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• Today, I therefore want to first give a short introduction into the field of optimization,

before delving into one of our concrete research topics, namely Frequency Fitness
Assignment (FFA).
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• There are two ways to look at optimization.

• The economic view.
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requires deciding for one choice from a set of

possible alternatives in order to reach a

predefined or required benefit at minimal costs.

Solving an optimization problem requires finding

an input element x⋆ within a set 𝕏 of allowed
elements for which a mathematical function

f :𝕏 ↦ ℝ takes on the smallest possible value.



Example: Function Optimization

• In the field of continuous
optimization, we could literally
try to find the minimum of a
mathematical
function f : Rn 7→ R.

• The search space X would then
be the n-dimensional real
vectors, i.e., X = Rn.

• The objective function would,
well, be the function f .

• The optimal solution x⋆ ∈ X is
the minimum of f .

• This is not what I am working
on, though.
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Example: Traveling Salesperson Problem
• In the Traveling Salesperson

Problem (TSP)1,16,28,30,49,57,
the goal is to find the shortest
round-trip tour through a set of
n cities.

• The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

• The objective
function f : X 7→ R, subject to
minimization, is the length of
the tour.

• The optimal solution x⋆ ∈ X is
the shortest possible tour.
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Example: Bin Packing Problem

• The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible60,61.

• The X comprises all possible packing orders of the n objects.
• The objective function f is the number of bins needed by a given packing order.
• The optimum x⋆ is the packing order requiring the fewest bins.
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Optimization is Hard

• Finding the globally optimal solution x⋆ from the set of all possible solutions X is often an
NP-hard problem.

• Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given NP-hard problem in a runtime that is not longer than polynomial in
the size of the problem (i.e., existing algorithms may need exponential runtime in the
worst case).

• In other words, if we want to guarantee to find the best possible solution x⋆ for all possible
instances of a problem, we often cannot really be much faster than testing all possible
candidate solutions x ∈ X in the worst case.
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Metaheuristic Optimization

• Because of this hardness of
optimization, metaheuristic
algorithms that follow the
Trial-and-Error idea of iterative
improvement have emerged.

• They drop the guarantee to find the
optimal solution.

• They try to find good solutions
within a feasible runtime.

• They (usually) start with random
solutions.

• And then roughly follow this cycle.
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The (1 + 1) EA and RLS

• Local search with |Si| = |Ni| = 1 is the simplest realization of the metaheuristic idea.

• Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator move)6,12.

• They accept the new solution if it is better or equally good compared to the current
solution.
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• My students and I together work on solving discrete or combinatorial problems with
metaheuristic algorithms.

• We investigate classical hard problems that have discrete search spaces, such as bit strings
or permutations.

• Here, the objective functions take on only natural numbers in N0.
• We try to enable metaheuristic algorithms to find better solutions for these problems.
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Metaheuristic Optimization Algorithms

• The most fundamental concept in metaheuristic optimization is

If you keep good solutions and modify them, you are likely to get better
solutions.

If you keep accepting better and better solutions, you will get really good
solutions eventually.

• Algorithms like random sampling or exhaustive enumeration that do not at least
statistically prefer better solutions have extremely bad performance.

• We challenge this principle.
• Our Frequency Fitness Assignment (FFA) does not prefer better solutions . . . yet it can

improve the performance of existing algorithms in several cases!
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FFA: Idea

• Frequency Fitness Assignment (FFA) is a module that can be plugged into different
existing algorithms.

• It changes the way the algorithm selects the interesting solutions Si+1 from the
sets Pi = Si ∪Ni.

• It therefore maintains a table H with the encounter frequency of each objective value in
the selection decisions.

• The table H is initially filled with zeros.
• Before the selection step of the algorithm, H[f(Pi[j])] for all j ∈ 1..|Pi| is incremented

by 1.
• Then, the frequencies H[f(Pi[j])] replace the objective values f(Pi[j]) in the actual
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FFA: (1+1) EA and (1+1) FEA

• Let’s plug FFA into the (1 + 1) EA and obtain the (1 + 1) EA with FFA ((1 + 1) FEA).

• We start with the (1 + 1) EA.
• We begin by initializing the frequency table H with all zeros.
• Before the selection decision, we increment the frequency values of the objective values of

all current solutions.
• Now the frequency values replace the objective values in the selection decisions.
• Since we may now lose the best-so-far solution, we need to track it in additional variables.
• . . . which are then the return values of the (1 + 1) FEA.
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FFA: What does this do?

• The rating H[f(x)] of a solution x depends only on how often solutions x′ with
f(x′) = f(x) have previously been seen in the optimization process.

• Static optimization problems become dynamic, because frequency fitness H changes over
time.

• Solutions get less attractive the more often their corresponding objective values have been
seen. This also holds for local optima. . .

• Solutions with better objective values are no longer preferred over such with worse
objective value.

• Instead, solutions with less-frequent objective values are preferred.
• Algorithms using FFA are invariant under all injective transformations of the objective

function value.
• They are less likely to get stuck at local optima, which is a problem for, e.g., the

(1 + 1) EA.
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Discrete Benchmark Functions

• Discrete optimization algorithms work on bit strings of length n as search space and use
only the objective values of the solutions they sample to solve a problem.

