i e R e

Randomized Local Search

® But what could we do?
® “In the neighborhood of a solution, there will probably be better or worse solutions.”

Randomized Local Search

e But what could we do?

® “In the neighborhood of a solution, there will probably be better or worse solutions.”

® neighborhood = solutions that are similar.

Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”

[]
A e

neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.

1
!
:
1
:

Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”

neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.

If we do this, maybe we could get a better tour or a worse tour.

—

S

Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”

neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.

If we do this, maybe we could get a better tour or a worse tour.

(]
o - ——

We could keep a better tour, but throw away a worse one.

f

Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”
neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.
If we do this, maybe we could get a better tour or a worse tour.

We could keep a better tour, but throw away a worse one.

Then we do the same with a better tour that we find, and with yet a better tour, and so
on.

T T —— ——

hale , & - o e

Randomized Local Search

But what could we do?

“In the neighborhood of a solution, there will probably be better or worse solutions.”
neighborhood = solutions that are similar.

If we have a tour =, we could randomly pick two cities in the tour and swap them.
If we do this, maybe we could get a better tour or a worse tour.

We could keep a better tour, but throw away a worse one.

Then we do the same with a better tour that we find, and with yet a better tour, and so
on.

This method is called randomized local search (RLS).

=

T A R —

O G . e

B e o

O

Randomized Local Search for the TSP

15983 km

BB, bR, FR, MR, BRE,
A, KD, B, VX, £, EX

e) U Jurt . T STRGECE St ToE) | S O L e

Beijing.

Harbin
)

o | o e T S g P o

.L‘.!".P!‘j

Ny s

L B S

-

Randomized Local Search for the TSP

Harbin
(J

Beijing.

16080 km

ahe, , iR, ER,
%%, '}'K/I}\ J:IGEH Et/y J:/fﬁ EF"

BB, 15/RE, AR, BN, b=, HOMg Kong
é;‘%, K9, BB, ®X, L&, EX

AT G W N\ T TR W e e e AT T R T #

gy 2

R L

Randomized Local Search for the TSP

AT G W N\

16080 km
GHE,

BB, iR, AR, MR, bR,
é%, K, BRA, BN, tig, EX

O T 0 i T T R T

T SR

T

EACEECE ARG /S N R e e L TR

B e o

O

Randomized Local Search for the TSP

15983 km

BB, bR, FR, MR, BRE,
A, KD, B, VX, £, EX

e) U Jurt . T STRGECE St ToE) | S O L e

Beijing.

Harbin
)

o | o e T S g P o

.L‘.!".P!‘j

Randomized Local Search for the TSP

Harbin
)

Beijing.

} Nanjing
> () h.. h .
- anghai
15128 km P 9
¢ %Chandsha
: BiE ItR, BR, ER, 1
- 3 Z e B2 =3
! &%, K0, BB, B, DB ER Q0 Y J
'. BB JtR, BR, mR, L&, HONg Kong
5 &5, K39, B9, BN, IA/R0R, ER |
T —— " e e g i .m;m;_:qn;j

Randomized Local Search for the TSP

15128 km
AL, IR, BaR, mR, L,

~ =3 3 .
B8, K00, BRI, B UK R dyming
=
H
- i SN | B e (1) | jur e Tr o Ry | Sy L I R A R S

Beijing.

()
2.3
ong Kong

Harbin
Q

Nanjing
o

@
h'anghai

sha

J

= | i oy T T S ek

'\Li!."."l‘j

Ny s

L B S

-

Randomized Local Search for the TSP

Harbin
Q

Beijing.

16435 km

BB, bR, A%, B, :
/9\ J:bEH Et/y DA’]_{/A, %E

BB JtR, BR, AR, &4,
J:;ﬁ, 'l'K‘/}\ J:I:.EH _tly DA’R/A, Eﬁ

o e e [PRSI T TR W e e e AT T R T #

e L

R
b

Randomized Local Search for the TSP

16435 km

AL, b=, 7 =, :
, LR, BUX, FRIE, BIX

BB, kR, AR, R, &,
i, K7, B8R, BUX, IR, ER

Kunmin
\J“g

i S T IR 2 -8 TR SRR ¢ AR v N e e

Randomized Local Search for the TSP

15128 km
AL, IR, BaR, mR, L,

~ =3 3 .
B8, K00, BRI, B UK R dyming
=
H
- i SN | B e (1) | jur e Tr o Ry | Sy L I R A R S

Beijing.

()
2.3
ong Kong

Harbin
Q

Nanjing
o

@
h'anghai

sha

J

= | i oy T T S ek

'\Li!."."l‘j

e L

R
b

Randomized Local Search for the TSP

Harbin
0)

Bemng

12432 km i J angha'
B, 6%, T, B, L,

Ty ki B8 m; B Ku@m%\

BB, b=, lB/RE, BN, £iE, ng Kong

F/E, K, B, B, A%, EX

i AT T R 2 -4 T AR AR N IR e T L AT e e | ey S T Sy op 2t iy

B Siwc o

O

Randomized Local Search for the TSP

12432 km

AiE, dtR, l7RiE, =R, L,
/A, K9, BB, X, B%, &KX

e) U Jurt . T STRGECE St ToE) | S O L e

’\M

Bemng

Harbin
Q)

)./ i

ng Kong

T e | R e Ry T T S e o

.L‘.!".P!‘j

Randomized Local Search for the TSP

Harbin
(J

Beijing.

Ny s

14036 km Chongaiggrs o
e & L . sha
: GHE, bR, FaRIE, , LB,]
B35, Kb, B, 101, R, BK o~ _ J
,_ Qmin
| BIE, LR, BARIR, BN, b, HoMg Kong
5 &8, Kb, B, B, AR, EX a
;““W?"ﬁ R S TR T T W 1 R i e S T R T 30 Al e ?Eﬁ“-mltmuﬁ#n‘j

e L

R
b

Randomized Local Search for the TSP

Harbin
0

14036 km

BB, It R, , b,
A, K0, B8, , AR, IR
&HE, b=, IRRIE, BN, B, HOMg Kong
A, KW, BB, R, A%, &K @)

TR T ey 111 Ly e T e |y R LT TS TR St e, i —— | -wﬁ?m&;i.i'im‘j

B Siwc o

O

Randomized Local Search for the TSP

12432 km

AiE, dtR, l7RiE, =R, L,
/A, K9, BB, X, B%, &KX

e) U Jurt . T STRGECE St ToE) | S O L e

’\M

Bemng

Harbin
Q)

)./ i

ng Kong

T e | R e Ry T T S e o

.L‘.!".P!‘j

Randomized Local Search for the TSP

Harbin
Q)

Beijing.

Xi'an

() .
HefedNaNing
Wuh /‘ ‘:‘ s
10857 km Chongging ¢ ''u"@Ve hanghai
°
Chan@sha

S8, b=, FaRiE, MR, £,
A, K, B, B, A%,

NS /\» 0
S, 65, PA/RIE, B, L, HOMg Kong
&5, K, B, /%, AR, 5Y
I = W h g N, TR ST ST ’ F el o T SR TR i N R e e Prapin. i — | -mm;«.:m&.;:.';mj

O

Randomized Local Search for the TSP

Beijing.

Xi'an.]
Hefel V311N
Wuh /‘ ‘:‘ s
10857 km Chongging & "Y"ae hanghai
.Cha sha
BB, b, F/RIE, AR, L5,]
< <) = =Ry
&5, K, BB, EX, iR, X o 0
N i GO
Hong Kong
LT T N R i e S ol = P ——— S Bt W i "“Url‘!

e L

Randomized Local Search for the TSP

Harbin
Q)

Beijing.

Xi'an
/ Hefe Nqnjlng
10620 km Chongqing ¢ Wuha %anghm

HHE, bR, 'ARIE, BN, £,
; , BB, EIX, Ba%, BN

BB, bR, l/RIE, R, LB,
K, &%, BH, EX, A%, X

S THIET: W 1 5 i e 0 AR IR U #7-3 e MT e SRR TR /AN e d N R e T i, Ji— LR, T e e 1 TR |

O

Randomized Local Search for the TSP

10620 km Chongging

AiE, b=, l/RiE, BN, L,
K, &E, B, EX, BZ, KX

LT T W R N Be T

Xi'an

Beijing.

