Coverage for moptipyapps / qap / __init__.py: 100%

0 statements  

« prev     ^ index     » next       coverage.py v7.13.0, created at 2025-12-11 04:40 +0000

1""" 

2The Quadratic Assignment Problem (QAP). 

3 

4The quadratic assignment problem represents assignments of facilities to 

5locations. Between each pair of facilities, there is a flow of goods. Between 

6each two locations, there is a distance. The goal is to assign facilities to 

7locations such that the overall sum of the products of distance and flow gets 

8minimized. Each instance therefore presents a matrix with 

9:attr:`~moptipyapps.qap.instance.Instance.distances` and a matrix with flows 

10:attr:`~moptipyapps.qap.instance.Instance.flows`. The 

11:mod:`~moptipyapps.qap.objective` is then to minimize said product sum. 

12 

131. Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo 

14 Boaventura-Netto, Peter Hahn, and Tania Querido. A survey for the 

15 Quadratic Assignment Problem. European Journal of Operational Research. 

16 176(2):657-690. January 2007. https://doi.org/10.1016/j.ejor.2005.09.032. 

172. Rainer E. Burkard, Eranda Çela, Panos M. Pardalos, and 

18 Leonidas S. Pitsoulis. The Quadratic Assignment Problem. In Ding-Zhu Du, 

19 Panos M. Pardalos, eds., Handbook of Combinatorial Optimization, 

20 pages 1713-1809, 1998, Springer New York, NY, USA. 

21 https://doi.org/10.1007/978-1-4613-0303-9_27. 

22 

23This is code is part of the research work of Mr. Jiayang Chen (陈嘉阳), a 

24Master's student at the Institute of Applied Optimization (应用优化研究所, 

25http://iao.hfuu.edu.cn) of the School of Artificial Intelligence and Big Data 

26(人工智能与大数据学院) at Hefei University (合肥大学) in Hefei, Anhui, China 

27(中国安徽省合肥市) under the supervision of 

28Prof. Dr. Thomas Weise (汤卫思教授). 

29"""