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Introduction

® Our team has two general research directions: Optimization*’ and Artificial Intelligence
(Al).

® My students and | are members of the Optimization Direction.

® Today, | therefore want to first give a short introduction into the field of optimization,

before delving into one of our concrete research topics, namely Frequency Fitness
Assignment (FFA).
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Research Field: Optimization
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What is Optlmnzatlon7

® There are two ways to look at optimization.
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What is Optimization?

® The economic view.
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What is Optimization?

® The mathematical view.
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Example: Function Optimization

® |n the field of continuous
optimization, we could literally
try to find the minimum of a
mathematical
function f: R" — R.
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Example: Function Optimization

® |n the field of continuous
optimization, we could literally
try to find the minimum of a
mathematical
function f : R™ — R.

® The search space X would then
be the n-dimensional real
vectors, i.e., X = R",
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Example: Function Optimization
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® |n the field of continuous
optimization, we could literally
try to find the minimum of a
mathematical
function f : R™ — R.

® The search space X would then

be the n-dimensional real
vectors, i.e., X = R",

® The objective function would,

well, be the function f.
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Example: Function Optimization

In the field of continuous
optimization, we could literally
try to find the minimum of a
mathematical

function f : R™ — R.

The search space X would then
be the n-dimensional real
vectors, i.e., X = R".

The objective function would,
well, be the function f.

The optimal solution z* € X is
the minimum of f.

' & o aEa ey @ < E

Lﬂ" B AT g W SR



Example: Function Optimization

In the field of continuous
optimization, we could literally
try to find the minimum of a
mathematical

function f : R™ — R.

The search space X would then
be the n-dimensional real
vectors, i.e., X = R".

The objective function would,
well, be the function f.

The optimal solution z* € X is
the minimum of f.

This is not what | am working
on, though.

¥ or o aEa ey @ < 1

h’ﬁ B AT g W SR



Example: Traveling Salesperson Problem

® |n the Traveling Salesperson
Problem (TSP)1:16.28,30.49.57
the goal is to find the shortest
round-trip tour through a set of
n cities.
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Example: Traveling Salesperson Problem

® |n the Traveling Salesperson
Problem (TSP)1’16'28'30'49'57,
the goal is to find the shortest
round-trip tour through a set of
n cities.

® The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.
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Example: Traveling Salesperson Problem

® |n the Traveling Salesperson
Problem (TSP)1’16'28'30'49'57,
the goal is to find the shortest
round-trip tour through a set of
n cities.

® The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

Beijing.

Xi'an

Hefei.NE:rEng

Wuhan h'. hai
i ) Chongging ° Shanghai
® The objective .
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Example: Traveling Salesperson Problem

® |n the Traveling Salesperson
Problem (TSP)1’16'28'30'49'57,
the goal is to find the shortest
round-trip tour through a set of
n cities.

® The search space X thus is the
set of all possible round-trip
tours through these n cities,
usually specified as permutations
of the first n natural numbers.

Beijing.

Xi'an /
d Nanjing

Hefei —el
Chongging & Wuhan/.* Shangha|

® The objective

[}

. \ Changsh
function f : X — R, subject to y "% ad
minimization, is the length of Kupming, /\g\ \
the tour. oNg Kong

® The optimal solution z* € X is
the shortest possible tour.
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Example: Bin Packing Problem

® The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
60,61

as few bins (also of a given size) as possible
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Example: Bin Packing Problem

® The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible®®:%!.

® The X comprises all possible packing orders of the n objects.
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Example: Bin Packing Problem

® The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible®®:%!.

® The X comprises all possible packing orders of the n objects.

® The objective function f is the number of bins needed by a given packing order.
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Example: Bin Packing Problem

® The goal of the Bin Packing Problem is to pack n objects, each having a specific size, into
as few bins (also of a given size) as possible®®:%!.

® The X comprises all possible packing orders of the n objects.
® The objective function f is the number of bins needed by a given packing order.

® The optimum x* is the packing order requiring the fewest bins.
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Optimization is Hard

¢ Finding the globally optimal solution x* from the set of all possible solutions X is often an

NP-hard problem.
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Optimization is Hard

® Finding the globally optimal solution z* from the set of all possible solutions X is often an
NP-hard problem.

e Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given A'P-hard problem in a runtime that is not longer than polynomial in
the size of the problem (i.e., existing algorithms may need exponential runtime in the
worst case).