Hefel 309
Wuha , hanghal

P, i — 1V IR Ui i TS Sl ke T T

+ TR ‘.i.

AL S A

Randomized Local Search for the TSP

Harbin
0

Beijing.

Xi'an

> Nanjing
VA2
10567 km Chongaing ¢ V! / e
.Changsha
BB, bR, BRIE,
Ky, &% B9, 8K, BR BN Qo J
BB, b\, F|B/RIE, £, R, HOMg Kong
KD, FE, B, ERX, AR, BX a
S W Gt LR T (Y 1 | ey T | Y Rt T Y |13 4 e kb 0.1 M LR - o WL T TS i, Ji— LR, T e e 1 TR |

O

Randomized Local Search for the TSP

Xi'an

10567 km Chonggqing ¢

AL, bR, \aRiE, LB, =R,
K, &E, B, EX, BZ, KX

T R A A

Beijing.

Hefe
Avh./

Nanjlng

Shanghal

/l

ha

)

B A — 1V IR Ui i TS Sl ke T T

+ TR ‘.i.

T ‘.

d Randomized Local Search for the TSP

f .
11500 - —— Random Sampling
— Ax
—— | RLS-2
11000 A
10500 A
[
10000 A
time in ms
% L ¢ . A) i LR | U UL | L TTTTIT
109 101 102 103 104 105 106

Randomized Local Search for the TSP

® RLS is much faster than random sampling.

Randomized Local Search for the TSP

® RLS is much faster than random sampling.

® However. . .

Randomized Local Search for the TSP

® RLS is much faster than random sampling.

® However, if our algorithm is at a tour x, then it can only find other tours by swapping two
cities.

Randomized Local Search for the TSP

® RLS is much faster than random sampling.

® However, if our algorithm is at a tour x, then it can only find other tours by swapping two
cities.

® There are some tours that it cannot reach in one step.

Randomized Local Search for the TSP

® RLS is much faster than random sampling.

® However, if our algorithm is at a tour x, then it can only find other tours by swapping two
cities.

® There are some tours that it cannot reach in one step.

e |f all tours that we can reach in one step are worse than x, we will never leave z.

Randomized Local Search for the TSP

® RLS is much faster than random sampling.

® However, if our algorithm is at a tour x, then it can only find other tours by swapping two
cities.

® There are some tours that it cannot reach in one step.

e |f all tours that we can reach in one step are worse than x, we will never leave z.

[}

If is not the optimum, then we are stuck and won't ever find the optimal/best tour.

S SR W TR R SRR TIER S e

:
‘
i,

&
\
3

-
s
%

]
;

Metaheuristic Optimization

Principle 2: Applying a small random change to an
existing solution sometimes can give us a better

solution.

N o o b P v Rl e

- S

?
4

g{\ e S N T e T o o AR PETIRT B R 7S i)

g Metaheuristic Optimization

g

> Principle 2: Applying a small random change to an
existing solution sometimes can give us a better
solution. This way, we can step-by-step get better
solutions.

O G —
Gl s . 2 ast s VIV o Rl L W N

AR

S S
®’ o Th

SN e g AT 4l) e Wy T T e s S Py AN PR TR SR R LA .’«s:‘.'\i%
© Metaheuristic Optimization
> Principle 2: Applying a small random change to an ;:..
existing solution sometimes can give us a better 5
; solution. This way, we can step-by-step get better ;
; solutions.
Problem 2: Sometimes, a small change is not
% enough. §
,!i
1

L’-_‘Tf'-{—.'l‘_ e o) D W T r T - N R EE s - 5.7

. Metaheuristic Optimization

4

Principle 2: Applying a small random change to an
existing solution sometimes can give us a better
solution. This way, we can step-by-step get better
solutions.

Problem 2: Sometimes, a small change is not
enough. We can get stuck at a so-called /ocal op-
timum.

L'--‘" SR TR 0000 WG Po U BRTY. [T WS SO

ASSEEEERE.

RY7 S ERE e

Randomized Local Search for the TSP

e |f all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave x.

Randomized Local Search for the TSP

e |f all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave .

® There are many things that we can do.

Randomized Local Search for the TSP

e |f all tours that we can reach in one step are worse than the current tour xz, then our RLS
will never leave x.
® There are many things that we can do, for example:
1. We could restart the algorithm at a new starting point after some time.

Randomized Local Search for the TSP

e |f all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave x.
® There are many things that we can do, for example:

1. We could restart the algorithm at a new starting point after some time.
2. Or we could sometimes allow it swap more cities in the current tour.

N oSSR W BT T T N A SRR AT TN N

i Randomized Local Search with a Larger Neighborhood

Harbin
()

;- Beljlng. :
:
j

!

15151 km

Changsha -

BB, EX, BUX, K, It®, biE, =

B BU, &8 BR, BRR J :

N IR W

BT N, S R AT NSRRI N

& Randomized Local Search with a Larger Neighborhood

SR 371Y T (T aR e P

Harbin
()

Beijing.

15195 km

AHE EF_ .L_tt/y, Kl’}\, I:u?\, s
, BB, &8, R, lRRE

B8, BK, B, K2, LR, #5, HOMg Kong
b5, BE, B8 AR, ARE

T T

£

Dbt (BN

..?JM

07 AR SRR S A

o S Tl iR

TR, e

NP W T T TN A S R AT TONERRLI N

i Randomized Local Search with a Larger Neighborhood

o S iy ik Y

15195 km

- §
- S, EX, .
, , B28g 3

&iE, &K, 20X, K2, tR, B5,
L, BB, &%, A%, BRE

Ty T

N oSSR W BT T T N A SRR AT TN N

i Randomized Local Search with a Larger Neighborhood

Harbin
()

;- Beljlng. :
:
j

!

15151 km

Changsha -

BB, EX, BUX, K, It®, biE, =

B BU, &8 BR, BRR J :

N AR WY T T TN S ORI AT ORI N - B R CNT T RTS

E' Randomized Local Search with a Larger Neighborhood

07 AR SRR S A .?J&‘\

Harbin
()

-
J Beljlng. :
‘ :

_E 14539 km :
&8, BX, BiX, K2, LR, £, :
, BB, &%, AR, IRIE J
: AR, BE, Y K9, =, b5, HdAG Kong o

N
B, K, &8, AR, B/IKR a I
ey pe T o AR e T el ST o2 e BT e s

N O WY ST T TGN A S TR AT NSRRI N - BT (B

i Randomized Local Search with a Larger Neighborhood

%

Harbin
()

Beijing.

o S sy v

S ATE L

14539 km

AL, AR, HX,
B, BX, &%,

b, bR, £,
%, l|IRE

oYY TS

K
i

N AR WY T T TN S ORI AT ORI N - B R CNT T RTS

E' Randomized Local Search with a Larger Neighborhood

07 AR SRR S A .?J&‘\

Harbin
()

-
J Beljlng. :
‘ :

: 16624 km ,
 BIRL EUX, K, bR, £, :
,EX, &8, R, IBRE e J
: B9, R, BN, K39, kR, LB, Fog Kong -

2HE, BK, B8, AR, IR a
WA - T P A AN A T AT s | i e R ‘k‘g

N PR W T T TN A S LI AT TSR N - BB ANT R

& Randomized Local Search with a Larger Neighborhood

Harbin
()

..?JM

AT, T (RN

o S Tl iR

T

16624 km

| §
e), bR, i, :
- AR J :
: 2E, BR, BN K, b=, b,

~ N
X
SHE, EX, X, A%, BRE a I
ey T g AT i e B sl Bl T e BT e

N O WY ST T TGN A S TR AT NSRRI N - BT (B

i Randomized Local Search with a Larger Neighborhood

%

Harbin
()

Beijing.

o S sy v

S ATE L

14539 km

AL, AR, HX,
B, BX, &%,

b, bR, £,
%, l|IRE

oYY TS

K
i

N PR W T T TN A S LI AT TSR N

& Randomized Local Search with a Larger Neighborhood

Beijing.