• They are usually tested on a variety of benchmark
problems.

• We plug FFA into the (1 + 1) EA and obtain the
(1 + 1) FEA.

• The (1 + 1) EA can easily solve the OneMax problem,
where the goal is to find a bit string of all 1s36.

• It needs Θ(nn) on traps12, where the optimum and the
worst solution are exchanged compared to OneMax.

, as
well as on TwoMax14,44, which has one local and one
global optimum.

• The (1 + 1) FEA solves all three problems in polynomial time!

as well as the Jump
problem, where the (1 + 1) EA also needs exponential runtime!
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• Snippet of page 10 of [56] (copyright IEEE).
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• Plug FFA into more optimization algorithms.
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Summary

• Our students and I work on the big field of optimization.

• We try to improve the quality of solutions that metaheuristics can deliver on discrete or
combinatorial problems.

• We have a very interesting and novel technique called Frequency Fitness Assignment
(FFA).

• We are figuring out where it really can give us better results.
• But we are not picky.

For example,
1. on the two-dimensional bin packing problem, we found out that a simple local search can

actually outperform the complex state-of-the-art metaheuristics and FFA could not improve
the performance . . . so we published this surprising result and the student graduated with
it60,61.

, and
2. on the Traveling Tournament Problem (TTP), we also got surprisingly good results with

RLS58 and SA.
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Programming with Python

We have a freely available course book on Programming with Python at
https://thomasweise.github.io/programmingWithPython, with focus on practical
software development using the Python ecosystem of tools48.

CHAPTER 15. THE DISTRIBUTED VERSION CONTROL SYSTEM GIT
303

(15.1.16) Many Python projects come with a file
requirements.txt or requirements-dev.txt . As
discussed in Section 14.2, these list the libraries that
the projects depend on. Our example repository also
has a file requirements.txt , stating that it needs li-
brary psycopg. This dependency is marked with yellow
color, because it is not installed in the virtual environment.

(15.1.17) Clicking on the warnings symbol reveals this
issue.

(15.1.18) Indeed: If we look at the .venv directory in the
directory view, we cannot find the psycopg package. (15.1.19) So we click on the requirements warning. . .

(15.1.20) . . . and then on Show Quick-Fixes (or press Alt +

Enter ).
(15.1.21) In the menu that opens up, we se-
lect Install all missing packages .

Figure 15.1: Cloning a Git (or GitHub) repository in PyCharm and configuring a virtual environment for

it.

Here, obviously, user is thomasWeise , which is my personal GitHub account, and repository is

databasesCode . The URL that will be copied to the clipboard by clicking the button in Figure 15.1.2

is https://github.com/thomasWeise/databasesCode.git. If you wanted to clone the repository

with the example codes for this book instead, you would use https://github.com/thomasWeise/

programmingWithPythonCode.git.It is important to understand, however, that creating projects by cloning Git repositories is by no

means restricted to GitHub. As stated before, Git is a client-server application. You could work in an

enterprise that runs its own Git server. You could work with other Git-based repository hosts like gitee.

Regardless of what Git service you use, you could use the very same way to type in the corresponding

repository URL and then clone the repository in the same way. Only the structure of the URLs may be

CHAPTER 4. VARIABLES

84Listing 4.3: A Python program showing several steps of the approximation of π using the method of

LIU Hui (刘徽). (stored in file pi_liu_hui.py; output in Listing 4.4)
1 from math import pi, sqrt2
3 print(f"We use Liu Hui's Method to Approximate \u03c0\u2248{pi}.")

4 e = 6 # the number of edges: We start with a hexagon , i.e., e=6.

5 s = 1.0 # the side length: Initially 1, meaning the radius is also 1.

6 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

7
8 e *= 2 # We double the number of edges ...
9 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

10 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

11
12 e *= 2 # We double the number of edges.
13 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

14 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

15
16 e *= 2 # We double the number of edges.
17 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

18 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

19
20 e *= 2 # We double the number of edges.
21 s = sqrt(2 - sqrt(4 - (s ** 2))) # ... and recompute the side length.

22 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")

23
24 e *= 2 # We double the number of edges.
25 s = sqrt(2 - sqrt(4 - (s ** 2)))
26 print(f"{e} edges , side length={s} give us \u03c0\u2248{e * s / 2}.")↓ python3 pi_liu_hui.py ↓Listing 4.4: The stdout of the program pi_liu_hui.py given in Listing 4.3.

1 We use Liu Hui 's Method to Approximate π≈3.141592653589793.

2 6 edges , side length =1.0 give us π≈3.0.
3 12 edges , side length =0.5176380902050416 give us π≈3.1058285412302498.

4 24 edges , side length =0.2610523844401031 give us π≈3.132628613281237.

5 48 edges , side length =0.13080625846028635 give us π≈3.139350203046872.

6 96 edges , side length =0.0654381656435527 give us π≈3.14103195089053.

7 192 edges , side length =0.03272346325297234 give us π≈3.1414524722853443.
Listing 4.4 shows the standard output stream (stdout) produced by this program. Indeed, each

new approximation comes closer to π. For 192 edges, we get the approximation 3.1414524722853443 .