RRIRE.T S o AR

Optimization is Hard

® Finding the globally optimal solution z* from the set of all possible solutions X is often an
NP-hard problem.

e Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given A'P-hard problem in a runtime that is not longer than polynomial in
the size of the problem (i.e., existing algorithms may need exponential runtime in the

worst case).
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Optimization is Hard

® Finding the globally optimal solution z* from the set of all possible solutions X is often an

NP-hard problem.

e Currently, there is no algorithm that can guarantee to find the optimal solution of every
instance of a given A'P-hard problem in a runtime that is not longer than polynomial in
the size of the problem (i.e., existing algorithms may need exponential runtime in the
worst case).

® |n other words, if we want to guarantee to find the best possible solution z* for all possible
instances of a problem, we often cannot really be much faster than testing all possible
candidate solutions x € X in the worst case.
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Metaheuristic Optimization

® Because of this hardness of
optimization, metaheuristic
algorithms that follow the
Trial-and-Error idea of iterative
improvement have emerged.
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® Because of this hardness of
optimization, metaheuristic
algorithms that follow the
Trial-and-Error idea of iterative
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optimal solution.
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Metaheuristic Optimization

® Because of this hardness of
optimization, metaheuristic
algorithms that follow the
Trial-and-Error idea of iterative
improvement have emerged.

® They drop the guarantee to find the
optimal solution.

® They try to find good solutions
within a feasible runtime.
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Metaheuristic Optimization

® Because of this hardness of
optimization, metaheuristic
algorithms that follow the
Trial-and-Error idea of iterative
improvement have emerged.

® They drop the guarantee to find the
optimal solution.

They try to find good solutions
within a feasible runtime.

They (usually) start with random
solutions.




Metaheuristic Optimization

® Because of this hardness of
optimization, metaheuristic
algorithms that follow the
Trial-and-Error idea of iterative
improvement have emerged.

® They drop the guarantee to find the

optimal solution.

They try to find good solutions
within a feasible runtime.

They (usually) start with random
solutions.

And then roughly follow this cycle.
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Metaheuristic Optimization

® Because of this hardness of
optimization, metaheuristic
algorithms that follow the
Trial-and-Error idea of iterative
improvement have emerged.

® They drop the guarantee to find the

optimal solution.

They try to find good solutions

within a feasible runtime.

They (usually) start with random

solutions.

And then roughly follow this cycle.
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e Local search with |S;| = [IV;| = 1 is the simplest realization of the metaheuristic i
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- The (14 1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

e
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procedure (1+1) EA(f : X — R)
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The (1+1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

procedure (1+1) EA(f : X — R)
randomly sample x. from X;

2
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The (1+1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(x.);

2
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The (1+ 1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
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The (1+ 1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(x.);

while — terminate do
T, < move(x,);

VR S sk R Y VS
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The (1+1) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(x.);

while — terminate do
Ty move($c); Yn < f(xn);

VR S sk R Y VS
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The ( ) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

® They accept the new solution if it is better or equally good compared to the current
solution.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
Ty move(mc); Yn f(xn);
if ¥, < y. then
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The ( ) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

® They accept the new solution if it is better or equally good compared to the current
solution.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
Ty move(mc); Yn f(xn);
if yp, <y then z. + z,;
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The ( ) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

® They accept the new solution if it is better or equally good compared to the current
solution.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
Ty move(mc); Yn f(xn);
if yp < ye then z. < z,; Y < Yn;

VAT S sk U Y VR
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The ( ) EA and RLS

® Local search with |S;| = |N;| = 1 is the simplest realization of the metaheuristic idea.

® Randomized local search (RLS) and the (1 + 1) evolutionary algorithm ((1 + 1) EA) work
according the same pattern (and differ only in their unary search operator mouve)®*2.

® They accept the new solution if it is better or equally good compared to the current
solution.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. < f(z.);
while — terminate do
Tp < move(mc); Yn < f(xn);
if yp < yYe then z. < z5; Yo < Yn;
return z., y.

VAT S sk U Y VR



Research Field

® My students and | together work on solving discrete or combinatorial problems with
metaheuristic algorithms.
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Research Field

My students and | together work on solving discrete or combinatorial problems with
metaheuristic algorithms.

® \We investigate classical hard problems that have discrete search spaces, such as bit strings
or permutations.

Here, the objective functions take on only natural numbers in Ny.
We try to enable metaheuristic algorithms to find better solutions for these problems.



Research Direction: Frequency Fitness Assignment
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Metaheuristic Optimization Algorithms

® The most fundamental concept in metaheuristic optimization is

If you keep good solutions and modify them, you are likely to get better
solutions.
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Metaheuristic Optimization Algorithms

® The most fundamental concept in metaheuristic optimization is

5 If you keep good solutions and modify them, you are likely to get better
§ solutions.

If you keep accepting better and better solutions, you will get really good
solutions eventually.
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Metaheuristic Optimization Algorithms

® The most fundamental concept in metaheuristic optimization is

] If you keep good solutions and modify them, you are likely to get better
solutions.