SR 371Y T (T aR e P

13882 km

A8, me, BN, K9, bE, B,
; Bk, &S AR, IBRE
B, B, Y, K9, dbE, b, HORg Kong

Harbin
()

L Lo s

&

SRR SRR R A

o S Tl iR

TR, e

5K, BB, &8, AR, BRE a I
ey P i T o A A T e BT i R T e

N O WY ST T TGN A S TR AT NSRRI N - BT (B

i Randomized Local Search with a Larger Neighborhood

%

Harbin
()

; Beijing. 2
:

9

13882 km anae, :

A, R, BOX K, LR, £, % :

B, B0, 58, BR, BRER J :

N PR W T T TN A S LI AT TSR N - s W e

& Randomized Local Search with a Larger Neighborhood

Harbin
()

Beijing.

Av Hef
)4

2 S Tkl R v

.

T

10688 km

- §
AIB, Bs, BX, K2, b, -
Sk 2 E8 L :
: A8, B BN BRE, b, mE .

R, BH, &8, K, LB

Ty

N O WY ST T TGN A S TR AT NSRRI N

?! Randomized Local Search with a Larger Neighborhood

VRV o R R

Harbin
@

Beijing.

Xi'an /
)

/ Hef i
10688 km Chongaing & hanghai

BB, AR, X, |RE, bR, AR,
X, BW, &%, K, Lt

BT BT ;

ERERAA S

S rpaliiss v

R s X D

29 | PO

NP W T T TN A S R AT TONERRLI N

i Randomized Local Search with a Larger Neighborhood

Harbin
)

Beijing.

s
s
-
3

:

Xi'an
g Nanjing
L) O ®

: Wuh i
| 12111 km Chongging ¢f ™1"'e *}?ngha' :
5 = 5 = .Changsha :
BHE, FR, FUX, bR, AR, 2

EX, BB, &F, K, LB

B, BR, BRE, B e, AR, HOMG Kong o
Sk, BER, &8, K0, b

s

NP W T T TN A S R AT TONERRLI N - BT (B

i Randomized Local Search with a Larger Neighborhood

Harbin
)

Beijing.

i 12111 km nandis :
4 S8, m5g jlz,?\, Az, ’
, Bk g E5 KD, S

B, BR, BRE, B e, AR, HOMG Kong o

EX, B, &E, K, LB a I

N SRR W BT 2N A6 S RTREERaRIT BATS TR

i Randomized Local Search with a Larger Neighborhood

Harbin
()

;I Beljlng.
E Xi'an./
Hefei Nanjlng

.
Wuhan./ Shanghai

VR N

9547 km ARNoITe

: SHE, mm, ,uNrE tm, AR,
: Bk, B, &5 K9

BB, R, s, BRE, bR, BR,

BT (B

TRRAA SN

R S Tl iR Y

o

120 T .1

EiK, BB, &5, K0, B¢ a]

N O WY ST T TGN A S TR AT NSRRI N

" Randomized Local Search with a Larger Neighborhood

RO R e SRR

Harbin
)

Beijing.

Xi'an /
> . Nanjing

Hefel._.e.,
Wuhan ¢ Shanghai

9547 km Chongaqing ¢

BB, AR, bk, BRE, bR, AR,
X, BW, &8, K, X

bl -

R & A T DA

.

-

41T T

Randomized Local Search with a Larger Neighborhood

f .
11500 - —— Random Sampling
— Ax
—— RLS-2
11000 A —— RLS-N
10500 H
10000 H
time in ms

100 oL g0 103 I 102

10°

10 N0 s

Randomized Local Search with a Larger Neighborhood

e If all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave x.

® There are many things that we can do, for example:

1. We could restart the algorithm at a new starting point after some time.
2. Or we could sometimes allow it swap more cities in the current tour.

B

10 N0 Rl >

Randomized Local Search with a Larger Neighborhood

e If all tours that we can reach in one step are worse than the current tour x, then our RLS
will never leave .
® There are many things that we can do, for example:
1. We could restart the algorithm at a new starting point after some time.
2. Or we could sometimes allow it swap more cities in the current tour.
® The larger neighborhood of solutions that can be reached in one step makes the search
slower, but allows it to escape from local optima.

R Y

BT,

Metaheuristic Optimization

Principle 3: Larger changes can help us escape from
local optima.

Metaheuristic Optimization

Principle 3: Larger changes can help us escape from
local optima.

Problem 3: Larger changes are less likely to yield
improvements (because the new solution is more
different), so they slow down the search.

Metaheuristic Optimization

There are many more principles and problems sur-
rounding (metaheuristic) optimization.

Metaheuristic Optimization

There are many more principles and problems sur-
rounding (metaheuristic) optimization.

But we will leave it at what we have seen so far.

Summary

Sunﬁmary on Algorithms

® \We have learned some basic algorithmic principles.

A—
//‘ ¢
g ,m-.—mmwﬂ-'

w [T WIS T+ S T S i AR e N RN el VWY T DR e WY ey o k.AA\‘

Summary on Algorithms

® \We have learned some basic algorithmic principles.

e Current research tries to improve both the speed of algorithms as well as the solution
quality.

§

Summary on Algorithms

® \We have learned some basic algorithmic principles.

e Current research tries to improve both the speed of algorithms as well as the solution
quality.

® This requires carefully balancing the step-size of algorithms and to develop methods
against getting stuck at local optima.

Summary on the TSP

Summary on the TSP

112

® Today, we can actually solve TSPs with tens of thousands of cities to optimality

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in
methods like branch and bound®13:34.

Summary on the TSP

e Today, we can actually solve TSPs with tens of thousands of cities to optimality®%.

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in |
methods like branch and bound!13:34,

® We can get close-to-optimal solutions for TSPs with millions of cities.

% 3

U Y Yy NG

Summary on the TSP

e Today, we can actually solve TSPs with tens of thousands of cities to optimality®%.

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in
methods like branch and bound!3:3%.

® We can get close-to-optimal solutions for TSPs with millions of cities.

® For this, we use algorithms a bit similar to randomized local search (RLS), but with more
targeted search steps, e.g., in the Lin-Kernighan-Helsgaun algorithm?*.

TR

U Y Yy NG

Summary on the TSP

® Today, we can actually solve TSPs with tens of thousands of cities to optimality™. [but
not all of them!]

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in
methods like branch and bound!3:3%.

® We can get close-to-optimal solutions for TSPs with millions of cities.

® For this, we use algorithms a bit similar to randomized local search (RLS), but with more
targeted search steps, e.g., in the Lin-Kernighan-Helsgaun algorithm?*.

TR

Summary on the TSP

® Today, we can actually solve TSPs with tens of thousands of cities to optimality™. [but
not all of them!]

® For this, we actually use principles similar to the A* Algorithm, just a bit differently, in
methods like branch and bound!3:3%.

® We can get close-to-optimal solutions for TSPs with millions of cities. [close-to-optimal,
but not optimal (at least not always)!]

® For this, we use algorithms a bit similar to randomized local search (RLS), but with more
targeted search steps, e.g., in the Lin-Kernighan-Helsgaun algorithm?*.

% 3

Summary

® Today, we discussed what optimization is.

P ——ly TR

Summary

® Today, we discussed what optimization is.

® Today, you also saw some of the basic principles and methods that are inside of the
algorithms used in optimization and operations research.

-

R e

Summary

® Today, we discussed what optimization is.

® Today, you also saw some of the basic principles and methods that are inside of the
algorithms used in optimization and operations research.

® You can imagine that the same principles that we tested on the TSP will work on many
different kinds of problems.

Summary

® Today, we discussed what optimization is.

® Today, you also saw some of the basic principles and methods that are inside of the
algorithms used in optimization and operations research.

® You can imagine that the same principles that we tested on the TSP will work on many
different kinds of problems.

® For example: As long as we can randomly construct and randomly modify a solution, we

can attack the problem with randomized local search (RLS).

Summary

® Today, we discussed what optimization is.

® Today, you also saw some of the basic principles and methods that are inside of the
algorithms used in optimization and operations research.

® You can imagine that the same principles that we tested on the TSP will work on many
different kinds of problems.

® For example: As long as we can randomly construct and randomly modify a solution, we
can attack the problem with randomized local search (RLS).

® Understanding the basic principles of optimization is not very hard.