Given that the constant pi from the math module is 3.141592653589793 , we find that the first four

digits are correct and that the number is only off by only 0.0045%! For your convenience, we also

showed the results when executing the program in PyCharm or the Ubuntu terminal in Figure 4.4. They

are obviously identical. Therefore, in the future, we will only very sporadically add such screenshots.

Instead, we will usually only print code and output pairs like Listings 4.3 and 4.4.
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e=12

e=6

e=24
...

r

x

y

r

s
12

s
6

Figure 4.3: Approximating the ratio of the circumference and the diameter of a circle, i.e., π, by

inscribing regular 3 ∗ 2n-gons.

hexagon is U = e∗s6 = 6∗r. The diameter of the circle is D = 2r. Assuming that the circumference of

the hexagon is an approximation of the circumference of the circle, we could approximate π as π ≈ U
D .

For e = 6 edges, this gives us π6 = 6r
2r = 3.Now this is a very coarse approximation of π. We can get closer to the actual ratio if we would

use more edges, i.e., higher values of e. The ingenious idea of LIU Hui (刘徽) is to use e-gons

with e = 3 ∗ 2n. For n = 1, we get the hexagon with e = 6. For n = 2, we double the edges and have

a dodecagon with e = 12 edges. But how do we get the edge length s12 of this dodecagon?
We can get it from the edge length s6 and radius r of the hexagon. If we use the same six corners

for the hexagon and dodecagon and connect the newly added six corners with the center of the circle,

then these connections will separate each edge of the hexagon exactly in half and do so at a 90◦ angle,

as shown again in Figure 4.3. Here, the new side length s12 is the hypotenuse of a right-angled triangle

with base s6
2 and height y. To get the height y, we can use that r = x + y and the fact that there is a

second right-angled triangle here, namely the one with base x, height s6
2 , and hypotenuse r. This gives

us x2 +
(

s6
2

)2
= r2. Let’s make things easier by choosing r = 1. We get x2 = 1 − (

s6
2

)2
= 1 − s6

2

4

and, hence, y = 1 −
√

1 − s62

4 . With this we can move on to s12
2 = y2 +

(
s6
2

)2
, which we can resolve

to s12
2 =

(
1 −

√
1 − s62

4

)2

+ s6
2

4 . Using (a − b)2 = a2 − 2ab + b2 and applying it to the first term,
we get s12

2 = 1 − 2
√

1 − s62

4 +
(
1 − s6

2

4

)
+ s6

2

4 . This then gives us s12
2 = 2 − 2

√
1 − s62

4 − s6
2

4 + s6
2

4 ,
which we can further refine to s12

2 = 2 − 2
√

1 − s62

4 . We can pull th 2 from outside the root into the
root by multiplying everything inside by 22 = 4 and get s12

2 = 2 − √
4 − s62. Thus, we have the really

elegant s12 =
√

2 − √
4 − s62.

As new approximation of π12, we now have 12∗s12
2r = 6∗s12 = 6

√
2 − √

4 − s62 = 6
√

2 − √
4 − 1 =

6
√

2 − √
3 ≈ 3.105828539. This is already quite nice. We can actually repeat this step to get to s24.

And we could continue this process by again doubling the number the edges. Repeating the above

calculations and observing Figure 4.3, we get the equation:

s2e =
√

2 −
√

4 − s2
e

(4.1)π2e =
e

2
s2e

(4.2)Now that we have learned some programming, we do no longer need to type the numbers and com-

putation steps into a calculator. Instead, we can simply write them into a program, as illustrated

in Listing 4.3. We begin by setting the number of edges e = 6 and the side length to s = 1 , still

choosing r = 1. In each iteration of the approximation, we simply set e *= 2 , which is equivalent to

e = e * 2 , to double the number of edges. We compute s = sqrt(2 - sqrt(4 - (s ** 2))) hav-

ing imported the sqrt function from the math module. We print the approximated value of π as

e * s / 2 . Notice how elegantly we use the unicode characters π and ≈ via the escapes \u03c0 and

\u2248 , respectively, from back in Section 3.6.6 (and how nicely it indeed prints the greek character π

in the stdout in Listing 4.4). Either way, since Equations 4.1 and 4.2 are always the same, we can

simply copy-paste the lines of code for updating s , e , and printing the approximated value of π several

times.
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tweise@weise-laptop:~$ python3Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 4 + 3
7
>>> 7 * 5
35
>>> 4 + 3 * 5
19
>>> (4 + 3) * 5
35
>>> 4 - -12
16
>>> ((4 + 3) * (4 - -12) - 5) * 3321
>>> 32 // 4
8
>>> 33 // 4
8
>>> 34 // 4
8
>>> 35 // 4
8
>>> 36 // 4
9
>>> 32 / 4
8.0
>>> 33 / 4
8.25
>>> 34 / 4
8.5
>>> 35 / 4
8.75
>>> 36 / 4
9.0
>>> 33 % 4
1
>>> 34 % 4
2
>>> 35 % 4
3
>>> 36 % 4
0
>>> exit()
tweise@weise-laptop:~$

tweise@weise-laptop: ~

Figure 3.1: Examples of Python integer math in the console, part 1 (see Listing 3.1 for part 2).
In many programming languages, there are different integer datatypes with different ranges. In

Java, a byte is an integer datatype with range −27..27 − 1, a short has range −215..217 − 1, an int
has range −231..231−1, and long has range −263..263−1, for example. The draft for the C17 standard
for the C programming language lists five signed and five unsigned integer types, plus several ways to
extend them [255]. The different integer types of both languages have different ranges and sizes, and
the programmer must carefully choose which she needs to use in which situation.Python 3 only has one integer type, called int . This type has basically an unbounded range. The
Python 3 interpreter will allocate as much memory as is needed to store the number you want.2
3.2.1 Integer Arithmetics
Now, what can we do with integer numbers? We can add, subtract, multiply, divide, modulo divide,
and raise them to powers, for example.