If you keep accepting better and better solutions, you will get really good
solutions eventually.

® Algorithms like random sampling or exhaustive enumeration that do not at least
statistically prefer better solutions have extremely bad performance.
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Metaheuristic Optimization Algorithms

® The most fundamental concept in metaheuristic optimization is
i If you keep good solutions and modify them, you are likely to get better
solutions.

If you keep accepting better and better solutions, you will get really good
solutions eventually.

® Algorithms like random sampling or exhaustive enumeration that do not at least
statistically prefer better solutions have extremely bad performance.

5 ® We challenge this principle.
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Metaheuristic Optimization Algorithms

® The most fundamental concept in metaheuristic optimization is

If you keep good solutions and modify them, you are likely to get better
solutions.

If you keep accepting better and better solutions, you will get really good
solutions eventually.

® Algorithms like random sampling or exhaustive enumeration that do not at least
statistically prefer better solutions have extremely bad performance.
® We challenge this principle.

® Qur Frequency Fitness Assignment (FFA) does not prefer better solutions ... yet it can
improve the performance of existing algorithms in several cases!

g
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FFA: Idea

® Frequency Fitness Assignment (FFA) is a module that can be plugged into different
existing algorithms.
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l ® Frequency Fitness Assignment (FFA) is a module that can be plugged into different
existing algorithms.

® |t changes the way the algorithm selects the interesting solutions S; 1 from the
sets P, = S; UN;.
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FFA: Idea

® Frequency Fitness Assignment (FFA) is a module that can be plugged into different
existing algorithms.

® |t changes the way the algorithm selects the interesting solutions S; 1 from the
sets P, = S; UN;.

e |t therefore maintains a table H with the encounter frequency of each objective value in
the selection decisions.
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FFA: Idea

® Frequency Fitness Assignment (FFA) is a module that can be plugged into different
existing algorithms.

® |t changes the way the algorithm selects the interesting solutions S; 1 from the
sets P, = S; UN;.

e |t therefore maintains a table H with the encounter frequency of each objective value in
the selection decisions.

® The table H is initially filled with zeros.
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FFA: Idea

® Frequency Fitness Assignment (FFA) is a module that can be plugged into different
existing algorithms.

® |t changes the way the algorithm selects the interesting solutions S; 1 from the
sets P, = S; UN;.

e |t therefore maintains a table H with the encounter frequency of each objective value in
the selection decisions.

® The table H is initially filled with zeros.

® Before the selection step of the algorithm, H|[f(P;[j])] for all j € 1..|P;| is incremented
by 1.
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FFA: Idea
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® Frequency Fitness Assignment (FFA) is a module that can be plugged into different
existing algorithms.

® |t changes the way the algorithm selects the interesting solutions S; 1 from the
sets P, = S; UN;.

e |t therefore maintains a table H with the encounter frequency of each objective value in
the selection decisions.

® The table H is initially filled with zeros.

® Before the selection step of the algorithm, H|[f(P;[j])] for all j € 1..|P;| is incremented
by 1.

® Then, the frequencies H[f(P;[j])] replace the objective values f(P;[j]) in the actual
selection decisions.
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FFA: (14+1) EA and (1+1) FEA

e Let's plug FFA into the (14 1) EA and obtain the (1+ 1) EA with FFA ((1 + 1) FEA).

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. + f(z.);
while — terminate do
Tn < move(zc); Yn = f(wn);
if yp < ye then z. < zn; Yo < Yn;
return z., y.
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FFA: (1+1) EA-ail (1+1) FEA

e We start with the (14 1) EA.
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FFA: (1+1) EA-ail (1+1) FEA

e We begin by initializing the frequency table H with all zeros.
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FFA: (1+1) EA and (1+1) FEA

® Before the selection decision, we increment the frequency values of the objective values of

all current solutions.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. + f(z.);
while — terminate do
Tn < move(zc); Yn = f(wn);

if Un < ¥Yc then z. < z,; Ye < Yn;
return z., y.

procedure (1 + 1) FEA(f : X — N)
H + (0,0,---,0);
randomly sample z. from X; y. < f(z.);

while — terminate do
Ty < move(xc); Yn f(xn)a
H[yc] — H[yc] = 1l H[yn] — H[yn] A g
if y,<y. then
Te <= Tny Ye < Yns

return z., y.

e o

——
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FFA: (1+1) EA and (1+1) FEA N"i‘ 2
il f/)) ‘

* Now the frequency values replace the objective values in the selection decisions. é
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FFA: (1+1) EA-ail (1+1) FEA
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FFA: (14+1) EA and (1+1) FEA

® Since we may now lose the best-so-far solution, we need to track it in additional variables.