Advertisement

Lo 3 ' [] 9

Programming with Python

\

We have a freely available course book on Programming with Python at
https://thomasweise.github.io/programmingWithPython, with focus on practical
software development using the Python ecosystem of tools*.

https://thomasweise.github.io/programmingWithPython

L

Databases

We have a freely available course book on Databases at
https://thomasweise.github.io/databases, with actual practical examples using a real

database management system (DBMS)*4.

https://thomasweise.github.io/databases

L

Metaheuristic Optimization in Python: moptipy

We offer moptipy®> a mature open source Python package for metaheuristic optimization,
which implements several algorithms, can run self-documenting experiments in parallel and in a

distributed fashion, and offers statistical evaluation tools.

oS4 !
Thank youl
Vielen Dank!

oy Jon |

ule

References |

[1] David Lee Applegate, Robert E. Bixby, Vasek Chvatal, and William John Cook. The Traveling Salesman Problem: A Computational
Study. 2nd ed. Vol. 17 of Princeton Series in Applied Mathematics. Princeton, NJ, USA: Princeton University Press, 2007.
ISBN: 978-0-691-12993-8 (cit. on pp. 169, 192-202, 322-327, 349).

[2] Thomas Bick, David B. Fogel, and Zbigniew “Zbyszek”” Michalewicz, eds. Handbook of Evolutionary Computation. Bristol, England,
UK: IOP Publishing Ltd and Oxford, Oxfordshire, England, UK: Oxford University Press, 1997. ISBN: 978-0-7503-0392-7 (cit. on p. 347).
[3] Thomas Bartz-Beielstein, Carola Doerr, Daan van den Berg, Jakob Bossek, Sowmya Chandrasekaran, Tome Eftimov, Andreas Fischbach, '
: Pascal Kerschke, William La Cava, Manuel Lépez-lbafiez, Katherine Mary Malan, Jason Hall Moore, Boris Naujoks, Patryk Orzechowski,
o Vanessa Volz, Markus Wagner, and Thomas Weise (% 2). “Benchmarking in Optimization: Best Practice and Open Issues”.

(abs/2007.03488), Dec. 18, 2020. doi:10.48550/arXiv.2007.03488. URL: https://arxiv.org/abs/2007.03488 (visited on 2025-07-25).
arXiv:2007.03488v2 [cs.NE] 16 Dec 2020 (cit. on p. 348).

[4] Adam W. Bojanczyk and Richard P. Brent. “A Systolic Algorithm for Extended GCD Computation”. Computers & Mathematics with
Applications 14(4):233-238, 1987. Amsterdam, The Netherlands: Elsevier B.V. ISSN: 0898-1221 (cit. on pp. 70-76).

= [5] Richard P. Brent. Further Analysis of the Binary Euclidean Algorithm. arXiv.org: Computing Research Repository (CoRR) abs/1303.2772.
Ithaca, NY, USA: Cornell Universiy Library, Nov. 1999—-Mar. 12, 2013. doi:10.48550/arXiv.1303.2772. URL:

— https://arxiv.org/abs/1303.2772 (visited on 2024-09-28). arXiv:1303.2772v1 [cs.DS] 12 Mar 2013. Report number PRG TR-7-99 of

Oxford, Oxfordshire, England, UK: Oxford University Computing Laboratory, 11 1999, see &

https://maths-people.anu.edu.au/ brent/pd/rpb183tr.pdf (cit. on pp. 51-58, 70-76).

[6] Eduardo Carvalho Pinto and Carola Doerr. Towards a More Practice-Aware Runtime Analysis of Evolutionary Algorithms.
arXiv.org: Computing Research Repository (CoRR) abs/1812.00493. lthaca, NY, USA: Cornell Universiy Library, Dec. 3, 2018.
doi:10.48550/arXiv.1812.00493. URL: https://arxiv.org/abs/1812.00493 (visited on 2025-08-08). arXiv:1812.00493v1 [cs.NE]
3 Dec 2018 (cit. on p. 347).

[7] Antonio Cavacini. “Is the CE/BCE notation becoming a standard in scholarly literature?” Scientometrics 102(2):1661-1668, July 2015.
London, England, UK: Springer Nature Limited. ISSN: 0138-9130. doi:10.1007/s11192-014-1352-1 (cit. on pp. 347, 348).

https://isbnsearch.org/isbn/978-0-691-12993-8
https://isbnsearch.org/isbn/978-0-7503-0392-7
https://doi.org/10.48550/arXiv.2007.03488
https://arxiv.org/abs/2007.03488
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0898-1221
https://doi.org/10.48550/arXiv.1303.2772
https://arxiv.org/abs/1303.2772
https://maths-people.anu.edu.au/~brent/pd/rpb183tr.pdf
https://doi.org/10.48550/arXiv.1812.00493
https://arxiv.org/abs/1812.00493
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0138-9130
https://doi.org/10.1007/s11192-014-1352-1

References Il

8]

[9]

[10]

[11]

[12]

[13]

[14]

Noureddine Chabini and Rachid Beguenane. “FPGA-Based Designs of the Factorial Function”. In: IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE’2022). Sept. 18-20, 2022, Halifax, NS, Canada. Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers (IEEE), 2022, pp. 16—20. ISBN: 978-1-6654-8432-9. doi:10.1109/CCECE49351.2022.9918302 (cit. on p. 349).

Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. “A Review of Machine Scheduling: Complexity, Algorithms and Approximability”. In:
Handbook of Combinatorial Optimization. Ed. by Panos Miltiades Pardalos, Ding-Zhu Du, and Ronald Lewis Graham. 1st ed. Boston,
MA, USA: Springer, 1998, pp. 1493-1641. ISBN: 978-1-4613-7987-4. doi:10.1007/978-1-4613-0303-9_25. See also pages 21-169 in
volume 3/3 by Norwell, MA, USA: Kluwer Academic Publishers. (Cit. on p. 349).

Jiayang Chen (F#8), Zhize Wu (% &%), Sarah Louise Thomson, and Thomas Weise (% Z%). “Frequency Fitness

Assignment: Optimization Without Bias for Good Solution Outperforms Randomized Local Search on the Quadratic Assignment
Problem”. In: 16th International Joint Conference on Computational Intelligence (IJCCI’24). Nov. 20—22, 2024, Porto, Portugal. Ed. by
Francesco Marcelloni, Kurosh Madani, Niki van Stein, and Joaquim Filipe. Porto, Portugal: SciTePress: Science and Technology
Publications, Lda, 2024, pp. 27-37. ISSN: 2184-3236. ISBN: 978-989-758-721-4. doi:10.5220/0012888600003837 (cit. on p. 348).

Stephen Arthur Cook. “The Complexity of Theorem-Proving Procedures”. In: Third Annual ACM Symposium on Theory of
Computing (STOC’1971). May 3-5, 1971, Shaker Heights, OH, USA. Ed. by Michael A. Harrison, Ranan B. Banerji, and

Jeffrey D. Ullman. New York, NY, USA: Association for Computing Machinery (ACM), 1971, pp. 151-158. ISBN: 978-1-4503-7464-4.
doi:10.1145/800157.805047 (cit. on p. 349). T

William John Cook. World TSP. Waterloo, ON, Canada: University of Waterloo, 2013—-Oct. 25, 2025. URL:
http://www.math.uwaterloo.ca/tsp/world (visited on 2026-01-03) (cit. on pp. 322-327).

William John Cook, Daniel G. Espinoza, and Marcos Goycoolea. Computing with Domino-Parity Inequalities for the TSP. Tech. rep.
Atlanta, GA, USA: Georgia Institute of Technologylndustrial and Systems Engineering, 2005. URL:
https://www.math.uwaterloo.ca/ bico/papers/DP_paper.pdf (visited on 2026-01-03) (cit. on pp. 322-327).

Christopher Cullen. “Learning from Liu Hui? A Different Way to Do Mathematics”’. Notices of the American Mathematical Society
49(7):783-790, Aug. 2002. Providence, RI, USA: American Mathematical Society (AMS). ISSN: 1088-9477. URL:
https://www.ams.org/notices/200207/comm-cullen.pdf (visited on 2024-08-09) (cit. on pp. 70-76).