In Figure 3.1, you can find some examples of this. (The same example is given in Listing 3.1, just
as listing instead of screenshot. We will use such listings from now on, as they convey the exactly2Ok, the range is not actually unbounded, it is bounded by the amount of memory available on your computer. . .

. . . but for all intents and purposes within this book, we can assume that int ≡ Z.
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(2.2.1) Opening the terminal un-
der Microsoft Windows: press
q + R , type in cmd , and hit

.

(2.2.2) Trying to get the Python versionvia python3 --version , but it is notinstalled.

(2.2.3) Installing it by typing python3
and hitting .

(2.2.4) The install screen, where we click Get . (2.2.5) The install screen, downloading Python.

(2.2.6) The installation is finished. (2.2.7) And the python3 --version command nowworks in the terminal.
Figure 2.2: Cropped screenshots of the installation steps for Python on Microsoft Windows.

2.2 Installing PyCharm
Just having a programming language and the corresponding interpreter on your system is not enough.Well, it is enough for just running Python programs. But it is not enough if you want to developsoftware efficiently. Are you going to write programs in a simple text editor like a caveperson? No, ofcourse not, you need an IDE, a program which allows you to do multiple of the necessary tasks involvedin the software development process under one convenient user interface. For this book, I recommendusing PyCharm [347, 373, 377], whose Community Edition is/was freely available. The installation guidefor PyCharm can be found at https://www.jetbrains.com/help/pycharm/installation-guide.html.

Notice that, as shown in Figure 2.4, the PyCharm Community Edition will be/has been replacedwith a unified edition. This means that the instructions in the following are probably outdated, butthey should still give you a reasonably good impression on what needs to be done. We will probablyeventually replace them . . . but not now.
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Java
JavaScript
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HTML
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Figure 1.2: The twelve most popular programming languages chosen based on the GitHub pushes overthe years. Source: [29].

While I am introducing variables in Chapter 4, for example, I will also explain how to use a static codeanalysis tool designed to find type errors in variable use. Also, the text will often have references tobest practices that clarify common approaches and different code hygiene concepts. Our goal will beto learn how to do things right from the start and not put things off to later.

1.2 Why Python?

The center of this course is the Python programming language. Our goal is to get familiar withprogramming, with the programming language Python, and with the tools and ecosystem surroundingit. This makes sense for several reasons.
First, Python is one of the most successful and widely used programming languages [50]. We plotthe number of pushes to GitHub over time for the most popular programming and web developmentlanguages in Figure 1.2. We find that Python became the leading languages at some point in 2018. Inthe TIOBE index, which counts the number of hits when searching for a programming language usingmajor search engines, Python ranked one in January 2025 and was named the programming languageof the year for 2024 [159].

Python is everywhere nowadays, and it is the undisputed default language of choicein many fields.
— Paul Jansen [159], 2025

If you will do programming in any future employment or research position, chances are that Pythonknowledge will be useful. According to the 2024 annual Stack Overflow survey [311], Python was thesecond most popular programming language, after JavaScript and HTML/CSS. In GitHub’s OctoverseReport from October 2024 [115], Python is named the most popular programming language, rankingright before JavaScript.
Second, Python is intensely used [50] in the fields of Artificial Intelligence (AI) [277], MachineLearning (ML) [290], and Data Science (DS) [125, 210] as well as optimization, which are among themost important areas of future technology. Indeed, the aforementioned Octoverse report [115] statesthat the use in soft computing is one of the drivers of Python’s popularity.
Third, there exists a very large set of powerful libraries supporting both research and application de-velopment in these fields, including NumPy [81, 131, 161, 227], Pandas [21, 195, 238], Scikit-learn [242,264], SciPy [161, 357], TensorFlow [1, 185], PyTorch [239, 264], Matplotlib [149, 151, 161, 235],SimPy [386], and moptipy [365]2, just to name a few. There are also many Python packages supportingother areas of computer science, that offer, e.g., connectivity to databases (DBs) [354], or support for
2Yes, I list moptipy here, next to very well-known and widely-used frameworks, because I am its developer.