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. + f(z.);
while — terminate do
Tn < move(zc); Yn = f(wn);
if yp < ye then z. < zn; Yo < Yn;
return z., y.

procedure (1 + 1) FEA(f : X — N)
H + (0,0,---,0);
randomly sample z. from X; y. < f(z.);
TB < Ze; YB < Yes
while — terminate do
Tp move(mc); Yn f(xn)a
H[yc] — H[yc] 4 1l H[yn] — H[yn] = 1lg
if H[y,] < H[y.| then
Te <= Tny Ye < Yns
if y. < yp then zp + z; yB + Yc;
return z., y.

T,

T
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FFA: (1+1) EA and (1+1) FEA

® Since we may now lose the best-so-far solution, we need to track it in additional variables.
® .. which are then the return values of the (1 + 1) FEA.

procedure (1 + 1) FEA(f : X — N)
H « (0,0,---,0);

procedure (1+1) EA(f : X — R) randomly sample z. from X; ye « f(zc);
randomly sample z. from X; y. + f(z.); TB & Tei YB & Yei
while — terminate do vl = pentineie dlo ¢
Ty < move(Ze); Yn  f(zn); T < move(ze); Yn < flan); ;
if yp < ye then 2. < x,; Yo & Yn; Hlye] « Hly] + 1; Hlya] < Hlya] + 1|
return z., y. if Hlyn] < H[y| then

Te <= Tny Ye < Yns
if y. < yp then xp < x.; YB < Yo;
return zg, Y
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FFA: What does this do?

® The rating H|[f(x)] of a solution & depends only on how often solutions z’ with
f(z’) = f(z) have previously been seen in the optimization process.
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FFA: What does this do?

® The rating H|[f(z)] of a solution x depends only on how often solutions z’ with
f(z") = f(x) have previously been seen in the optimization process.

e Static optimization problems become dynamic, because frequency fitness H changes over
time.



FFA: What does this do?
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FFA: What does this do?

® The rating H|[f(z)] of a solution x depends only on how often solutions z’ with
f(z") = f(x) have previously been seen in the optimization process.

e Static optimization problems become dynamic, because frequency fitness H changes over
time.

® Solutions get less attractive the more often their corresponding objective values have been
seen. This also holds for local optima. ..

® Solutions with better objective values are no longer preferred over such with worse
objective value.

® |nstead, solutions with less-frequent objective values are preferred.
® Algorithms using FFA are invariant under all injective transformations of the objective
function value.

® They are less likely to get stuck at local optima, which is a problem for, e.g., the
(1+1) EA.
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Abstract—Metaheuristic optimization procedures such as evo-
lutionary algorithms are usually driven by an objective function
that rates the quality of a candidate solution. However, it is
not clear in practice whether an objective function adequately
d ions on the path
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and a lack of causality. In this paper, we introduce the frequency
fitness H, subject to minimization, which rates how often solu-
tions with the same objective value have been discovered so far.
‘The ideas behind this method a od solutions are difficult

will increase over time, which
that region again. We uency fitness assignment
P (A ekt et e[ it
\-vllmlnlhm ulg\-rllhm» We conduct a comprehensive set of

ex) nthesis of ﬁlunrmum with genetic program-
= G e sption of problems with genetic
Seacths, s ing,

fication with Nemetic Gentic Progranmin
wizeion v » (131) Evvhotion Scategy, .
t they have no access to the
urlglnul ummm Ilmdhm WAl 0 i tht for some
. orithm synthesis task) the FFA-based algo-
Fthm variani perfore sigaificantly betir, Howerer, his cannot
be guaranteed for all tested problems. Thus, we also analyze
scenarios where algorithms using FFA do not perform better or
perform even worse than with the original objective function;
Index Terms—Combinatorial optimization, diversity, fitness
asignment, frequency, genetle programming (GP), mumerica

optimization.

I INTRODUCTION
INGLE-OBJF~ "VE optimi ion is - process with the
goal of findi Gie-all wal) sol tions x

N userp ceiv v 0 @

¥
‘

Imm within a space x of pamhu solutions. An objective func-

serves as g sure guiding the search. Black-box
euristic approac s are methods tht only require such
an uhjuma function and search operations to solve an
optimization problem without any further insight into their
structure. The most prominent family of these methods are
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mization, 1o even program synthesis.