Pogr .~ T a0 s il A s e O Y

https://isbnsearch.org/isbn/978-1-6654-8432-9
https://doi.org/10.1109/CCECE49351.2022.9918302
https://isbnsearch.org/isbn/978-1-4613-7987-4
https://doi.org/10.1007/978-1-4613-0303-9_25
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2184-3236
https://isbnsearch.org/isbn/978-989-758-721-4
https://doi.org/10.5220/0012888600003837
https://isbnsearch.org/isbn/978-1-4503-7464-4
https://doi.org/10.1145/800157.805047
http://www.math.uwaterloo.ca/tsp/world
https://www.math.uwaterloo.ca/~bico/papers/DP_paper.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1088-9477
https://www.ams.org/notices/200207/comm-cullen.pdf

References Il

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Joseph W. Dauben. “Archimedes and Liu Hui on Circles and Spheres”. Ontology Studies (Cuadernos de Ontologia) 10:21-38, 2010.
Leioa, Bizkaia, Spain: Universidad del Pais Vasco / Euskal Herriko Unibertsitatea. ISSN: 1576-2270. URL:
https://ddd.uab.cat/pub/ontstu/15762270n10/15762270n10p21.pdf (visited on 2024-08-10) (cit. on pp. 70-76).

Definition of Operations Research. University of Western Ontario, London, ON, Canada: International Federation of Operational Research
Societies (IFORS), 2020. URL: https://www.ifors.org/what-is-or (visited on 2026-01-01) (cit. on p. 348).

Stefan Droste, Thomas Jansen, and Ingo Wegener. “On the Analysis of the (1 + 1) Evolutionary Algorithm”. Theoretical Computer
Science 276(1-2):51-81, Apr. 2002. Amsterdam, The Netherlands: Elsevier B.V. ISSN: 0304-3975. doi:10.1016/S0304-3975(01)00182-7
(cit. on p. 347).

Jacques Dutka. “The Early History of the Factorial Function”. Archive for History of Exact Sciences 43(3):225-249, Sept. 1991.
Berlin/Heidelberg, Germany: Springer-Verlag GmbH Germany. ISSN: 0003-9519. doi:10.1007/BF00389433. Communicated by Umberto
Bottazzini (cit. on p. 349).

Euclid of Alexandria (Ev¥kAeidns). Euclid’s Elements of Geometry (XTouvxetc). The Greek Text of J.L. Heiberg (1883-1885) from
Euclidis Elementa, Edidit et Latine Interpretatus est I.L. Heiberg in Aedibus B. G. Teubneri, 1883-1885. Edited, and provided with a
modern English translation, by Richard Fitzpatrick. Vol. 7. Elementary Number Theory. Ed. by Richard Fitzpatrick. Trans. by

Johan Ludvig Heiberg. revised and corrected. Austin, TX, USA: The University of Texas at Austin, 2008. ISBN: 978-0-615-17984-1. URL:
https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf (visited on 2024-09-30) (cit. on pp. 51-58).

Toru Fujita, Koji Nakano, and Yasuaki Ito. “Bulk Execution of Euclidean Algorithms on the CUDA-Enabled GPU". International Journal
of Networking and Computing (IJNC) 6(1):42—-63, Jan. 2016. Higashi-Hiroshima, Japan: Department of Information Engineering,
Hiroshima University. ISSN: 2185-2839. URL: http://www.ijnc.org (visited on 2024-09-28) (cit. on pp. 51-58).

Michael T. Goodrich. A Gentle Introduction to NP-Completeness. Irvine, CA, USA: University of California, Irvine, Apr. 2022. URL:
https://ics.uci.edu/"goodrich/teach/cs165/notes/NPComplete.pdf (visited on 2025-08-01) (cit. on p. 349).

Gregory Z. Gutin and Abraham P. Punnen, eds. The Traveling Salesman Problem and its Variations. Vol. 12 of Combinatorial
Optimization (COOP). New York, NY, USA: Springer New York, May 2002. ISSN: 1388-3011. doi:10.1007/b101971 (cit. on pp. 192-202,

349).

Pogr .~ T a0 s il A s e O Y

https://portal.issn.org/api/search?search[]=MUST=allissnbis=1576-2270
https://ddd.uab.cat/pub/ontstu/15762270n10/15762270n10p21.pdf
https://www.ifors.org/what-is-or
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0304-3975
https://doi.org/10.1016/S0304-3975(01)00182-7
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0003-9519
https://doi.org/10.1007/BF00389433
https://isbnsearch.org/isbn/978-0-615-17984-1
https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2185-2839
http://www.ijnc.org
https://ics.uci.edu/~goodrich/teach/cs165/notes/NPComplete.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1388-3011
https://doi.org/10.1007/b101971

2

References IV

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”.
IEEE Transactions on Systems Science and Cybernetics 4:100-107, July 31, 1968. Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers (IEEE). ISSN: 0536-1567. doi:10.1109/TSSC.1968.300136 (cit. on pp. 8=14, 155-160, 347).

Keld Helsgaun. “General k-opt Submoves for the Lin—Kernighan TSP Heuristic’. Mathematical Programming Computation
1(2-3):119-163, July 2009. London, England, UK: Springer Nature Limited. ISSN: 1867-2949. doi:10.1007/s12532-009-0004-6 (cit. on
pp. 322-327).

“Why is the Complexity of A* Exponential in Memory?" In: Stack Overflow. Ed. by Paul. New York, NY, USA: Stack Exchange Inc.,
Nov. 11, 2009—July 17, 2013. URL: https://stackoverflow.com/questions/1715401 (visited on 2026-01-03) (cit. on pp. 226—235).

John Hunt. A Beginners Guide to Python 3 Programming. 2nd ed. Undergraduate Topics in Computer Science (UTICS). Cham,
Switzerland: Springer, 2023. ISBN: 978-3-031-35121-1. doi:10.1007/978-3-031-35122-8 (cit. on p. 348).

Shen Kangshen, John Newsome Crossley, and Anthony W.-C. Lun. The Nine Chapters on the Mathematical Art: Companion and
Commentary. Oxford, Oxfordshire, England, UK: Oxford University Press, Oct. 7, 1999. ISBN: 978-0-19-853936-0.
doi:10.1093/0s0/9780198539360.001.0001 (cit. on pp. 70-76).

Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. “Sequencing and
Scheduling: Algorithms and Complexity”. In: Production Planning and Inventory. Ed. by Stephen C. Graves,

Alexander Hendrik George Rinnooy Kan, and Paul H. Zipkin. Vol. IV of Handbooks of Operations Research and Management Science.

Amsterdam, The Netherlands: Elsevier B.V., 1993. Chap. 9, pp. 445-522. ISSN: 0927-0507. ISBN: 978-0-444-87472-6.
doi:10.1016/50927-0507 (05)80189-6. URL: http://alexandria.tue.nl/repository/books/339776.pdf (visited on 2023-12-06) (cit. on
p. 349).

Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. Estimation, Simulation, and Control — Wiley-Interscience Series in Discrete
Mathematics and Optimization. Chichester, West Sussex, England, UK: Wiley Interscience, Sept. 1985. ISSN: 0277-2698.

ISBN: 978-0-471-90413-7 (cit. on pp. 169, 192—-202, 349).

Kent D. Lee and Steve Hubbard. Data Structures and Algorithms with Python. Undergraduate Topics in Computer Science (UTICS).
Cham, Switzerland: Springer, 2015. ISBN: 978-3-319-13071-2. doi:10.1007/978-3-319-13072-9 (cit. on p. 348).

Por. = T @ s R AL e O Y

https://portal.issn.org/api/search?search[]=MUST=allissnbis=0536-1567
https://doi.org/10.1109/TSSC.1968.300136
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1867-2949
https://doi.org/10.1007/s12532-009-0004-6
https://stackoverflow.com/users/170701
https://stackoverflow.com/questions/1715401
https://isbnsearch.org/isbn/978-3-031-35121-1
https://doi.org/10.1007/978-3-031-35122-8
https://isbnsearch.org/isbn/978-0-19-853936-0
https://doi.org/10.1093/oso/9780198539360.001.0001
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0927-0507
https://isbnsearch.org/isbn/978-0-444-87472-6
https://doi.org/10.1016/S0927-0507(05)80189-6
http://alexandria.tue.nl/repository/books/339776.pdf
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0277-2698
https://isbnsearch.org/isbn/978-0-471-90413-7
https://isbnsearch.org/isbn/978-3-319-13071-2
https://doi.org/10.1007/978-3-319-13072-9

References V

[31] Tianyu Liang (R XF), Zhize Wu (% &%), Jdrg Lissig, Daan van den Berg, Sarah Louise Thomson, and Thomas Weise (7 2).
“Addressing the Traveling Salesperson Problem with Frequency Fitness Assighment and Hybrid Algorithms”. Soft Computing
28(17-18):9495-9508, July 2024. London, England, UK: Springer Nature Limited. ISSN: 1432-7643. doi:10.1007/S00500-024-09718-8
(cit. on pp. 192-202, 348, 349).