Programming with Python

Thomas Weise (汤卫思)

August 7, 2025

Abstract

The goal of this book is to teach practical programming with the Python language to high
school, undergraduate, and graduate students alike. Hopefully, readers without prior knowledge
can follow the text. Therefore, all concepts are introduced using examples and discussed compre-
hensively. All examples are available online in the GitHub repository associated with this book, so
that readers can play with them easily. Actually, the goal of the book is not just to teach pro-
gramming, but to teach programming as a part of the software development process. This means
that from the very beginning, we will attempt to push the reader towards writing clean code with
comments and documentation as well as to use various tools for finding potential issues. While
this book is work in progress, we hope that it will eventually teach all the elements of Python
software creation. We hope that it can enable readers without prior programming experience to
develop beautiful and maintainable software.

https://thomasweise.github.io/programmingWithPython


Databases

We have a freely available course book on Databases at
https://thomasweise.github.io/databases, with actual practical examples using a real
database management system (DBMS)46.
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19.2.3.2 Relationship AttributesRelationships in conceptual models may have attributes, as stated in Definition 18.21. Of course, since

relationships do not exist as distinct objects in the relational data model, we must find another way to

express these attributes. Since only relations exist in the relational model and such relations become

tables in a DB, the attributes of relationships also become table columns.

It will depend on the relationship pattern where we put them. To try this concept out, let us go back

to an even earlier example of the Person entity: to Figure 18.9 from back in Section 18.3 (Relationships).

We created this figure using yEd and reprint it in Figure 19.26.1. As you can see, in this figure, there

is a relationship has ID that connects the Person entities with the entity type ID Type.

In the model, we did not annotate the relationships with cardinalities, because that was before

we got to that topic. However, it is rather clear that this would either be a Person ID Type

or a Person ID Type relationship. We can store arbitrarily many forms of ID for each person

and each form of ID may be used by arbitrarily many people. Since we went the hard way in the

last section and modeled a relationship with the mandatory many pattern, we this time go easy and

choose Person ID Type. In other words, we follow the pattern O P discussed in Sec-

tion 19.2.2.8 (O P).For this pattern, we need an additional table. We follow exactly the same method as back in

Section 19.2.2.8, except that we use different table and column names. We also use PgModeler for the

Person

Date of Birth

Address

Country

Province City
District

Street
Address

Postal Code

Name

Full Name

Salutation

Age

Start Date

End Date

is official

ID Type

Name

Validation
RegEx

has ID

Value

Valid From
Valid To

Surrogate
Key

(19.26.1) A reproduction of Figure 18.9 from back in Section 18.3 (Relationships), which was created using

yEd.

name_of_person

address_of_person

has_id

belongs_to_type

id
 integer « pk »date_of_birth  date « nn »person_id_pk  constraint « pk »

public.person
id  integer

« pk »person  integer « fk nn »full_name  varchar(255) « nn »salutation  varchar(255)is_official  boolean
« nn »start_date  date
« nn »end_date  date

name_id_pk  constraint « pk »name_person_fk  constraint « fk »

public.name

id
 integer « pk »person  integer « fk nn »country  char(2) « nn »province  char(2)

city
 varchar(255) « nn »district  varchar(255)postal_code  varchar(32) « nn »street_address  varchar(255) « nn »address_id_pk  constraint « pk »address_person_fk  constraint « fk »

public.address

id
 integer

« pk »name
 varchar(100) « uq nn »validation_regexp  varchar(255) « nn »id_type_id_pk  constraint « pk »id_type_name_uq  constraint « uq »

public.id_type id  integer
« pk »id_type  integer « fk nn »person  integer « fk nn »value  varchar(100) « nn »valid_from  date

« nn »valid_to  date
has_id_id_pk  constraint « pk »has_id_id_type_fk  constraint « fk »has_id_person_fk  constraint « fk »

public.has_id

(19.26.2) A transformation of Figure 19.26.1 to a logical model using PgModeler.

Figure 19.26: The representation of relationship attributes as table for the relationship.
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(19.2.21) More details, such as the column types, appear
in the diagram, causing the tables to overlap. We drag
them apart with the mouse.

(19.2.22) The new layout looks much clearer.

rel_mobile_student

student_id  character(11)
« pk »national_id  character(18)
« nn »address  varchar(255)
« nn »date_of_birth  date
« nn »full_name  varchar(255)
« nn »salutation  varchar(255)

student_student_id_pk  constraint « pk »student_national_id_check  constraint « ck »student_date_of_birth_check  constraint « ck »

public.student

id  integer
« pk »phone  character(11) « nn »student  character(11) « fk nn »mobile_id_pk  constraint « pk »mobile_phone_check  constraint « ck »mobile_student_id_fk  constraint « fk »

public.mobile

(19.2.23) We export the model again to a SVG graphic, following the steps in Figures 19.1.41 to 19.1.44.

This graphic now contains more details as well.Figure 19.2: Creating a logical model represent students with a composite name attribute and multiple

mobile phone numbers (continued).

Listing 19.9: This auto-generated SQL script creates the DB student_database . (stored in

file 01_student_database_database_2001.sql; output in Listing 19.10)
1 -- object: student_database | type: DATABASE --
2 -- DROP DATABASE IF EXISTS student_database;
3 CREATE DATABASE student_database;
4 -- ddl -end --

Listing 19.10: The stdout of the program 01_student_database_database_2001.sql given in List-

ing 19.9.
1 $ psql "postgres :// postgres:XXX@localhost" -v ON_ERROR_STOP =1 -ebf 01

↪→ _student_database_database_2001.sql
2 CREATE DATABASE3 # psql 16.9 succeeded with exit code 0.