Most metaheuristic optimization methods start with a ran-
domly generated set of candidate solutions. New points in
carch space are derived by modifying or combining
promising existing solutions. Promising here means having
a better objective value than the other points visited so far,
maybe com jons about_diver
‘The rationale s that in the ideal case, solutions that have better
objective values should be closer to the global optimum or, at
least, may have even better solutions in their vicinity.

“The principle of tending to choose areas of the solution
space for sampling where points with better objective values
have previously been discovered is one of the most universally
applied ideas in black-box optimization. Lehman and Stanley
[1] argued that increasing fitness does not always reveal
the best path through the search spice. Building on Ihur
work, we believe that there is at least one other fun:
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which are then the basis for selection. Frequency fitness
assignment (FFA) [1], [2] was developed to enable algorithms
1o escape from local optima. In FFA, the fitness correspond-
ing 1o an objective value is its encounter frequency so far
in fitness assignment steps and is subject to minimization.
in detail in Section II, FFA wms a static
optimization problem into a dynamic one where objective val-
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® We plug FFA into the (1 + 1) EA and obtain the
(1+1) FEA.

® The (1+ 1) EA can easily solve the OneMax problem,
where the goal is to find a bit string of all 1s3°.

® It needs ©(n™) on traps'?, where the optimum and the © -

worst solution are exchanged compared to OneMax.

w0 J
(]

o J
S\

w0

f(x) OneMax, n=32
1764 Trap, n=32
vvéee
Y
AAA“VVQQ
vaée
number of 1 bits = Zx Véeeg%

5 10 15 20 25 30



Discrete Benchmark Functions

® Discrete optimization algorithms work on bit strings of length n as search space and use
only the objective values of the solutions they sample to solve a problem.

® They are usually tested on a variety of benchmark
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® Discrete optimization algorithms work on bit strings of length n as search space and use
only the objective values of the solutions they sample to solve a problem.

® They are usually tested on a variety of benchmark
problems.

® We plug FFA into the (1 + 1) EA and obtain the
(1+1) FEA.

® The (1+ 1) EA can easily solve the OneMax problem,
where the goal is to find a bit string of all 1s3°.

® It needs ©(n") on traps'?, where the optimum and the
worst solution are exchanged compared to OneMax, as
well as on TwoMax!*** which has one local and one
global optimum.

® The (1+ 1) FEA solves all three problems in polynomial time!
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Discrete Benchmark Functions

® Discrete optimization algorithms work on bit strings of length n as search space and use
only the objective values of the solutions they sample to solve a problem.

® They are usually tested on a variety of benchmark

problems. 8 <I(X) Jump, n=32, w=Ln)+1=6 &%
® We plug FFA into the (1 + 1) EA and obtain the L <>°<><>°<>
(1+1) FEA. . <’<><>o<><>
3
® The (1+ 1) EA can easily solve the OneMax problem, * 2 000,
where the goal is to find a bit string of all 1s3°. m' K00,
® It needs ®(n") on traps'?, where the optimum and the o nAngbere bl 2

) 5 10 15 20 25 30
worst solution are exchanged compared to OneMax, as
well as on TwoMax!*** which has one local and one

global optimum.

® The (1+ 1) FEA solves all three problems in polynomial time as well as the Jump
problem, where the (1 4 1) EA also needs exponential runtime!
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: ® FFA on the Maximum Satisfiability (MaxSAT) Problem, one of the most famous discrete
= optimization problems [53, 55, 56].
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~ Maximum Satisfiability Problem

® FFA on the Maximum Satisfiability (MaxSAT) Problem, one of the most famous discrete
optimization problems [53, 55, 56].

From Table I, we can see that the highest number of failed
runs at scale s = 250 of any algorithm using FFA is lower
than the lowest number of failed runs of any pure algorithm
at s = 50. From Table II, we find that no FFA-based algo-
= rithm has a higher ERT at scale s = 250 than its pure variant
= on s = 50. On the scales s < 75, the FFA-based algorithms
- have a mean runtime which is between three and four orders
= of magnitude smaller that the ERT of the pure algorithms.

® Snippet of page 10 of [56] (copyright IEEE).
® Several different EAs with and without FFA
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Traveling Salesperson Problem

® FFA on the Traveling Salesperson Problem
(TSP): [30-32].




Traveling Salesperson Problem

® FFA on the Traveling Salesperson Problem
(TSP): [30-32].

® Snippet of page 12 of [30] (copyright
Springer).

® (1+1)EA, (1+1)FEA, Simulated
Annealing (SA) w/o FFA, hybrids

e S SRR s v .