[32] Tianyu Liang (R X F), Zhize Wu (% &%), Jdrg Lissig, Daan van den Berg, and Thomas Weise (i% Z). “Solving the Traveling
Salesperson Problem using Frequency Fitness Assignment”. In: IEEE Symposium Series on Computational Intelligence (SSCI’2022). 1
Dec. 4-7, 2022, Singapore. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers (IEEE), 2022.
ISBN: 978-1-6654-8769-6. doi:10.1109/SSCI51031.2022.10022296 (cit. on p. 348).

[33] Tianyu Liang (XX F), Zhize Wu (% &), Matthias Thiirer, Markus Wagner, and Thomas Weise (% Z%). “Generating Small Instances
with Interesting Features for the Traveling Salesperson Problem”. In: 16th International Joint Conference on Computational
Intelligence (IJCCI’24). Nov. 20-22, 2024, Porto, Portugal. Ed. by Francesco Marcelloni, Kurosh Madani, Niki van Stein, and
Joaquim Filipe. Porto, Portugal: SciTePress: Science and Technology Publications, Lda, 2024, pp. 173-180. ISSN: 2184-3236.

ISBN: 978-989-758-721-4. doi:10.5220/0012888800003837 (cit. on p. 348).

[34] John D. C. Little, Katta G. Murty, Dura W. Sweeny, and Caroline Karel. An Algorithm for the Traveling Salesman Problem. Sloan
£ Working Papers 07-63. Massachusetts Institute of Technology (MIT): Massachusetts Institute of Technology (MIT), Sloan School of

Management, Mar. 1963. URL: http://dspace.mit.edu/bitstream/handle/1721.1/46828/algorithmfortrav00litt.pdf (visited on i
2026-01-03) (cit. on pp. 322-327).

[35] Peter Luschny. A New Kind of Factorial Function. Highland Park, NJ, USA: The OEIS Foundation Inc., Oct. 4, 2015. URL:
https://oeis.org/A000142/2000142.pdf (visited on 2024-09-29) (cit. on p. 349).

[36] Mark Lutz. Learning Python. 6th ed. Sebastopol, CA, USA: O'Reilly Media, Inc., Mar. 2025. ISBN: 978-1-0981-7130-8 (cit. on p. 348).

[37] Francesco Marcelloni, Kurosh Madani, Niki van Stein, and Joaquim Filipe, eds. 16th International Joint Conference on Computational

Intelligence (IJCCI'24). Nov. 20-22, 2024, Porto, Portugal. Porto, Portugal: SciTePress: Science and Technology Publications, Lda, 2024.
ISSN: 2184-3236. ISBN: 978-989-758-721-4. doi:10.5220/0000195000003837.

[38] John J. O'Connor and Edmund F. Robertson. Liu Hui. St Andrews, Scotland, UK: University of St Andrews, School of Mathematics and
Statistics, Dec. 2003. URL: https://mathshistory.st-andrews.ac.uk/Biographies/Liu_Hui (visited on 2024-08-10) (cit. on pp. 70-76).

_J

Por. = T @ s R AL e O Y

https://portal.issn.org/api/search?search[]=MUST=allissnbis=1432-7643
https://doi.org/10.1007/S00500-024-09718-8
https://isbnsearch.org/isbn/978-1-6654-8769-6
https://doi.org/10.1109/SSCI51031.2022.10022296
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2184-3236
https://isbnsearch.org/isbn/978-989-758-721-4
https://doi.org/10.5220/0012888800003837
http://dspace.mit.edu/bitstream/handle/1721.1/46828/algorithmfortrav00litt.pdf
https://oeis.org/A000142/a000142.pdf
https://isbnsearch.org/isbn/978-1-0981-7130-8
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2184-3236
https://isbnsearch.org/isbn/978-989-758-721-4
https://doi.org/10.5220/0000195000003837
https://mathshistory.st-andrews.ac.uk/Biographies/Liu_Hui

References VI

[39] Amit Patel. Amit's A™ Pages. Stanford, CA, USA: Stanford University, 1997—2025. URL:
https://theory.stanford.edu/ amitp/GameProgramming (visited on 2026-01-02) (cit. on pp. 8—14, 155-160, 347).

[40] Alexander Podlich, Thomas Weise (% 2 %), Manfred Menze, and Christian Gorldt. “Intelligente Wechselbriickensteuerung fiir die Logistik
von Morgen". Electronic Communications of the EASST (ECEASST) 17(Communication in Distributed Systems), Feb. 27, 2009.
The Netherlands: European Association of Software Science and Technology (EASST). ISSN: 1863-2122.
doi:10.14279/tuj.eceasst.17.205. In the proceedings of Workshops der Wissenschaftlichen Konferenz Kommunikation in Verteilten 1
Systemen 2009 (WowKiVS 2009), 3 6, 2009, Kassel, Hessen, Germany (cit. on pp. 8-14).

[41] Syamal K. Sen and Ravi P. Agarwal. “Existence of year zero in astronomical counting is advantageous and preserves compatibility with
o significance of AD, BC, CE, and BCE". In: Zero — A Landmark Discovery, the Dreadful Void, and the Ultimate Mind. Amsterdam,
j The Netherlands: Elsevier B.V., 2016. Chap. 5.5, pp. 94-95. ISBN: 978-0-08-100774-7. doi:10.1016/C2015-0-02299-7 (cit. on pp. 347,
= 348).

[42] Philip D. Straffin Jr. “Liu Hui and the First Golden Age of Chinese Mathematics”. Mathematics Magazine 71(3):163-181, June 1998.

London, England, UK: Taylor and Francis Ltd. ISSN: 0025-570X. doi:10.2307/2691200. URL:
https://www.researchgate.net/publication/237334342 (visited on 2024-08-10) (cit. on pp. 70-76).

[43] Sarah Louise Thomson, Gabriela Ochoa, Daan van den Berg, Tianyu Liang (ZXF), and Thomas Weise (i Z%). “Entropy, Search
Trajectories, and Explainability for Frequency Fitness Assignment”. In: Parallel Problem Solving from Nature (PPSN XVIII). Vol. 1.
Sept. 14-18, 2024, Hagenberg, Miihlkreis, Austria. Ed. by Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova,
Heike Trautmann, Tea Tusar, Penousal Machado, and Thomas B&ck. Vol. 15148 of Lecture Notes in Computer Science (LNCS). Cham,
Switzerland: Springer. ISSN: 0302-9743. ISBN: 978-3-031-70054-5. doi:10.1007/978-3-031-70055-2_23 (cit. on p. 348).

[44] Thomas Weise (% 2 %). Databases. Hefei, Anhui, China (¥ B4 4% 427): Hefei University (4/€X %), School of Artificial Intelligence
and Big Data (AL% ft 5 X#4E#%), Institute of Applied Optimization (& ML %AT, IAO), 2025. URL:
https://thomasweise.github.io/databases (visited on 2025-01-05) (cit. on pp. 335, 348).

[45] Thomas Weise (% 2 &). Global Optimization Algorithms — Theory and Application. self-published, 2009. URL:
https://www.researchgate.net/publication/200622167 (visited on 2025-07-25) (cit. on p. 347).

_

Pogr .~ T a0 s il A s e O Y

https://theory.stanford.edu/~amitp/GameProgramming
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1863-2122
https://doi.org/10.14279/tuj.eceasst.17.205
https://isbnsearch.org/isbn/978-0-08-100774-7
https://doi.org/10.1016/C2015-0-02299-7
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0025-570X
https://doi.org/10.2307/2691200
https://www.researchgate.net/publication/237334342
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0302-9743
https://isbnsearch.org/isbn/978-3-031-70054-5
https://doi.org/10.1007/978-3-031-70055-2_23
https://thomasweise.github.io/databases
https://www.researchgate.net/publication/200622167

References VII

[46]

[47]

[48]

[49]

[50]

[51]

Thomas Weise (i 2 %). Programming with Python. Hefei, Anhui, China (¥ B%#4 427): Hefei University (4/EX %), School of
Artificial Intelligence and Big Data (A L% fit & K ¥ %), Institute of Applied Optimization (& M £ 1L#F AT, IAO), 2024—-2025. URL:
https://thomasweise.github.io/programmingWithPython (visited on 2025-01-05) (cit. on pp. 334, 348).