We now export this model to SQL, exactly as we did before. This time, we get four scripts. The

first one, Listing 19.9, again creates the student_database DB. The second one, Listing 19.11, creates

the student table.
The third script, here given as Listing 19.13, creates the mobile table. We notice that the primary

key is created as id integer NOT NULL GENERATED BY DEFAULT AS IDENTITY . This is almost exactly

the same way in which we created the primary key for the product table back in Listing 9.1. The only

difference is that PgModeler likes to express the integer type as integer and there we used INT . Both

types are synonymous.
The foreign key constraint is not included in Listing 19.13. Instead, it went into its own script,

here reproduced as Listing 19.15. Instead of directly including it when the table is created, the table

is later changed (ALTER TABLE). The constraint is added via ADD CONSTRAINT . Apart from this and

some additional behavior specifications that we will ignore here, it looks not much different from the
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Student

Module

enrolls into

(18.6.1) The binary relationship of student and modules, which does not represent the relationship of professors to

modules and students.

Student

Module

enrolls into

Professor

teaches

(18.6.2) Two binary relationships, i.e., the relationship of student to modules and the relationship of professors to

modules. This does not represent that a student enrolls into a course taught by a professor.

Student

Module

takes place
Professor

enrolls into teaches

(18.6.3) The ternary relationship of students, modules, and professors. This represents how students join a course taught

by a specific professor. However, it would not permit the same student enroll into the same course for two years. It also

does not give us the information when the course takes place.

Student

Module

takes place
Professor

in Semester

enrolls into teaches

(18.6.4) The ternary relationship of students, modules, and professors with the relationship attribute semester.
Figure 18.6: Modeling the relationship between students, professors, and modules.

If we imagine the ternary Student enrolls into Module taught by Professor relationship, then the student

could have the role enrolls and the professor could have the role teaches.Definition 18.21: Relationship Attribute
A relationship type can have attributes describing properties of the relationship.

For example, we could write something like Mr. Bebbo enrolls into module Databases in summer

semester 2025. The attribute Semester of this relation only makes sense in this context. It neither

belongs to the student Mr. Bebbo nor does it belong to the module Databases. Different from entities,

relationship types do not have key attributes. The single relationships are identified by the primary keys

of the participating entities [165].
Let us start modelling relationships. We begin by representing the fact that a student can enroll into

a module. Relationships in ERDs are drawn as diamonds that are connected to the involved entities.

Figure 18.6.1 shows an ERD where the student entity is linked to a module entity by the relationship

enrolls into. This is a binary relationship, because two entities take part in it.

CHAPTER 9. CREATING TABLES AND FILLING THEM WITH DATA
99

Listing 9.1: Creating the table product to store the products we produce and sell. (stored in
file create_table_product.sql; output in Listing 9.2)1 /* We create the new table 'product ' in our factory database. */

2
3 -- List all tables of the user 'boss ' in database 'factory '
4 -- There are no tables yet.5 SELECT tablename FROM pg_catalog.pg_tables6 WHERE tableowner='boss';7
8 -- The table 'product ' stores all the produces that we can produce.
9 -- Each row of this table identifies one such product.

10 CREATE TABLE product (11 id INT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY ,
12 name VARCHAR (100) NOT NULL UNIQUE , -- must exist , must be unique
13 price DECIMAL (10, 2) NOT NULL , -- price (RMB): 10 digits , 2 after .
14 weight INT NOT NULL , -- the weight of the product , in grams
15 width INT NOT NULL , -- the width of the product , in mm
16 height INT NOT NULL , -- the height of the product , in mm
17 depth INT NOT NULL -- the depth of the product , in mm
18 );
19
20 -- List all tables of the user 'boss ' in database 'factory '
21 -- Now we see the table 'product '.22 SELECT tablename FROM pg_catalog.pg_tables23 WHERE tableowner='boss';

Listing 9.2: The stdout of the program create_table_product.sql given in Listing 9.1.
1 $ psql "postgres :// boss:superboss123@localhost/factory" -v ON_ERROR_STOP =1

↪→ -ebf create_table_product.sql2 tablename
3 -----------
4 (0 rows)
5
6 CREATE TABLE
7 tablename
8 -----------
9 product

10 (1 row)
11
12 # psql 16.9 succeeded with exit code 0.

9.1.2 Inserting some Data
Now the table product exists, but it is empty. Let us fill it with data. Our factory has two prod-
ucts: “Shoe” and “Purse.” The shoes come in sizes 36 to 43. Their prices start at 150.99元 for size 36
and increase by 2元 per size. They all fit into the same box. The smallest shoes weight 1300g and the
weight increases by 25g per size. Purses come in sizes small, medium, and large, at prices of 100元,
120元, and 150元, respectively. They weight 500g, 750g, and 1500g, respectively. The smallest purse
fits into a shoebox, but the bigger ones require bigger boxes. In other words, we want to enter exactly
the data presented in Figure 9.1 at the beginning of this section.We store this data into the table product by an INSERT INTO statement. Here, we first need to
provide the table name (product) and the attributes that we want to store in parentheses, i.e., “ (...)”.
We will store values for the fields name , price , weight , width , height , and depth . We do not need to
store values for id , because they will be automatically generated for us. After saying what we want to
store, we specify the VALUES to store. Each row is written in parentheses, values and rows are separated
by commas. The command follows the syntax given below.
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(2.2.7) When asked whether we want to allow the down-loaded program to make changes on our device, weclick Yes .
(2.2.8) Then, the installer begins its work.