In this work, we explored both the EA and SA on 56 sym-
metric instances from the benchmark set TSPLib (Reinelt
1991, 1995). The EA is unsuitable for this problem, but SA
can find the optimum on many small and mid-sized instances.
‘We then plug FFA into both algorithms and obtain the FEA
and the FSA, respectively, which both exhibit very similar
performance. The FEA solves 27 of the instances in all of its
runs, which SA can only achieve for 19 instances. Plugging
FFA into either the EA or SA thus substantially improved the
number of runs in which the algorithms can find the optimum,
however, both FFA-based variants suffer when the number
of unique objective values is high.

Both types of hybridization methods significantly improve
the average result quality compared to both the objective-
guided and FFA-based FEA variants. The SAFEA4 discovers
the optimal solutions in more runs than any other algorithm
setup in our study. It also finds the optimum most often in
most instances and delivers the best approximation qual-
ity on most instances, compared to the other algorithms.




Quadratic Assignment Problem
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® FFA on the Quadratic Assignment Problem
(QAP): [9, 43].
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® FFA on the Quadratic Assignment Problem
(QAP): [9, 43].

® Snippet of page 7 of [9] (copyright
SciTePress).

® RLS w/o FFA

We find that the FFA-based randomized local
search FRLS does not just find better solutions than
the objective-guided RLS algorithm on the vast ma-
jority of the QAPLIB instances, it also keeps improv-
ing its current best solution for the complete computa-
tional budget of 10® FEs that we assigned to the runs.
With this budget, it can discover the optimal solutions
of over 58% of the QAPLIB instances. Had we as-
signed a larger budget — (Liang et al., 2022; Liang
et al., 2024; Weise et al., 2021b; Weise et al., 2023)
use 10'° FEs — we would likely have seen even more
instances solved.

We furthermore confirm the remarkable ability
of FFA to discover very diverse solutions (at least
from the perspective of the objective function). It is
known that on the QAP, many solutions tend to have
the same objective values (Tayarani-N. and Priigel-
Bennett, 2015). Yet, on some of the instances, more
than half of the objective values discovered by FRLS
were unique.
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Job Shop Scheduling Problem

® FFA on the Job Shop Scheduling Problem (JSSP) Problem: [11, 50, 55].
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Job Shop Scheduling Problem

1 FFA on the Job Shop Scheduling Problem (JSSP) Problem: [11, 50, 55].

e

The end result quality delivered by (1+1)-FEA is better in average
on the abz*, ft*, a*, orb*, and yn4* instance sets, both in terms of best
and mean. On swv*, the average for mean is better for (1+1)-FEA,
while (1+1)-EA has a slight lead in best. The (1+1)-EA performs
better on the dmu* and ta* instances. Since these two sets are larger
(holding 160 out of the 242 instances), the (1+1)-EA comes out ahead
in the overall averages, but with no more than a 1.5% advantage.
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® Snippet of page 10 of [50] (copyright ACM).
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Algorithm Synthesis and Genetic Programming

® FFA for algorithm synthesis and Genetic Programming (GP): [52, 53].



Algorithm Synthesis and Genetic Programming

® FFA for algorithm synthesis and Genetic Programming (GP): [52, 53].

Fourth, we were able to confirm with great significance
that FFA has a tremendous positive impact on the perfor-
mance of GP, as it can increase the success rate by 40%.

® Snippet of page 7 of [52] (copyright IEEE).
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Future Works

® Apply FFA to other discrete and combinatorial problems:

1. Where can FFA improve the solution quality?
2. Where can it not do that?
3. Why?

® Plug FFA into more optimization algorithms.

® Combine “traditional” and FFA-based optimization, i.e., create hybrid algorithms, to reap
the best of both worlds.
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® Qur students and | work on the big field of optimization.
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® Qur students and | work on the big field of optimization.

® We try to improve the quality of solutions that metaheuristics can deliver on discrete or

combinatorial problems.
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' Summary

® Qur students and | work on the big field of optimization.

® \We try to improve the quality of solutions that metaheuristics can deliver on discrete or
combinatorial problems.

' & We have a very interesting and novel technique called Frequency Fitness Assignment
(FFA).
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' Summary

Our students and | work on the big field of optimization.

We try to improve the quality of solutions that metaheuristics can deliver on discrete or
combinatorial problems.

We have a very interesting and novel technique called Frequency Fitness Assignment
(FFA).

We are figuring out where it really can give us better results.
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' Summary

Our students and | work on the big field of optimization.

We try to improve the quality of solutions that metaheuristics can deliver on discrete or
combinatorial problems.

We have a very interesting and novel technique called Frequency Fitness Assignment
(FFA).

We are figuring out where it really can give us better results.

® But we are not picky.
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' Summary

Our students and | work on the big field of optimization.