Thomas Weise (% 2 %), Raymond Chiong, Jérg Lissig, Ke Tang (/& ¥T), Shigeyoshi Tsutsui, Wenxiang Chen (% U#¥),

Zbigniew “Zbyszek” Michalewicz, and Xin Yao (#t#f). “Benchmarking Optimization Algorithms: An Open Source Framework for the
Traveling Salesman Problem”. IEEE Computational Intelligence Magazine (CIM) 9(3):40-52, Aug. 2014. Piscataway, NJ, USA: Institute
of Electrical and Electronics Engineers (IEEE). ISSN: 1556-603X. doi:10.1109/MCI.2014.2326101 (cit. on pp. 192—202, 348, 349).

Thomas Weise (% %), Li Niu (4 7%), and Ke Tang (& *7). “AOAB — Automated Optimization Algorithm Benchmarking”. In:

12th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO’2010). July 7-11, 2010, Portland, OR, USA.
Ed. by Martin Pelikan and Jiirgen Branke. New York, NY, USA: Association for Computing Machinery (ACM), 2010, pp. 1479-1486.
ISBN: 978-1-4503-0073-5. doi:10.1145/1830761.1830763 (cit. on p. 348).

Thomas Weise (% 2 /%), Alexander Podlich, and Christian Gorldt. “Solving Real-World Vehicle Routing Problems with Evolutionary
Algorithms”. In: Natural Intelligence for Scheduling, Planning and Packing Problems. Ed. by Raymond Chiong and Sandeep Dhakal.
Vol. 250 of Studies in Computational Intelligence (SCI). Berlin/Heidelberg, Germany: Springer-Verlag GmbH Germany, Sept. 2009.
Chap. 2, pp. 29-53. ISSN: 1860-949X. ISBN: 978-3-642-04038-2. doi:10.1007/978-3-642-04039-9_2 (cit. on pp. 8—14).

Thomas Weise (/% 2 %), Alexander Podlich, Manfred Menze, and Christian Gorldt. “Optimierte Giiterverkehrsplanung mit Evolutionéren
Algorithmen”. Industrie Management — Zeitschrift fiir industrielle Geschiftsprozesse 10(3):37—40, June 2009. Berlin, Germany: GITO mbH
Verlag (cit. on pp. 8—14).

Thomas Weise (% 2 &), Alexander Podlich, Kai Reinhard, Christian Gorldt, and Kurt Geihs. “Evolutionary Freight Transportation
Planning”. In: Applications of Evolutionary Computing (EvoWorkshops 2009): Proceedings of EvoCOMNET, EvoENVIRONMENT,
EvoFIN, EvoGAMES, EvoHOT, EvolASP, EvoINTERACTION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG. Apr. 15-17, 2009,
Tibingen, Baden-Wiirttemberg, Germany. Ed. by Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni A. Caro, Aniké Ekart,
Anna Isabel Esparcia-Alcazar, Muddassar Farooq, Andreas Fink, and Penousal Machado. Vol. 5484 of Theoretical Computer Science and
General Issues (LNTCS), sub-series of Lecture Notes in Computer Science (LNCS). Berlin/Heidelberg, Germany: Springer-Verlag GmbH
Germany, Apr. 2009, pp. 768—777. ISSN: 2512-2010. doi:10.1007/978-3-642-01129-0_87 (cit. on pp. 8—14).

o~ T " s e R A e O Y

https://thomasweise.github.io/programmingWithPython
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1556-603X
https://doi.org/10.1109/MCI.2014.2326101
https://isbnsearch.org/isbn/978-1-4503-0073-5
https://doi.org/10.1145/1830761.1830763
https://portal.issn.org/api/search?search[]=MUST=allissnbis=1860-949X
https://isbnsearch.org/isbn/978-3-642-04038-2
https://doi.org/10.1007/978-3-642-04039-9_2
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2512-2010
https://doi.org/10.1007/978-3-642-01129-0_87

References VIII

[52] Thomas Weise (% 2 %) and Zhize Wu (% &i%). “Replicable Self-Documenting Experiments with Arbitrary Search Spaces and
Algorithms”. In: Conference on Genetic and Evolutionary Computation (GECCO’2023), Companion Volume. July 15-19, 2023, Lisbon,
Portugal. Ed. by Sara Silva and Luis Paquete. New York, NY, USA: Association for Computing Machinery (ACM), 2023, pp. 1891-1899.
ISBN: 979-8-4007-0120-7. doi:10.1145/3583133.3596306 (cit. on pp. 336, 348).

[53] Thomas Weise (% 2 %), Yuezhong Wu (%#44t), Raymond Chiong, Ke Tang (/& *T), and Jérg Lissig. “Global versus Local Search: The
Impact of Population Sizes on Evolutionary Algorithm Performance”. Journal of Global Optimization 66(3):511-534, Feb. 2016. London,
England, UK: Springer Nature Limited. ISSN: 0925-5001. doi:10.1007/s10898-016-0417-5 (cit. on pp. 192—202, 349).

[54] CAO Xiang (% #1), Zhize Wu (% &%), Daan van den Berg, and Thomas Weise (% Z%). “Randomized Local Search vs. NSGA-II vs.
i Frequency Fitness Assignment on The Traveling Tournament Problem”. In: 16th International Joint Conference on Computational
= Intelligence (IJCCI’24). Nov. 20-22, 2024, Porto, Portugal. Ed. by Francesco Marcelloni, Kurosh Madani, Niki van Stein, and

Joaquim Filipe. Porto, Portugal: SciTePress: Science and Technology Publications, Lda, 2024, pp. 38—49. ISSN: 2184-3236.
ISBN: 978-989-758-721-4. doi:10.5220/0012891500003837 (cit. on p. 348).

[55] Kinza Yasar and Craig S. Mullins. Definition: Database Management System (DBMS). Newton, MA, USA: TechTarget, Inc., June 2024.
URL: https://www.techtarget.com/searchdatamanagement/definition/database-management-system (visited on 2025-01-11) (cit. on
&
p. 348).

[56] Rui Zhao (# %), Tianyu Liang (XX F), Zhize Wu (% &%), Daan van den Berg, Matthias Thiirer, and Thomas Weise (77 2).
“Randomized Local Search on the 2D Rectangular Bin Packing Problem with Item Rotation”. In: Genetic and Evolutionary Computation
Conference (GECCO’2024). July 14-18, 2024, Melbourne, VIC, Australia. Ed. by Xiaodong Li and Julia Handl. New York, NY, USA:
Association for Computing Machinery (ACM), 2024, pp. 235-238. ISBN: 979-8-4007-0494-9. doi:10.1145/3638530.3654139 (cit. on
pp. 8-14, 166168, 348).

[57] Rui Zhao (# %), Zhize Wu (% &%), Daan van den Berg, Matthias Thiirer, Tianyu Liang (£X), Ming Tan (12%), and
Thomas Weise (/% 2 2). “Randomized Local Search for Two-Dimensional Bin Packing and a Negative Result for Frequency Fitness
Assignment”. In: 16th International Joint Conference on Computational Intelligence (IJCCI’24). Nov. 20—-22, 2024, Porto, Portugal. Ed. by
Francesco Marcelloni, Kurosh Madani, Niki van Stein, and Joaquim Filipe. Porto, Portugal: SciTePress: Science and Technology

Publications, Lda, 2024, pp. 15-26. ISSN: 2184-3236. ISBN: 978-989-758-721-4. doi:10.5220/0012888500003837 (cit. on pp. 8-14,
166—168, 348).