(2.2.9) In the welcome screen, we simply click Next . (2.2.10) We can select the directory in which PostgreSQLshould be installed. Let’s leave it at the default settingand click Next .

(2.2.11) We now get to the selection of what to install.Let’s leave it at the default setting and click Next .
(2.2.12) We also leave the directory where the DBs willbe stored at the default setting and click Next .Figure 2.2: Installing and configuring PostgreSQL under Microsoft Windows (Continued).
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Figure 1.9: Image from 1956: An IBM 305 RAMAC (right) with two of the (at that time) very newIBM 350 hard disks (middle and left). Source: [159].

Figure 1.10: Images from the “Ferranti Computing Systems Atlas 1 Brochure: 1962” [259]. © UKRIScience and Technology Facilities Council, available from https://www.chilton-computing.org.uk.

Figure 1.11: Some screenshots of the terminal of Multics MR12.7 taken from [61], licensed underCC BY-SA 4.0.

only one or two years later [284]. The hierarchical file system for the Multiplexed Information andComputing Service (Multics) OS [61, 95], published in 1965, already had surprisingly many advancedfeatures that we know from today’s file systems: fine-grained access control for data privacy, backupability, links, and IO queue management. Inheriting from CTSS, it itself became the ancestor of Unixwhich, in turn, inspired Linux. The ls command shown in Figure 1.11 also was a feature of Multics(adapted from CTSS) and has survived all those years [150]. File systems are very good for organizingdocuments and heterogeneous data. They are not very suitable to main the sort of relational data andto achieve the features that would like DBs to have.
The need for systems that supported modern DB features became aparent. At the same time, itwas not really clear how that could be done. Different groups began developing concepts, ideas, andprototypes.
The first version of the Integrated Data Store (IDS) was developed by Bachman in 1961/62 atGeneral Electric [13, 14]. IDS offered the first direct access DB, holding data in virtual memory. It mayhave been the first real DBMS and Bachman won the 1973 A.M. Turing Award for this work [174]. IDS
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Abstract

This book is an introduction into databases for undergraduate and graduate students.
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Metaheuristic Optimization in Python: moptipy

We offer moptipy54 a mature open source Python package for metaheuristic optimization,
which implements several algorithms, can run self-documenting experiments in parallel and in a
distributed fashion, and offers statistical evaluation tools.
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Glossary I

(1 + 1) EA The (1 + 1) EA is a local search algorithm that retains the best solution xc discovered so far during the search6,12. In each
step, it applies a unary search operator to this best-so-far solution xc and derives a new solution xn. If the new solution xn
is better or equally good when compared with xc, i.e., not worse, then it replaces it, i.e., is stored as the new xc. If the
search space are bit strings of length n, then the (1 + 1) EA uses a unary search operator that flips each bit independently
with probability m/n, where usually m = 1. This operator is the main difference to randomized local search (RLS). The
(1 + 1) EA is a special case of the (µ + λ) evolutionary algorithm ((µ + λ) EA) where µ = λ = 1.

(1 + 1) FEA The (1 + 1) EA with FFA plugged in.

EA An evolutionary algorithm is a metaheuristic optimization method that maintains a population of candidate solutions, which
undergo selection (where better solutions are chosen with higher probability) and reproduction (where mutation and
recombination create a new candidate solution from one or two existing ones, repectively)3,47.

(µ + λ) EA The (µ + λ) EA is an evolutionary algorithm (EA) where, in each generation, λ offspring solutions are generated from the
current population of µ parent solutions. The offspring and parent populations are merged, yielding µ + λ solutions, from
which then the best µ solutions are ratained to form the parent population of the next generation. If the search space is the
bit strings of length n, then this algorithm usually applies a mutation operator flipping each bit independently with
probability 1/n.

AI Artificial Intelligence, see, e.g.,41

DB A database is an organized collection of structured information or data, typically stored electronically in a computer system.
Databases are discussed in our book Databases46.

DBMS A database management system is the software layer located between the user or application and the database (DB). The
DBMS allows the user/application to create, read, write, update, delete, and otherwise manipulate the data in the DB59.

FFA Frequency Fitness Assignment is a algorithm plugin for optimization methods applied to discrete or combinatorial problems
with not-too-many different possible objective values. It replaces the objective values in all comparisons with their absolute
encounter frequency so far during the search. FFA has successfully been applied to the QAP9.



Glossary II

GP Genetic Programming25,39,47,51 is the application of metaheuristic optimization, usually in form of an EAs, to a search space
comprised of tree datastructures. These tree datastructures often represent programs or mathematical expressions.

JSSP The Job Shop Scheduling Problem4,27 is one of the most prominent and well-studied scheduling tasks. In a JSSP instance,
there are k machines and m jobs. Each job must be processed once by each machine in a job-specific sequence and has a
job-specific processing time on each machine. The goal is to find an assignment of jobs to machines that results in an overall
shortest makespan, i.e., the schedule which can complete all the jobs in the shortest time. The JSSP is NP-complete8,27.