We try to improve the quality of solutions that metaheuristics can deliver on discrete or
combinatorial problems.

' @ We have a very interesting and novel technique called Frequency Fitness Assignment
(FFA).

We are figuring out where it really can give us better results.

® But we are not picky. For example,
1. on the two-dimensional bin packing problem, we found out that a simple local search can
actually outperform the complex state-of-the-art metaheuristics and FFA could not improve

the performance ... so we published this surprising result and the student graduated with 3
. 160,61 &
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' Summary

Our students and | work on the big field of optimization.

We try to improve the quality of solutions that metaheuristics can deliver on discrete or
combinatorial problems.

We have a very interesting and novel technique called Frequency Fitness Assignment
(FFA).
We are figuring out where it really can give us better results.

But we are not picky. For example,

1. on the two-dimensional bin packing problem, we found out that a simple local search can
actually outperform the complex state-of-the-art metaheuristics and FFA could not improve
the performance ... so we published this surprising result and the student graduated with
it%%6! and

2. on the Traveling Tournament Problem (TTP), we also got surprisingly good results with
RLS®® and SA.
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Programming with Python

We have a freely available course book on Programming with Python at
https://thomasweise.github.io/programmingWithPython, with focus on practical
software development using the Python ecosystem of tools*®.
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https://thomasweise.github.io/programmingWithPython

Databases

We have a freely available course book on Databases at
https://thomasweise.github.io/databases, with actual practical examples using a real

database management system (DBMS)*°.



https://thomasweise.github.io/databases

Metaheuristic Optimization in Python: moptipy

We offer moptipy®* a mature open source Python package for metaheuristic optimization,
which implements several algorithms, can run self-documenting experiments in parallel and in a
distributed fashion, and offers statistical evaluation tools.
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Glossary |

(1+1) EA

(1+1) FEA
EA

(14 ) EA

A

DB

DBMS

FFA

The (1 4+ 1) EA is a local search algorithm that retains the best solution z. discovered so far during the search®*2. In each

step, it applies a unary search operator to this best-so-far solution z. and derives a new solution z,,. If the new solution z,,
is better or equally good when compared with z, i.e., not worse, then it replaces it, i.e., is stored as the new z.. If the
search space are bit strings of length n, then the (1 + 1) EA uses a unary search operator that flips each bit independently
with probability m /n, where usually m = 1. This operator is the main difference to randomized local search (RLS). The
(14 1) EA is a special case of the (1 4+ \) evolutionary algorithm ((u + A) EA) where p = XA = 1.

The (1 + 1) EA with FFA plugged in.

An evolutionary algorithm is a metaheuristic optimization method that maintains a population of candidate solutions, which
undergo selection (where better solutions are chosen with higher probability) and reproduction (where mutation and
recombination create a new candidate solution from one or two existing ones, repectively)®47.

The (1 + A) EA is an evolutionary algorithm (EA) where, in each generation, X\ offspring solutions are generated from the
current population of p parent solutions. The offspring and parent populations are merged, yielding 1 + A solutions, from
which then the best p solutions are ratained to form the parent population of the next generation. If the search space is the
bit strings of length n, then this algorithm usually applies a mutation operator flipping each bit independently with
probability 1/n.

Artificial Intelligence, see, e.g.,‘u

A database is an organized collection of structured information or data, typically stored electronically in a computer system.
Databases are discussed in our book Databases*®.

A database management system is the software layer located between the user or application and the database (DB). The
DBMS allows the user/application to create, read, write, update, delete, and otherwise manipulate the data in the DB5?.

Frequency Fitness Assignment is a algorithm plugin for optimization methods applied to discrete or combinatorial problems
with not-too-many different possible objective values. It replaces the objective values in all comparisons with their absolute
encounter frequency so far during the search. FFA has successfully been applied to the QAP®.
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Python
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Genetic Programming?®:32:47:51 s the application of metaheuristic optimization, usually in form of an EAs, to a search space

comprised of tree datastructures. These tree datastructures often represent programs or mathematical expressions.

The Job Shop Scheduling Problem®27 is one of the most prominent and well-studied scheduling tasks. In a JSSP instance,
there are k machines and m jobs. Each job must be processed once by each machine in a job-specific sequence and has a
Jjob-specific processing time on each machine. The goal is to find an assignment of jobs to machines that results in an overall

shortest makespan, i.e., the schedule which can complete all the jobs in the shortest time. The JSSP is A/ P-complete 228

The goal of satisfiability problems is to find an assighment for n Boolean variables that make a given Boolean

formula F : {0,1}" — {0, 1} become true. In the Maximum Satisfiability (MaxSAT) problem®?, F is given in conjunctive
normal form, i.e., the variables appear either directly or negated in m “or” clauses, which are all combined into one “and.” The
objective function f(z), subject to minimization, computes the number of clauses which are false under the variable setting =.
If f(xz) = 0, then all clauses of F' are true, which solves the problem. The MaxSAT problem is N P-complete®.

is the Metaheuristic Optimization in Python library®®. It has been used in several different research works,
including®30~32:43,58,60,61 | oarn more at https://thomasweise.github.io/moptipy and

https://thomasweise.github.io/moptipyapps.