Pogr .~ T a0 s il A s e O Y

https://isbnsearch.org/isbn/979-8-4007-0120-7
https://doi.org/10.1145/3583133.3596306
https://portal.issn.org/api/search?search[]=MUST=allissnbis=0925-5001
https://doi.org/10.1007/s10898-016-0417-5
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2184-3236
https://isbnsearch.org/isbn/978-989-758-721-4
https://doi.org/10.5220/0012891500003837
https://www.techtarget.com/searchdatamanagement/definition/database-management-system
https://isbnsearch.org/isbn/979-8-4007-0494-9
https://doi.org/10.1145/3638530.3654139
https://portal.issn.org/api/search?search[]=MUST=allissnbis=2184-3236
https://isbnsearch.org/isbn/978-989-758-721-4
https://doi.org/10.5220/0012888500003837

s

References IX

[58] Nicola Abdo Ziadeh, Michael B. Rowton, A. Geoffrey Woodhead, Wolfgang Helck, Jean L.A. Filliozat, Hiroyuki Momo, Eric Thompson,
E.J. Wiesenberg, and Shih-ch’ang Wu. “Chronology — Christian History, Dates, Events". In: Encyclopaedia Britannica. Ed. by The Editors
of Encyclopaedia Britannica. Chicago, IL, USA: Encyclopaedia Britannica, Inc., July 26, 1999—Mar. 20, 2024. URL:
https://www.britannica.com/topic/chronology/Christian (visited on 2025-08-27) (cit. on pp. 347, 348).

Awma

]

|

https://www.britannica.com/topic/chronology/Christian

S L el RN N = B - e TS Bl S xR el e i TSI -

Glossary |

(1+1) EA

EA

(1 +) EA

A* Algorithm

BCE

The (1 4+ 1) EA is a local search algorithm that retains the best solution z. discovered so far during the search®7 . In each

step, it applies a unary search operator to this best-so-far solution z. and derives a new solution z,,. If the new solution z,,
is better or equally good when compared with z, i.e., not worse, then it replaces it, i.e., is stored as the new z.. If the
search space are bit strings of length n, then the (1 4 1) EA uses a unary search operator that flips each bit independently
with probability m /n, where usually m = 1. This operator is the main difference to randomized local search (RLS). The
(14 1) EA is a special case of the (1 4+ \) evolutionary algorithm ((u + A) EA) where p = XA = 1.

An evolutionary algorithm is a metaheuristic optimization method that maintains a population of candidate solutions, which
undergo selection (where better solutions are chosen with higher probability) and reproduction (where mutation and
recombination create a new candidate solution from one or two existing ones, repectively)2'45.

The (1 4+ A) EA is an evolutionary algorithm (EA) where, in each generation, \ offspring solutions are generated from the
current population of p parent solutions. The offspring and parent populations are merged, yielding 1 + A solutions, from
which then the best p solutions are ratained to form the parent population of the next generation. If the search space is the
bit strings of length n, then this algorithm usually applies a mutation operator flipping each bit independently with
probability 1/n.

The A* Algorithm is an a greedy best-first-first search for finding the shortest path between two locations®33°, The
algorithm iteratively constructs the shortest path. It maintains a list of current candidate paths. For choosing the next
candidate path whose end node should be expanded, it computes a value f(p) of these paths p. f(p) is the sum of the
cost g(p) so far incurred by the path as well as a heuristic h(p) predicting the cost from the current end of the path to the
goal. h(p) must never overestimate that cost.

The time notation before Common Era is a non-religious but chronological equivalent alternative to the traditional Before
Christ (BC) notation, which refers to the years before the birth of Jesus Christ”. The years BCE are counted down, i.e., the

larger the year, the farther in the past. The year 1 BCE comes directly before the year 1 GEZL:585

Glossary I

CE

DB

DBMS

FE

moptipy

OR

Python

The time notation Common Era is a non-religious but chronological equivalent alternative to the traditional Anno
Domini (AD) notation, which refers to the years after the birth of Jesus Christ”. The years CE are counted upwards, i.e., the

smaller they are, the farther they are in the past. The year 1 CE comes directly after the year 1 BCE41'58,

A database is an organized collection of structured information or data, typically stored electronically in a computer system.
Databases are discussed in our book Databases**.

A database management system is the software layer located between the user or application and the database (DB). The
DBMS allows the user/application to create, read, write, update, delete, and otherwise manipulate the data in the DB5%.

Objective function evaluations are an implementation-independent measure of runtime for optimization algorithms?47:48:52

1 FE equals to one evaluated candidate solution during the optimization process.

is the Metaheuristic Optimization in Python Iibrarysz. It has been used in several different research works,
including®®:31733,43,54,56,57 | earn more at https://thomasweise.github.io/moptipy and

https://thomasweise.github.io/moptipyapps.

Operations Research (or Operational Research) is the application of sciences such as mathematics and computer science to
the management and organization of systems, organizations, enterprises, factories, or projects. It encompasses the
development and application of problem-solving methods and techniques (such as mathematical optimization, simulation,
queueing theory and other stochastic models) with the goal to improve decision-making and efficiency®.

26,30,36,46

The Python programming language , i.e., what you will learn about in our book*®. Learn more at

https://python.org.

- Fir S . /] TS

'

https://thomasweise.github.io/moptipy
https://thomasweise.github.io/moptipyapps
https://python.org

Glossary I

RLS

TSP

3!

Ny
NP

N P-hard

A i S SREEN Nath B o R I B RS ik v T

Randomized local search retains the best solution z. discovered so far during the search and, in each step, it applies a unary
search operator to this best-so-far solution z. and derives a new solution z,,. If the new solution z,, is better or equally good
when compared with z., i.e., not worse, then it replaces it, i.e., is stored as the new z.. If the search space are bit strings of
length n, then RLS uses a unary search operator that flips exactly one bit. This operator is the main difference

to (1 + 1) evolutionary algorithm ((1 + 1) EA).

In an instance of the Traveling Salesperson Problem, also known as Traveling Salesman Problem, a set of n cities or locations
as well as the distances between them are defined?:22:29:31,47,53 Tpe goal is to find the shortest round-trip tour that starts
at one city, visits all the other cities one time each, and returns to the origin. The TSP is one of the most well-known
NP-hard combinatorial optimization problems?2.

The factorial a! of a natural number a € Ny is the product of all positive natural numbers less than or equal to a, i.e.,
a!:1*2*3*4*-~-*(a—1)*a8'18'35.

the set of the natural numbers excluding 0, i.e., 1, 2, 3, 4, and so on. It holds that Ny C Z.

is the class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be
verified in polynomial time by a deterministic machine (such as a normal computer)ZI.
911,28 heed a runtime that is exponential in the

problem scale in the worst case. A problem is N'P-hard if all problems in N'P are reducible to it in polynomial time2*.

Algorithms that guarantee to find the correct solutions of A/P-hard problems

the set of the real numbers.

the set of the integers numbers including positive and negative numbers and 0, i.e., ..., -3,-2,-1,0, 1, 2, 3, ..., and so on.
It holds that Z C R.

g

	Outline
	Introduction
	What is Optimization?
	Optimization = Search for Superlatives
	Business
	Optimization

	Problems that we can Solve with Equations
	A Problem that we can Solve with (High School Maths) Equations
	Problems that we can solve with Equations

	Problems that we can Solve with an Algorithm
	Problems that we can Solve with Algorithms
	A Problem that we can Solve with (a High School) Algorithm
	Euclidean Algorithm

	Problems that Algorithms can Solve Fast and Efficiently
	Find the Shortest Path from start-colorStart to goal-colorGoal
	The algoAstarfor Finding Shortest Paths

	Problems that Algorithms cannot Solve Efficiently and Exactly
	Hard Problems (1)
	Bin Packing
	Traveling Salesperson Problem
	Hard Problems (2)
	Traveling Salesperson Problem

	Randomly Guessing Solutions
	Almost Solving Hard Problems
	Random Sampling for the TSP
	Metaheuristic Optimization
	Why don't we use the algoAstar for the TSP?
	Why don't we use the algoAstar for the TSP?
	Random Sampling still is a bad algorithm

	Local Search: Using Information
	Random Sampling is a bad algorithm
	Randomized Local Search
	Randomized Local Search for the TSP
	Randomized Local Search for the TSP
	Randomized Local Search for the TSP
	Metaheuristic Optimization
	Randomized Local Search for the TSP
	Randomized Local Search with a Larger Neighborhood
	Randomized Local Search with a Larger Neighborhood
	Randomized Local Search with a Larger Neighborhood
	Metaheuristic Optimization

	Summary
	Summary on Algorithms
	Summary on the TSP
	Summary

	Advertisement
	Programming with Python
	Databases
	Metaheuristic Optimization in Python: moptipy

	Presentation End
	References
	Glossary
	Symbols