MaxSAT The goal of satisfiability problems is to find an assignment for n Boolean variables that make a given Boolean
formula F : {0, 1}n 7→ {0, 1} become true. In the Maximum Satisfiability (MaxSAT) problem17, F is given in conjunctive
normal form, i.e., the variables appear either directly or negated in m “or” clauses, which are all combined into one “and.” The
objective function f(x), subject to minimization, computes the number of clauses which are false under the variable setting x.
If f(x) = 0, then all clauses of F are true, which solves the problem. The MaxSAT problem is NP-complete10.

moptipy is the Metaheuristic Optimization in Python library54. It has been used in several different research works,
including9,30–32,43,58,60,61. Learn more at https://thomasweise.github.io/moptipy and
https://thomasweise.github.io/moptipyapps.

Python The Python programming language18,29,34,48, i.e., what you will learn about in our book48. Learn more at
https://python.org.

QAP The Quadratic Assignment Problem is an optimization problem where the goal is to assign a set of n facilities to a set of
n locations5,9,24,33. Such an assignment can be represented as a permutation x of the first n natural numbers, where
xi specifies the location where facility i should be placed. For each QAP, a distance matrix D is given, where Dpq specifies
the distance from location p to location q, as well as a flow matrix F , where Fij is the amount of material flowing from
facility i to facility j. The objective function f then rates a permutation x as f(x) =

∑n
i=1

∑n
j=1 Dxixj

Fij . The QAP is

NP-complete42.

https://thomasweise.github.io/moptipy
https://thomasweise.github.io/moptipyapps
https://python.org


Glossary III

RLS Randomized local search retains the best solution xc discovered so far during the search and, in each step, it applies a unary
search operator to this best-so-far solution xc and derives a new solution xn. If the new solution xn is better or equally good
when compared with xc, i.e., not worse, then it replaces it, i.e., is stored as the new xc. If the search space are bit strings of
length n, then RLS uses a unary search operator that flips exactly one bit. This operator is the main difference to (1 + 1) EA.

SA Simulated Annealing is a local search that sometimes accepts a worse solution7,20,21,38. The probability to do so decreases
over time and with the difference in objective values, i.e.,is the lower the worse the new solution is.

TSP In an instance of the Traveling Salesperson Problem, also known as Traveling Salesman Problem, a set of n cities or locations
as well as the distances between them are defined1,16,28,30,49,57. The goal is to find the shortest round-trip tour that starts
at one city, visits all the other cities one time each, and returns to the origin. The TSP is one of the most well-known
NP-hard combinatorial optimization problems16.

TTP The Traveling Tournament Problem (TTP) is the combinatorial optimization problem of both efficiently and fairly organizing
a tournament of n teams that play against each other in a pairwise fashion13,58. The efficient part boils down to arranging
the games such that the total travel length is short, which is somewhat similar to the classical TSP. Initially, each team is at
its home location. On each day, a team needs to travel if its scheduled game is not at its present location. On the last day,
each team may need to travel back home unless their last game is a home game. The total travel length sums up the lengths
of all travels over all teams. The fair part is represented in several constraints, such as doubleRoundRobin, compactness,
maxStreak, and noRepeat. The TTP is NP-hard45.

i..j with i, j ∈ Z and i ≤ j is the set that contains all integer numbers in the inclusive range from i to j. For example, 5..9 is
equivalent to {5, 6, 7, 8, 9}

N0 the set of the natural numbers including 0, i.e., 0, 1, 2, 3, and so on. It holds that N0 ⊂ Z.

NP is the class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be
verified in polynomial time by a deterministic machine (such as a normal computer)15.



Glossary IV

NP-complete A decision problem is NP-complete if it is in NP and all problems in NP are reducible to it in polynomial time15,40. A
problem is NP-complete if it is NP-hard and if it is in NP.

NP-hard Algorithms that guarantee to find the correct solutions of NP-hard problems8,10,27 need a runtime that is exponential in the
problem scale in the worst case. A problem is NP-hard if all problems in NP are reducible to it in polynomial time15.

Ω(g(x)) If f(x) = Ω(g(x)), then there exist positive numbers x0 ∈ R+ and c ∈ R+ such that f(x) ≥ c ∗ g(x) ≥ 0∀x ≥ x0
22,23. In

other words, Ω(g(x)) describes a lower bound for function growth.

O(g(x)) If f(x) = O(g(x)), then there exist positive numbers x0 ∈ R+ and c ∈ R+ such
that 0 ≤ f(x) ≤ c ∗ g(x)∀x ≥ x0

2,22,23,26. In other words, O(g(x)) describes an upper bound for function growth.

Θ(g(x)) If f(x) = Θ(g(x)), then f(x) = O(g(x)) and f(x) = Ω(g(x))22,23. In other words, Θ(g(x)) describes an exact order of
function growth.

R the set of the real numbers.

R+ the set of the positive real numbers, i.e., R+ = {x ∈ R : x > 0}.

Z the set of the integers numbers including positive and negative numbers and 0, i.e., . . . , -3, -2, -1, 0, 1, 2, 3, . . . , and so on.
It holds that Z ⊂ R.
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