18,29,34,48

The Python programming language , i.e., what you will learn about in our book*®. Learn more at

https://python.org.

The Quadratic Assignment Problem is an optimization problem where the goal is to assign a set of n facilities to a set of

n locations®22433 Such an assignment can be represented as a permutation z of the first n natural numbers, where

x; specifies the location where facility ¢ should be placed. For each QAP, a distance matrix D is given, where D, specifies
the distance from location p to location g, as well as a flow matrix F', where F;; is the amount of material flowing from
facility ¢ to facility j. The objective function f then rates a permutation z as f(z) = Y1, }lzl D, o F;;. The QAP is

i=
N P-complete??.
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RLS

SA

TSP

TTP

Randomized local search retains the best solution z. discovered so far during the search and, in each step, it applies a unary

search operator to this best-so-far solution z. and derives a new solution z,,. If the new solution z,, is better or equally good
when compared with z., i.e., not worse, then it replaces it, i.e., is stored as the new z.. If the search space are bit strings of
length n, then RLS uses a unary search operator that flips exactly one bit. This operator is the main difference to (1 + 1) EA.

Simulated Annealing is a local search that sometimes accepts a worse solution”'20:21:38  The probability to do so decreases
over time and with the difference in objective values, i.e.,is the lower the worse the new solution is.

In an instance of the Traveling Salesperson Problem, also known as Traveling Salesman Problem, a set of n cities or locations
as well as the distances between them are defined!:16:28:30,49,57 ' The o4 is to find the shortest round-trip tour that starts
at one city, visits all the other cities one time each, and returns to the origin. The TSP is one of the most well-known

NP-hard combinatorial optimization problems™®.

The Traveling Tournament Problem (TTP) is the combinatorial optimization problem of both efficiently and fairly organizing
a tournament of n teams that play against each other in a pairwise fashion?3'%8 . The efficient part boils down to arranging
the games such that the total travel length is short, which is somewhat similar to the classical TSP. Initially, each team is at
its home location. On each day, a team needs to travel if its scheduled game is not at its present location. On the last day,
each team may need to travel back home unless their last game is a home game. The total travel length sums up the lengths
of all travels over all teams. The fair part is represented in several constraints, such as doubleRoundRobin, compactness,
maxStreak, and noRepeat. The TTP is N P-hard*®.

with 7,7 € Z and 7 < j is the set that contains all integer numbers in the inclusive range from i to j. For example, 5..9 is
equivalent to {5,6,7,8,9}

the set of the natural numbers including 0, i.e., 0, 1, 2, 3, and so on. It holds that Ng C Z.

is the class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be
verified in polynomial time by a deterministic machine (such as a normal computer)ls.
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Glossary IV

N P-complete A decision problem is A/P-complete if it is in NP and all problems in A/P are reducible to it in polynomial time2®4°. A
problem is N'P-complete if it is N/P-hard and if it is in N'P.

Y N P-hard Algorithms that guarantee to find the correct solutions of AP-hard problems need a runtime that is exponential in the
15

problem scale in the worst case. A problem is N'P-hard if all problems in NP are reducible to it in polynomial time*>.

8,10,27

Q(g(z)) If f(z) = 2(g(x)), then there exist positive numbers z¢g € RT and ¢ € RT such that f(z) > ¢ * g(z) > 0Vz > 292223, In
other words, ©2(g(z)) describes a lower bound for function growth.

O(g(z)) If f(z) = O(g(x)), then there exist positive numbers zo € RT and ¢ € Rt such
that 0 < f(z) < ¢ * g(z)Va > 102222325, In other words, O(g(x)) describes an upper bound for function growth.

@(g(z)) If f(z) = ©(g(x)), then f(x) = O(g(z)) and f(x) = 2(g(x))?*>33. In other words, ©(g(x)) describes an exact order of

function growth.

R the set of the real numbers.

RT  the set of the positive real numbers, i.e., RT = {z € R: x> 0}.

Z the set of the integers numbers including positive and negative numbers and 0, i.e., ..., -3,-2,-1,0, 1, 2, 3, ..., and so on.
It holds that Z C R.
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