Coverage for pycommons / math / primes.py: 100%
33 statements
« prev ^ index » next coverage.py v7.13.0, created at 2025-12-11 03:04 +0000
« prev ^ index » next coverage.py v7.13.0, created at 2025-12-11 03:04 +0000
1"""Tools for working with prime numbers."""
3from collections import deque
4from typing import Final, Generator
6from pycommons.types import type_error
9def primes(maximum: int = 2 ** 32) -> Generator[int, None, None]:
10 """
11 Provide a sequence of prime numbers.
13 This function is a generator that returns the prime numbers in their
14 natural order starting at `2`. It will return numbers at most up to
15 the given `maximum` value. For this purpose, it iteratively builds
16 something like the Sieve of Eratosthenes.
18 :param maximum: the maximum number to consider
19 :returns: the prime numbers
21 >>> list(primes(-1))
22 []
24 >>> list(primes(0))
25 []
27 >>> list(primes(1))
28 []
30 >>> list(primes(2))
31 [2]
33 >>> list(primes(3))
34 [2, 3]
36 >>> list(primes(4))
37 [2, 3]
39 >>> list(primes(5))
40 [2, 3, 5]
42 >>> list(primes(6))
43 [2, 3, 5]
45 >>> list(primes(7))
46 [2, 3, 5, 7]
48 >>> list(primes(8))
49 [2, 3, 5, 7]
51 >>> list(primes(9))
52 [2, 3, 5, 7]
54 >>> list(primes(10))
55 [2, 3, 5, 7]
57 >>> list(primes(11))
58 [2, 3, 5, 7, 11]
60 >>> list(primes(12))
61 [2, 3, 5, 7, 11]
63 >>> list(primes(13))
64 [2, 3, 5, 7, 11, 13]
66 >>> list(primes(14))
67 [2, 3, 5, 7, 11, 13]
69 >>> list(primes(15))
70 [2, 3, 5, 7, 11, 13]
72 >>> list(primes(16))
73 [2, 3, 5, 7, 11, 13]
75 >>> list(primes(17))
76 [2, 3, 5, 7, 11, 13, 17]
78 >>> list(primes(18))
79 [2, 3, 5, 7, 11, 13, 17]
81 >>> list(primes(19))
82 [2, 3, 5, 7, 11, 13, 17, 19]
84 >>> list(primes(20))
85 [2, 3, 5, 7, 11, 13, 17, 19]
87 >>> list(primes(199))
88 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, \
8971, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \
90151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]
92 >>> list(primes(200))
93 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, \
9471, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \
95151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]
97 >>> list(primes(201))
98 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, \
9971, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \
100151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]
102 >>> list(primes(1000))
103 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, \
10471, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \
105151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, \
106233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, \
107317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, \
108419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, \
109503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, \
110607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, \
111701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, \
112811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, \
113911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
115 >>> try:
116 ... for t in primes(1.0):
117 ... pass
118 ... except TypeError as te:
119 ... print(te)
120 maximum should be an instance of int but is float, namely 1.0.
121 """
122 if not isinstance(maximum, int):
123 raise type_error(maximum, "maximum", int)
124 if maximum <= 1:
125 return
127 yield 2
128 if maximum <= 2:
129 return
131 yield 3
132 if maximum <= 3:
133 return
135 current: int = 5
136 check_primes: Final[list[int]] = [] # the numbers <= sqrt(current)
137 next_primes: Final[deque[int]] = deque([3]) # larger primes
138 check_limit: int = 0 # the square of the largest number in check_primes
139 while current <= maximum:
140 is_prime: bool = True
142 # check all odd primes <= sqrt(current)
143 for check in check_primes:
144 if (current % check) == 0:
145 is_prime = False
146 break
148 # ...well, there might be one more to check, maybe we need to step the
149 # sqrt up by one?
150 if check_limit <= current:
151 check = next_primes.popleft()
152 check_limit = check * check
153 is_prime &= (current % check) != 0
154 check_primes.append(check)
156 if is_prime:
157 yield current
158 next_primes.append(current)
159 current += 2